Rabies Test Accuracy: Comprehensive Systematic Review and Meta-Analysis for Human and Canine Diagnostics ======================================================================================================== * Mayron Antonio Candia-Puma * Leydi Pola-Romero * Haruna Luz Barazorda-Ccahuana * Luis Daniel Goyzueta-Mamani * Alexsandro Sobreira Galdino * Ricardo Andrez Machado-de-Ávila * Rodolfo Cordeiro Giunchetti * Eduardo Antonio Ferraz Coelho * Miguel Angel Chávez-Fumagalli ## Abstract Rabies is almost invariably fatal once clinical symptoms manifest. Timely and accurate diagnosis is essential for effective treatment and prevention. Dogs are the principal reservoirs of the virus, particularly in developing nations, highlighting the importance of precise diagnostic and control measures to prevent human cases. This systematic review and meta-analysis aimed to assess the accuracy of laboratory tests for diagnosing rabies in humans and dogs. The PubMed database was searched for published studies on rabies diagnosis between 1990 and 2024. Following PRISMA statement recommendations, we included 60 studies that met the selection criteria. The findings demonstrate the effectiveness of immunological tests, such as the enzyme-linked immunosorbent assay (ELISA), and molecular tests, such as reverse transcription polymerase chain reaction (RT-PCR), in diagnosing rabies in humans. Similarly, immunological tests, rapid immunochromatographic tests (RIT), ELISA, and molecular tests (RT-PCR) were effective in diagnosing rabies in dogs. Compared to the direct fluorescent antibody test (DFAT), the area under the curve restricted to false positive rates (AUCFPR= 0.887) exhibited considerable variability and lower diagnostic accuracy. Both ELISA (AUCFPR= 0.909) and RT-PCR (AUCFPR= 0.905) offered more consistent and reliable results. Notably, RIT displayed the highest performance (AUCFPR= 0.949), with excellent sensitivity and specificity, underscoring the superior diagnostic capabilities of these methods over the traditional DFAT. Given the performance of the DFAT, it is imperative to reassess and modernize rabies diagnostic protocols by integrating advanced technological methodologies. Enhancing diagnostic precision for humans and dogs is essential for facilitating timely and effective interventions, curbing viral transmission, and ultimately decreasing mortality rates. Keywords * Rabies * diagnostic tests * meta-analysis * systematic review * sensitivity * specificity ## Introduction Rabies is an infectious disease caused by *Lyssavirus* genus members and remains a major public health burden worldwide [1,2]. The World Health Organization estimates that around 59,000 deaths result from rabies yearly and therefore emphasizes the need for effective control and prevention measures [3]. A high mortality rate is associated with rabies, almost 100% once clinical symptoms develop [4]. Rabies is nearly always fatal if post-exposure prophylaxis (PEP) is not administered promptly following exposure. PEP, which includes a series of rabies vaccinations and immunoglobulin therapy, is effective in preventing symptom onset if given before the virus invades the central nervous system [5,6]. Although preventive measures have advanced, no universally effective treatment exists for rabies once neurological symptoms develop [7]. Experimental therapies, like the Milwaukee protocol, have shown limited success, highlighting the critical need for early intervention and developing more effective therapeutic strategies [8]. This emphasizes the need for a quick and correct diagnosis to enable timely intervention [9]. Delays or errors in diagnosing rabies could lead to the loss of an opportunity to provide PEP and would contribute to ongoing rabies transmission [10]. Rabies is also one of the most concerning veterinary diseases [11]. Dogs are the major reservoir and transmitter of rabies to humans [12]. Most human rabies cases are associated with dog bites in most developing countries [13]. Because human rabies can be prevented, controlling rabies in dog populations can prevent almost all human cases [14]. Veterinary public health activities – particularly mass dog vaccination campaigns, population management strategies, and adequate dog population health-care facilities – have become important components of many rabies control programs [14,15]. However, the effectiveness of these activities depends on the ability to diagnose rabies in animals [16]. In cases of misdiagnosis, inappropriate management of suspected cases, either through unnecessary culling or by failure to control an outbreak, will be realized and consequently affect animal welfare and public health [17]. It is crucial to highlight that dogs infected with rabies are seldom treated due to the significant risk of transmission and the absence of effective treatment options for animals [18]. Additionally, rabies transmission via bats has been well-documented, presenting considerable challenges in urban and rural areas. As nocturnal and elusive carriers of the rabies virus, bats complicate control measures significantly [19]. Likewise, wild animals, such as raccoons, skunks, foxes, and coyotes, serve as substantial reservoirs of the virus in different regions [20]. This underscores the diverse transmission vectors of rabies and the complexities involved in its control, thereby needing comprehensive efforts encompassing both domestic and wild animals [21]. Diagnosis in humans and dogs must be accurate so that effective early intervention, proper treatment, and effective disease management may be carried out [9]. Among the numerous laboratory tests employed for diagnosing rabies are direct fluorescent antibody test (DFAT), polymerase chain reaction (PCR) assay, and various immunological assays [16,22]. The gold standard for post-mortem diagnosis has been the DFAT, detecting rabies virus antigens in brain tissue samples [23]. PCR will also detect the same viral RNA with extreme sensitivity from saliva, cerebrospinal fluid, and tissue samples, hence allowing antemortem diagnosis [24]. The serum samples are tested for rabies virus-specific antibodies in immunological assays, including the enzyme immunoassay; recently, the protein A and neutralizing peroxidase test have replaced many other tests [25–27]. Despite the availability of these, there is significant variability in the reported accuracy of these tests, which could affect clinical and public health outcomes. The performance of a test may depend on factors such as the stage of the infection, the quality of sample collection, and the specific protocols employed [28]. Additionally, advancements in diagnostic technology, such as next-generation sequencing (NGS) and novel biomarkers, offer the potential for enhancing the sensitivity and specificity of rabies diagnosis. However, these methods necessitate further validation and standardization before broad implementation in clinical settings [29,30]. This work aims to compile data on the overall diagnostic performance of laboratory tests for rabies in humans and dogs, as well as their sensitivity and specificity. In doing so, we hope to point out the most accurate rabies diagnostic instruments to aid in better clinical judgment and public health initiatives. ### Methods #### Study protocol This systematic review followed the guidelines set by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), can be seen in Supplementary Table S1 [31]. The review protocol was registered on the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY) website, under the registration number INPLASY2024110019. The complete protocol can be accessed at [https://inplasy.com/inplasy-2024-11-0019/](https://inplasy.com/inplasy-2024-11-0019/). #### Eligibility Criteria This systematic review incorporates studies that evaluate the diagnostic accuracy of laboratory tests for rabies in humans and dogs by analyzing their sensitivity and specificity. We included randomized controlled trials, observational studies, and cohort studies published in peer-reviewed journals. Studies had to present enough data for the computation of diagnostic accuracy measures. Exclusion criteria included papers with no original data, reviews, case reports, editorials, and those not in English. Also, studies with major methodological flaws or incomplete data have been excluded from this review to ensure reliability and validity in their findings. A decision for the final selection of the studies was made following a careful screening of titles, abstracts, and full texts by two reviewers (M.A.C.-P. and L.P.-R.). Any disagreements were resolved by discussion or consulting a third reviewer (M.A.C.-F.). #### Information sources and search strategy We utilized the MeSH terms *"Rabies"* and *"Laboratory Diagnosis"* to identify related terms for diagnosing rabies in the biomedical literature. Visualization was obtained by creating a network diagram of MeSH term co-occurrence using VOSviewer software (version 1.6.20) [32]. To provide more focus on searching for terms related to tests, we checked clusters within the network map. Subsequently, a second round of searches resulted from the combination of each MeSH term obtained in the cluster analysis with the MeSH terms *"sensitivity and specificity,"* which, meanwhile, are standard indicators for the evaluation of test performance in the clinical field [33], and *"rabies”*. Bibliographic records were retrieved from the PubMed database ([https://pubmed.ncbi.nlm.nih.gov/](https://pubmed.ncbi.nlm.nih.gov/); last accessed June 12, 2024) between 1990 and 2024. #### Study Selection and Data Collection Process The review of studies had a selection process that was carried out through three key stages: identification, screening, and eligibility. We included all human and dog patients’ studies published from 1990 to 2024. Duplicate articles, non-English publications, review papers, and meta-analyses were among the exclusion criteria for this study. All the relevant titles and abstracts of identified articles were screened. In this phase of eligibility, full texts were selected and classified as highly relevant to the research question and thinned down according to the studies that had worked with diagnostic tests for rabies. Data were extracted regarding the diagnostic test used in each study, the type of diagnostic test, the number of patients with rabies, the type of experimental subjects (human/dog), and the sample type. Traditional diagnosis methods, such as culture and histopathology, were not included in our review since we decided to focus on molecular and immunological testing protocols that have gained clinical and research evidence in early rabies infection detection. We included only studies that calculated some measure of diagnostic accuracy by sensitivity or specificity measurement. All other studies with incomplete information, insufficient material, or conflicting data were excluded from the review. In addition, it was done on the distribution by geography, number of studies by country, and frequency of studies per year. #### Statistical analysis The extracted data were entered into a Microsoft Excel spreadsheet (version 19.0, Microsoft Corporation, Redmond, WA, USA) and then analyzed using the R programming environment (version 4.4.1) and its package *"mada"* (version 0.5.11) for meta-analysis of diagnostic accuracy (last access, July 23, 2024). The *"mada"* package is used for meta-analysis of diagnostic accuracy studies. It estimates sensitivity, specificity, and likelihood ratios in a summary receiver operating characteristic curve for diagnostic tests. It also investigates the presence of heterogeneity across studies to arrive at appropriate conclusions regarding the diagnostic accuracy of medical tests [34,35]. The numbers of true negatives (TN), false negatives (FN), true positives (TP), and false positives (FP) were analyzed for each diagnostic test separately. To evaluate the diagnostic accuracy, sensitivity and specificity must be considered. Sensitivity is identical to the true positive rate, and it can be computed using the following formula: TP/ (TP + FN), representing the probability that a subject with a disease will have a positive test result. Then, specificity was defined as the true negative rate and calculated in the formula: TN/ (TN + FP), which represented the probability of obtaining a negative test result for a subject who does not have the disease. The Positive Likelihood Ratio (LR+) is a ratio of the probability that a positive test result will occur in patients with the disease to the probability that a positive test result will occur in patients without the disease, calculated as sensitivity/1-specificity. The higher the value of LR+, the better the diagnostic performance, and generally, when its value is >10, it can be considered as strong evidence for the presence of disease [36]. The LR- is the probability of a negative test result in patients with a disease, compared to the probability of a negative result in patients without the disease, calculated as 1-sensitivity/specificity. Low values for LR- give better diagnostic performance, with less than 0.1 being used as strongly indicative of the absence of disease [37]. The Diagnostic Odds Ratio (DOR), which combines both likelihood ratios, provides a single measure of the test’s effectiveness, calculated as LR+/LR-. A DOR greater than 1 shows that the test is working to discriminate between diseased and those who are not. The higher the value, the better the test in terms of diagnosis [38,39]. We used the model from *"Reitsma"* and its parameters from the *"mada"* package to obtain the summary receiver operating characteristic (sROC) curve, which estimates and compares the diagnostic performances of the tests [40]. This includes all sensitivity and specificity information obtained from individual studies to chart the sensitivity relationship with the false positive rate at different thresholds. Area under the curve (AUC) indicates how well a test performs overall, and greater AUC values reflect better diagnostic accuracy [41,42]. Also, the dispersion of study points around the sROC curve was judged visually for sources of heterogeneity. There was significant scattering in the case of high heterogeneity [43]. All calculations were carried out at a 95% confidence level to assure statistical validity, and the correction of continuity of 0.5 was used when required to make proper provision for small numbers of samples in the cells or cells with zero events to increase the accuracy of diagnostic performance metrics. ## Results ### Data sources and study selection This research conducted a systematic review and meta-analysis to evaluate the accuracy of diagnostic tests for rabies. A detailed flowchart outlining the study strategy was created and is displayed (Figure 1). To achieve this, a search using the MeSH terms “Rabies” and “Laboratory Diagnosis” was performed in the PubMed database, leading to the development of a MeSH term co-occurrence network map. The search identified 745 scientific articles published between 1990 and 2024. The threshold for keyword occurrences was set to five, resulting in a network graph comprising 1,352 MeSH keywords (Figure 2). The network map analysis reveals the formation of five primary clusters. The cluster associated with immunological diagnostic tests (green) includes terms such as *“Enzyme-Linked Immunosorbent Assay”* and *“Fluorescent Antibody Test”*. In the cluster about molecular diagnostic tests (purple, yellow), terms like *“Polymerase Chain Reaction”* and *“Reverse Transcriptase Polymerase Chain Reaction”* are prominent. Additionally, terms such as *“Rabies”*, *“Rabies virus”*, *“Antibodies, viral”*, *“Neutralization Tests”*, *“Humans”, “Dogs”*, and *“Brain”* were identified as common denominators (Figure 2). The terms identified during the initial analysis were employed in a secondary search within the PubMed database. These new search strings were formulated by integrating the newly identified terms with *"rabies"* and *"sensitivity and specificity,"* technical details see in Table S2. ![Figure 1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F1.medium.gif) [Figure 1.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F1) Figure 1. A systematic review and meta-analysis flowchart detailing the study selection process. ![Figure 2.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F2.medium.gif) [Figure 2.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F2) Figure 2. **A bibliometric map was generated using VOSviewer, illustrating the co-occurrence of MeSH terms in the articles selected for various rabies diagnostic techniques.** The number of retrieved studies on the performance of immunological diagnostic tests for leishmaniasis was: 47 for RT-PCR, 22 for qRT-PCR, 4 for RT-LAMP, 1 for CRISPR, 1 for NGS, 21 for RFFIT, 42 for ELISA, 94 for IHT, 66 for DFAT, 53 for ICA, and 9 for LF. Our three-step selection criteria excluded 217 articles during the identification phase, 40 during the screening phase, and 43 during the eligibility phase. Consequently, 60 articles were included in the meta-analysis. Some of these studies reported multiple diagnostic tests, resulting in a total of 108 diagnostic reports included in the study (Figure 3). Regarding the geographical distribution of the studies, France, Brazil, and India had the highest number of records related to diagnostic tests for rabies (Figure 3A). The number of studies by year is quite variable; recently, it was noted that the number of publications has a decreasing trend. Meanwhile, 2012 and 2020 had the highest number of publications (Figure 3B). ![Figure 3.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F3.medium.gif) [Figure 3.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F3) Figure 3. Mapping and temporal trends of rabies diagnostic research. A) Geographical distribution of rabies diagnostic studies. B) Temporal trend of the number of annual rabies diagnostic studies published. The methodological attributes of various laboratory tests for diagnosing rabies in humans and dogs were assessed. In humans, ELISA tests were predominantly utilized with antemortem serum samples across numerous studies, indicating their significant role in diagnostic applications. RT-PCR was identified as another widely used diagnostic method employed for both antemortem and postmortem samples, including brain tissue, saliva, and skin, thus offering comprehensive diagnostic coverage. DFAT was the principal reference test in multiple studies (Table 1). Similarly, ELISA was commonly used in dogs for both antemortem and postmortem serum samples, with the FAVNT as the primary reference test. RT-PCR was also a key method, mainly applied postmortem to brain samples. The consistent use of DFAT and MIT as reference standards underscore their essential role in confirming rabies diagnoses (Table 2). View this table: [Table 1](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/T1) Table 1 Main methodological characteristics of studies addressing the diagnosis of rabies in humans View this table: [Table 2](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/T2) Table 2 Main methodological characteristics of studies addressing the diagnosis of rabies in dogs ### Meta-Analysis of the Diagnostic Tests for Rabies Rabies in humans #### Enzyme-Linked Immunosorbent Assay Eight studies were selected using the ELISA test [44–51]. A total of 2,837 subjects were studied. Sensitivity ranged from 85.9 to 99.9%, with a median of 90.5%, 95%CI (77.0, 96.8); while the test for equality of sensitivities showed: χ2 = 57.94, df = 10, p- value = 8.86 × 10−9. Specificity ranged from 69.0 to 99.8%, with a median of 95.0%, 95%CI (84.9, 98.4); while the test for equality of specificities presented χ2 = 184.84, df = 10, p-value = <2.00 × 10−16. The correlation between sensitivities and false positive rates was analyzed, and a negative result was shown: r = -0.485, 95%CI (−0.821, 0.223). In addition, results regarding LR+ {median 17.27, 95%CI (5.86, 61.10)}, LR− {median 0.10, 95%CI (0.03, 0.36)}, and DOR {median 201.00, 95%CI (20.30, 1476.64)} are displayed. The analyzed diagnostic performance is summarized in Figure 4 and Supplementary Figure S1. ![Figure S1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F12.medium.gif) [Figure S1.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F12) Figure S1. Study data and paired forest plot of the Positive Likelihood ratio, Negative likelihood ratio, and Diagnostic Odds ratio of Enzyme-Linked Immunosorbent Assay (ELISA) for human rabies diagnosis. Positive Likelihood ratio, Negative likelihood ratio, and Diagnostic Odds ratio are reported with a mean (95% confidence limit). The Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal black line) [44–51]. ![Figure 4.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F4.medium.gif) [Figure 4.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F4) Figure 4. Study data and paired forest plot of the sensitivity and specificity of Enzyme-Linked Immunosorbent Assay (ELISA) for human rabies diagnosis. Data from each study are summarized. Sensitivity and specificity are reported with a mean (95% confidence limits). The Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal black line) [44–51]. #### Reverse transcription polymerase chain reaction Five studies based on the RT-PCR test were selected [52–56], in which 456 subjects were studied. Sensitivity ranged from 87.5% to 95.5%, with a median of 94.4%, 95%CI (62.9, 99.4), while the test for equality of sensitivities presented a χ2 = 0.41, df = 4, p-value = 0.982. Specificity ranged from 83.3 to 99.8%, with a median of 97.7%, 95%CI (81.6, 99.8); the test for equality of specificities showed χ2 = 27.69, df = 4, p-value = 1.44 × 10−5. A negative correlation between sensitivities and false positive rates is shown r = -0.765, 95%CI (–0.983, 0.361). Additionally, results regarding LR+ {median 41.56, 95%CI (3.61, 646.61)}, LR− {median 0.06, 95%CI (0.01, 0.84)}, and DOR {median 731.00, 95%CI (13.40, 39893.51)}. The analyzed diagnostic performance is summarized in Figure 5 and Supplementary Figure S2. ![Figure S2.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F13.medium.gif) [Figure S2.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F13) Figure S2. Study data and paired forest plot of the Positive Likelihood ratio, Negative likelihood ratio, and Diagnostic Odds ratio of Reverse Transcription Polymerase Chain Reaction (RT-PCR) for human rabies diagnosis. Positive Likelihood ratio, Negative likelihood ratio, and Diagnostic Odds ratio are reported with a mean (95% confidence limit). The Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal black line) [52–56]. ![Figure 5.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F5.medium.gif) [Figure 5.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F5) Figure 5. Study data and paired forest plot of the sensitivity and specificity of Reverse Transcription Polymerase Chain Reaction (RT-PCR) for human rabies diagnosis. Data from each study are summarized. Sensitivity and specificity are reported with a mean (95% confidence limits). The Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal black line) [52–56]. #### Other Tests For the diagnostic tests IIFT [57], LAT [58], DBEI [59], RNAT [60], IPIA [61], DRIHT [62], and FAVNT [51], only one study was included in the selection. Based on the established criteria, a minimum of five studies with a *p*-value of less than 0.05 were required for analysis. Consequently, no analysis was conducted for these diagnostic tests. #### Summary ROC Curves (sROC) A comparative analysis of data for human rabies diagnostic tests (ELISA and RT- PCR) was performed using an sROC curve (Figure 6). The observed differences in sensitivity and specificity are likely attributable to inherent or explicit variations between studies and differences in test cut-off points [63–65]. Figure 6 illustrates the area under the curve (AUC) for the rabies diagnostic tests, indicating the superior performance of ELISA. Additionally, both diagnostic tests demonstrated relatively high efficacy for detecting rabies in humans when the AUC was confined to the observed false positive rate (FPR) (AUCFPR) (Figure 6). ![Figure 6.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F6.medium.gif) [Figure 6.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F6) Figure 6. Meta-analysis of diagnostic test accuracy analysis. Summary receiver operating curve (sROC) plot of false positive rate and sensitivity. Comparison between ELISA and RT-PCR methods in the diagnosis of rabies in humans. ### Rabies in dogs #### Direct Fluorescent Antibody Test Seven studies based on the DFAT test were selected [62,66–71], in which a total of 1,226 subjects were studied. Sensitivity ranged from 40.9% to 99.7%, with a median of 79.2%, 95%CI (50.9, 93.3), while the test for equality of sensitivities presented a χ2 = 130.05, df = 28, p-value = 4.28 × 10−15. Specificity ranged from 25.0 to 99.7%, with a median of 95.0%, 95%CI (65.5, 99.5); the test for equality of specificities showed χ2 = 223.38, df = 28, p-value = <2.00 × 10−16. A negative correlation between sensitivities and false positive rates is shown r = -0.056, 95%CI (–0.414, 0.317). Additionally, results regarding LR+ {median 13.64, 95%CI (0.91, 193.00)}, LR−{median 024, 95%CI (0.08, 0.81)}, and DOR {median 46.14, 95%CI (2.07, 1028.71)}. The analyzed diagnostic performance is summarized in Figure 7 and Supplementary Figure S3. ![Figure S3.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F14.medium.gif) [Figure S3.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F14) Figure S3. Study data and paired forest plot of the Positive Likelihood ratio, Negative likelihood ratio, and Diagnostic Odds ratio of Direct Fluorescent Antibody Test (DFAT) for dog rabies diagnosis. Positive Likelihood ratio, Negative likelihood ratio, and Diagnostic Odds ratio are reported with a mean (95% confidence limit). The Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal black line) [62,66–71]. ![Figure 7.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F7.medium.gif) [Figure 7.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F7) Figure 7. Study data and paired forest plot of the sensitivity and specificity of Direct Fluorescent Antibody Test (DFAT) for rabies diagnosis in dogs. Data from each study are summarized. Sensitivity and specificity are reported with a mean (95% confidence limits). The Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal black line) [62,66–71]. #### Enzyme-Linked Immunosorbent Assay Eight studies were selected using the ELISA test [71–78]. A total of 6,654 subjects were studied. Sensitivity ranged from 54.2 to 98.0%, with a median of 88.9%, 95%CI (81.9, 92.4); while the test for equality of sensitivities showed: χ2 = 67.25, df = 9, p- value = 5.25 × 10−11. Specificity ranged from 95.0 to 99.6%, with a median of 99.2%, 95%CI (95.5, 99.7); while the test for equality of specificities presented χ2 = 40.14, df = 9, p-value = 7.15 × 10−6. The correlation between sensitivities and false positive rates was analyzed, and a negative result was shown: r = 0.225, 95%CI (−0.471, 0.749). In addition, results regarding LR+ {median 95.85, 95%CI (15.10, 344.45)}, LR− {median 0.11, 95%CI (0.08, 0.24)}, and DOR {median 463.39, 95%CI (174.87, 3742.70)} are displayed. The analyzed diagnostic performance is summarized in Figure 8 and Supplementary Figure S4. ![Figure S4.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F15.medium.gif) [Figure S4.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F15) Figure S4. Study data and paired forest plot of the Positive Likelihood ratio, Negative likelihood ratio, and Diagnostic Odds ratio of Enzyme-Linked Immunosorbent Assay (ELISA) for dog rabies diagnosis. Positive Likelihood ratio, Negative likelihood ratio, and Diagnostic Odds ratio are reported with a mean (95% confidence limit). The Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal black line) [71–78]. ![Figure 8.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F8.medium.gif) [Figure 8.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F8) Figure 8. Study data and paired forest plot of the sensitivity and specificity of Enzyme-Linked Immunosorbent Assay (ELISA) for rabies diagnosis in dogs. Data from each study are summarized. Sensitivity and specificity are reported with a mean (95% confidence limits). The Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal black line) [71–78]. #### Rapid immunochromatographic tests Twelve studies based on the RIT test were selected [79–90], in which a total of 3,354 subjects were studied. Sensitivity ranged from 0.06% to 99.4%, with a median of 93.5%, 95%CI (83.7, 97.1), while the test for equality of sensitivities presented a χ2 = 718.06, df = 14, p-value = <2.00 × 10−16. Specificity ranged from 91.6 to 99.7%, with a median of 99.1%, 95%CI (95.2, 99.9); the test for equality of specificities showed χ2 = 39.42, df = 14, p-value = 3.14 × 10−4. A negative correlation between sensitivities and false positive rates is shown r = 0.147, 95%CI (–0.395, -0.613). Additionally, results regarding LR+ {median 84.17, 95%CI (11.14, 1092.63)}, LR−{median 0.07, 95%CI (0.03, 0.18)}, and DOR {median 1235.61, 95%CI (82.26, 20837.39)}. The analyzed diagnostic performance is summarized in Figure 9 and Supplementary Figure S5. ![Figure S5.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F16.medium.gif) [Figure S5.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F16) Figure S5. Study data and paired forest plot of the Positive Likelihood, Negative likelihood, and Diagnostic Odds ratios of Rapid Immunochromatographic Tests (RIT) for rabies diagnosis in dogs. Positive Likelihood ratio, Negative likelihood ratio, and Diagnostic Odds ratio are reported with a mean (95% confidence limit). The Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal black line) [79–90]. ![Figure 9.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F9.medium.gif) [Figure 9.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F9) Figure 9. Study data and paired forest plot of the sensitivity and specificity of Rapid Immunochromatographic Tests (RIT) for dog rabies diagnosis. Data from each study are summarized. Sensitivity and specificity are reported with a mean (95% confidence limits). The Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal black line) [79–90]. #### Reverse transcription polymerase chain reaction Eleven studies based on the RT-PCR test were selected [52,54,56,67,91–97], in which a total of 1,356 subjects were studied. Sensitivity ranged from 66.4% to 99.5%, with a median of 94.4%, 95%CI (77.1, 98.7), while the test for equality of sensitivities presented a χ2 = 78.23, df = 14, p-value = 6.01 × 10−11. Specificity ranged from 83.3 to 99.5%, with a median of 98.6%, 95%CI (87.7, 99.9); the test for equality of specificities showed χ2 = 32.24, df = 14, p-value = 3.70 × 10−3. A negative correlation between sensitivities and false positive rates is shown r = -0.143, 95%CI (–0.611, 0.398). Additionally, results regarding LR+ {median 47.82, 95%CI (4.16, 753.87)}, LR− {median 0.06, 95%CI (0.01, 0.31)}, and DOR {median 309.56, 95%CI (21.32, 5395.31)}. The analyzed diagnostic performance is summarized in Figure 10 and Supplementary Figure S6. ![Figure S6.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F17.medium.gif) [Figure S6.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F17) Figure S6. Study data and paired forest plot of the Positive Likelihood ratio, Negative likelihood ratio, and Diagnostic Odds ratio of Reverse Transcription Polymerase Chain Reaction (RT-PCR) for rabies diagnosis in dogs. Positive Likelihood ratio, Negative likelihood ratio, and Diagnostic Odds ratio are reported with a mean (95% confidence limit). The Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal black line) [52,54,56,67,91–97]. ![Figure 10.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F10.medium.gif) [Figure 10.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F10) Figure 10. Study data and paired forest plot of the sensitivity and specificity of Reverse Transcription Polymerase Chain Reaction (RT-PCR) for rabies diagnosis in dogs. Data from each study are summarized. Sensitivity and specificity are reported with a mean (95% confidence limits). The Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal black line) [52,54,56,67,91–97]. #### Other Tests Regarding the diagnostic tests IHT, RIA, and IPT, three studies [62,98,99], three studies [97,100,101], and two studies [102,103] were selected, respectively. Additionally, for the diagnostic tests DBEI [59], FAVNT [104], RFFIT [105], RT-qPCR [67], RT-LAMP [94], and RT-RPA [106], only one study was included in the selection. Analysis was meant to be done on these diagnostic tests based on the set criteria of at least five studies qualifying whose *p*-values were less than 0.05. As a result, analysis could not be done for these diagnostic techniques because no study qualified for inclusion. #### Summary ROC Curves (sROC) Rabies diagnostic tests in dogs (DFAT, ELISA, RIT, and RT-PCR) were evaluated using a summary receiver operating characteristic (sROC) curve analysis (Figure 11). Variations in sensitivity and specificity were attributed to implicit and explicit differences among the studies and variations in test cut-off points [63–65]. Figure 11 illustrates the calculated area under the curve (AUC) for these rabies diagnostic tests, highlighting the superior performance of RIT and ELISA. Additionally, when the AUC was constrained to the observed false positive rate (FPR), the RIT diagnostic test exhibited satisfactory performance for rabies detection (AUCFPR) (Figure 11). ![Figure 11.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/11/05/2024.11.05.24316773/F11.medium.gif) [Figure 11.](http://medrxiv.org/content/early/2024/11/05/2024.11.05.24316773/F11) Figure 11. Meta-analysis of diagnostic test accuracy analysis. Summary receiver operating curve (sROC) plot of false positive rate and sensitivity. Comparison between DFAT, ELISA, RIT, and RT-PCR methods in diagnosing rabies in dogs. ## Discussion ### Summary of main findings There are significant concentrations of studies in France, Brazil, and India. This suggests that besides providing resources for research, these areas are crucial for advancing diagnosis research because of the high prevalence of rabies. The high prevalence of rabies in Africa and Asia, along with the increasing prevalence in South America in several epidemiological studies, enforces continuous research and upgrades the diagnostic tools of countries like India and Brazil [4]. Furthermore, research institutions and funding organizations in such countries are established. For instance, the Institute Pasteur in France has been a powerhouse for many years in terms of research on rabies and discoveries that give critical insights into diagnosis [107]. The interest in rabies research and its resulting output, including the number of studies and patents, varies markedly across different regions. Regions severely impacted by rabies frequently lack the infrastructure to undertake independent research, underscoring the critical need for international collaboration and support. Such international cooperation is pivotal in enhancing local research capacities and bolstering diagnostic capabilities within these affected areas [108–110]. Collaborative efforts between well-established institutions and those in resource- limited settings can significantly facilitate knowledge transfer and technology, thereby improving local rabies response [111]. Focusing rabies research on specific regions highlights the existing disparities in research capabilities and emphasizes the global responsibility to address these gaps. Through increased international cooperation and support, advancements in rabies diagnosis and treatment can be made accessible to all regions, particularly those most severely affected by the disease [112,113]. Furthermore, the temporal analysis shows a variation in the number of publications throughout the years: one can observe a disturbingly decreasing tendency in the last. This might be related to a change in research orientation, lack of economic resources, or the assumption of improvement of diagnostic technologies, among other issues that might increase the interest in this matter [114,115]. However, only two peaks were of interest in 2012 and 2020, which could be due to special events, including outbreaks, improvements in diagnostic technology, or targeted research initiatives. This 2012 peak could very well be related to the increased attention after the 2010 WHO report, which pointed out the global burden of rabies [116]. The most likely explanation for the increase in 2020 is that people were confined, leading to a year in which more articles were written than research was conducted. This period allowed many to take advantage of the challenges posed by remote work to complete and publish manuscripts that had been previously set aside [117]. Our observations indicate that the majority of diagnostic tests are conducted post- mortem. Consequently, there is a critical need to enhance the frequency of antemortem diagnostic tests to facilitate early detection and effective disease management. Such advancements have the potential to improve patient outcomes markedly and decrease mortality rates [118]. Despite significant progress in medical technology, current diagnostic practices often depend predominantly on post- mortem confirmations, thereby restricting opportunities for timely medical interventions [28]. By increasing the availability and accuracy of antemortem tests, we can improve clinical decision-making and gain a more comprehensive understanding of disease progression and epidemiology [119]. #### Rabies in humans Data robusticity is guaranteed because 2,837 subjects were enrolled in eight studies that analyzed the use of ELISA for diagnosing rabies in humans, all giving promising results. The range of sensitivity between 85.9% and 99.9%, with a median of 90.5%, proves the high efficacy of ELISA at properly identifying patients with rabies. Similarly, the specificity range of 69.0–99.8%, with a median value of 95.0%, suggests that the test is also suitable for correctly detecting those who do not have the disease. These high sensitivity and specificity values are crucial for any diagnostic test since they guarantee the test’s dependability in differentiating between infected and noninfected people. [120]. The large heterogeneity found in sensitivity implies variability across studies, which may be due to differences in study design, population, or test implementation [121]. In most instances, the consistent general performance obtained from a large number of subjects offers reassurance. There is a negative correlation between sensitivities and false positive rates, i.e., as the ability of the test to detect true positives increases, the rate of false positives decreases, further supporting its reliability [122]. These are also adequate diagnostic metrics, with a LR+ of 17.27, LR− of 0.10, and DOR of 201.00. A high LR+ shows that it is very likely for a positive test result in a person with rabies compared to one without, whereas a low LR− shows a negative test result much less likely in a person with rabies [123]. The DOR takes all these ratios and reflects the high accuracy of ELISA. On the other hand, the five studies with 456 subjects using RT-PCR for diagnosis of rabies had a high degree of diagnostic accuracy with sensitivity ranging between 87.5% and 95.5% and specificity ranging between 83.3% and 99.8%, with median values of 94.4% and 97.7%. While there was a significant heterogeneity in specificity, sensitivity did not show any inconsistency. That indicates, the reliability of the test because a strong negative correlation of sensitivity with false positive rates is shown. High LR+ and low LR-, associated with a DOR of 731.00, show high efficacy of RT-PCR in rabies detection. The comparative assessment of ELISA and RT-PCR for diagnosing human rabies, utilizing sROC curves, identifies variations in sensitivity and specificity due to inherent study differences and varying test cut-off points. ELISA’s superior performance, demonstrated by a higher AUC, may be associated with its consistent diagnostic reliability across diverse conditions. Factors such as study design, population characteristics, methodologies, and specific testing thresholds significantly impact diagnostic accuracy [124,125]. Both diagnostic methods showed high efficiency in detecting rabies when the AUCFPR was used, underscoring their overall reliability despite observed differences [126]. The high efficiency of ELISA is due to its consistent performance in detecting antibodies against the rabies virus across various conditions, leading to high sensitivity and specificity, as demonstrated by a superior AUC in sROC analyses [127]. Similarly, RT-PCR’s efficiency stems from its direct detection of viral RNA, which maintains high sensitivity even with low viral loads. This efficiency is further validated by high positive likelihood ratios (LR+) and low negative likelihood ratios (LR−), showcasing its strong ability to confirm positive cases and rule out negative ones [128]. Collectively, these diagnostic metrics highlight the overall high reliability and accuracy of both tests in clinical settings. The scarcity of studies on human rabies diagnostic techniques, including IIFT, LAT, DBEI, RNAT, IPIA, DRIHT, and FAVNT, can be attributed to several factors. The global burden of rabies predominantly affects marginalized populations in regions where resources for extensive human studies are limited [129]. Furthermore, diagnostic efforts often prioritize animal models due to the higher prevalence and easier study conditions of rabies in animal populations [112]. Financial and logistical constraints and ethical considerations further restrict the scope and number of human studies in this area [130]. #### Rabies in dogs In an analysis spanning seven studies and encompassing 1,226 subjects, the DFAT exhibited a broad range of sensitivity from 40.9% to 99.7% and specificity from 25.0% to 99.7%, with significant heterogeneity noted in both parameters. The negative correlation between sensitivity and false positive rates (r = -0.056) alongside diagnostic metrics such as LR+ (13.64), LR− (0.24), and DOR (46.14) highlight the variability and diagnostic challenges associated with DFAT. In contrast, ELISA demonstrated greater consistency in its diagnostic performance across eight studies involving 6,654 subjects, with sensitivity ranging from 54.2% to 98.0% and specificity from 95.0% to 99.6%, supported by robust diagnostic metrics: LR+ (95.85), LR− (0.11), and DOR (463.39). RIT, evaluated in twelve studies with 3,354 subjects, also showed high diagnostic accuracy, with sensitivity ranging from 0.06% to 99.4% and specificity from 91.6% to 99.7%, complemented by solid metrics: LR+ (84.17), LR− (0.07), and DOR (1235.61). Finally, RT-PCR, assessed across eleven studies involving 1,356 subjects, demonstrated sensitivity from 66.4% to 99.5% and specificity from 83.3% to 99.5%, with solid diagnostic metrics: LR+ (47.82), LR− (0.06), and DOR (309.56), underscoring its high diagnostic accuracy and reliability for rabies detection. RIT, RT-PCR, and ELISA are more consistent and reliable than DFAT due to their higher and more stable diagnostic accuracy, demonstrated by strong and consistent sensitivity and specificity across multiple studies. These methods also exhibit robust diagnostic metrics such as high LR+, low LR-, and high DOR, indicating a high probability of correctly identifying both infected and non- infected subjects. RIT, RT-PCR, and ELISA also show minimal variability and heterogeneity in their diagnostic parameters, ensuring dependable performance across different study designs and populations. In contrast, DFAT exhibits significant variability and heterogeneity, leading to less consistent and reliable diagnostic outcomes. The assessment of rabies diagnostic tests in canines, encompassing DFAT, ELISA, RIT, and RT-PCR, conducted through sROC curve analysis, indicated notable disparities in sensitivity and specificity attributed to study differences and test cut-off points. The analysis demonstrated the superior performance of RIT and ELISA, as reflected by the AUC. Notably, RIT exhibited satisfactory performance when evaluated through AUCFPR. Supporting this data is another report indicating that traditional techniques, such as FAT, may not always be optimal and produce false negative results under certain conditions, such as low viral load [24]. Traditionally regarded as the gold standard for rabies diagnosis, DFAT presents several limitations impacting its reliability and practicality. Notable concerns include variability in test results due to inconsistent antigen localization within brain tissues and the quality of the immunofluorescent conjugate. Such variability can lead to false negatives, particularly in low viral load samples or when procedural standards are not rigorously adhered to [28,131]. DFAT’s requirement for sophisticated equipment and skilled personnel also restricts its use in resource-limited settings. In many developing countries, deviations from standard protocols, such as the use of expired reagents and lack of quality controls, further undermine its accuracy [132]. Additionally, a major limitation of studies employing DFAT is that they are predominantly conducted on post-mortem samples, which suggests that the diagnostic approaches optimized for post-mortem conditions may not be directly applicable or as effective in antemortem scenarios [119]. Conversely, alternative methods like RIT, RT-PCR, and ELISA have demonstrated more consistent and reliable performance with minimal variability and heterogeneity across diverse studies and populations [119,133]. #### Strengths and limitations The strengths of this scientific article are evident through its rigorous methodology and comprehensive analysis. The use of a systematic search strategy employing the MeSH terms *“Rabies”* and *“Laboratory Diagnosis,”* along with terms related to diagnostic tests, in the PubMed database resulted in the identification of 360 articles published between 1990 and 2024, establishing a robust dataset for analysis [134]. The meticulous three-step selection process ensured the inclusion of only relevant and high-quality studies, enhancing the reliability of the meta-analysis findings [135]. By encompassing a diverse range of diagnostic tests for rabies in humans and dogs, such as ELISA, RT-PCR, DFAT, and RIT, the study thoroughly evaluates various diagnostic methods and their respective accuracies [136]. The application of meta- analytic techniques and sROC curves further strengthens the study by facilitating a comparative analysis of the diagnostic performance of various tests [137,138]. Comprehensive metrics, including sensitivity, specificity, LR+, LR-, and DOR, are thoroughly analyzed, presenting a clear and detailed picture of test efficacy, thus contributing valuable insights to the field of rabies diagnosis [138]. The study’s reliance exclusively on the PubMed database, while comprehensive in scope, may have restricted its dataset by not incorporating other major databases such as Embase, Scopus, and Web of Science. This exclusion could have led to the omission of relevant studies, thereby narrowing the breadth of the dataset and potentially overlooking important research that could have enriched the analysis [139]. Additionally, the evaluation of specific diagnostic tests—such as IIFT, LAT, DBEI, RNAT, IPIA, DRIHT, and FAVNT—was limited because only one study per test was included. This restriction hindered a thorough assessment due to the requirement for at least five studies to achieve a robust and statistically reliable analysis [140]. Furthermore, the variability in the quality of the included studies, as evidenced by discrepancies in sensitivity and specificity, may compromise the reliability of the meta-analysis findings. Factors such as differences in study design, sample sizes, and test cut-off points contributed to this variability, potentially affecting the consistency and validity of the results [141]. The observed decline in the number of publications in recent years, contrasted with peaks in 2012 and 2020, raises concerns about potential publication bias. This trend suggests that studies with significant or positive findings are more likely to be published, which could skew the meta-analysis outcomes and affect the generalizability of the conclusions [142]. Moreover, although the observed negative correlation between sensitivities and false positive rates provides initial insights, the analysis did not fully explore the underlying reasons for this relationship. This analysis also did not thoroughly investigate potential factors that might contribute to the variability in results, such as the inherent trade-offs between sensitivity and specificity in diagnostic tests, where an increase in sensitivity often leads to higher false positive rates and vice versa. Additionally, variations in cut-off values or thresholds, which can impact both sensitivity and false positive rates, and the effect of disease prevalence on test accuracy, were also not examined. Differences in assay techniques, sample quality, and procedural variations could further contribute to discrepancies in test results. The limitations related to the substantial variability in sample types and conditions (antemortem and postmortem) used in the studies must also be considered, as this heterogeneity presents significant challenges in establishing a consistent relationship between these factors and the diagnostic accuracy of the evaluated techniques. The inclusion of various sample types, such as cerebrospinal fluid, saliva, and brain tissue, each with distinct characteristics and varying levels of degradation, can lead to inconsistencies in diagnostic outcomes. For instance, postmortem samples may exhibit different degrees of decomposition, adversely impacting the performance of diagnostic assays, such as RT-PCR and DFAT, both of which are highly sensitive to sample integrity. Furthermore, the influence of study design factors, such as sample size, demographic characteristics, and the statistical approaches used in data analysis, might provide a deeper understanding of this correlation. A more detailed exploration of these factors could have yielded a better understanding of the diagnostic tests’ reliability and a more precise assessment of their performance [143–145]. #### Implications for future research Given the rapid progress in diagnostic tests, future research into rabies diagnosis should incorporate state-of-the-art methods to tackle existing challenges and boost diagnostic accuracy. NGS provides a detailed approach for detecting the genetic material of the rabies virus, allowing for precise identification of viral variants and mutations, surpassing the capabilities of traditional methods [146]. This technology offers an in-depth genomic analysis that could be crucial for understanding the virus’s evolution and epidemiology. Furthermore, high-throughput immunoassays, including multiplex assays, enable the simultaneous assessment of various biomarkers and antibodies, delivering fast and reliable results that improve diagnostic efficiency and shorten processing times [147]. Additionally, these innovative diagnostic techniques have significantly expanded the capabilities of rabies diagnosis by analyzing a diverse array of sample types, including non- traditional ones such as saliva and urine, which are minimally invasive [24]. The ability to use these non-traditional samples facilitates more accessible and more frequent testing, particularly in resource-limited settings where traditional sample collection methods may be challenging. As a result, implementing these advanced techniques holds great promise for improving rabies surveillance, early detection, and timely intervention, ultimately contributing to better control and prevention of this deadly disease [148,149]. The analysis of diagnostic tests for rabies reveals significant variability in their performance, pointing to a crucial need for validating new diagnostic tools in a range of different settings [22]. This means that current tests may not work equally well in all environments or situations, leading to inconsistent accuracy in detecting the disease [150]. Introducing advanced diagnostic technologies could help overcome these limitations. For example, newer methods could offer more accurate and faster results, which would enhance the reliability of diagnoses [149]. This improvement is essential for timely and effective treatment, ultimately leading to better health outcomes for humans and dogs by ensuring the disease is detected and managed more efficiently. ## Conclusion The diagnosis of rabies in humans and dogs poses significant challenges due to the inconsistent performance of current diagnostic methods. This systematic review and meta-analysis underscore the efficacy of immunological tests (ELISA) and molecular tests (RT-PCR) in humans, as well as immunological (RIT) and molecular (RT-PCR) tests in dogs. Variations in sensitivity and specificity are attributed to differences in study methodologies and test cut-off points. Although the DFAT has long been regarded as the gold standard for directly detecting the rabies virus in brain tissue, its diagnostic accuracy is constrained, potentially due to variability in antigen distribution within brain tissues and the quality of the immunofluorescent conjugate. Such limitations may lead to false negatives, particularly in samples with low viral loads or when procedural rigor is lacking. These issues underscore the necessity to reevaluate and update rabies diagnostic protocols by incorporating advanced technological approaches. Integrating novel diagnostic techniques that offer enhanced speed, precision, and user-friendliness could markedly improve outbreak management and decrease rabies mortality, particularly in endemic regions, enabling more timely and effective interventions and better control of viral transmission. ## Data Availability All data produced in the present study are available upon reasonable request to the authors ## Author Contributions Conceptualization: M.A.C.-P. and M.A.C.-F.; data curation: M.A.C.-P. and L.P.-R.; formal analysis: M.A.C.-P. and M.A.C.-F.; funding acquisition: M.A.C.-P., E.A.F.C., and M.A.C.-F.; investigation: L.D.G.M., H.L.B.C, A.S.G, R.A.M.D, R.C.G., and E.A.F.C.; methodology: M.A.C.-P. and M.A.C.-F.; writing—review and editing: L.D.G.M., H.L.B.C, A.S.G, R.A.M.D, R.C.G., and E.A.F.C. All authors have read and agreed to the published version of the manuscript. ## Funding This research was funded by Universidad Catolica de Santa Maria (grants 27574-R-2020, and 28048-R-2021). ## Institutional Review Board Statement Not applicable. ## Informed Consent Statement Not applicable. ## Data Availability Statement Not applicable. ## Conflicts of Interest The authors declare no conflict of interest. ## Abbreviations The following abbreviations are used in this study. AUC : Area under the curve AUCFPR : Area under the curve restricted to the false positive rates CI : Confidence interval CRISPR : Clustered regularly interspaced short palindromic repeats DBEI : Dot blot enzyme immunoassay DFAT : Direct fluorescent antibody test DOR : Diagnostic likelihood ratio DRIHT : Direct rapid immunohistochemical test ELISA : Enzyme-linked immunosorbent assay FAVNT : Fluorescent antibody virus neutralization test FN : False negatives FP : False positives ICA : Immunochromatographic assay INPLASY : International Platform of Registered Systematic Review and Meta-analysis Protocols IHT : Immunohistochemical tests IIFT : Indirect immunofluorescence test IPIA : Immunoperoxidase inhibition assay IPT : Immunoperoxidase tests LAT : Latex agglutination test LF : Lateral flow LR− : Negative likelihood ratio LR+ : Positive likelihood ratio MeSH : Medical subject headings MIT : Mouse inoculation test NCBI : National Center for Biotechnology Information NGS : Next generation sequencing PRISMA : Preferred Reporting Items for Systematic Reviews and Meta-Analyses RTCIT : Rabies tissue culture infection test RFFIT : Rapid fluorescent focus inhibition test RIA : Rapid immunodiagnostic assay RIT : Rapid immunochromatographic tests RNA : Ribonucleic Acid RNAT : Rapid neutralizing antibody test RT-LAMP : Loop-mediated isothermal amplification RT-PCR : Reverse transcription polymerase chain reaction RT-qPCR : Reverse transcription real-time polymerase chain reaction RT-RPA : Reverse transcription recombinase polymerase amplification Se : Sensibility Sp : Specificity sROC : Summary receiver operating characteristics TN : True negatives TP : True positives WHO : World Health Organization ## Acknowledgments Not applicable. * Received November 5, 2024. * Revision received November 5, 2024. * Accepted November 5, 2024. * © 2024, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NoDerivs 4.0 International), CC BY-ND 4.0, as described at [http://creativecommons.org/licenses/by-nd/4.0/](http://creativecommons.org/licenses/by-nd/4.0/) ## References 1. 1.Rupprecht, C.; Kuzmin, I.; Meslin, F. Lyssaviruses and Rabies: Current Conundrums, Concerns, Contradictions and Controversies. F1000Research 2017, 6, 184, doi:10.12688/f1000research.10416.1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.12688/f1000research.10416.1&link_type=DOI) 2. 2.Gan, H.; Hou, X.; Wang, Y.; Xu, G.; Huang, Z.; Zhang, T.; Lin, R.; Xue, M.; Hu, H.; Liu, M.;, et al. Global Burden of Rabies in 204 Countries and Territories, from 1990 to 2019: Results from the Global Burden of Disease Study 2019. Int. J. Infect. Dis. 2023, 126, 136–144, doi:10.1016/j.ijid.2022.10.046. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2022.10.046&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36343866&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 3. 3.Gholami, A.; Alamdary, A. The World Rabies Day 2020: Collaborate and Vaccinate. Iran. Biomed. J. 2020, 24, 264–268, doi:10.29252/ibj.24.5.263. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.29252/ibj.24.5.263&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33009769&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 4. 4.Fooks, A.R.; Banyard, A.C.; Horton, D.L.; Johnson, N.; McElhinney, L.M.; Jackson, A.C. Current Status of Rabies and Prospects for Elimination. Lancet 2014, 384, 1389–1399, doi:10.1016/S0140-6736(13)62707-5. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(13)62707-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24828901&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 5. 5.Tarantola, A.; Tejiokem, M.C.; Briggs, D.J. Evaluating New Rabies Post-Exposure Prophylaxis (PEP) Regimens or Vaccines. Vaccine 2019, 37, A88–A93, doi:10.1016/j.vaccine.2018.10.103. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.vaccine.2018.10.103&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30471958&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 6. 6.Fu, Z.F.; CW, G.; CT, H.; D, K. Novel Approaches to the Prevention and Treatment of Rabies. Int. J. Virol. Stud. Res. 2015, 8–16, doi:10.19070/2330-0027-150002. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.19070/2330-0027-150002&link_type=DOI) 7. 7.Crowcroft, N.S.; Thampi, N. The Prevention and Management of Rabies. BMJ 2015, 350, g7827–g7827, doi:10.1136/bmj.g7827. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE4OiIzNTAvamFuMTRfMjYvZzc4MjciO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNC8xMS8wNS8yMDI0LjExLjA1LjI0MzE2NzczLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 8. 8.Jackson, A.C. Current and Future Approaches to the Therapy of Human Rabies. Antiviral Res. 2013, 99, 61–67, doi:10.1016/j.antiviral.2013.01.003. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.antiviral.2013.01.003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23369672&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000320906600008&link_type=ISI) 9. 9.Singh, R.; Singh, K.P.; Cherian, S.; Saminathan, M.; Kapoor, S.; Manjunatha Reddy, G.B.; Panda, S.; Dhama, K. Rabies – Epidemiology, Pathogenesis, Public Health Concerns and Advances in Diagnosis and Control: A Comprehensive Review. Vet. Q. 2017, 37, 212–251, doi:10.1080/01652176.2017.1343516. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/01652176.2017.1343516&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28643547&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 10. 10.Madjadinan, A.; Hattendorf, J.; Mindekem, R.; Mbaipago, N.; Moyengar, R.; Gerber, F.; Oussiguéré, A.; Naissengar, K.; Zinsstag, J.; Lechenne, M. Identification of Risk Factors for Rabies Exposure and Access to Post-Exposure Prophylaxis in Chad. Acta Trop. 2020, 209, 105484, doi:10.1016/j.actatropica.2020.105484. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.actatropica.2020.105484&link_type=DOI) 11. 11.Wunner, W.H.; Briggs, D.J. Rabies in the 21st Century. PLoS Negl. Trop. Dis. 2010, 4, e591, doi:10.1371/journal.pntd.0000591. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0000591&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20361028&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 12. 12.Favoretto, S.R.; de Mattos, C.C.; de Mattos, C.A.; Campos, A.C.A.; Sacramento, D.R. V.; Durigon, E.L. The Emergence of Wildlife Species as a Source of Human Rabies Infection in Brazil. Epidemiol. Infect. 2013, 141, 1552–1561, doi:10.1017/S0950268813000198. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S0950268813000198&link_type=DOI) 13. 13.Haupt, W. Rabies – Risk of Exposure and Current Trends in Prevention of Human Cases. Vaccine 1999, 17, 1742–1749, doi:10.1016/S0264-410X(98)00447-2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0264-410X(98)00447-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10194833&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 14. 14.Taylor, L.H.; Wallace, R.M.; Balaram, D.; Lindenmayer, J.M.; Eckery, D.C.; Mutonono-Watkiss, B.; Parravani, E.; Nel, L.H. The Role of Dog Population Management in Rabies Elimination—A Review of Current Approaches and Future Opportunities. Front. Vet. Sci. 2017, 4, doi:10.3389/fvets.2017.00109. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fvets.2017.00109&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28740850&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 15. 15.Tiwari, H.K.; Gogoi-Tiwari, J.; Robertson, I.D. Eliminating Dog-Mediated Rabies: Challenges and Strategies. Anim. Dis. 2021, 1, 19, doi:10.1186/s44149-021-00023-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s44149-021-00023-7&link_type=DOI) 16. 16.Mani, R.S.; Madhusudana, S.N. Laboratory Diagnosis of Human Rabies: Recent Advances. Sci. World J. 2013, 2013, doi:10.1155/2013/569712. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1155/2013/569712&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24348170&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 17. 17.Kumar, A.; Bhatt, S.; Kumar, A.; Rana, T. Canine Rabies: An Epidemiological Significance, Pathogenesis, Diagnosis, Prevention, and Public Health Issues. Comp. Immunol. Microbiol. Infect. Dis. 2023, 97, 101992, doi:10.1016/j.cimid.2023.101992. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cimid.2023.101992&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37229956&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 18. 18.Rupprecht, C.E.; Willoughby, R.; Slate, D. Current and Future Trends in the Prevention, Treatment and Control of Rabies. Expert Rev. Anti. Infect. Ther. 2006, 4, 1021–1038, doi:10.1586/14787210.4.6.1021. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1586/14787210.4.6.1021&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17181418&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 19. 19.Rocha, F.; Dias, R.A. The Common Vampire Bat Desmodus Rotundus (Chiroptera: Phyllostomidae) and the Transmission of the Rabies Virus to Livestock: A Contact Network Approach and Recommendations for Surveillance and Control. Prev. Vet. Med. 2020, 174, 104809, doi:10.1016/j.prevetmed.2019.104809. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.prevetmed.2019.104809&link_type=DOI) 20. 20.Wallace, R.M.; Gilbert, A.; Slate, D.; Chipman, R.; Singh, A.; Cassie Wedd; Blanton, J.D. Right Place, Wrong Species: A 20-Year Review of Rabies Virus Cross Species Transmission among Terrestrial Mammals in the United States. PLoS One 2014, *9*, e107539, doi:10.1371/journal.pone.0107539. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0107539&link_type=DOI) 21. 21.Rupprecht, C.E.; Salahuddin, N. Current Status of Human Rabies Prevention: Remaining Barriers to Global Biologics Accessibility and Disease Elimination. Expert Rev. Vaccines 2019, 18, 629–640, doi:10.1080/14760584.2019.1627205. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/14760584.2019.1627205&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31159618&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 22. 22.McElhinney, L.M.; Marston, D.A.; Golding, M.; Nadin-Davis, S.A. Laboratory Diagnosis of Rabies. In Rabies; Elsevier, 2020; pp. 401–444. 23. 23.Centoamore, N.H.F.; Chierato, M.E.R.; Silveira, V.B.V.; Asano, K.M.; Iamamoto, K.; Fahl, W.O.; Scheffer, K.C.; Achkar, S.M.; Mesquita, L.P.; Maiorka, P.C.;, et al. Comparison of Five Different Laboratory Techniques for the Rabies Diagnosis in Clinically Suspected Cattle in Brazil. J. Virol. Methods 2020, 283, 113918, doi:10.1016/j.jviromet.2020.113918. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2020.113918&link_type=DOI) 24. 24.Fooks, A.R.; Johnson, N.; Freuling, C.M.; Wakeley, P.R.; Banyard, A.C.; McElhinney, L.M.; Marston, D.A.; Dastjerdi, A.; Wright, E.; Weiss, R.A.;, et al. Emerging Technologies for the Detection of Rabies Virus: Challenges and Hopes in the 21st Century. PLoS Negl. Trop. Dis. 2009, 3, e530, doi:10.1371/journal.pntd.0000530. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0000530&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19787037&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 25. 25.Realegeno, S.; Niezgoda, M.; Yager, P.A.; Kumar, A.; Hoque, L.; Orciari, L.; Sambhara, S.; Olson, V.A.; Satheshkumar, P.S. An ELISA-Based Method for Detection of Rabies Virus Nucleoprotein-Specific Antibodies in Human Antemortem Samples. PLoS One 2018, 13, e0207009, doi:10.1371/journal.pone.0207009. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0207009&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30403742&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 26. 26.Rodriguez, M.C.; Fontana, D.; Garay, E.; Prieto, C. Detection and Quantification of Anti- Rabies Glycoprotein Antibodies: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2021, 105, 6547–6557, doi:10.1007/s00253-021-11515-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00253-021-11515-4&link_type=DOI) 27. 27.Batista, H.B.C.R.; Lima, F.E.S.; Maletich, D.; Silva, A.C.R.; Vicentini, F.K.; Roehe, L.R.; Spilki, F.R.; Franco, A.C.; Roehe, P.M. Immunoperoxidase Inhibition Assay for Rabies Antibody Detection. J. Virol. Methods 2011, 174, 65–68, doi:10.1016/j.jviromet.2011.03.025. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2011.03.025&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21458492&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 28. 28.Robardet, E.; Servat, A.; Rieder, J.; Picard-Meyer, E.; Cliquet, F. Multi-Annual Performance Evaluation of Laboratories in Post-Mortem Diagnosis of Animal Rabies: Which Techniques Lead to the Most Reliable Results in Practice? PLoS Negl. Trop. Dis. 2021, 15, e0009111, doi:10.1371/journal.pntd.0009111. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0009111&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33544702&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 29. 29.Suminda, G.G.D.; Bhandari, S.; Won, Y.; Goutam, U.; Kanth Pulicherla, K.; Son, Y.-O.; Ghosh, M. High-Throughput Sequencing Technologies in the Detection of Livestock Pathogens, Diagnosis, and Zoonotic Surveillance. Comput. Struct. Biotechnol. J. 2022, 20, 5378–5392, doi:10.1016/j.csbj.2022.09.028. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.csbj.2022.09.028&link_type=DOI) 30. 30.Tribolet, L.; Kerr, E.; Cowled, C.; Bean, A.G.D.; Stewart, C.R.; Dearnley, M.; Farr, R.J. MicroRNA Biomarkers for Infectious Diseases: From Basic Research to Biosensing. Front. Microbiol. 2020, 11, doi:10.3389/fmicb.2020.01197. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fmicb.2020.01197&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32582115&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 31. 31.Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.;, et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, *372*, n160, doi:10.1136/bmj.n160. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1136/bmj.n160&link_type=DOI) 32. 32.van Eck, N.J.; Waltman, L. Citation-Based Clustering of Publications Using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070, doi:10.1007/s11192-017-2300-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11192-017-2300-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28490825&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 33. 33.Lee, J.; Kim, K.W.; Choi, S.H.; Huh, J.; Park, S.H. Systematic Review and Meta-Analysis of Studies Evaluating Diagnostic Test Accuracy: A Practical Review for Clinical Researchers- Part II. Statistical Methods of Meta-Analysis. Korean J. Radiol. 2015, 16, 1188, doi:10.3348/kjr.2015.16.6.1188. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3348/kjr.2015.16.6.1188&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26576107&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 34. 34.Kuo, K.-M.; Talley, P.C.; Chang, C.-S. The Accuracy of Machine Learning Approaches Using Non-Image Data for the Prediction of COVID-19: A Meta-Analysis. Int. J. Med. Inform. 2022, 164, 104791, doi:10.1016/j.ijmedinf.2022.104791. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijmedinf.2022.104791&link_type=DOI) 35. 35.Shim, S.R.; Kim, S.-J.; Lee, J. Diagnostic Test Accuracy: Application and Practice Using R Software. Epidemiol. Health 2019, 41, e2019007, doi:10.4178/epih.e2019007. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4178/epih.e2019007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30999739&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 36. 36.Ranganathan, P.; Aggarwal, R. Understanding the Properties of Diagnostic Tests – Part 2: Likelihood Ratios. Perspect. Clin. Res. 2018, 9, 99, doi:10.4103/picr.PICR\_41\_18. [CrossRef](http://medrxiv.org/lookup/external-ref?access\_num=10.4103/picr.PICR_41_18&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29862204&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 37. 37.Akobeng, A.K. Understanding Diagnostic Tests 2: Likelihood Ratios, Pre- and Post-test Probabilities and Their Use in Clinical Practice. Acta Paediatr. 2007, 96, 487–491, doi:10.1111/j.1651-2227.2006.00179.x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1651-2227.2006.00179.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17306009&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000245118500004&link_type=ISI) 38. 38.Kent, P.; Hancock, M.J. Interpretation of Dichotomous Outcomes: Sensitivity, Specificity, Likelihood Ratios, and Pre-Test and Post-Test Probability. J. Physiother. 2016, 62, 231–233, doi:10.1016/j.jphys.2016.08.008. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jphys.2016.08.008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27637768&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 39. 39.Ranganathan, P.; Aggarwal, R. Understanding the Properties of Diagnostic Tests – Part 2: Likelihood Ratios. Perspect. Clin. Res. 2018, 9, 99, doi:10.4103/picr.PICR\_41\_18. [CrossRef](http://medrxiv.org/lookup/external-ref?access\_num=10.4103/picr.PICR_41_18&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29862204&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 40. 40.Reitsma, J.B.; Glas, A.S.; Rutjes, A.W.S.; Scholten, R.J.P.M.; Bossuyt, P.M.; Zwinderman, A.H. Bivariate Analysis of Sensitivity and Specificity Produces Informative Summary Measures in Diagnostic Reviews. J. Clin. Epidemiol. 2005, 58, 982–990, doi:10.1016/j.jclinepi.2005.02.022. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jclinepi.2005.02.022&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16168343&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000232209000003&link_type=ISI) 41. 41.Walter, S.D. Properties of the Summary Receiver Operating Characteristic (SROC) Curve for Diagnostic Test Data. Stat. Med. 2002, 21, 1237–1256, doi:10.1002/sim.1099. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/sim.1099&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12111876&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000175217600004&link_type=ISI) 42. 42.Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. *Casp*. J. Intern. Med. 2013, 4, 627–635. 43. 43.Charoensawat, S.; Böhning, W.; Böhning, D.; Holling, H. Meta-Analysis and Meta-Modelling for Diagnostic Problems. BMC Med. Res. Methodol. 2014, 14, 56, doi:10.1186/1471-2288-14-56. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2288-14-56&link_type=DOI) 44. 44.Piza, A.S.; Santos, J.L.; Chaves, L.B.; Zanetti, C.R. An ELISA Suitable for the Detection of Rabies Virus Antibodies in Serum Samples from Human Vaccinated with Either Cell-Culture Vaccine or Suckling-Mouse-Brain Vaccine. Rev. Inst. Med. Trop. Sao Paulo 1999, 41, 39– 43, doi:10.1590/s0036-46651999000100008. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1590/s0036-46651999000100008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10436669&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 45. 45.Feyssaguet, M.; Dacheux, L.; Audry, L.; Compoint, A.; Morize, J.L.; Blanchard, I.; Bourhy, H. Multicenter Comparative Study of a New ELISA, PLATELIA RABIES II, for the Detection and Titration of Anti-Rabies Glycoprotein Antibodies and Comparison with the Rapid Fluorescent Focus Inhibition Test (RFFIT) on Human Samples from Vaccinated and Non-Vacci. Vaccine 2007, 25, 2244–2251, doi:10.1016/j.vaccine.2006.12.012. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.vaccine.2006.12.012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17224214&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 46. 46.Muhamuda, K.; Madhusudana, S.N.; Ravi, V. Development and Evaluation of a Competitive ELISA for Estimation of Rabies Neutralizing Antibodies after Post-Exposure Rabies Vaccination in Humans. Int. J. Infect. Dis. 2007, 11, 441–445, doi:10.1016/j.ijid.2006.09.013. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2006.09.013&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17321182&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 47. 47.Welch, R.J.; Anderson, B.L.; Litwin, C.M. An Evaluation of Two Commercially Available ELISAs and One In-House Reference Laboratory ELISA for the Determination of Human Anti-Rabies Virus Antibodies. J. Med. Microbiol. 2009, 58, 806–810, doi:10.1099/jmm.0.006064-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1099/jmm.0.006064-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19429758&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 48. 48.Ma, X.; Niezgoda, M.; Blanton, J.D.; Recuenco, S.; Rupprecht, C.E. Evaluation of a New Serological Technique for Detecting Rabies Virus Antibodies Following Vaccination. Vaccine 2012, 30, 5358–5362, doi:10.1016/j.vaccine.2012.06.037. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.vaccine.2012.06.037&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22749835&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 49. 49.Realegeno, S.; Niezgoda, M.; Yager, P.A.; Kumar, A.; Hoque, L.; Orciari, L.; Sambhara, S.; Olson, V.A.; Satheshkumar, P.S. An ELISA-Based Method for Detection of Rabies Virus Nucleoprotein-Specific Antibodies in Human Antemortem Samples. PLoS One 2018, 13, e0207009, doi:10.1371/journal.pone.0207009. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0207009&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30403742&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 50. 50.Zhao, R.; Yu, P.; Shan, Y.; Thirumeni, N.; Li, M.; Lv, Y.; Li, J.; Ren, W.; Huang, L.; Wei, J.;, et al. Rabies Virus Glycoprotein Serology ELISA for Measurement of Neutralizing Antibodies in Sera of Vaccinated Human Subjects. Vaccine 2019, 37, 6060–6067, doi:10.1016/j.vaccine.2019.08.043. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.vaccine.2019.08.043&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31471146&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 51. 51.Doornekamp, L.; Embregts, C.W.E.; Aron, G.I.; Goeijenbier, S.; van de Vijver, D.A.M.C.; van Gorp, E.C.M.; GeurtsvanKessel, C.H. Dried Blood Spot Cards: A Reliable Sampling Method to Detect Human Antibodies against Rabies Virus. PLoS Negl. Trop. Dis. 2020, 14, e0008784, doi:10.1371/journal.pntd.0008784. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0008784&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33048925&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 52. 52.Wadhwa, A.; Wilkins, K.; Gao, J.; Condori Condori, R.E.; Gigante, C.M.; Zhao, H.; Ma, X.; Ellison, J.A.; Greenberg, L.; Velasco-Villa, A.;, et al. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies Virus and Other Lyssaviruses. PLoS Negl. Trop. Dis. 2017, 11, e0005258, doi:10.1371/journal.pntd.0005258. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0005258&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28081126&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 53. 53.Wacharapluesadee, S.; Phumesin, P.; Supavonwong, P.; Khawplod, P.; Intarut, N.; Hemachudha, T. Comparative Detection of Rabies RNA by NASBA, Real-Time PCR and Conventional PCR. J. Virol. Methods 2011, 175, 278–282, doi:10.1016/j.jviromet.2011.05.007. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2011.05.007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21600930&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 54. 54.De Benedictis, P.; De Battisti, C.; Dacheux, L.; Marciano, S.; Ormelli, S.; Salomoni, A.; Caenazzo, S.T.; Lepelletier, A.; Bourhy, H.; Capua, I.;, et al. Lyssavirus Detection and Typing Using Pyrosequencing. J. Clin. Microbiol. 2011, 49, 1932–1938, doi:10.1128/JCM.02015-10. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNtIjtzOjU6InJlc2lkIjtzOjk6IjQ5LzUvMTkzMiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzExLzA1LzIwMjQuMTEuMDUuMjQzMTY3NzMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 55. 55.Dacheux, L.; Reynes, J.-M.; Buchy, P.; Sivuth, O.; Diop, B.M.; Rousset, D.; Rathat, C.; Jolly, N.; Dufourcq, J.-B.; Nareth, C.;, et al. A Reliable Diagnosis of Human Rabies Based on Analysis of Skin Biopsy Specimens. Clin. Infect. Dis. 2008, 47, 1410–1417, doi:10.1086/592969. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/592969&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18937576&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 56. 56.Kamolvarin, N.; Tirawatnpong, T.; Rattanasiwamoke, R.; Tirawatnpong, S.; Panpanich, T.; Hemachudha, T. Diagnosis of Rabies by Polymerase Chain Reaction with Nested Primers. J. Infect. Dis. 1993, 167, 207–210, doi:10.1093/infdis/167.1.207. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/infdis/167.1.207&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8418168&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1993KE84600032&link_type=ISI) 57. 57.Madhusudana, S.N.; Shamsundar, R.; Saraswati, S. Comparative Evaluation of a Simple Indirect Immunofluorescence Test and Mouse Neutralization Test for Assaying Rabies Antibodies. Indian J. Pathol. Microbiol. 2001, 44, 309–312. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12024919&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 58. 58.Madhusudana, S.N.; Saraswati, S. Development and Evaluation of a Latex Agglutination Test for Rabies Antibodies. J. Clin. Virol. 2003, 27, 129–135, doi:10.1016/s1386-6532(02)00135-x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1386-6532(02)00135-X&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12829034&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 59. 59.Madhusudana, S.N.; Paul, J.P.V.; Abhilash, V.K.; Suja, M.S. Rapid Diagnosis of Rabies in Humans and Animals by a Dot Blot Enzyme Immunoassay. Int. J. Infect. Dis. 2004, 8, 339– 345, doi:10.1016/j.ijid.2004.02.006. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2004.02.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15494255&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000225106900004&link_type=ISI) 60. 60.Shiota, S.; Mannen, K.; Matsumoto, T.; Yamada, K.; Yasui, T.; Takayama, K.; Kobayashi, Y.; Khawplod, P.; Gotoh, K.; Ahmed, K.;, et al. Development and Evaluation of a Rapid Neutralizing Antibody Test for Rabies. J. Virol. Methods 2009, 161, 58–62, doi:10.1016/j.jviromet.2009.05.018. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2009.05.018&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19481115&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 61. 61.Batista, H.B.C.R.; Lima, F.E.S.; Maletich, D.; Silva, A.C.R.; Vicentini, F.K.; Roehe, L.R.; Spilki, F.R.; Franco, A.C.; Roehe, P.M. Immunoperoxidase Inhibition Assay for Rabies Antibody Detection. J. Virol. Methods 2011, 174, 65–68, doi:10.1016/j.jviromet.2011.03.025. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2011.03.025&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21458492&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 62. 62.Madhusudana, S.N.; Subha, S.; Thankappan, U.; Ashwin, Y.B. Evaluation of a Direct Rapid Immunohistochemical Test (DRIT) for Rapid Diagnosis of Rabies in Animals and Humans. Virol. Sin. 2012, 27, 299–302, doi:10.1007/s12250-012-3265-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12250-012-3265-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23055005&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 63. 63.Vilca-Alosilla, J.J.; Candia-Puma, M.A.; Coronel-Monje, K.; Goyzueta-Mamani, L.D.; Galdino, A.S.; Machado-de-Ávila, R.A.; Giunchetti, R.C.; Ferraz Coelho, E.A.; Chávez-Fumagalli, M.A. A Systematic Review and Meta-Analysis Comparing the Diagnostic Accuracy Tests of COVID-19. Diagnostics 2023, 13, 1549, doi:10.3390/diagnostics13091549. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/diagnostics13091549&link_type=DOI) 64. 64.Chávez-Fumagalli, M.A.; Shrivastava, P.; Aguilar-Pineda, J.A.; Nieto-Montesinos, R.; Del-Carpio, G.D.; Peralta-Mestas, A.; Caracela-Zeballos, C.; Valdez-Lazo, G.; Fernandez-Macedo, V.; Pino-Figueroa, A.;, et al. Diagnosis of Alzheimer’s Disease in Developed and Developing Countries: Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. J. Alzheimer’s Dis. Reports 2021, 5, 15–30, doi:10.3233/ADR-200263. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/ADR-200263&link_type=DOI) 65. 65.Candia-Puma, M.A.; Machaca-Luque, L.Y.; Roque-Pumahuanca, B.M.; Galdino, A.S.; Giunchetti, R.C.; Coelho, E.A.F.; Chávez-Fumagalli, M.A. Accuracy of Diagnostic Tests for the Detection of Chagas Disease: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 2752, doi:10.3390/diagnostics12112752. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/diagnostics12112752&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36359595&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 66. 66.da Silva Santos, J.H.; da Silva, G.H.; Iamamoto, K.; Katz, I.S.S.; Guedes, F.; Fernandes, E.R.; de Cassia Rodrigues da Silva, A.; Dos Ramos Silva, S. Purification of IgG against Ribonucleoprotein by a Homemade Immunoaffinity Chromatography Column for Rabies Diagnosis. J. Immunol. Methods 2019, 471, 1–10, doi:10.1016/j.jim.2019.03.007. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jim.2019.03.007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30904384&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 67. 67.Robardet, E.; Servat, A.; Rieder, J.; Picard-Meyer, E.; Cliquet, F. Multi-Annual Performance Evaluation of Laboratories in Post-Mortem Diagnosis of Animal Rabies: Which Techniques Lead to the Most Reliable Results in Practice? PLoS Negl. Trop. Dis. 2021, 15, e0009111, doi:10.1371/journal.pntd.0009111. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0009111&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33544702&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 68. 68.Medeiros Caporale, G.M.; Rodrigues da Silva, A. de C.; Peixoto, Z.M.P.; Chaves, L.B.; Carrieri, M.L.; Vassão, R.C. First Production of Fluorescent Anti-Ribonucleoproteins Conjugate for Diagnostic of Rabies in Brazil. J. Clin. Lab. Anal. 2009, 23, 7–13, doi:10.1002/jcla.20275. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jcla.20275&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19140216&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 69. 69.da Silva, G.H.; Santos da Silva, J.H.; Iamamoto, K.; de Arruda, T.S.; Katz, I.S.S.; Fernandes, E.R.; Guedes, F.; Rodrigues da Silva, A. de C.; Silva, S.R. Performance Evaluation of the Polyclonal Anti-Rabies Virus Ribonucleoprotein IgG Antibodies Produced in-House for Use in Direct Fluorescent Antibody Test. J. Virol. Methods 2020, 280, 113879, doi:10.1016/j.jviromet.2020.113879. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2020.113879&link_type=DOI) 70. 70.Clavijo, A.; Freire de Carvalho, M.H.; Orciari, L.A.; Velasco-Villa, A.; Ellison, J.A.; Greenberg, L.; Yager, P.A.; Green, D.B.; Vigilato, M.A.; Cosivi, O.;, et al. An Inter-Laboratory Proficiency Testing Exercise for Rabies Diagnosis in Latin America and the Caribbean. PLoS Negl. Trop. Dis. 2017, 11, e0005427, doi:10.1371/journal.pntd.0005427. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0005427&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28369139&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 71. 71.Jayakumar, R.; Padmanaban, V.D. A Dipstick Dot Enzyme Immunoassay for Detection of Rabies Antigen. Zentralbl. Bakteriol. 1994, 280, 382–385, doi:10.1016/s0934-8840(11)80600-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s0934-8840(11)80600-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8167432&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 72. 72.Lugelo, A.; Hampson, K.; McElhinney, L.M.; Lankester, F. Evaluation of an IELISA for Detection and Quantification of Rabies Antibodies in Domestic Dog Sera. Vaccine 2023, 41, 6565–6571, doi:10.1016/j.vaccine.2023.09.004. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.vaccine.2023.09.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37716829&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 73. 73.Wasniewski, M.; Labbe, A.; Tribout, L.; Rieder, J.; Labadie, A.; Schereffer, J.L.; Cliquet, F. Evaluation of a Rabies ELISA as an Alternative Method to Seroneutralisation Tests in the Context of International Trade of Domestic Carnivores. J. Virol. Methods 2014, 195, 211– 220, doi:10.1016/j.jviromet.2013.10.021. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2013.10.021&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24161815&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 74. 74.Xu, G.; Weber, P.; Hu, Q.; Xue, H.; Audry, L.; Li, C.; Wu, J.; Bourhy, H. A Simple Sandwich ELISA (WELYSSA) for the Detection of Lyssavirus Nucleocapsid in Rabies Suspected Specimens Using Mouse Monoclonal Antibodies. Biologicals 2007, 35, 297–302, doi:10.1016/j.biologicals.2006.10.002. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biologicals.2006.10.002&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17276082&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000250906900010&link_type=ISI) 75. 75.Wasniewski, M.; Cliquet, F. Evaluation of ELISA for Detection of Rabies Antibodies in Domestic Carnivores. J. Virol. Methods 2012, 179, 166–175, doi:10.1016/j.jviromet.2011.10.019. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2011.10.019&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22080853&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000300207700026&link_type=ISI) 76. 76.Servat, A.; Feyssaguet, M.; Blanchard, I.; Morize, J.L.; Schereffer, J.L.; Boue, F.; Cliquet, F. A Quantitative Indirect ELISA to Monitor the Effectiveness of Rabies Vaccination in Domestic and Wild Carnivores. J. Immunol. Methods 2007, 318, 1–10, doi:10.1016/j.jim.2006.07.026. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jim.2006.07.026&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17166510&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 77. 77.Yang, L.-M.; Zhao, L.-Z.; Hu, R.-L.; Shi, Z.-S.; Liu, W.-J. A Novel Double-Antigen Sandwich Enzyme-Linked Immunosorbent Assay for Measurement of Antibodies against Rabies Virus. Clin. Vaccine Immunol. 2006, 13, 966–968, doi:10.1128/CVI.00102-06. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiY2RsaSI7czo1OiJyZXNpZCI7czo4OiIxMy84Lzk2NiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzExLzA1LzIwMjQuMTEuMDUuMjQzMTY3NzMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 78. 78.Cliquet, F.; McElhinney, L.M.; Servat, A.; Boucher, J.M.; Lowings, J.P.; Goddard, T.; Mansfield, K.L.; Fooks, A.R. Development of a Qualitative Indirect ELISA for the Measurement of Rabies Virus-Specific Antibodies from Vaccinated Dogs and Cats. J. Virol. Methods 2004, 117, 1–8, doi:10.1016/j.jviromet.2003.12.001. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2003.12.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15019254&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 79. 79.Tenzin, T.; Lhamo, K.; Rai, P.B.; Tshering, D.; Jamtsho, P.; Namgyal, J.; Wangdi, T.; Letho, S.; Rai, T.; Jamtsho, S.;, et al. Evaluation of a Rapid Immunochromatographic Test Kit to the Gold Standard Fluorescent Antibody Test for Diagnosis of Rabies in Animals in Bhutan. BMC Vet. Res. 2020, 16, 183, doi:10.1186/s12917-020-02405-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12917-020-02405-4&link_type=DOI) 80. 80.Shiwa, N.; Yamashita, H.; Tomioka, K.; Kimitsuki, K.; Manalo, D.L.; Inoue, S.; Park, C.-H. Statistical Analysis of the Usefulness of Follicle-Sinus Complexes as a Novel Diagnostic Material for Canine Rabies. J. Vet. Med. Sci. 2019, 81, 182–185, doi:10.1292/jvms.18-0591. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1292/jvms.18-0591&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30531131&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 81. 81.Mananggit, M.R.; Manalo, D.L.; Saito, N.; Kimitsuki, K.; Garcia, A.M.G.; Lacanilao, P.M.T.; Ongtangco, J.T.; Velasco, C.R.; Del Rosario, M.V.A.; Lagayan, M.G.O.;, et al. Lateral Flow Devices for Samples Collected by Straw Sampling Method for Postmortem Canine Rabies Diagnosis. PLoS Negl. Trop. Dis. 2021, 15, e0009891, doi:10.1371/journal.pntd.0009891. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0009891&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34882672&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 82. 82.Kimitsuki, K.; Saito, N.; Yamada, K.; Park, C.-H.; Inoue, S.; Suzuki, M.; Saito-Obata, M.; Kamiya, Y.; Manalo, D.L.; Demetria, C.S.;, et al. Evaluation of the Diagnostic Accuracy of Lateral Flow Devices as a Tool to Diagnose Rabies in Post-Mortem Animals. PLoS Negl. Trop. Dis. 2020, 14, e0008844, doi:10.1371/journal.pntd.0008844. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0008844&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33151941&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 83. 83.Tao, C.; Li, G. A Rapid One-Step Immunochromatographic Test Strip for Rabies Detection Using Canine Serum Samples. Lett. Appl. Microbiol. 2014, 59, 247–251, doi:10.1111/lam.12282. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/lam.12282&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24820246&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 84. 84.Ahmed, K.; Wimalaratne, O.; Dahal, N.; Khawplod, P.; Nanayakkara, S.; Rinzin, K.; Perera, D.; Karunanayake, D.; Matsumoto, T.; Nishizono, A. Evaluation of a Monoclonal Antibody-Based Rapid Immunochromatographic Test for Direct Detection of Rabies Virus in the Brain of Humans and Animals. Am. J. Trop. Med. Hyg. 2012, 86, 736–740, doi:10.4269/ajtmh.2012.11-0332. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoidHJvcG1lZCI7czo1OiJyZXNpZCI7czo4OiI4Ni80LzczNiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzExLzA1LzIwMjQuMTEuMDUuMjQzMTY3NzMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 85. 85.Kasempimolporn, S.; Saengseesom, W.; Huadsakul, S.; Boonchang, S.; Sitprija, V. Evaluation of a Rapid Immunochromatographic Test Strip for Detection of Rabies Virus in Dog Saliva Samples. J. Vet. Diagn. Invest. 2011, 23, 1197–1201, doi:10.1177/1040638711425576. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1040638711425576&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22362801&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 86. 86.Servat, A.; Picard-Meyer, E.; Robardet, E.; Muzniece, Z.; Must, K.; Cliquet, F. Evaluation of a Rapid Immunochromatographic Diagnostic Test for the Detection of Rabies from Brain Material of European Mammals. Biologicals 2012, 40, 61–66, doi:10.1016/j.biologicals.2011.12.011. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biologicals.2011.12.011&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22245544&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 87. 87.Wang, H.; Feng, N.; Yang, S.; Wang, C.; Wang, T.; Gao, Y.; Su, J.; Zheng, X.; Hou, X.; Huang, H.;, et al. A Rapid Immunochromatographic Test Strip for Detecting Rabies Virus Antibody. J. Virol. Methods 2010, 170, 80–85, doi:10.1016/j.jviromet.2010.09.002. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2010.09.002&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20837065&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 88. 88.Kang, B.; Oh, J.; Lee, C.; Park, B.-K.; Park, Y.; Hong, K.; Lee, K.; Cho, B.; Song, D. Evaluation of a Rapid Immunodiagnostic Test Kit for Rabies Virus. J. Virol. Methods 2007, 145, 30–36, doi:10.1016/j.jviromet.2007.05.005. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2007.05.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17628707&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000249509100005&link_type=ISI) 89. 89.Yale, G.; Gibson, A.D.; Mani, R.S.; P K, H.; Costa, N.C.; Corfmat, J.; Otter, I.; Otter, N.; Handel, I.G.; Bronsvoort, B.M.;, et al. Evaluation of an Immunochromatographic Assay as a Canine Rabies Surveillance Tool in Goa, India. Viruses 2019, 11, doi:10.3390/v11070649. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/v11070649&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31311178&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 90. 90.Cruz, J.L.; Garcia, A.M.; Saito, N.; Lagayan, M.G.O.; Dela Peña, R.C.; Usana, M.S.; Agustin, S.P.; Tattao, J.Z.; Mamauag, C. V; Ducayag, O.P.;, et al. Evaluation of Lateral Flow Devices for Postmortem Rabies Diagnosis in Animals in the Philippines: A Multicenter Study. J. Clin. Microbiol. 2023, 61, e0084223, doi:10.1128/jcm.00842-23. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1128/jcm.00842-23&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37991352&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 91. 91.Carnieli Junior, P.; Ventura, A.M.; Durigon, E.L. Digoxigenin-Labeled Probe for Rabies Virus Nucleoprotein Gene Detection. Rev. Soc. Bras. Med. Trop. 2006, 39, 159–162, doi:10.1590/s0037-86822006000200005. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1590/s0037-86822006000200005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16699642&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 92. 92.Mauhay, J.D.; Saito, N.; Kimitsuki, K.; Mananggit, M.R.; Cruz, J.L.; Lagayan, M.G.; Garcia, A.M.; Lacanilao, P.M.; Yamada, K.; Saito-Obata, M.;, et al. Molecular Analysis of Rabies Virus Using RNA Extracted from Used Lateral Flow Devices. J. Clin. Microbiol. 2023, 61, e0154322, doi:10.1128/jcm.01543-22. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1128/jcm.01543-22&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36840574&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 93. 93.Rasolonjatovo, F.S.; Guis, H.; Rajeev, M.; Dacheux, L.; Arivony Nomenjanahary, L.; Razafitrimo, G.; Rafisandrantantsoa, J.T.; Cêtre-Sossah, C.; Heraud, J.-M.; Andriamandimby, S.F. Enabling Animal Rabies Diagnostic in Low-Access Areas: Sensitivity and Specificity of a Molecular Diagnostic Test from Cerebral Tissue Dried on Filter Paper. PLoS Negl. Trop. Dis. 2020, 14, e0008116, doi:10.1371/journal.pntd.0008116. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0008116&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32142519&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 94. 94.Naji, E.; Fadajan, Z.; Afshar, D.; Fazeli, M. Comparison of Reverse Transcription Loop-Mediated Isothermal Amplification Method with SYBR Green Real-Time RT-PCR and Direct Fluorescent Antibody Test for Diagnosis of Rabies. Jpn. J. Infect. Dis. 2020, 73, 19–25, doi:10.7883/yoken.JJID.2019.009. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7883/yoken.JJID.2019.009&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31474697&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 95. 95.Faye, M.; Dacheux, L.; Weidmann, M.; Diop, S.A.; Loucoubar, C.; Bourhy, H.; Sall, A.A.; Faye, O. Development and Validation of Sensitive Real-Time RT-PCR Assay for Broad Detection of Rabies Virus. J. Virol. Methods 2017, 243, 120–130, doi:10.1016/j.jviromet.2016.12.019. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2016.12.019&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28174073&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 96. 96.Wacharapluesadee, S.; Tepsumethanon, V.; Supavonwong, P.; Kaewpom, T.; Intarut, N.; Hemachudha, T. Detection of Rabies Viral RNA by TaqMan Real-Time RT-PCR Using Non-Neural Specimens from Dogs Infected with Rabies Virus. J. Virol. Methods 2012, 184, 109– 112, doi:10.1016/j.jviromet.2012.05.013. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2012.05.013&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22626566&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 97. 97.Yang, D.-K.; Shin, E.-K.; Oh, Y.-I.; Lee, K.-W.; Lee, C.-S.; Kim, S.-Y.; Lee, J.-A.; Song, J.-Y. Comparison of Four Diagnostic Methods for Detecting Rabies Viruses Circulating in Korea. J. Vet. Sci. 2012, 13, 43–48, doi:10.4142/jvs.2012.13.1.43. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4142/jvs.2012.13.1.43&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22437535&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 98. 98.Castro, B.S.; Guedes, F.; Fernandes, E.R.; Koike, G.; Katz, I.S.S.; Chaves, L.B.; Silva, S.R. Development of Biotinylated Polyclonal Anti-Ribonucleoprotein IgG for Detection of Rabies Virus Antigen by Direct Rapid Immunohistochemical Test. Biologicals 2020, 68, 74–78, doi:10.1016/j.biologicals.2020.08.004. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biologicals.2020.08.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32859463&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 99. 99.Claassen, D.D.; Odendaal, L.; Sabeta, C.T.; Fosgate, G.T.; Mohale, D.K.; Williams, J.H.; Clift, S.J. Diagnostic Sensitivity and Specificity of Immunohistochemistry for the Detection of Rabies Virus in Domestic and Wild Animals in South Africa. J. Vet. Diagn. Invest. 2023, 35, 236–245, doi:10.1177/10406387231154537. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/10406387231154537&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36782370&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 100.100.Voehl, K.M.; Saturday, G.A. Evaluation of a Rapid Immunodiagnostic Rabies Field Surveillance Test on Samples Collected from Military Operations in Africa, Europe, and the Middle East. US. Army Med. Dep. J. 2014, 27–32. 101.101.Léchenne, M.; Naïssengar, K.; Lepelletier, A.; Alfaroukh, I.O.; Bourhy, H.; Zinsstag, J.; Dacheux, L. Validation of a Rapid Rabies Diagnostic Tool for Field Surveillance in Developing Countries. PLoS Negl. Trop. Dis. 2016, 10, e0005010, doi:10.1371/journal.pntd.0005010. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0005010&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27706156&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 102.102.Arslan, A.; Saglam, Y.S.; Temur, A. Detection of Rabies Viral Antigens in Non-Autolysed and Autolysed Tissues by Using an Immunoperoxidase Technique. Vet. Rec. 2004, 155, 550– 552, doi:10.1136/vr.155.18.550. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoidmV0cmVjIjtzOjU6InJlc2lkIjtzOjEwOiIxNTUvMTgvNTUwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMTEvMDUvMjAyNC4xMS4wNS4yNDMxNjc3My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 103.103.Ogawa, T.; Gamoh, K.; Aoki, H.; Kobayashi, R.; Etoh, M.; Senda, M.; Hirayama, N.; Nishimura, M.; Shiraishi, R.; Servat, A.;, et al. Validation and Standardization of Virus Neutralizing Test Using Indirect Immunoperoxidase Technique for the Quantification of Antibodies to Rabies Virus. Zoonoses Public Health 2008, 55, 323–327, doi:10.1111/j.1863-2378.2008.01128.x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1863-2378.2008.01128.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18489544&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 104.104.Cliquet, F.; Aubert, M.; Sagné, L. Development of a Fluorescent Antibody Virus Neutralisation Test (FAVN Test) for the Quantitation of Rabies-Neutralising Antibody. J. Immunol. Methods 1998, 212, 79–87, doi:10.1016/s0022-1759(97)00212-3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0022-1759(97)00212-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9671155&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000074355000009&link_type=ISI) 105.105.Cardoso, T.C.; da Silva, L.H.Q.; da Silva, S.E.L.; Albas, A.; Pardo, P.E.; Tanaka, A.H.; Cossy, L.B.; Perri, S.H. V Chicken Embryo Related (CER) Cell Line for Quantification of Rabies Neutralizing Antibody by Fluorescent Focus Inhibition Test. Biologicals 2006, 34, 29– 32, doi:10.1016/j.biologicals.2005.08.001. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biologicals.2005.08.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16213749&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 106.106.Coertse, J.; Weyer, J.; Nel, L.H.; Markotter, W. Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of Canine Associated Rabies Virus in Africa. PLoS One 2019, 14, e0219292, doi:10.1371/journal.pone.0219292. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0219292&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31276479&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 107.107.Bourhy, H.; de Melo, G.D.; Tarantola, A. Nouveaux Aspects de La Lutte Contre La Rage. Bull. Acad. Natl. Med. 2020, 204, 1000–1009, doi:10.1016/j.banm.2020.09.036. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.banm.2020.09.036&link_type=DOI) 108.108.Coronel-Monje, K.; Candia-Puma, M.A.; Vilca-Alosilla, J.J.; Goyzueta-Mamani, L.D.; Aguilar-Bravo, H.M.; Sánchez-Zegarra, J.A.; Barazorda-Ccahuana, H.L.; Ferraz Coelho, E.A.; Chávez-Fumagalli, M.A. Peruvian Contributions to Scientific Publications on Experimental Research against COVID-19: A Systematic Review. F1000Research 2023, *12*, 875, doi:10.12688/f1000research.134989.3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.12688/f1000research.134989.3&link_type=DOI) 109.109.Neevel, A.M.G.; Hemrika, T.; Claassen, E.; van de Burgwal, L.H.M. A Research Agenda to Reinforce Rabies Control: A Qualitative and Quantitative Prioritization. PLoS Negl. Trop. Dis. 2018, 12, e0006387, doi:10.1371/journal.pntd.0006387. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0006387&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29727444&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 110.110.Goyzueta-Mamani, L.D.; Chávez-Fumagalli, M.A.; Alvarez-Fernandez, K.; Aguilar-Pineda, J.A.; Nieto-Montesinos, R.; Davila Del-Carpio, G.; Vera-Lopez, K.J.; Lino Cardenas, C.L. Alzheimer’s Disease: A Silent Pandemic - A Systematic Review on the Situation and Patent Landscape of the Diagnosis. Recent Pat. Biotechnol. 2022, 16, 355–378, doi:10.2174/1872208316666220408114129. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2174/1872208316666220408114129&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35400333&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 111.111.Alderwick, H.; Hutchings, A.; Briggs, A.; Mays, N. The Impacts of Collaboration between Local Health Care and Non-Health Care Organizations and Factors Shaping How They Work: A Systematic Review of Reviews. BMC Public Health 2021, 21, 753, doi:10.1186/s12889-021-10630-1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12889-021-10630-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33874927&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 112.112.Qin, X.; Liu, K.; Fu, T.; Song, S.; Zhao, C.; Li, Z.; Lu, X.; Shao, Z. Global Burden, Trends, and Predictions of Rabies: An Analysis from the Global Burden of Disease Study 1990–2019 and Projections for 2030. J. Public Health (Bangkok*).* 2023, doi:10.1007/s10389-023-01971-9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10389-023-01971-9&link_type=DOI) 113.113.Roess, A.; Robertson, K.; Recuenco, S. Historical Disparities in Health: Rabies Surveillance, Risk Factors and Prevention. In; 2023; pp. 261–280. 114.114.Zacharewicz, T.; Pulido Pavón, N.; Palma Martos, L.A.; Lepori, B. Do Funding Modes Matter? A Multilevel Analysis of Funding Allocation Mechanisms on University Research Performance. Res. Eval. 2023, 32, 545–556, doi:10.1093/reseval/rvad023. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/reseval/rvad023&link_type=DOI) 115.115.Aagaard, K.; Kladakis, A.; Nielsen, M.W. Concentration or Dispersal of Research Funding? *Quant*. Sci. Stud. 2020, 1, 117–149, doi:10.1162/qss\_a\_00002. [CrossRef](http://medrxiv.org/lookup/external-ref?access\_num=10.1162/qss_a_00002&link_type=DOI) 116.116.Hampson, K.; Coudeville, L.; Lembo, T.; Sambo, M.; Kieffer, A.; Attlan, M.; Barrat, J.; Blanton, J.D.; Briggs, D.J.; Cleaveland, S.;, et al. Estimating the Global Burden of Endemic Canine Rabies. PLoS Negl. Trop. Dis. 2015, 9, e0003709, doi:10.1371/journal.pntd.0003709. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0003709&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25881058&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 117.117.Riccaboni, M.; Verginer, L. The Impact of the COVID-19 Pandemic on Scientific Research in the Life Sciences. PLoS One 2022, 17, e0263001, doi:10.1371/journal.pone.0263001. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0263001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35139089&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 118.118.Hemachudha, T.; Wacharapluesadee, S. Antemortem Diagnosis of Human Rabies. Clin. Infect. Dis. 2004, 39, 1085–1086, doi:10.1086/423813. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/423813&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15472871&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000227491600035&link_type=ISI) 119.119.Patel, M.G.; Patel, A.C.; Raval, S.H.; Sharma, K.K.; Patel, S.S.; Chauhan, H.C.; Parmar, R.S.; Shrimali, M.D.; Vamja, H.G.; Bhatol, J.;, et al. Ante-Mortem and Post-Mortem Diagnosis Modalities and Phylogenetic Analysis of Rabies Virus in Domestic and Wild Animals of Gujarat, India. Indian J. Microbiol. 2023, 63, 645–657, doi:10.1007/s12088-023-01126-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12088-023-01126-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=38031621&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 120.120.Lalkhen, A.G.; McCluskey, A. Clinical Tests: Sensitivity and Specificity. Contin. Educ. Anaesth. Crit. Care Pain 2008, 8, 221–223, doi:10.1093/bjaceaccp/mkn041. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/bjaceaccp/mkn041&link_type=DOI) 121.121.Naaktgeboren, C.A.; Ochodo, E.A.; Van Enst, W.A.; de Groot, J.A.H.; Hooft, L.; Leeflang, M.M.G.; Bossuyt, P.M.; Moons, K.G.M.; Reitsma, J.B. Assessing Variability in Results in Systematic Reviews of Diagnostic Studies. BMC Med. Res. Methodol. 2016, 16, 6, doi:10.1186/s12874-016-0108-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12874-016-0108-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26772804&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 122.122.Aamir, A.; Hamilton, R.G. Predictive Value Model for Laboratory Tests: Diagnostic Sensitivity, Diagnostic Specificity, Positive and Negative Predictive Value, Efficiency, Likelihood Ratio ([Positive and Negative]), Incidence and Prevalence. In Encyclopedia of Medical Immunology; Springer New York: New York, NY, 2014; pp. 581–586. 123.123.Deeks, J.J.; Altman, D.G. Diagnostic Tests 4: Likelihood Ratios. BMJ 2004, 329, 168–169, doi:10.1136/bmj.329.7458.168. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEyOiIzMjkvNzQ1OC8xNjgiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNC8xMS8wNS8yMDI0LjExLjA1LjI0MzE2NzczLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 124.124.Leeflang, M.M.; Deeks, J.J.; Takwoingi, Y.; Macaskill, P. Cochrane Diagnostic Test Accuracy Reviews. Syst. Rev. 2013, 2, 82, doi:10.1186/2046-4053-2-82. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/2046-4053-2-82&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24099098&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 125.125.Rutjes, A.W.S.; Reitsma, J.B.; Di Nisio, M.; Smidt, N.; van Rijn, J.C.; Bossuyt, P.M.M. Evidence of Bias and Variation in Diagnostic Accuracy Studies. Can. Med. Assoc. J. 2006, 174, 469–476, doi:10.1503/cmaj.050090. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiY21haiI7czo1OiJyZXNpZCI7czo5OiIxNzQvNC80NjkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNC8xMS8wNS8yMDI0LjExLjA1LjI0MzE2NzczLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 126.126.Harbord, R.M.; Deeks, J.J.; Egger, M.; Whiting, P.; Sterne, J.A.C. A Unification of Models for Meta-Analysis of Diagnostic Accuracy Studies. Biostatistics 2007, 8, 239–251, doi:10.1093/biostatistics/kxl004. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/biostatistics/kxl004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16698768&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000245512000006&link_type=ISI) 127.127.Wasniewski, M.; Cliquet, F. Evaluation of ELISA for Detection of Rabies Antibodies in Domestic Carnivores. J. Virol. Methods 2012, 179, 166–175, doi:10.1016/j.jviromet.2011.10.019. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2011.10.019&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22080853&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000300207700026&link_type=ISI) 128.128.Erbak Yılmaz, H.; Iscan, E.; Oz, O.; Batur, T.; Erdoğan, A.; Kılıç, S.; Mutlu, Z.; Yılmaz, M.; Spring, K.J. Considerations for the Selection of Tests for SARS-CoV-2 Molecular Diagnostics. Mol. Biol. Rep. 2022, 49, 9725–9735, doi:10.1007/s11033-022-07455-5. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11033-022-07455-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35441938&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 129.129.Amoako, Y.A.; El-Duah, P.; Sylverken, A.A.; Owusu, M.; Yeboah, R.; Gorman, R.; Adade, T.; Bonney, J.; Tasiame, W.; Nyarko-Jectey, K.;, et al. Rabies Is Still a Fatal but Neglected Disease: A Case Report. J. Med. Case Rep. 2021, 15, 575, doi:10.1186/s13256-021-03164-y. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13256-021-03164-y&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33397476&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 130.130.Pruzan, P. Ethics and Responsibility in Scientific Research. In Research Methodology; Springer International Publishing: Cham, 2016; pp. 273–306. 131.131.Léchenne, M.; Naïssengar, K.; Lepelletier, A.; Alfaroukh, I.O.; Bourhy, H.; Zinsstag, J.; Dacheux, L. Validation of a Rapid Rabies Diagnostic Tool for Field Surveillance in Developing Countries. PLoS Negl. Trop. Dis. 2016, 10, e0005010, doi:10.1371/journal.pntd.0005010. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0005010&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27706156&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 132.132.Djegui, F.; Gourlaouen, M.; Coetzer, A.; Adjin, R.; Tohozin, R.; Leopardi, S.; Mauti, S.; Akpo, Y.; Gnanvi, C.; Nel, L.H.;, et al. Capacity Building Efforts for Rabies Diagnosis in Resource- Limited Countries in Sub-Saharan Africa: A Case Report of the Central Veterinary Laboratory in Benin (Parakou). Front. Vet. Sci. 2022, 8, doi:10.3389/fvets.2021.769114. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fvets.2021.769114&link_type=DOI) 133.133.AravindhBabu, R.P.; Manoharan, S.; Ramadass, P. Diagnostic Evaluation of RT-PCR– ELISA for the Detection of Rabies Virus. VirusDisease 2014, 25, 120–124, doi:10.1007/s13337-013-0184-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s13337-013-0184-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24426319&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 134.134.O’Dea, R.E.; Lagisz, M.; Jennions, M.D.; Koricheva, J.; Noble, D.W.A.; Parker, T.H.; Gurevitch, J.; Page, M.J.; Stewart, G.; Moher, D.;, et al. Preferred Reporting Items for Systematic Reviews and Meta-analyses in Ecology and Evolutionary Biology: A PRISMA Extension. Biol. Rev. 2021, 96, 1695–1722, doi:10.1111/brv.12721. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/brv.12721&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33960637&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 135.135.Liberati, A. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. Ann. Intern. Med. 2009, 151, W, doi:10.7326/0003-4819-151-4-200908180-00136. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7326/0003-4819-151-4-200908180-00136&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19622512&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 136.136.Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.M.; Lijmer, J.G.; Moher, D.; Rennie, D.; De Vet, H.C.W. Towards Complete and Accurate Reporting of Studies of Diagnostic Accuracy: The STARD Initiative. Vet. Clin. Pathol. 2007, 36, 8–12, doi:10.1111/j.1939-165X.2007.tb00175.x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1939-165X.2007.tb00175.x&link_type=DOI) 137.137.Deeks, J.J.; Macaskill, P.; Irwig, L. The Performance of Tests of Publication Bias and Other Sample Size Effects in Systematic Reviews of Diagnostic Test Accuracy Was Assessed. J. Clin. Epidemiol. 2005, 58, 882–893, doi:10.1016/j.jclinepi.2005.01.016. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jclinepi.2005.01.016&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16085191&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000231543200004&link_type=ISI) 138.138.Rutter, C.M.; Gatsonis, C.A. A Hierarchical Regression Approach to Meta-analysis of Diagnostic Test Accuracy Evaluations. Stat. Med. 2001, 20, 2865–2884, doi:10.1002/sim.942. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/sim.942&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11568945&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000171288400007&link_type=ISI) 139.139.Alarcon-Ruiz, C.A.; Roque-Roque, J.S.; Heredia, P.; Gómez-Briceño, A.R.; Quispe, A.M. Twenty-two Years’ Experience Registering Trials in a Low-middle Income Country: The Peruvian Clinical Trial Registry. J. Evid. Based. Med. 2019, 12, 187–193, doi:10.1111/jebm.12354. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jebm.12354&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31215157&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 140.140.Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P., Green, S., Eds.; Wiley, 2008; ISBN 9780470699515. 141.141.Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.;, et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomised Studies of Interventions. BMJ 2016, i4919, doi:10.1136/bmj.i4919. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE4OiIzNTUvb2N0MTJfMTEvaTQ5MTkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNC8xMS8wNS8yMDI0LjExLjA1LjI0MzE2NzczLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 142.142.Ioannidis, J.P.A. Why Most Published Research Findings Are False. PLoS Med. 2005, 2, e124, doi:10.1371/journal.pmed.0020124. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pmed.0020124&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16060722&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 143.143.Pollock, A.; Brady, M.C.; Farmer, S.E.; Langhorne, P.; Mead, G.E.; Mehrholz, J.; Wiffen, P.J.; van Wijck, F. The Purpose of Rating Quality of Evidence Differs in an Overview, as Compared to Guidelines or Recommendations. J. Clin. Epidemiol. 2016, 74, 238–240, doi:10.1016/j.jclinepi.2016.01.001. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jclinepi.2016.01.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26769255&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 144.144.Behmen, D.; Marušić, A.; Puljak, L. Capacity Building for Knowledge Translation: A Survey about the Characteristics and Motivation of Volunteer Translators of Cochrane Plain Language Summaries. J. Evid. Based. Med. 2019, 12, 147–154, doi:10.1111/jebm.12345. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jebm.12345&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31144468&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 145.145.Urbas, S.; Sherlock, C.; Metcalfe, P. Interim Recruitment Prediction for Multi-Center Clinical Trials. Biostatistics 2022, 23, 485–506, doi:10.1093/biostatistics/kxaa036. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/biostatistics/kxaa036&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32978616&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 146.146.Liu, Y.; Mo, X.; Feng, Y.; Willoughby, R.E.; Weng, X.; Wang, Y.; Li, X.; Gao, J.; Tian, J.; Peng, J. Metagenomic Next-Generation Sequencing for the Etiological Diagnosis of Rabies Virus in Cerebrospinal Fluid. Front. Med. 2023, 10, doi:10.3389/fmed.2023.982290. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fmed.2023.982290&link_type=DOI) 147.147.Zajac, M.D.; Ortega, M.T.; Moore, S.M. Development and Evaluation of an Enzyme-Linked Immunosorbent Assay Targeting Rabies-Specific IgM and IgG in Human Sera. Viruses 2023, 15, 874, doi:10.3390/v15040874. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/v15040874&link_type=DOI) 148.148.Ukamaka, E.U.; Coetzer, A.; Scott, T.P.; Anene, B.M.; Ezeokonkwo, R.C.; Nwosuh, C.I.; Nel, L.H.; Sabeta, C.T. Economic and Feasibility Comparison of the DRIT and DFA for Decentralized Rabies Diagnosis in Resource-Limited Settings: The Use of Nigerian Dog Meat Markets as a Case Study. PLoS Negl. Trop. Dis. 2020, 14, e0008088, doi:10.1371/journal.pntd.0008088. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0008088&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32109246&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F11%2F05%2F2024.11.05.24316773.atom) 149.149.Ashwini, M.; Pattanaik, A.; Mani, R. Recent Updates on Laboratory Diagnosis of Rabies. Indian J. Med. Res. 2024, 159, 48, doi:10.4103/ijmr.ijmr\_131\_23. [CrossRef](http://medrxiv.org/lookup/external-ref?access\_num=10.4103/ijmr.ijmr_131_23&link_type=DOI) 150.150.Dupuis, M.; Brunt, S.; Appler, K.; Davis, A.; Rudd, R. Comparison of Automated Quantitative Reverse Transcription-PCR and Direct Fluorescent-Antibody Detection for Routine Rabies Diagnosis in the United States. J. Clin. Microbiol. 2015, 53, 2983–2989, doi:10.1128/JCM.01227-15. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNtIjtzOjU6InJlc2lkIjtzOjk6IjUzLzkvMjk4MyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzExLzA1LzIwMjQuMTEuMDUuMjQzMTY3NzMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9)