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Abstract

Purpose: Dynamic contrast-enhanced MR imaging (DCE-MRI) is widely
deployed in cancer care and research, but the methods conventionally
used to quantify contrast agent kinetics do not account the cross-voxel
movement characterized by advection and diffusion. We hypothesized that
unbalanced optimal mass transport could be used to quantify and visual-
ize such contrast agent flows across tumor volumes.
Methods: We developed a computational fluid dynamics model termed
the unbalanced regularized optimal mass transport (urOMT) model. We
tested the urOMT on a multi-institutional dataset of 153 longitudinal
DCE-MRI scans from 39 breast cancer patients treated with neoadjuvant
chemotherapy (NACT.)
Results: The urOMT model can quantify dynamic fluid transport prop-
erties such as net speed, flux and rates of contrast entering and leaving the
tumor (influx and efflux). The urOMT model can also visualize the trajec-
tories and directions of net fluid flows. Quantitative metrics from urOMT
exhibited distinct patterns that may be relevant to predicting pathologi-
cal complete response (pCR) to NACT.
Conclusion: The urOMT model can be used to estimate and visualize
local fluid flow in DCE-MRI breast cancer images. Model-based estimates
of flux, influx and efflux should be tested as potential predictive imaging
biomarkers to measure treatment effectiveness in patients treated with
NACT. The urOMT model in principle has applicability to other cancer
imaging use cases, but this will require further testing.
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1 INTRODUCTION

Locally advanced breast cancer is often treated with
neoadjuvant chemotherapy (NACT), aiming for the
reduction of tumor size prior to definitive surgery.1,2

However, patient response to NACT is highly variable.3,4

Improved imaging methods that yield clinically useful
prognostic information and effectively predict treatment
response could potentially be used to adapt individual-
ized treatment courses.

T1-weighted dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) has become a widely
used imaging technique in many areas of cancer care and
research, including breast cancer.5,6,7,8,9 In DCE-MRI
data acquisition, a chemically inert gadolinium-based
contrast agent is usually injected intravenously into the
patient. Before, during, and after the contrast adminis-
tration, a series of MR images are acquired to identify the
uptake and washout patterns exhibited by contrast agent
for assessment of contrast kinetics.7,8 Tumors generally
demonstrate faster uptake and washout of the contrast
agent compared to normal tissues, but in a spatially
heterogenous pattern.10

The term advection broadly refers to the net trans-
port of directional bulk flows of a quantity, and can be
mathematically characterized with a continuous veloc-
ity vector field with a local magnitude and direction.
In the human body, advection is primarily driven by
a gradient of pressure to enable the transport of flu-
ids and gases essential for normal physiological func-
tions. Distinct from advection, diffusion is directionless
transport due to a gradient of concentration, and can
be quantitatively described by the Fick’s law. Dur-
ing a DCE-MRI experiment, the contrast agent first
arrives at the tumor within blood vessels, often enter-
ing increasingly smaller and disorganized capillaries in
the tumor. Contrast agent extravasates blood vessels
passively, a process called influx, thereupon entering
the extravascular-extracellular tissue space. Contrast
agent flow within the tissue space is non-advective and
mainly via directionless diffusion. Eventually, the con-
trast agent passively exits the extravascular-extracellular
space through a process called efflux, with some por-
tion reabsorbed back to the blood vessels and the rest
drained via lymphatic vessels.11,12,13,14 Figure 1 shows
a schematic of the aforementioned process. Advection
mainly captures the net in-vessel bulk flows, which are
microscopically varied, whereas diffusion captures the
uncorrelated flow component in the interstitial space of
the tissue.

The DCE-MR images can be analyzed with semi-
quantitative (SQ) methods, which evaluate signal

changes over time,15 or quantitative methods, which
perform pharmacokinetic (PK) modeling of tissue con-
trast concentration time-course data converted from
signal time-course data.16,17,18,19 The latter require high
temporal resolution of the time-course data and quantifi-
cation of the arterial input function.20 Previous studies
reported that the SQ and PK methods (e.g., extended
Tofts model (ETM) and shutter speed model) exhibited
potential for early prediction of breast cancer response
to NACT by capturing the longitudinal changes of tumor
contrast agent kinetics in response to NACT.21,22,23,24

However, ETM25,26 models only consider the direct
exchange of contrast agent molecules between the ves-
sels (considered one global reservoir) and the local
interstitial tumor tissue in a given image voxel, but com-
pletely ignore any cross-voxel transport throughout the
microvasculature and tissue characterized by advection
and diffusion. Consequently, the transport of contrast
agent within a tumor is not explicitly considered or mod-
eled, and there is a great interest and unmet need to
develop a new state-of-the-art model for the analysis of
DCE data that includes the transport effects of advection
and diffusion.

Our approach to address this problem is to apply
optimal mass transport (OMT) theory to DCE-MRI
data to track the cross-voxel flows in the tumor microen-
vironment. The OMT problem is concerned with finding
the best transport plan from one initial mass distribu-
tion to another in the sense of minimized transportation
cost.27,28,29 In the formulation of Benamou and Bre-
nier,29 the OMT problem was, for the first time, framed
in a fluid dynamics setting where the classic conti-
nuity equation is employed to describe the advective
movement of fluid flows. A regularized version of the
OMT model was later proposed30,31,32,33 and has been
widely applied in numerous research areas, including
machine learning and deep learning34,35,36,37 but also
in molecular biology.38,39 From the point of view of
fluid dynamics, this regularization term can be equiva-
lently treated as a diffusion term of a given quantity. In
our previous work, we developed a regularized version
of the optimal mass transport model (denoted rOMT)
in computational fluid dynamics which employed an
advection-diffusion equation to quantify and visualize
glymphatic fluid behaviors in rat brains studied with
DCE-MRI.40,41,42,43,44,45 In order to further extend the
validity of the model when contrast enters and leaves
the imaged volume, we added a source term into the
rOMT model to allow for unbalanced mass gain and loss,
resulting in the unbalanced regularized OMT (urOMT)
model.46 The unbalanced version of OMT has been
studied in other applications47,48,49 including image
processing50,51, neuroscience46, and cell biology.52,53
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FIGURE 1 Schematic of the transport flows of the contrast agent after being intravenously administrated. Contrast agent
molecules are delivered to the tumor via relatively large blood vessels which feed disorganized arterial microvasculature. Blood and
contrast agent are passively transported into interstitial extracellular tissue regions in a process referred to as influx. Directionless
diffusion of the contrast agent can occur in the extravascular-extracellular space, but is limited in range. The interstitial contrast
agent is removed both through venous blood vessels or into the lymphatic drainage system (efflux). Individual contrast molecules
may exit and enter the vascular system multiple times.

As continuing work of [46, 54, 55], here we employed
the urOMT model, of which the numerical method was
developed and detailed in Chen et al., [46] to analyze
breast cancer DCE-MRI data. In the urOMT model,
fluid behavior is governed by a fluid dynamic partial
differential equation:

∂ρ

∂t
+∇ · (ρv) = σ∆ρ + ρr (1)

where ρ = ρ(t, x) is the concentration of a given quan-
tity, v = v(t, x) is the velocity field of the quantity, σ

is the constant diffusion coefficient of the quantity, and
r = r(t, x) is called the source variable which quantifies
the rate of mass gain (when r > 0) or loss (when r < 0)
of the quantify. Optimal mass transport seeks to mini-
mize an objective function while respecting the boundary
conditions and the fluid dynamic equation. The urOMT
algorithm solves for the optimal v and r which, under the
context of cancer microenvironment measured by DCE-
MRI, are the net velocity field and the rate of local influx
or efflux rates of the injected contrast agent, respectively.

In this study, we applied the urOMT model to longi-
tudinal DCE-MRI data sets obtained from breast cancer
patients treated with NACT to quantify and visualize
the fluid behaviors of the tumor microenvironment. The
derived fluid dynamics metrics over the course of treat-
ment were compared to outcomes of pathologic response
as potential biomarkers of therapeutic response.

2 METHODS

2.1 DCE-MRI Data Acquisition and
Pre-Processing

To investigate the applicability of urOMT to breast
cancer treatment response, we analyzed a total of 153
longitudinal DCE-MRI data sets from 39 breast cancer
patients treated with NACT. The data were obtained
from a prospective single-center IRB-approved clinical
study.56 Most patients were consented to undergo four
DCE-MRI scans: before NACT (baseline visit 1, denoted
V1), after the first cycle of NACT (V2), at the mid-point
of NACT (V3, usually after three or four NACT cycles)
and after the completion of NACT but before surgery
(V4). For DCE-MRI data acquisition, 28-32 frames of
axial volumetric images with bilateral full breast cover-
age were acquired over a scan time lasting ∼10 minutes.
See Ref. [56] for more details on DCE-MRI acquisition.

Standard of care pathological analysis of tumor spec-
imens from surgery classifies NACT response outcome
as either pathologic complete response (pCR, 8 patients)
or non-pCR (31 patients). Here, a pCR is defined as
the absence of residual tumor. Figure 2 displays the
DCE-MRI images of one pCR patient and one non-pCR
patient across four MRI visits.
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FIGURE 2 Cropped breast DCE-MRI image slice through the center of the tumor from a pCR patient (top row) and a non-pCR
patient (bottom row) across 4 MRI visits, V1, V2, V3 and V4. The contrast-enhanced tumors are clearly visible for both patients at
V1.

For each DCE-MRI study, the tumor contour (i.e.,
the tumor region of interest, ROI) was manually seg-
mented out by fellowship trained dedicated breast radi-
ologists with 1 and 9 years of experience on post-contrast
images using 3D Slicer.57

2.2 The urOMT Model

In this section, we describe the formal mathematical
definition of the urOMT model and the correspond-
ing numerical method developed for applications in 3D
DCE-MRI images.40,42,46

2.2.1 Mathematical Formulation

The urOMT model used in this work can be formulated
as follows. Given an initial mass density distribution
ρ0(x) ≥ 0 and a final one ρ1(x) ≥ 0 defined on a
bounded region Ω ⊆ R3, one seeks to solve the following
optimization problem

min
ρ,v,r

T∫
0

∫
Ω

ρ(t, x)
(
∥v(t, x)∥2

+ αr2(t, x)
)

dx dt

(2a)

subject to ∂ρ

∂t
+∇ · (ρv) = σ∆ρ + ρr, (2b)

ρ(0, x) = ρ0(x), ρ(T, x) = ρ1(x) (2c)

where ρ(t, x) : [0, T ] × Ω → R+ is the time-dependent
mass density function; v(t, x) : [0, T ] × Ω → R3 is a
net time-dependent velocity field which indicates the
direction and magnitude of the advective transport;

and r(t, x) is the time-dependent relative-source vari-
able which controls the relative rate of instantaneous
mass gain and loss (influx and efflux rates in the con-
text of tumor microenvironment). The parameter α > 0
is the weighting parameter of the source term in the cost
function (2a), and the parameter σ > 0 is the isotropic
constant diffusion coefficient which allows the mass to be
passively dispersed along its spatial gradient according
to Fick’s law.

The equation (2b) is an unbalanced version of the
usual advection-diffusion equation in fluid dynamics. In
the language of transport phenomena, equation (2b) can
be rewritten as

∂ρ

∂t
+∇ · (JA + JD) = s (3)

where JA = ρv is the advective flux and JD = −σ∇ρ

is the diffusive flux describing the magnitude and direc-
tion of advective and diffusive transport, respectively;
and s = ρr is the source describing the amount of entry
(when s > 0) or the exit (when s < 0) of the given quan-
tity into or out of the system per unit time. Note that
JA and JD do not change the total amount of mass of
the quantity in the entire process because advection and
diffusion are both subject to the mass conservation law.
Thus, we call ∇ · (JA + JD) the balanced components
of transport. On the contrary, s = ρr does contribute
to the variation of the local and global mass (of the
contrast agent in the tumor) and consequently we refer
to it as the unbalanced component of the transport.
The first term in the cost function (2a) is analogous to
the total kinetic energy of the transport process within
the tumor. In contrast, the second term is denoted the
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Fisher-Rao term and can be said to relate to the infor-
mation geometry.58 The urOMT problem (2) thus solves
for the optimal transport strategy as measured by ρ, v

and r which together transform ρ0 into ρ1 via the trans-
port equation (2b), subject to a minimized cost function
(2a).

In the context of the tumor microenvironment mea-
sured by DCE-MRI, the concentration of the injected
contrast agent, calculated with known longitudinal relax-
ivity from the DCE-MRI signal intensity, is modeled
by the mass density ρ in the urOMT formulation (2).
The velocity field v delineates the advective behavior
(i.e., the net microvascular and lymphatic flow) in the
analyzed region. As noted above, diffusion is character-
ized with a constant coefficient. Advection and diffusion
together account for the cross-voxel exchange of the con-
trast agent. The relative-source r represents the relative
rate of influx when r > 0 and efflux when r < 0. In
summary, the urOMT model incorporates four types of
transport: entry (influx) and exit (efflux) into and out
of the tumor tissue volume, bulk advective flow within
vessels and lymphatics, and localized diffusive flow that
is extravascular and extracellular.

2.2.2 Numerical Method

We first converted the DCE-MRI signal intensity into
the concentration of the injected contrast agent, using
the following equations for spoiled gradient recalled echo
sequence (with minimum TE) and a linear relation-
ship between longitudinal relaxation rate (R1 = 1/T1)
constant and contrast agent concentration under fast
exchange limit approximation:59

Srelative(t) = S(t)
S0

(4a)

B =
1− exp(−T R

T10
)

1− exp(−T R
T10

) cos θ
(4b)

1
T1(t) = 1

TR
log

(1−BSrelative(t) cos θ

1−BSrelative(t)
)

(4c)

C(t) = 1
r1

( 1
T1(t) −

1
T10

)
(4d)

where S(t) is the MRI signal at time t; S0 is the baseline
signal before administration of contrast agent; TR is the
repetition time; T1 (t) is the longitudinal relaxation time
constant at time t; T10 is the pre-contrast longitudinal
relaxation time constant; θ is the flip angle; r1 is the
longitudinal relaxivity of the contrast agent; C(t) is the
concentration of contrast agent at time t.

C(t) is therefore represented by the mass density
ρ(t, x) in the urOMT formulation (2). In order to

deal with noise in the images, we first apply an edge-
preserving filter to moderately smooth out image noise.
In addition, in the numerical implementation, we solve
the problem (2) with a free end point condition. Specifi-
cally, rather than a fixed end point condition in equations
(2c) that ρ(T, x) = ρ1(x), we move this condition to
the cost function to be minimized. The purpose is to
avoid forcing the algorithm to match the noisy end-
point exactly. Instead, this approach matches the end
point image approximately. Consequently, the numerical
formulation can be written as follows.

With two given 3D images, ρimg
0 (x) and ρimg

1 (x), one
solves

min
v,r

T∫
0

∫
Ω

ρ(t, x)
(
∥v(t, x)∥2

+ αr2(t, x)
)

dx dt

+ β

∫
Ω

(ρ(T, x)− ρimg
1 (x))2 dx

(5a)

subject to ∂ρ

∂t
+∇ · (ρv) = σ∆ρ + ρr, (5b)

ρ(0, x) = ρimg
0 (x) (5c)

where β > 0 is the weighting parameter for the fitting
term in the cost function.

Here we briefly outline the numerical solution scheme
used. One can find more details in Ref. [46]. Note that a
bold font is used to denote discretized flattened vectors.
For the numerical discretization, the cubic region Ω is
divided into a cell-centered grid of size n1×n2×n3 with
uniform length ∆x, ∆y and ∆z, and then n = n1n2n3
is the total number of voxels. The time interval [0, T ] is
discretized into m equal intervals of length ∆t = T/m.
We set ti = i ·∆t for i = 0, · · · , m. Set ρρρ = [ρ1ρ1ρ1; · · · ;ρmρmρm],
ρ0ρ0ρ0 = ρimg

0ρimg
0ρimg
0 , vvv = [v0v0v0; · · · ;vm−1vm−1vm−1], rrr = [r0r0r0; · · · ;rm−1rm−1rm−1] where

each ρiρiρi denotes the intensity at t = ti and each pair of
vivivi and ririri denotes the velocity field and relative-source
transforming ρiρiρi to ρi+1ρi+1ρi+1.

The discrete version of the problem (5) is therefore

min
vvv,rrr

(∆t∆x∆y∆z)ρρρT (Im ⊗ [In, In, In])(vvv ⊙ vvv)
+ α(∆t∆x∆y∆z)ρρρT (rrr ⊙ rrr)
+ β(∆x∆y∆z)∥ρmρmρm − ρimg

1ρimg
1ρimg
1 ∥2

(6a)
subject to ρi+1ρi+1ρi+1 = L−1S(vivivi)R(ririri)ρiρiρi, for i = 0, · · · , m− 1,

(6b)
ρ0ρ0ρ0 = ρimg

0ρimg
0ρimg
0 . (6c)

In equation (6a), ⊗ is the Kronecker tensor product;
⊙ is the Hadamard product; Ik is the k-dimensional iden-
tity matrix; ∥·∥ is the L2 norm of a vector. Equation (6b)
numerically solves the unbalanced advection-diffusion
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Algorithm 1 Pseudocode for urOMT algorithm

Load in input data: ρimg
0 , ρimg

1 and other parameters;
[v; r]← 0 as initial guess;
for i = 1, ..., max iteration do

Get ρ from equation (6b) with v and r;
Compute gradient g and Hessian matrix H of the

cost function (6a);
Solve Hx = −g for x;
if line search fails then

Return v and r;
else

[v, r]← [v, r] + lx where l is the line length;
end if

end for
Return v and r;

equation (5b) where an operator-splitting method is
employed. Here, S(vivivi) is the averaging matrix in the
advection step to redistribute mass according to vivivi; L is
the matrix for the diffusion operator; and R(ririri) is the
matrix for the mass gain and loss step.

To numerically solve the discrete problem (6), we
use a Gauss-Newton iterative algorithm. See the pseu-
docode in Algorithm 1. We run Algorithm 1 repeatedly
between each pair of adjacent acquired DCE-MRI images
to derive a series of prolonged velocity fields and relative-
sources. Specifically, for each DCE-MRI study consisting
of q images ρimg

0 , · · · , ρimg
q−1, the urOMT algorithm gives

the optimal velocity fields v0,1, · · · , vq−2,q−1 and relative-
sources r0,1, · · · , rq−2,q−1, where vi−1,i denotes the veloc-
ity and ri−1,i denotes the relative-source transforming
ρimg

i−1 into ρimg
i for i = 0, · · · , q − 2.

2.3 The Eulerian and Lagrangian
Post-processing

With the model outputs, we then develop two post-
processing methods, the Eulerian and the Lagrangian
post-processing, to reveal and visualize the properties of
the fluid behaviors in tumors. The difference between the
two methods lies in the coordinate an observer chooses
to observe the dynamic system.

The Eulerian method employs a fixed coordinate with
which we can extract quantitative metrics as defined
in Table 1 to reflect the local fluid properties. For
example, Péclet is a dimensionless number to reflect the
relative intensity of advection over diffusion. These met-
rics can be computed between each pair of adjacent
image frames, and by connecting them together we have
the corresponding time-varying metrics over all q − 1
iterations.

In contrast, the Lagrangian method employs a float-
ing coordinate which enables us to track the trajectories
of the cross-voxel flows contributed by net advection and
diffusion from a seed point over time, which we name
as the pathlines. Transport properties such as speed can
also be computed along the pathlines to derive what we
call the speedlines. By connecting the starting and ter-
minal points of the pathlines, we derive the displacement
field and these vectors may be used to visualize the direc-
tion and the distance a seed point has travelled in a
neat manner. The metrics extracted from the Lagrangian
post-processing method are summerized in Table 2 .

More details can be found in Ref. [41, 46] about the
post-processing methods.

2.4 Implementation Pipeline

Here we describe implementation of the entire analysis
process in this study.

For each DCE-MRI study, we first manually seg-
mented the tumor region and dilated the tumor region by
2 voxels (about 2 mm× 2 mm× 2.8 mm) to include some
surrounding tissues as the region of interest (Figure 3 a).
Instead of processing all MRI images in the DCE-MRI
experiment, we started at the 5th image frame (approxi-
mately 30 s after contrast injection) and proceeded to the
end of DCE-MRI acquisition skipping every other image
frames, i.e., 5th → 7th → · · · , resulting in 12∼14 tem-
poral 3D images to be analyzed. Starting with the 5th
image provides a clear and stable signal. We then con-
verted MRI signal intensity image within the ROI into
contrast concentration image following equations (4a) -
(4d) (Figure 3 b). Next, a 3D affine denoising filter60

which preserves edges was used to smooth the concentra-
tion images within the ROI (Figure 3 c). The resulted
smoothed series of volumetric data was processed by
the urOMT algorithm61 with σ = 0.002 (in numerical
grid), β = 1000 and α = 30000 to obtain model outputs
(Figure 3 d). Two post-processing methods were utilized
to (i) generate temporal quantitative metrics detailed in
Table 1 and (ii) track the trajectories of the cross-voxel
contrast agent movement over the analyzed time window
whose metrics are detailed in Table 2 (Figure 3 e).

2.5 Statistical Analysis

In the Eulerian post-processing, we used two-sample
t-test assuming unequal variances to evaluate the differ-
ence between pCR and non-pCR patients.
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TABLE 1 Quantitative metrics extracted from the Eulerian post-processing method.

Name Math Expression Unit Interpretation

speed ∥v∥ mm/min norm of the velocity field

flux ∥ρv∥ mm·mmol/(L · min)a

amount of mass (contrast agent) flowing per
unit time, through a unit area; strength of
advection

Péclet ∥v∥
σ∥∇ log(ρ)∥ N/A

transport rate of advection/diffusion; the
higher, the more advection-dominated; the
lower, the more diffusion-dominated

influx ρr where r > 0 mmol/(L · min)
amount of mass (contrast agent) entering
from the blood vessels to tissue per unit
time; strength of influx

efflux ρr where r < 0 mmol/(L · min)
amount of mass (contrast agent) exiting
from the tissue to the lymphatic and blood
vessels per unit time; strength of efflux

amm is short for millimeter, mmol is short for millimole, and L stands for liter.

TABLE 2 Metrics from tracking cross-voxel transport using the Lagrangian post-processing method.

Metric Name Interpretation

pathlines binary trajectories/pathways of contrast agents
speed-lines pathlines endowed with speed ∥v∥

displacement field
movement of cross-voxel transport over time;
connecting the start and end points of pathlines

3 RESULTS

3.1 urOMT Generates Dynamic
Transport Metrics and Shows the
Directional Trend of Fluid Flows

For illustration, we show detailed results for one repre-
sentative non-pCR breast cancer patient at the baseline
(V1) in Figure 4 . The dynamic metrics illustrate the
changes of the tumor fluid properties over the analyzed
time window which lasted about 7 minutes (Figure 4 b).
The times shown in Figure 4 b indicate the approximate
number of seconds from the start of DCE-MRI acquisi-
tion. For this particular study, contrast agent injection
at 2 mL/s was initiated approximately 80 s after the
start of DCE-MRI acquisition. Speed was very high in
the first two to three DCE frames that were analyzed
by the urOMT algorithm, which was rapidly decreased
in the later frames. For the flux and Péclet metrics, it
is clear that the flows in the tumor were stronger and

more advection-dominated near the ring-shaped bound-
ary than the central region of the tumor. Influx was
intense at first (colored dark red), indicating that the
contrast agent was actively entering the tumor tissue. In
later frames, efflux increases (colored light blue), indicat-
ing a slow drainage of the contrast agent from the tumor
tissue to the lymphatics and venous blood flow. The
Lagrangian results display cross-voxel trajectories of the
contrast agent. In Figure 4 c-d, the pathlines and its cor-
responding displacement field indicate that the contrast
agent flow primarily began as influx in a ring-shaped
bordered region and mostly moved inwards to the center
of the tumor. From the speed-lines, we can observe that
speed of the flow was higher in the boundary than in
the center of the tumor (Figure 4 e). From these results,
we infer that in this case the tumor boundary was much
more well-vascularized and that the center of the tumor
was more diffusion-dominated and less active, indicating
poor microvascularization or necrosis.

In Figure 5 , the Lagrangian results of another
non-pCR patient at baseline (V1) are shown. In some
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FIGURE 3 The urOMT analysis pipeline. The green represents pre-processing; blue represents the main algorithm; yellow
represents post-processing. a. DCE-MRI images were first segmented by radiologists to derive the tumor contour which was further
dilated by about 2 mm as the region of interest (ROI). b. DCE-MRI signal images within the ROI were converted into concentration
C(t) images of contrast agent. c. The images within the ROI were further smoothed with a denoising filter to remove image noise. d.
Pre-processed concentration images were then used as inputs for the urOMT model. e. Model outputs were post-processed to extract
the temporal metrics listed in Table 1 and to track the trajectories of cross-voxel transport whose metrics are listed in Table 2 .

locations the fluid flow converged and at other locations
diverged. Moreover, the speed was also unevenly dis-
tributed inside of the tumor. It seems likely that the
tumor vasculature was robust in some regions (the yellow
solid boxes) but mostly inactive in others (white dashed
boxes) (Figure 5 b). A 3D-rendering video of the results
can be found at Github.

3.2 urOMT-derived metrics as
potential biomarkers of therapeutic
response

Next, we computed the temporal average of flux, influx
and efflux for all MRI visits. We observed that for the
pCR patients the average flux, influx and efflux were all
decreased compared to the baseline (V1), presumably
due to the impact of NACT on the microvasculature.
In contrast, the non-pCR patients seemed to be more
likely to experience an increase in some metrics during
NACT (at V2, V3 and V4). Figure 6 shows longitudi-
nal changes of the time-averaged metrics for one pCR
and one non-pCR patient. For the pCR patient, in addi-
tion to the shrinkage of the tumor, all the metric values
decreased at the three visits (V2, V3 and V4) after
NACT initiation compared to baseline (V1). However,
for the non-pCR patient, there was a substantial eleva-
tion of flux and efflux at V3 and V4, although at V2

the metrics were slightly decreased compared to baseline.
This suggests possible tumor resistance to NACT after
a moderate initial response to the first NACT cycle.

For all 39 patients, we calculated the temporal and
spatial averages of flux, influx and efflux for all 153 DCE-
MRI scans and computed their percentage change from
baseline (V1). To be specific, for V1 → Vi, percentage
change from baseline of a metric M is

(Mi −M1)/M1 (7)

where Mi is the metric at Vi. In this dataset, there are
3 patients whose V3 data are missing. These patients’
data were still included in the analysis for complete-
ness, and we used the interpolated metric values at V2
and V4 as their estimated V3 metric values. There is
one patient whose V3 and V4 were identified by radiol-
ogists as complete imaging response, thus no ROI was
provided, for which we set their metrics to zero at V3
and V4. In Figure 7 , we longitudinally plotted the per-
centage changes from baseline of average flux, influx,
and efflux for all 39 patients. Note that flux at V3 was
decreased to larger extent for pCR (-47.26%) than for
non-pCR patients (2.28%, p = 0.0042). Flux was also
lower at V4 in pCR (-51.70%) vs. non-pCR patients
(-8.59%, p = 0.0111). Influx was reduced at V4 in pCR (-
56.32%) than in non-pCR (-21.56%, p = 0.0473). Lastly,
efflux was decreased more at V4 in pCR (-79.07%) than
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FIGURE 4 Results from a representative non-pCR patient at baseline (V1). a. 3D rendered post-contrast MRI image with the
ROI of the tumor region color-coded in orange. b. Input contrast concentration images in the tumor ROI (first row) and dynamic
results of quantitative metrics from the Eulerian post-processing (bottom four rows). The times shown in the first row are
approximate number of seconds after the start of DCE-MRI acquisition. The images are shown at the same centered slice in 2D.
c-e. Tracked cross-voxel flows over the analyzed time window from Lagrangian post-processing. The results are overlaid on a
gray-scale concentration image and are shown in projection from the middle 5 slices of the tumor.

in non-pCR (-2.58%, p = 0.0189). Table 3 summarizes
the the longitudinal percent change of the metrics values.

These observations suggested that although NACT
reduced microvascular fluid transport in the breast
tumors, the timing and extent of the effect were dif-
ferent between the pCRs and non-pCRs. If we simply
identify patients whose average flux, influx and efflux
were all decreased from V1 to all three follow-up visits
as urOMT-response-positive and pCR as pathology test-
positive, we have the following confusion matrix com-
paring predictions by urOMT with pathologic response
outcomes:

Pathology Test
Pos. Neg. Total

Prediction Pos. 6 7 13
Neg. 2 24 26
Total 8 31 39

By this definition, the accuracy of this simple
response classifier was 77%. And the corresponding
sensitivity and specificity are 75% and 77%, respectively.

4 DISCUSSION

Commonly used quantitative DCE-MRI data analysis
approaches, for example, the Tofts-type methods25,26

only allow for contrast influx and efflux, measured by
biomarkers Ktrans and kep to reflect volume transfer rate
constants of the contrast agent for the passive transport
mechanisms from the local arterial supply to tissue inter-
stitial space and back into the draining venous vessels,
respectively. However, their lack of considering cross-
voxel flows characterized by advection and diffusion
may lead to bias of the modeled results. For instance,
Fluckiger et al. studied the effects of contrast molecule
diffusion on the analysis of DCE-MRI data in realistic
tissue domains and suggested incorporating a correc-
tion for the slow diffusion of the contrast agent.62 In a
recent study, Sinno et al. developed a modified Tofts-
based approach for DCE-MRI analysis that explicitly
models cross-voxel flows and demonstrated that ETM
underestimates the effects of cross-voxel exchange.63

In contrast, in addition to quantifying temporally
and spatially resolved influx and efflux, the urOMT
model can capture net directional bulk flows within
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FIGURE 5 Heterogeneity of fluid flows can be visualized by the Lagrangian post-processing method. a. 3D rendered
post-contrast MRI image of the tumor from a non-pCR patient at baseline (V1) with the ROI region color-coded in orange. b.
Corresponding 3D rendered Lagrangian results (pathlines, displacement field and speed-lines) when the tumor is cross-sectioned by
the central sagittal plane (top row) and the central axial plane (bottom row). The yellow solid boxes are where the tumor flow was
the most active and the white dashed boxes are where the tumor flow was the most inactive.

TABLE 3 Percent change from baseline of urOMT-derived metrics across all 39 patients at V2, V3 and V3.

pCR (N = 8) non-pCR (N = 31)

Metrics Visit mean STD mean STD p-value

flux
V1 → V2 -0.2140 0.1762 0.0243 0.5624 0.0523
V1 → V3 -0.4726 0.3049 0.0228 0.6341 0.0042∗∗

V1 → V4 -0.5170 0.3251 -0.0859 0.5680 0.0111∗

influx
V1 → V2 -0.1842 0.3395 0.0822 0.7144 0.1422
V1 → V3 -0.4585 0.3437 -0.1452 0.5736 0.0645
V1 → V4 -0.5632 0.3433 -0.2156 0.6200 0.0473∗

efflux
V1 → V2 -0.2648 0.7539 0.5034 1.8672 0.0832
V1 → V3 -0.6038 0.5328 -0.1086 1.0626 0.0777
V1 → V4 -0.7907 0.3666 -0.0258 1.5778 0.0189∗

∗ p < 0.05, ∗∗p < 0.005. A two-sample t-test assuming unequal variances was used to assess difference between the pCR and non-pCR group.

the tumor volume. This is achieved via smooth con-
tinuous cross-voxel transport modeled by a combina-
tion of advection and diffusion. urOMT thus incorpo-
rates four transport motions under two categories, i.e.,
tumor blood supply (influx and efflux) and cross-voxel
transport (advection and diffusion), to provide a more

complete blood transport framework. Furthermore, the
urOMT model enforces a continuity in space and time.
Specifically, it can characterize the transport system by
returning time-dependent dynamic metrics rather than
time-independent constant metrics such as Ktrans of
Tofts-type models. This captures the changing behavior
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FIGURE 6 Comparison of temporal averages of quantitative flow metrics of one pCR patient (left) and one non-pCR patient
(right) at four DCE-MRI visits before, during, and after NACT treatment. The first column is the last frame DCE-MRI images,
while the other three columns are color parametric maps of the urOMT-derived metrics overlaid on the MR images.

FIGURE 7 Percentage changes from baseline (V1) of average flux (a), average influx (b) and average efflux (c) for all 39 patients
at V2, V3, and V4. Detailed statistics are listed in Table 3 . A two-sample t-test assuming unequal variances was used to assess
difference between the pCR and non-pCR group. ∗p < 0.05, ∗∗p < 0.005.

of contrast agent flow as it moves from an arterial supply
phase to a venous/lymphatic removal phase. Finally, the
urOMT model can track and visualize net trajectories
of cross-voxel contrast transport over the analyzed time
window, thus quantifying directional information on the
fluid transport. To the best of our knowledge, this is the
first model that traces detailed contrast flow patterns
within a tumor.

In this preliminary study, we applied a mathemat-
ical model in computational fluid dynamics, called the
urOMT model, to analyze longitudinal DCE-MRI data
from breast cancer patients treated with NACT. As
demonstrated by the initial results from 153 DCE-
MRI data sets from 39 breast cancer patients, the
urOMT-derived metrics have the potential to serve as
imaging biomarkers to quantify and predict therapeutic
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responses. The applicability of urOMT is not limited to
breast cancer, and could be applied to a wide variety of
DCE-MRI studies of various cancer types.

The current urOMT model, however, is not without
limitations. In particular, the model currently assumes
that diffusion is constant across the tumor. This is cer-
tainly not strictly true, although in many cases diffusion
may be a minor component of transport. This constraint
could be relaxed in future versions. Besides, establish-
ing the urOMT-derived metrics as robust biomarkers for
cancer therapy response will require larger datasets for
validation.
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sciences et lettres2017.

50. Feydy Jean, Charlier Benjamin, Vialard François-Xavier,
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