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Abstract 

 

Purpose: To develop a clinical decision-making model for implementation of personalized 
organ-at-risk (OAR)-sparing adaptive radiation therapy (ART) that balances the costs and 
clinical benefits of radiation plan adaptations, without limiting the number of re-plannings per 
patient, and derive optimal policies for head and neck cancer (HNC) radiation therapy. 

 

Methods and Materials: By leveraging retrospective CT-on-Rails imaging data from 52 HNC 
patients treated at the University of Texas MD Anderson Cancer Center, a Markov decision 
process (MDP) model was developed to identify the optimal timing for plan adaptations based 
on the difference in normal tissue complication probability (∆NTCP) between the planned and 
delivered dose to OARs. To capture the trade-off between the costs and clinical benefits of plan 
adaptations, the end-treatment ∆NTCPs were converted to Quality Adjusted Life Years (QALYs) 
and, subsequently, to equivalent monetary values, by applying a willingness-to-pay per QALY 
parameter.  

 

Results: The optimal policies were derived for 96 combinations of willingness-to-pay per QALY 
(W) and re-planning cost (RC). The results were validated through a Monte Carlo (MC) 
simulation analysis for two representative scenarios: (1) W = $200,000 and RC = $1,000; (2) W 
= $100,000 and RC = $2,000. In Scenario (1), the MDP model’s policy was able to reduce the 
probability of excessive toxicity, characterized by ∆NTCP ≥ 5%, to zero (down from 0.21 when 
no re-planning was done) at an average cost of $380 per patient. Under Scenario (2), it reduced 
the probability of excessive toxicity to 0.02 at an average cost of $520 per patient.  

 

Conclusions: The MDP model’s policies can significantly improve the treatment toxicity 
outcomes compared to the current fixed-time (one-size-fits-all) approaches, at a fraction of their 
costs per patient. This work lays the groundwork for developing an evidence-based and 
resource-aware workflow for the widespread implementation of ART under limited resources.  

 

 

Keywords: Personalized adaptive radiation therapy; organ-at-risk sparing; optimal resource 
allocation; cost-effective policies; Markov decision processes.  
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Introduction 

 

Radiation therapy for head and neck cancer (HNC) has been markedly successful in achieving 
locoregional tumor control over the past decades, mainly due to the predominance of human 
papillomavirus associated (HPV+) tumors.1 However, a range of acute and chronic toxicities 
resulting from radiation injuries to non-targeted organs-at-risk (OARs) are still common 
sequelae in current standard HNC radiation therapy.2-9 The risk of normal tissue injury increases 
with anatomical changes during treatment, such as tumor shrinkage and OAR deformation, 
which can lead to discrepancies between the planned and actual doses received by the 
OARs.10-12 The principle of adaptive radiation therapy (ART) is to account for these anatomical 
changes by enabling on-treatment adaptations to the radiation plan (i.e., re-planning).13-16 

 

Adapting the radiation plan at each treatment fraction is an ideal form of implementing ART. 
However, daily re-planning is impractical with current technology because of the finite 
availability of crucial resources, such as human experts, required for tasks like segmentation 
and quality assurance. Recent research has aimed to enable a more automated process, for 
example, by using artificial intelligence (AI)-based algorithms for auto-segmentation.17-23 These 
methods, however, are still developing, and their integration into the clinical workflows is 
emerging.24-28 As a result, the implementation of ART in current practice remains limited to a few 
treatment fractions. Current institutional guidelines for ART in the US adopt a one-size-fits-all 
approach and recommend re-planning at fixed intervals, typically once mid-treatment, which 
fails to consider the uncertain trajectory of toxicities that individual patients may experience.29,30 
Thus, determining the optimal timing for personalized plan adaptations remains an urgent yet 
unmet need in HNC radiation therapy to improve care for cancer patients. 

 

This work builds on the previous findings of our research group regarding optimal 
implementation of OAR-sparing ART under limited resources, as reported by Heukelom et al.29 
and Nosrat et al.30 Heukelom et al.29 investigated the optimal timing for ART with a single re-
planning allowance, utilizing daily on-treatment CT imaging with a CT-on-rails device. They 
introduced the difference in normal tissue complication probability (NTCP) between the planned 
and delivered dose to OARs as an objective selection strategy for ART. Their findings showed 
that NTCP calculations based on dose differences (∆NTCP) at fraction 10 were superior to 
clinical judgment for personalized implementation of ART. Nosrat et al.30 investigated the 
optimal timing for re-planning based on ∆NTCP when multiple adaptations were possible, 
through a Markov Decision Process (MDP) model. They reported a personalized policy for 
implementing (OAR-sparing) ART in HNC radiation therapy, with each patient allowed a fixed 
number of re-plannings.  

 

A critical consideration for successful implementation of ART in practice is its financial 
feasibility. Nosrat et al.30 pioneered applying MDP for personalized ART and successfully 
identified an optimal re-planning policy for HNC radiation therapy. However, their model 
assumes the availability of resources for a fixed number of adaptations for every patient. This 
assumption carries significant financial implications, which may limit the widespread applicability 
of such policies in clinical settings. Prior research has demonstrated that, while ART can 
prevent clinically significant toxicities for individual patients, the majority of HNC patients will not 
require plan adaptations.29 Reserving capacity for even a relatively small number of adaptations 
for each patient could impose a prohibitive financial burden on the healthcare system and create 
a barrier to the clinical implementation of personalized policies. To address this shortcoming, 
this paper presents an MDP model for ART decision-making that incorporates financial 
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considerations and seeks an optimal policy that balances the cost and benefits of ART without 
restricting the number of re-plannings per patient. MDP is a mathematically rigorous framework 
for decision-making under uncertainty and determining optimal actions in stochastically evolving 
systems; it has been successfully applied to find optimal timing for various medical 
interventions.31-39 However, its application for decision-making in radiation oncology has largely 
remained unexplored.40  

 

This study serves three specific aims: (1) Develop a clinical decision-making framework for 
implementing OAR-sparing ART that integrates financial considerations. (2) Determine optimal 
timing for cost-effective plan adaptations in HNC patients by analyzing data from the University 
of Texas MD Anderson Cancer Center. (3) Lay the foundation for future research to extend 
these methodologies to dynamic scenarios, such as online adaptive workflows, with the aim of 
enabling real-time clinical decision-making. 

 

Methods and Materials 

 

Data 

 

This study presents a secondary cost-effectiveness analysis, conducted as per the International 
Society for Pharmacoeconomics and Outcomes Research (ISPOR) Consolidated Health 
Economic Evaluation Reporting Standards (CHEERS)41. The CHEERS 2022 checklist is 
provided in Appendix A (Supplementary Materials). We performed in silico analysis of a 
previously reported dataset published by Heukelom et al.29 and leveraging a recent Markov 
Decision Process (MDP) elucidation by Nosrat et al.30 which includes data from 52 HNC 
patients treated with daily CT-on-Rails Image-Guided Radiation Therapy (IGRT) at the 
University of Texas MD Anderson Cancer Center between 2007 and 2013. Patients were 
treated with daily kilovoltage CT imaging, and daily CT-image-based replanning was generated 
to assess “virtual daily replanning” across all-delivered fractions, assuming a “fixed GTV/CTV1” 
approach (i.e., normal-tissue and weight loss were accounted for, but GTV and high-dose CTV 
volumes were neither altered nor dose-reduced). This secondary analysis was conducted under 
institutional review board approval MDA RCR03-0800. These patients received radiation 
therapy (9-beam step-and-shoot IMRT), either alone or in combination with chemotherapy or 
cetuximab. The primary cancer sites included oropharynx, nasopharynx, sinonasal region, oral 
cavity, and larynx. In this cohort, 69% of the patients were male, and 31% were female. The 
patient characteristics are provided in Appendix B (Supplementary Materials).  

 

To develop a novel MDP model for cost-effective ART implementation, we utilized the published 
analysis results of Heukelom et al.29 and Nosrat et al.30 on this dataset. Specifically, we 
leveraged the ∆NTCP calculations of Heukelom et al.29 along with the probabilistic estimates of 
∆NTCP trajectories from Nosrat et al.30 For each patient in this cohort, Heukelom et al.29 
analyzed the deviation of the delivered (accumulated) dose from the planned dose on a daily 
basis for multiple OARs and, accordingly, calculated ∆NTCP for xerostomia, dysphagia, parotid 
gland dysfunction, and tube feeding dependency at 6 months post-treatment. Building on these 
results, Nosrat et al.30 developed an MDP model, capturing the patient’s state of toxicity by 
∆NTCP, and calculated the associated transition probabilities. In a similar manner, we consider 
∆NTCP as our decision-making criterion and use the transition probabilities reported by Nosrat 
et al.30 to develop an MDP model that balances clinical benefits with the cost of plan 
adaptations. The ∆NTCP values and associated transition probabilities from this dataset are 
presented in Appendix C (Supplementary Materials). 
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Decision Model 

 
The MDP model captures the state of toxicity through ∆NTCP. Before treatment begins, the 
system is at ∆NTCP = 0%, indicating that the expected post-treatment toxicities align with the 
treatment plan. Throughout the treatment, the patient’s ∆NTCP follows a stochastic trajectory 
due to uncertain anatomical changes. This uncertainty is captured by transition probabilities, 
which quantify the likelihood of changes in ∆NTCP from one epoch (e.g., treatment fraction) to 
the next. At each epoch, the clinician observes the system’s state (i.e., ∆NTCP) and may 
choose between two actions: (1) re-plan, or (2) continue with the current plan. Re-planning, 
which incurs a monetary cost, modifies the probabilistic transition towards more favorable 
outcomes/states. At the end of the treatment, the process culminates in a terminal reward, 
determined by the system’s final state (i.e., the patient's end-treatment ∆NTCP).  
 
To capture the trade-off between the cost and clinical benefits of plan adaptations, the terminal 
reward in our model is defined as the monetary equivalent of the clinical benefits. This is 
achieved by converting end-treatment ∆NTCPs to Quality Adjusted Life Years (QALYs) and 
then applying a willingness-to-pay per QALY parameter to determine the monetary equivalent of 
the QALY gains. An optimal solution to this MDP determines the best action (to re-plan or not) 
at each decision epoch based on the patient’s toxicity state (∆NTCP). Such an optimal policy 
(i.e., the set of optimal actions) will depend on the re-planning cost and clinical benefits.  
 
Components of the MDP model, developed using the dataset described previously, are as 
follows: 
 
Decision epochs: Given a typical treatment period of 33-35 fractions for HNC, decision epochs 
were set at fractions 10, 15, 20, and 25 (weekly). Fraction 5 was excluded based on earlier 
research showing that anatomical changes are unlikely to occur early during treatment.29 
Similarly, fraction 30 was omitted due to its proximity to the treatment’s conclusion, where 
adjustments would have minimal effect on the overall dose delivered to OARs. This choice of 
decision epochs follows the MDP model of Nosrat et al.30 
 
States: At each decision epoch, the state of the system was represented by ∆NTCP, ranging 
from 0% to 12%, based on the findings of Heukelom et al.29 The results of Heukelom et al.29 and 
the transition probability calculations of Nosrat et al.30 are based on the number of patients 
exhibiting a certain ∆NTCP for any of the considered toxicities (i.e., xerostomia, dysphagia, 
parotid gland dysfunction, and tube feeding dependency). Consequently, the definition of the 
states in our model adopts a holistic approach, aiming to protect against all these toxicities.  
 
Actions: At each state, two possible actions were included: (1) re-planning, or (2) continuing 
with the current plan (no re-planning).  
 
Transition probabilities: The stochastic transition of the system’s state (i.e., ∆NTCP) from one 
decision epoch to the next is governed by transition probabilities, as a function of the action 
taken. We leveraged the transition probabilities calculated by Nosrat et al.30 in our model. 
 
Immediate rewards: In the MDP setting, each action at each state may yield an immediate 
reward. We note that “reward” is standard terminology in the MDP literature. In our application, 
the immediate reward is the cost of re-planning (only associated with the action “re-planning”), 
which is represented as a negative number. The cost of re-planning may vary across 
institutions. To ensure a comprehensive analysis, we considered various costs in our model, 
ranging from $500 to $2000 (in $100 increments) per re-planning, based on recently reported 
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re-planning costs in the literature.42,43 
 
Terminal rewards: The terminal reward of the process was calculated based on the terminal 
state (i.e., end-treatment ∆NTCP), as follows: 
 

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑 =  𝑇 × 𝑆 × ∆𝑁𝑇𝐶𝑃 × (1 − 𝑄) × 𝑊 

where 𝑇 denotes the number of years (post-treatment) that the patient’s quality of life is 

considered, 𝑆 is the patient’s 𝑇-year survival probability, 𝑄 represents a quality-of-life factor 
used to transform end-treatment ∆NTCP into changes in QALY, which is determined by the type 
and severity of toxicities, and 𝑊 denotes the willingness-to-pay per QALY (in $). Details of the 
derivation of this formula are presented in Appendix D (Supplementary Materials). In our 
analysis, we used 𝑇 = 5 years and 𝑆 = 0.685, as the 5-year overall survival rate of HNC 

patients.44 The literature reports a range of values for 𝑄 concerning different radiation toxicities 
in HNC patients;45 see Appendix E (Supplementary Materials). Following our holistic 
approach for protecting against the toxicities considered by Heukelom et al.29, we used 𝑄 = 0.80 
in our analysis. The literature reports various values for willingness-to-pay per QALY as well.40,46 
To ensure a comprehensive analysis, we used a range of values for 𝑊, including $50,000, 
$75,000, $100,000, $150,000, $200,000, and $250,000.  
 
Like immediate rewards, terminal rewards in our application have negative values because 
∆NTCP represents the extent to which the actual NTCP is worse than the planned NTCP. The 
objective of MDP is to find a policy that maximizes the sum of immediate and terminal rewards. 
Since the rewards are negative in our application, this can be viewed as minimizing the patient’s 
total loss, that is the combination of the monetary equivalent of the patient’s loss in the quality of 
life and the money spent on re-planning.  
 
The MDP model was implemented in Python and solved using the mdptoolbox library.47 The 
code and related results are publicly available in the online repository of this project. 
 

Results 
 
An optimal policy was calculated for each pair of willingness-to-pay per QALY (W) and re-
planning cost (RC). Therefore, a total of 6 x 16 = 96 optimal policies were obtained. For each 
W-RC pair, the optimal policy indicates the optimal action (0 for “no re-planning” and 1 for “re-
planning”) for each ∆NTCP state at each decision epoch. Table 1 demonstrates the optimal 
policy for W = $200,000 and RC = $1,000, as an example. Since the presentation of the optimal 
policies (for all 96 cases) is extensive and clinically less informative, we present them based on 
the concept of re-planning ∆NTCP threshold, as follows. The optimal policies in their extensive 
form are available in the project’s online repository.  
 

Table 1: Optimal policy for W = $200,000 and RC = $1,000. An entry 1 in the optimal policy indicates that the 
optimal action (at the corresponding treatment fraction and ∆NTCP) is “re-planning” and an entry 0 indicates the 
optimal action is “no re-planning.” 

 

 ∆NTCP 

Decision Epoch 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 

Fraction 10 0 0 0 1 1 1 1 1 1 1 1 1 1 

Fraction 15 0 0 0 0 1 1 1 1 1 1 1 1 1 

Fraction 20 0 0 0 1 1 1 1 0 1 1 1 1 1 

Fraction 25 0 0 0 0 1 1 0 1 1 1 1 1 1 
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To obtain clinically interpretable policies, for each optimal policy obtained from the MDP model, 
we considered the smallest ∆NTCP value that justified re-planning as the re-planning threshold. 
This converts an optimal policy to a threshold policy that recommends re-planning only if 
∆NTCP is greater than or equal to the threshold. For example, ∆NTCP = (3%, 4%, 3%, 4%$) at 
the treatment fractions 10, 15, 20, and 25, respectively, are the decision-making thresholds 
associated with the optimal policy presented in Table 1.  
 

 
 

Figure 1. ∆NTCP (%) thresholds for re-planning at each decision epoch. Each subfigure concerns a fixed value 
of willingness-to-pay per QALY (W) and presents ∆NTCP thresholds for various re-planning costs (RC). The 
threshold policy associated with the optimal policy of Table 1 is highlighted with a red box. The threshold of 
∆NTCP = 99% in this figure implies “no re-planning” for any ∆NTCP value. 
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Figure 1 summarizes the threshold policies for all the W-RC pairs considered. Each subfigure 
corresponds to a willingness-to-pay per QALY value, with each row representing a re-planning 
cost. For each W-RC pair, the policy is depicted by four ∆NTCP thresholds for decision-making 
at treatment fractions 10, 15, 20, and 25 (i.e., decision epochs). The threshold policy associated 
with the optimal policy of Table 1 is highlighted with a red box in this figure.  

 

Model Validation 

 

To validate these results, we conducted a Monte Carlo (MC) simulation study to compare the 
clinical and financial outcomes of the MDP model’s threshold policies against two fixed-time 
(one-size-fits-all) policies. MC simulation is an established method for cost-effectiveness 
analysis of medical interventions; it provides probabilistic estimates of the cost and utility of a 
specific policy and enables the comparison of different policies in these terms.40 In our analysis, 
we considered three re-planning policies: (a) the patient receives a single “re-planning” at 
fraction 10, regardless of their toxicity status; (b) the patient receives a single “re-planning” at 
fraction 15, regardless of their toxicity status; (c) the threshold policy of the MDP model, which 
does not limit the number of re-plannings, is followed. Since the threshold policies depend on W 
and RC, we examined two representative scenarios with respect to these parameters: (1) W = 
$200,000 and RC = $1,000; (2) W = $100,000 and RC = $2,000. These scenarios are intended 
to represent different conditions regarding economic prosperity and resource availability. The 
MC analysis involved 10,000 simulation runs for each policy.  

 

 
 

Figure 2. Distribution of the end-treatment ∆NTCP (%) under the following policies: (a) the patient receives a 
single “re-planning” at fraction 10; (b) the patient receives a single “re-planning” at fraction 15; (c) the threshold 
policy of the MDP model for W = $200,000 and RC = $1,000 is followed; (d) no re-planning at all. The number of 
simulation runs was 10,000.  
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Figure 2 illustrates the distribution of end-treatment ∆NTCP for policies (a), (b), and (c) with W = 
$200,000 and RC = $1,000, as well as the case where no re-planning is done for the patient, 
referred to as policy (d). When policy (d) was followed, meaning no re-planning at all, the 
expected end-treatment ∆NTCP (mean) was 2.36% (standard deviation (SD) = 2.97%). 
Following policies (b) and (a)—a single re-planning at fractions 15 and 10, respectively—the 
expected end-treatment ∆NTCP reduced to 1.57% (SD = 1.92%) and 1.20% (SD = 1.48%), 
respectively. The MDP model’s threshold policy, i.e., policy (c), led to the expected end-
treatment ∆NTCP of 0.98% (SD = 0.82%).  

 

As highlighted by Heukelom et al.29 the majority of HNC patients in this cohort did not require re-
planning, which is manifested through the small mean ∆NTCPs, even under policy (d). 
However, some patients in this cohort exhibited considerable discrepancies between the 
planned and actual dose to OARs, resulting in large ∆NTCP values (up to 12%). In this regard, 
we examined the effectiveness of the threshold policy in preventing large ∆NTCPs. Under policy 
(d), i.e., no re-planning, the probability of the patient experiencing ∆NTCP ≥ 5% was 0.21. This 
probability reduced to 0.12 and 0.06 when the policy was to re-plan at fractions 15 and 10, i.e., 
policies (b) and (a), respectively. Under the MDP model’s threshold policy, i.e., policy (c), the 
probability of ∆NTCP ≥ 5% was approximately zero.  

 

Regarding the financial aspect, policies (a) and (b) require re-planning once, regardless of the 
patient’s toxicity status. Therefore, the number of re-planning under these policies is one, 
implying an average cost of $1,000 per patient for this scenario. The outcome of the MC 
analysis under the MDP model’s threshold policy is a distribution over all possible number of re-
plannings, ranging from 0 to 4 (re-planning at all four decision epochs), which is illustrated in 
Figure 3. The expected number of re-plannings (mean) under this policy was 0.38 (SD = 0.68), 
implying an average cost of $380 per patient.  

 

 
 

Figure 3. Distribution of the number of re-plannings under the threshold policy of the MDP model for W = 
$200,000 and RC = $1,000. The number of simulation runs was 10,000.  

 

Since the MDP model’s threshold policies depend on the willingness-to-pay per QALY and re-
planning cost, we repeated the analysis with a different set of values for these parameters; that 
is W = $100,000 and RC = $2,000. This second scenario resembles lower-income communities 
with greater resource constraints compared to the previous scenario. Figure 4 illustrates the 
distribution of end-treatment ∆NTCP along with the distribution of the number of re-plannings 
when the threshold policy of the MDP model with these parameters was followed. The expected 
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end-treatment ∆NTCP under the threshold policy for this scenario was 1.14% (SD = 1.12%). 
The probability of experiencing ∆NTCP ≥ 5% was 0.02. The expected number of re-plannings 
for this scenario was 0.26 (SD = 0.56), implying the average cost of $520 per patient.  

 

 
 

Figure 4. Distribution of the end-treatment ∆NTCP (left) and distribution of the number of re-plannings (right) 
under the threshold policy of the MDP model for W = $100,000 and RC = $2,000. The number of simulation runs 
was 10,000.  

 

The MC simulation results are summarized in Table 2.  

 
Table 2: Summary of the Monte Carlo simulation results. The willingness-to-pay per QALY and re-planning cost 
are denoted by W and RC, respectively. 

 

 Clinical Outcome Financial Outcome 

Policy 
Expected end-

treatment ∆NTCP 
Probability 

∆NTCP ≥ 5% 
Expected number  

of re-plannings 
Average cost  

per patient 

No re-planning 2.36% (SD = 2.97%) 0.21 0.00 $0 

A single re-planning at fraction 15 1.57% (SD = 1.92%) 0.12 1.00 
Scen.1: $1,000 
Scen.2: $2,000 

A single re-planning at fraction 10 1.20% (SD = 1.48%) 0.06 1.00 
Scen.1: $1,000 
Scen.2: $2,000 

MDP threshold policy: Scenario 1 
W = $200,000 and RC = $1,000 

0.98% (SD = 0.82%) 0.00 0.38 $380 

MDP threshold policy; Scenario 2 
W = $100,000 and RC = $2,000 

1.14% (SD = 1.12%) 0.02 0.26 $520 

 

Discussion 

 

The MC simulation analysis results demonstrate that the MDP model’s threshold policies 
outperform the fixed-time policies in both clinical and financial outcomes. As noted by Heukelom 
et al.29 most patients in this cohort did not require re-planning due to minimal anatomical 
changes. Consequently, the expected end-treatment ∆NTCP for all the considered policies falls 
within a narrow range, potentially masking the significance of the benefits of the MDP model’s 
threshold policies compared to the fixed-time policies. The main advantage of the MDP model’s 
threshold policies lies in their ability to prevent excessive toxicities. A subset of patients in this 
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cohort did experience notable anatomical changes and large ∆NTCPs. The analysis indicates 
that a single re-planning at fraction 15 could approximately halve the probability of patients 
experiencing ∆NTCP ≥ 5% (from 0.21 to 0.12). If re-planning occurs earlier at fraction 10, this 
probability drops to less than one third (from 0.21 to 0.06). Following the MDP model’s threshold 
policy for Scenario 2 reduces the probability to under one tenth (from 0.21 to 0.02), while the 
threshold policy for Scenario 1 makes it negligible (from 0.21 to 0.00). The choice of ∆NTCP ≥ 
5% in our analysis is motivated by the threshold of ∆NTCP = 5% set by the Dutch Society for 
Radiation Oncology for assigning patients to proton therapy for grade III complications.29 Finally, 
we note that these results are aligned with the findings of Heukelom et al.29 regarding the 
clinical advantages of re-planning at fraction 10 compared to fraction 15.  

 

The average cost per patient under each policy demonstrates the financial advantage of the 
MDP model’s threshold policies. The MDP model’s policies allocate re-planning resources to 
patients who need them most, without limiting the number of re-plannings per patient, in 
contrast to the fixed-time policies that imply re-planning for every patient. Since many patients 
are expected to experience minimal anatomical changes, the expected number of re-plannings 
per patient under the MDP model’s policy for Scenario 1 was 0.38. Given the re-planning cost of 
$1,000 in this scenario, this translates to the average cost of $380 per patient—almost one third 
of the cost incurred if every patient received one re-planning. For Scenario 2, the expected 
number of re-plannings per patient was 0.26 under the MDP model’s threshold policy, which 
translates to the expected cost of $520 per patient—nearly a quarter of the cost of fixed-time 
policies. This result is of a significant importance for financial stakeholders (e.g., insurers) 
because harnessing the full capacity of ART to improve patient care requires flexible re-planning 
as needed—not limited to one or two instances—and the MDP analysis demonstrates that this 
can be achieved with an average of less than one re-planning per patient. Finally, we note that 
willingness-to-pay per QALY is a measure of the population’s economic prosperity rather than 
an individual patient’s willingness to pay for their treatment.  

 

As noted earlier, the optimal policies of the MDP model were not necessarily threshold policies. 
This complicates their clinical interpretation and makes them less amenable to implementation 
in practice. To address this, we converted the optimal policies into threshold policies by defining 
the threshold as the smallest ∆NTCP that justifies re-planning. It is important to recognize that 
the MDP model’s optimal policies are highly dependent on transition probabilities, which are 
often inferred from limited-size datasets and can be susceptible to noise. This can result in 
counterintuitive recommendations, such as “no re-planning” at fraction 20 for ∆NTCP = 7% in 
the optimal policy shown in Table 1, while the recommendation for ∆NTCP between 3% and 6% 
as well as ∆NTCP greater than or equal to 8% at this fraction are “re-planning.” This 
discrepancy stems from the transition probabilities calculated based on a cohort of only 52 
patients. Thus, the threshold policies not only enhance the clinical interpretability and 
applicability of the policies derived from the MDP analysis but also incorporate clinical intuition 
to mitigate the noise inherent in small datasets.  

 

The presented findings are subject to the limitations inherent to a single-institution retrospective 
in silico analysis. The results are constrained by the inferred transition probabilities based on 
data gathered from 52 patients. While our dataset is among the most curated and well-
accredited datasets relevant to adaptive radiation therapy for HNC, we recognize the 
significance of sample size for MDP calibration and acknowledge the need for external 
validation with larger datasets. These findings are also constrained by the limitations of the 
∆NTCP calculations and the inference of the transition probabilities, elaborated in Heukelom et 
al.29 and Nosrat et al.30 Particularly, the dataset did not include adaptations or daily re-
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optimization in vivo, and the daily dose accumulation was calculated post hoc from high-
resolution imaging data. As a result, there were discrepancies, which were omitted, leading to 
gaps in the resulting NTCPs. As the dataset did not include patients’ records for the entire 
treatment period, transition probabilities for the missing time points were inferred from available 
data in conjunction with clinical judgment. The results are also specific to the toxicities 
considered and the NTCP models used. Novel approaches to NTCP modeling, such as cluster-
based methods8, can potentially lead to improved policies. Finally, the results are subject to 
potential inaccuracies and limitations regarding the values obtained from the literature, 
particularly the parameters used to calculate the monetary equivalent of the clinical gains. Thus, 
these findings should be considered an informative semi-synthetic use case rather than a 
definitive basis for large-scale implementation of ART.  

 

The results presented in this paper utilized CT-on-rails volumetric IGRT data for HNC. However, 
the proposed methodology is applicable to various platforms, notably MR-linacs that offer a 
compelling use case, as well as other cancer sites. The decision epochs in our model 
correspond to weekly re-planning intervals, reflecting our current institutional adaptive 
protocols,1 but the methodology can be scaled to daily treatment decisions. The model is flexible 
for use in both resource-rich and resource-limited facilities and is capable of considering the 
economic and financial standing of the communities they serve. Additionally, the model allows 
for further treatment personalization, such as incorporating stratified survival probabilities (e.g., 
HPV+ vs. HPV- tumors) and considering different timeframes for accounting for patients’ quality 
of life. The presented model focuses on OAR-sparing ART, assuming that the prescribed dose 
to the tumor remains unchanged during treatment. Incorporating dose adaptations for the tumor 
and considering changes in tumor control probability (TCP) during treatment presents a 
promising avenue for future research. Our results employ ∆NTCP as an evidence-based 
measure of treatment toxicity. We recognize that this setting adds a layer of computational 
complexity to clinical decision-making. This motivates future research to leverage the presented 
framework for decision-making based on easily observable treatment outcomes through partially 
observable Markov decision processes (POMDPs).48   

 

Conclusion 

 

This paper presents the first MDP model for implementing patient-specific OAR-sparing ART in 
HNC that balances the costs and benefits of plan adaptations and renders cost-effective 
personalized policies. By analyzing data collected from 52 patients treated at MD Anderson 
Cancer Center with high-quality CT-based replanning, we derived optimal and threshold policies 
for implementing ART for HNC. Through MC simulation analysis, we demonstrated that the 
policies obtained from the MDP analysis can significantly outperform fixed-time (one-size-fits-all) 
policies in terms of both individual toxicity outcomes and the financial burden on the healthcare 
system. It was discussed that the policies derived from the MDP model allocate resources to 
patients that need them most, without limiting the number of re-plannings per patient; they can 
effectively prevent extreme toxicities at an average cost of less than one re-planning per patient. 
In addition to these results, by providing an evidence-based, resource-aware, and scalable 
analytical framework for individualized adaptation, we lay the groundwork for future research 
aimed at developing an online adaptive workflow.  
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Appendix A: CHEERS 2022 Checklist
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Appendix B: Patient Characteristics1

Variable Number of Patients = 52 Percentage

Sex Male 69%
Female 31%

Age 18-65 years 88%
≥ 65 years 12%

T-classification Tis-T1 8%
T2 15%
T3 13%
T4 54%
Recurrence 8%
Unknown 2%
Post-surgery 23%

N-classification N0 27%
N1 19%
N2 38%
N3 2%

Primary site Larynx 2%
Oropharynx 25%
Oral cavity 8%
Hypopharynx 0%
Nasopharynx 29%
Sinonasal 23%

Pathology Adenocarcinoma 2%
Neuroblastoma 6%
Neuroendocrine 8%
Squamous cell carcinoma 50%
Undifferentiated carcinoma 17%
Other 17%

Treatment modality Radiotherapy alone 31%
Induction chemotherapy followed by RT 4%
Induction chemotherapy followed by cCRT 31%
Concurrent chemoradiation 27%
Radiation + Cetuximab 8%

Baseline weight loss No weight loss 38%
Moderate weight loss (1 – 10%) 33%
Severe weight loss (>10%) 6%
Unknown 23%

Baseline xerostomia No xerostomia 4%
Some xerostomia 8%
Unknown 88%

Accelerated RT Yes 6%
Abbreviations: cCRT = concurrent chemoradiation. RT = radiotherapy.
TNM classification according to version 3. Accelerated RT: 2 Gy per fraction, 6 times per week.

1J. Heukelom, M. E. Kantor, A. S. Mohamed, H. Elhalawani, E. Kocak-Uzel, T. Lin, J. Yang, M. Aristophanous,
C. R. Rasch, C. D. Fuller, and J. Sonke. Differences between planned and delivered dose for head and neck cancer, and
their consequences for normal tissue complication probability and treatment adaptation. Radiotherapy and Oncology,
142:100–106, 2020.
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Appendix C: Transition Probabilities2

Action: No re-planning

Table C1: Transition probabilities from fraction 0 (F0) to fraction 10 (F10) under “no re-planning.”

∆NTCP @ F10 → 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
∆NTCP @ F0 ↓

0% 0.50 0.13 0.08 0.11 0.04 0.04 0.00 0.02 0.00 0.00 0.02 0.02 0.04

Table C2: Smoothed transition probabilities from fraction 10 (F10) to fraction 15 (F15) under
“no re-planning.” The same probabilities apply to subsequent transitions, i.e., from F15 to F20,
from F20 to F25, and from F25 to end-treatment, under “no re-planning.”

∆NTCP @ F15 → 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
∆NTCP @ F10 ↓

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
4% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00
5% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.44 0.00 0.00 0.00 0.00 0.00
6% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.00 0.00 0.00 0.00 0.00
7% 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 0.00
8% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00
9% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00
10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.88 0.04 0.00
11% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.88 0.06 0.02
12% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.46 0.48

Action: Re-planning

Table C3: Smoothed transition probabilities from fraction 10 to fraction 15 under “re-planning.”

∆NTCP @ F15 → 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
∆NTCP @ F10 ↓

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
9% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
10% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
11% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00
12% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00

2F. Nosrat, C. Dede, L. B. McCullum, R. Garcia, A. S. Mohamed, J. G. Scott, J. E. Bates, B. A. McDonald, K. A.
Wahid, M. A. Naser, R. He, A. C. Moreno, L. V. van Dijk, K. K. Brock, J. Heukelom, S. Hosseinian, M. Hemmati, A.
J. Schaefer, and C. D. Fuller. Optimal timing of organs-at-risk-sparing adaptive radiation therapy for head-and-neck
cancer under re-planning resource constraints. medRxiv, 2024. DOI: 10.1101/2024.04.01.24305163.
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Table C4: Smoothed transition probabilities from fraction 15 to fraction 20 under “re-planning.”

∆NTCP @ F20 → 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
∆NTCP @ F15 ↓

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
6% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
7% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00
8% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00
9% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.44 0.00 0.00 0.00 0.00 0.00
10% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.44 0.00 0.00 0.00 0.00 0.00
11% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.00 0.00 0.00 0.00 0.00
12% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.00 0.00 0.00 0.00 0.00

Table C5: Smoothed transition probabilities from fraction 20 to fraction 25 under “re-planning.”

∆NTCP @ F25 → 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
∆NTCP @ F20 ↓

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
5% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
6% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00
7% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.44 0.00 0.00 0.00 0.00 0.00
8% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.44 0.00 0.00 0.00 0.00 0.00
9% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.00 0.00 0.00 0.00 0.00
10% 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 0.00
11% 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 0.00
12% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00

Table C6: Smoothed transition probabilities from fraction 25 to end-treatment under “re-planning.”

∆NTCP @ end → 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
∆NTCP @ F25 ↓

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
4% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
5% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00
6% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.44 0.00 0.00 0.00 0.00 0.00
7% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.00 0.00 0.00 0.00 0.00
8% 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 0.00
9% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00
10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00
11% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00
12% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.88 0.04 0.00
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Appendix D: Terminal Rewards

We consider a patient’s quality of life over T years after treatment. Let A denote the event that the
patient’s lifespan exceeds T , and Ac be the complementary event, meaning the patient dies within T

years post-treatment. We denote the patient’s T -year survival probability with S, that is P (A) = S

and P (Ac) = 1−S. In the former event, the patient’s quality of life will be Q < 1 if they experience
a certain radiation toxicity, with the probability NTCP . Otherwise, their quality of life will be 1,
with the probability 1−NTCP . We naturally assume the quality of life of zero in the latter event.
Based on the described chain of conditional probabilities, the patient’s expected quality-adjusted
life years (QALY) over T years, denoted by E

[
QALY

]
, can be calculated as follows:

E
[
QALY

]
= T × S ×

(
(Q×NTCP ) + (1−NTCP )

)
Therefore, the difference in the patient’s QALY resulting from two distinct normal tissue complica-
tion probabilities, denoted by NTCP1 and NTCP2, can be expressed as follows:

∆E
[
QALY

]
= E2

[
QALY

]
− E1

[
QALY

]
= T × S ×

(
(Q×NTCP2) + (1−NTCP2)− (Q×NTCP1)− (1−NTCP1)

)
= T × S ×

(
Q× (NTCP2 −NTCP1)− (NTCP2 −NTCP1)

)
= T × S × (NTCP2 −NTCP1)× (Q− 1)

= T × S × (NTCP1 −NTCP2)× (1−Q)

Define ∆NTCP = NTCP1 −NTCP2, and let W denote a willingness-to-pay per QALY ($) value.
Thus, the corresponding change in the patient’s expected QALY (over T years) can be equivalently
expressed in monetary terms as follows:

∆E
[
$(QALY)

]
= T × S ×∆NTCP × (1−Q)×W,

where $(QALY) denotes the monetary equivalence of the patient’s QALY over T years. Because
Q < 1, observe that NTCP2 > NTCP1 implies ∆E

[
$(QALY)

]
< 0.
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Appendix E: Quality-of-Life Factors3

Endpoint Quality-adjustment factor Reference

Xerostomia 0.827 (range: 0.819 – 0.841) Kohler et al. 2013 (PMID: 24138916)4

(grade ≥2) 0.817 ± 0.19 Ramaekers et al. 2011 (PMID: 21683647)5

Dysphagia 0.85 ± 0.11 Rudmik et al. 2015 (PMID: 26171771)6

(grade ≥2) 0.803 ± 0.14 Ramaekers et al. 2011 (PMID: 21683647)5

3N. P. Brodin, R. Kabarriti, M. Pankuch, C. B. Schechter, V. Gondi, S. Kalnicki, C. Guha, M. K. Garg, and
W. A. Tomé. A quantitative clinical decision–support strategy identifying which patients with oropharyngeal head
and neck cancer may benefit the most from proton radiation therapy. International Journal of Radiation Oncology,
Biology, Physics, 104(3):540–552, 2019.

4R. E. Kohler, N. C. Sheets, S. B. Wheeler, C. Nutting, E. Hall, and B. S. Chera. Two-year and lifetime cost-
effectiveness of intensity modulated radiation therapy versus 3-dimensional conformal radiation therapy for head-
and-neck cancer. International Journal of Radiation Oncology, Biology, Physics, 87(4):683–689, 2013.

5B. L. Ramaekers, M. A. Joore, J. P. Grutters, P. Van Den Ende, J. De Jong, R. Houben, P. Lambin, M.
Christianen, I. Beetz, M. Pijls-Johannesma, et al. The impact of late treatment-toxicity on generic health-related
quality of life in head and neck cancer patients after radiotherapy. Oral oncology, 47(8):768–774, 2011.

6L. Rudmik, W. An, D. Livingstone, W. Matthews, H. Seikaly, R. Scrimger, and D. Marshall. Making a case for
high-volume robotic surgery centers: A cost-effectiveness analysis of transoral robotic surgery. Journal of Surgical
Oncology, 112(2):155–163, 2015.
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