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ABSTRACT 1 

The disproportionate risk for idiopathic proteinuric podocytopathies in Black people is explained, in part, 2 

by the presence of two risk alleles (G1 or G2) in the APOL1 gene. The pathogenic mechanisms responsible 3 

for this genetic association remain incompletely understood. We analyzed glomerular RNASeq 4 

transcriptomes from patients with idiopathic nephrotic syndrome of which 72 had inferred African 5 

ancestry (AA) and 152 did not (noAA). Using gene coexpression networks we found a significant 6 

association between APOL1 risk allele number and the coexpression metamodule 2 (MM2), even after 7 

adjustment for eGFR and proteinuria at biopsy. Unadjusted Kaplan-Meier curves showed that unlike 8 

noAA, AA with the highest tertile of MM2 gene activation scores were less likely to achieve complete 9 

remission (p≤0.014). Characteristic direction (ChDir) identified a signature of 1481 genes, which separated 10 

patients with APOL1 risk alleles from those homozygous for reference APOL1. Only in AA, the tertile with 11 

the highest activation scores of these 1481 genes was less likely to achieve complete remission (p≤0.022) 12 

and showed a trend to faster progression to the composite event of kidney failure or loss of 40% eGFR 13 

(p≤0.099). The MM2 and ChDir genes significantly overlapped and were both enriched for Epithelial 14 

Mesenchymal Transition and inflammation terms. Finally, MM2 significantly overlapped with a parietal 15 

epithelial cell (PEC)-identity gene signature but not with a podocyte identity signature. Podocytes 16 

expressing variant APOL1s may generate inflammatory signals that activate PECs by paracrine 17 

mechanisms contributing to APOL1 nephropathy.  18 

  19 
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INTRODUCTION 20 

Progressive chronic kidney diseases (CKD) are more common among Black people than other populations. 21 

The excess risk for non-diabetic CKD is associated with 2 APOL1 variants (G1 and G2), unique to some 22 

African ancestral populations, under a recessive model of inheritance. The incomplete penetrance of the 23 

APOL1 risk genotypes is consistent with disease modifiers, mostly undefined, but including recently 24 

discovered genetic modifiers [1-3] and high interferon states that drive APOL1 expression [4]. Induced 25 

kidney risk APOL1s, but not reference APOL1 (G0), insert into the plasma membrane and form non-26 

selective cation channels. The resulting sodium and potassium fluxes or the intracellular calcium increase 27 

result in activation of incompletely characterized cytotoxic pathways [5-9]. Animal models to study APOL1 28 

kidney disease mechanisms are limited to transgenesis, since only humans and some non-human primates 29 

carry the APOL1 gene. Mice expressing APOL1 risk variants, but not G0 transgenes, by either podocyte-30 

specific tetracycline inducible expression systems, human APOL1-containing fosmids, or bacterial artificial 31 

chromosomes, develop kidney injury [10-12]. These findings establish a causal link between the 32 

expression of APOL1 risk variants and kidney disease, but do not clearly define the mechanisms underlying 33 

the kidney injury [10-12]. G1, but not G0, kidney organoids, treated with interferon-γ to induce APOL1 34 

expression and exposed to tunicamycin to simulate a stress, demonstrated epithelial dedifferentiation but 35 

remained viable [13]. Most animal and in vitro studies demonstrating cytotoxic mechanisms fail to model 36 

a triggering stress; instead, APOL1 is ectopically expressed which might short-circuit endogenous 37 

regulatory pathways that mitigate APOL1-dependent cytotoxicity. To explore APOL1 pathobiology in 38 

humans, we analyzed the glomerular transcriptomes from the Nephrotic Syndrome Study Network 39 

(NEPTUNE) kidney biopsy cohort, which includes participants with focal segmental glomerulosclerosis 40 

(FSGS), steroid resistant nephrotic syndrome and membranous nephropathy. Since APOL1 risk genotypes 41 

are strongly associated with idiopathic proteinuric podocytopathies, we hypothesized that “individuals 42 

with APOL1 risk-alleles have a glomerular transcriptional signature, which could identify candidate disease 43 

mechanisms”. A previous study of APOL1 using the NEPTUNE glomerular transcriptomes was limited to 44 

30 self-identified or genotype-predicted Black subjects with a histologic diagnosis of FSGS [14]. Clinical 45 

glomerular histology poorly aligns with molecular mechanisms [15]. In addition, APOL1 risk genotypes 46 

associate with steroid-resistant nephrotic syndrome and idiopathic membranous nephropathy [16-19]. 47 

Given this, we included all NEPTUNE subjects with glomerular transcriptomes and APOL1 genotypes 48 

validated by DNA sequencing, regardless of the clinical histopathological diagnosis.  49 

 50 

RESULTS 51 

We used a systems biology approach to study the pathobiology of APOL1 kidney risk variants in a cohort 52 

of patients with nephrotic syndrome. An overview of the methodology is presented in Supplemental 53 

Figure 1.  54 

Clinical characteristics of the cohort (Table 1). NEPTUNE participants with glomerular transcriptomes and 55 

validated APOL1 genotypes (n=224) were included in these analyses; 72 participants had inferred (see 56 

Methods) African Ancestry (AA) and 152 individuals reported other ancestries (noAA). AA participants had 57 

lower eGFRs (76 ± 37 vs 95 ± 43 ml/min/1.73m2; p≤0.001) and were significantly more likely to be 58 

hypertensive at time of biopsy (p≤0.01). Proteinuria in AA was marginally lower compared to noAA 59 

participants (p≤0.054). In AA, kidney biopsy diagnosis was more frequently FSGS and less commonly 60 

minimal change disease (MCD) or membranous nephropathy (MN). The distributions of APOL1 alleles 61 
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stratified by the kidney biopsy nephrotic syndrome diagnosis are shown in Supplemental Table 1. Similar 62 

numbers of AA and noAA participants were treated with immunosuppressants, or drugs that inhibited the 63 

renin angiotensin aldosterone system. 64 

Lower eGFR in AA NEPTUNE participants could reflect social factors that negatively affect health [20]. If 65 

lower eGFR in AA primarily reflects social determinants, we reasoned it would be similar in AA participants 66 

with and without APOL1 risk variants and lower than eGFR in noAA participants. Baseline eGFRs were 67 

stratified by ancestry (AA vs noAA) and eGFRs in AA participants further grouped by 0, 1, and 2 APOL1 risk 68 

alleles (RA) (Supplemental Table 1). Median (IQR) eGFRs between groups were significantly different 69 

(p≤6x10-6) (Figure 1). Post-test, pairwise comparisons showed that the median eGFR ranks in noAA 70 

(n=140) and AA_0RA (n=20) participants were almost identical and significantly higher than mean eGFRs 71 

for both AA_2RA (n=22) and AA_1RA (n=30) participants. Together, these data suggest that in this cohort, 72 

the lower eGFR in AA is associated with APOL1 risk alleles, but not with the social, physical, and 73 

institutional contexts shared by many AA. 74 

Weighted gene co-expression analysis (WGCNA) and module-trait correlations. We used WGCNA to 75 

identify gene coexpression modules correlated with APOL1 genotypes. Ancestry-specific patterns of 76 

genetic architecture and social factors can affect gene expression [21-24] and contribute to transcriptional 77 

heterogeneity [25]. To mitigate transcriptional heterogeneity reflecting ancestry and enrich for gene 78 

expression reflecting biologic pathways driving APOL1 nephropathy, we created a WGCNA network using 79 

only individuals with AA. The resulting network comprises 42 gene coexpression modules clustered 80 

together into 12 higher order structures called metamodules (Supplemental Figure 2). 81 

Next, we used the AA network to determine module-trait correlations in the whole NEPTUNE cohort 82 

(n=224) with the following traits: eGFR, log(1 + UPCR [urinary protein creatinine ratio]) (UPCR_lg), FSGS, 83 

AA, the number of APOL1 risk alleles (APOL1_RA). A summary of the significant correlations is shown in 84 

Figure 2, while the Pearson correlation coefficients and nominal p-values are in Supplemental Figure 3. 85 

UPCR and eGFR are strong predictors of kidney disease progression [26]. In this analysis, eGFR and 86 

UPCR_lg concordantly correlated with multiple modules, indicating that the integrity of the glomerular 87 

filtration barrier is reflected in complex transcriptional regulation within the glomerulus. Interestingly, 88 

three modules, Darkturquoise, Salmon and Midnightblue, were significantly correlated with the number 89 

of APOL1 risk alleles (p-Adj≤8x10-4, p-Adj≤1x10-5 and p-Adj≤2x10-3, respectively) as well as with FSGS. In 90 

addition, the Salmon module also correlated with AA (p-Adj≤0.042), which may suggest ancestry is a 91 

confounder of APOL1 risk allele variants. However, the significant association of the Salmon module with 92 

the number APOL1 risk alleles persisted even when module-trait correlations were conducted solely in AA 93 

participants (p-Adj≤0.029), indicating that the latter is not the case.  94 

In addition to the number of APOL1 risk alleles, the Darkturquoise, Salmon, and Midnightblue modules 95 

showed significant correlations with eGFR and UPCR_lg. In the NEPTUNE cohort, participants carrying 1 96 

or 2 APOL1 risk alleles had significantly lower eGFR compared to those homozygous for the G0 allele 97 

(Figure 1), while AA had marginally lower UPCR at the time of biopsy (Table 1). To account for this, we 98 

repeated the module-trait correlation analysis using eGFR- and UPCR-adjusted transcriptomes. Only the 99 

Darkturquoise and Salmon modules remained associated with the number of APOL1 risk alleles, both with 100 

p-Adj≤0.008 (Figure 2). Darkturquoise and Salmon are the only modules clustered together in MM2 101 

(Supplemental Figure 2); therefore, we focused on analyzing MM2 as a whole in subsequent analyses.  102 
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Clinical outcomes associate with MM2 gene activation scores. To assess the clinical significance of the 103 

MM2 gene set (n=437 genes), we generated a mean z-score from the transcriptional data for each 104 

participant, who were then binned by tertiles of mean gene activation. Clinical outcomes were available 105 

on 191 NEPTUNE participants (60 AA; 131 noAA). An unadjusted Kaplan-Meier analysis using a log rank 106 

test was used to determine significant differences in outcomes in AA and noAA, respectively. AA with the 107 

highest MM2 tertile of gene activation scores had longer times to remission (p = 0.014), and trended to 108 

poorer outcomes, as captured by of the composite endpoint of kidney failure or loss of 40% of eGFR. This 109 

association and trend were not present in the noAA cohort (Figure 3). The most highly significant 110 

Molecular Signatures Database (MSigDB) Hallmark gene sets enrichments in MM2 were Epithelial 111 

Mesenchymal Transition (EMT), Estrogen Response Early and Apical Junction. 112 

In contrast to MM2, the Midnightblue module (n=226 genes) remained correlated with FSGS but was no 113 

longer associated with APOL1 risk allele number after adjustment for UPCR_lg and eGFR in WGCNA 114 

analysis (Figure 2). Both AA and noAA with the highest tertile of Midnightblue gene activation-scores had 115 

significantly longer times to remission (AA, p≤0.008; noAA, p≤0.036), while only in AA the highest tertile 116 

presented a marginally significant faster decline in kidney function (p≤0.059) (Supplemental Figure 4). 117 

These data indicate that the Midnightblue gene module regulates the mechanisms resulting in FSGS 118 

histopathology, although the pathways may be modified by APOL1. The most highly enriched pathways 119 

in the Midnightblue module were TNF-alpha Signaling via NF-kB, EMT and Inflammatory Response 120 

(Supplemental Figure 4). 121 

Characteristic Direction (ChDir) identifies an APOL1-associated gene expression signature. To identify 122 

differentially expressed genes associated with APOL1 risk alleles, we used a linear classifier called ChDir, 123 

which ranks genes by their contribution to the overall differences in expression between two classes [27]. 124 

To mitigate transcriptional heterogeneity reflecting ancestry, we generated a genome-wide ChDir 125 

signature by contrasting AA_2RA to AA_0RA participants. The top 1481 genes in the resulting ranked list 126 

(~10% of the gene space) accounted for 75% of the gene expression differences (Supplemental Table 3). 127 

Next, the significance of the expression differences of the 1481 ChDir signature genes across different 128 

APOL1 genotypes, we conducted permutational multivariate analysis of variance (PERMANOVA). We 129 

showed that AA_2RA and AA_0RA patients could be significantly separated (p≤0.001) using the Euclidean 130 

distance matrix of the 1481 ChDir gene space; and that in this context, the presence of APOL1 risk alleles 131 

accounts for 6.4% of the total variability in gene expression between groups (Figure 4-A). Next, we 132 

repeated the analysis including all NEPTUNE participants stratified by inferred ancestry and number of 133 

APOL1 risk alleles i.e. AA_2RA, AA_1RA, AA_0RA and noAA_0RA. Again, PERMANOVA shown significant 134 

separation of these groups (p≤0.001), with the presence of APOL1 risk alleles accounting for 3.0% of the 135 

total variability (Figure 4-B). Post-test pairwise comparisons showed that the centroid of noAA was 136 

significantly separated from the centroids of AA_1RA (p≤0.006) and AA_2RA (p≤0.006). Similarly, the 137 

centroid from AA_0RA was significantly separated from those of AA_1RA (p≤0.024) and AA_2RA 138 

(p≤0.006). Importantly, the centroids of AA_0RA and noAA_0RA did not segregated (p≤0.25), nor did those 139 

from AA_1RA and AA_2RA (p≤0.46). As a negative control, we repeated the analysis using the lower 13151 140 

ChDir signature genes. Within this gene space, PERMANOVA failed to significantly separate groups 141 

(Supplemental Figure 5). Finally, we determined if the APOL1 ChDir gene signature could cluster an 142 

orthogonal dataset, glomerular transcriptomes from dual transgenic mice with the Tg26 transgene to 143 

model of HIV-associated nephropathy and with either APOL1-G0 (n=8) or APOL1-G2 (n=12) transgenes in 144 
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podocytes [28, 29]. APOL1 variants are strongly associated with HIV-associated nephropathy and FSGS. 145 

We identified 1237 mouse orthologues of the human 1481 APOL1 ChDir signature genes, which 146 

significantly separated G2 from G0 mice (p≤0.032) accounting for 8.8% of the intergroup variance (Figure 147 

4-C).  148 

Clinical outcomes associate with the ChDir APOL1 gene signature activation scores. We generated z-149 

scores for the 1481 genes in the APOL1 gene signature for both AA and noAA NEPTUNE participants and 150 

stratified them into gene activation tertiles. Individuals with the highest gene activation scores had 151 

significantly faster times to the composite event in AA (p≤0.013) but not in noAA (p≤0.89). No significant 152 

differences were observed in either group for achieving complete remission (Figure 5). The most highly 153 

enriched pathways included Allograft Rejection, EMT, Inflammatory Response, KRAS Signaling Up and IL-154 

6/JAK/STAT3 Signaling. 155 

The enrichment terms from the ChDir APOL1 gene signature and MM2, which correlated with APOL1 risk 156 

allele number, were similar.  Thus, we reasoned that the ChDir signature and MM2 gene set would overlap 157 

and be enriched with genes associated with APOL1 pathogenesis. In the MM2_Salmon module 129 genes, 158 

from a total of 273 significantly overlapped with the 1481 genes of the APOL1 signature (Adjusted Fisher 159 

exact test p≤4x10-49), while in the MM2_Darkturquoise module 62 genes, from a total of 164 significantly 160 

overlapped with the APOL1 signature gene space (adjusted Fisher exact test p≤1x10-19). (Supplementary 161 

Table 3).  162 

Glomerular cell-identity gene signatures cluster APOL1 genotypes. We next leveraged gene expression 163 

data from the Kidney Precision Medicine Project (KPMP) Kidney Tissue Atlas to generate cell-identity gene 164 

signatures containing genes enriched in, but not unique to, specific glomerular cell types (Supplemental 165 

Table 4). The glomerular cell identity signatures contained the following numbers of genes for each cell 166 

type: 1) glomerular visceral epithelium (POD, podocytes) 1814 genes, 2) glomerular parietal epithelium 167 

(PEC) 1220 genes, 3) glomerular capillary endothelium (EC-GC) 1298 genes, and 4) glomerular mesangium 168 

(MC) 1131 genes. In addition, we obtained cell-exclusive gene signatures containing genes with a positive 169 

fold change in only one kidney cell type (Supplemental Table 5). 170 

As podocyte dysfunction characterizes primary nephrotic syndrome and podocytes express APOL1 [30], 171 

we hypothesized that the transcriptional impact of APOL1 variants would be primarily reflected in 172 

podocytes, in particular the podocyte identity gene signature. Using PERMANOVA, we next tested if the 173 

Euclidean distance matrix calculated from different glomerular cell-identity gene signatures would 174 

separate the NEPTUNE cohort by APOL1 risk allele number. The distance matrix from the 1814 POD gene 175 

identity signature genes separated APOL1 RA carriers from individuals with no APOL1 RA, explaining 2% 176 

of the overall variability (p≤0.024, Figure 6-A). However, post-test comparisons showed that only 177 

transcriptomes from AA_2RA and noAA_0RA were significantly different (p-Adj≤0.048) using the POD-178 

identity gene space. In addition to podocytes, the PEC identity signature was also able to significantly 179 

cluster patients (p≤0.001) by ancestry and presence of APOL1 RA, explaining 3% of the overall variability 180 

(Figure 6-B). Post-test pairwise comparisons showed that the centroids from AA and noAA without APOL1 181 

risk alleles were significantly different from those from AA, who carried one or two APOL1 risk alleles. In 182 

addition, the centroids from AA_0RA and noAA_0RA or AA_1RA and AA_2RA were not significantly 183 

different. Finally, the MC and ECGC identity gene signatures failed to cluster NEPTUNE participants by 184 

APOL1 risk allele status (Supplemental Figure 6). Together, these results indicate that the impact of APOL1 185 
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variants on glomerular cells transcriptomes was not limited to podocytes as we originally thought, but 186 

more markedly present in PECs.  187 

Since the POD- and PEC-identity genes separated individuals by APOL1 RA status, we hypothesized that 188 

these gene sets would by enriched in MM2. Thus, we used the Fisher exact test to evaluate the overlap 189 

between metamodules and cell-exclusive gene signatures (Figure 7-A). Our results indicate that MM2 190 

(Salmon and Darkturquoise), which is associated with the number of APOL1 risk alleles, reflects 191 

transcriptional programs active in PECs. On the other hand, MM4 (Cyan, Darkred, Grey60 and Skyblue3), 192 

and MM10 (DarkOrange), which associated with GFR and proteinuria (Figure 2), overlap with 193 

transcriptional programs in podocytes. The complete mapping of sub-region exclusive genes to 194 

metamodules can be found in Supplemental Table 4. Finally, we calculated the scores of MM2, MM4 and 195 

MM10 using a reference adult human kidney (GSE169285) dataset containing integrated single-cell and –196 

nuclei transcriptomes. In this analysis, we provided the gene spaces of each of the aforementioned 197 

metamodules, to calculate an aggregate expression score across glomerular cells confirming that MM2 198 

genes are most highly express in PECs, while MM4 and MM10 genes are most highly expressed in POD 199 

(Figure 7-B), confirming previous results. 200 

 201 

DISCUSSION 202 

Previous studies in the NEPTUNE cohort assessing the impact of APOL1 kidney risk variants on glomerular 203 

transcriptomes, only included self-identified ‘black/African American’ participants diagnosed with FSGS 204 

[14, 31]. In this study, we analyzed the entire NEPTUNE cohort with glomerular RNAseq and APOL1 205 

genotype data, since APOL1 kidney risk variants associate with steroid resistant nephrotic syndrome and 206 

worse kidney outcomes in people with membranous nephropathy [16-19]. Using two distinct analytic 207 

methods, WGCNA and ChDir, we identified glomerular gene signatures that significantly associated with 208 

APOL1 risk allele number. These signatures shared 191 genes, and were associated with kidney outcomes 209 

in Black NEPTUNE participants. Both signatures were enriched in MSigDB Hallmark gene sets that 210 

represent EMT and inflammation pathways, but not cell death. The ChDir gene signature was validated 211 

with an orthogonal glomerular transcriptome dataset from mice with HIV-associated nephropathy that 212 

carry APOL1 G0 or G2 transgenes [28, 29]. Using the KPMP expression data to generate kidney cell-identity 213 

gene signatures and gene module-scores in glomerular cells, we discovered that APOL1 kidney risk 214 

variants not only modify podocyte transcriptomes but also impact the gene expression landscape of PECs. 215 

Collectively, these data suggest that APOL1 kidney disease risk variants alter the podocyte cell state, 216 

leading to the activation of PECs, a cell strongly implicated in glomerular injury, through a yet to be defined 217 

paracrine pathway. Podocytes are specialized cells with epithelial and mesenchymal characteristics and 218 

constitutively synthesize APOL1 [30, 32, 33]. The enrichment of genes from a PEC identity signature in the 219 

WGCNA metamodule that correlated with APOL1 variant number was unexpected. However, podocytes 220 

and PECs share a common epithelial lineage during development until they diverge late in 221 

glomerulogenesis [34]. A growing body of evidence demonstrates that communication between 222 

podocytes and PECs mediates the onset and progression of podocytopathies [35, 36]. Genetic cell lineage 223 

tracing in transgenic mice has definitively shown that PEC activation after podocyte injury is a key driver 224 

of glomerular scarring and collapse [37]. Histologic analyses of human FSGS using cell marker studies 225 

demonstrate findings consistent with these mouse data [38, 39]. Multiple studies demonstrate a 226 

stereotypical response PECs to some types of podocyte injury, which is initiated by PEC proliferation, 227 
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followed by PEC migration onto the glomerular tuft and culminating in deposition of extracellular matrix 228 

[34, 35, 40]. Activated PECs are identified specifically in regions of podocyte loss with fibrous synechiae 229 

between the capillary tufts and Bowman’s capsule [41]. 230 

The mechanisms of PEC activation by podocyte injury are just being defined and focus primarily on 231 

podocyte loss, although paracrine signaling between PECs and podocytes has been demonstrated [42-44]. 232 

Variant APOL1s associate with a spectrum of kidney disease phenotypes [4, 45], which include podocyte 233 

injury that could result in PEC differentiation. Multiple mechanisms have been proposed for APOL1 234 

podocytopathy, mostly focused on cytotoxicity especially in high interferon inflammatory states. 235 

However, IFNγ treatment drives organoid podocytes to a more immature phenotype with maintenance 236 

of junctional complexes with the slit diaphragm protein ZO1 and without podocyte loss [46]. Trajectory 237 

inference of G1 organoid podocytes showed a shift to more immature phenotypes [13], and data from 238 

other cell models suggest variant APOL1 generate podocyte dedifferentiation phenotypes characteristic 239 

of podocytopathy [6, 47, 48]. Interestingly, two reports demonstrate APOL1 expression in PECs in HIV- 240 

and COVID associated nephropathy [49, 50], raising the possibility that APOL1 could directly regulate PEC 241 

activation in disease. 242 

Both our WGCNA and ChDir analyses suggests that a single APOL1 risk variant impacts the glomerular 243 

transcriptional landscape. Our data is consistent with a model whereby a single APOL1 risk variant 244 

generates a transcriptional prodromal state, which permits development of kidney disease in the 245 

presence of specific secondary stresses/conditions. While the presence of two APOL1 risk alleles robustly 246 

associates with kidney disease phenotypes, several studies suggest that heterozygous carriers may also 247 

be susceptible to kidney diseases [51-54]. A recent study involving a large West African cohort of Stage 2 248 

through 5 CKD found that while biallelic APOL1 risk variant carriers have 25% higher odds of developing 249 

CKD, participants carrying 1 risk allele present 18% higher CKD odds than homozygous G0 [55]. In addition, 250 

genetic modifiers affect the pathogenicity of APOL1 risk variants including the haplotype background of 251 

the G0 [2] and G2 [1], and stop-gain variant in APOL3 (p.Q58*), which was associated with increased CKD 252 

risk in individuals with a single APOL1 kidney risk allele [56]. Together these studies highlight the need to 253 

extend genotyping beyond G1 and G2 polymorphisms [57] to more precisely characterized kidney risk.  254 

This study has limitations. NEPTUNE is unique in its age range and diversity and a replication cohort is not 255 

available. Other cohorts of people who have kidney transcriptomes are not diverse or do not include 256 

patients with nephrotic syndrome. In addition, the sample size is limited to 72 NEPTUNE participants with 257 

AA. Multi-omic annotation of kidney tissue obtained from appropriately powered cohorts of people with 258 

and without APOL1 kidney disease will certainly better define the driver cells and pathogenic mechanisms 259 

[58]. 260 

 261 

METHODS 262 

NEPTUNE glomerular transcriptomes and clinical data: Glomerular transcriptomes (n=224) from 263 

microdissected glomeruli were obtained from the NEPTUNE consortium with their associated clinical data. 264 

A variable called “inferred African ancestry” (AA) was defined positive for those patients having an APOL1 265 

genotype different from G0/G0, and/or a self-reported race of "Black/African American” (n=72); while 266 

G0/G0 individuals, who did not self-identify as "Black/African American,” were defined as not having 267 

African ancestry (noAA, n=152). In some analyses, the gene count matrix was adjusted for eGFR and UPCR 268 

by fitting a linear model and extracting the residuals. 269 
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APOL1 transgenic mouse glomerular microarray data: We generated glomerular transcriptomes from 40-270 

day old Tg26 transgenic mice with APOL1-G0 or APOL1-G2 transgenes controlled by the murine Nphs1 271 

promoter [28, 29] using the Mouse Gene 2.0 ST Array (Affymetrix).  272 

Weighted Gene Co-Expression Network Analysis (WGCNA) in individuals with AA: The 72 individuals 273 

with AA were selected to build a gene coexpression network with the R package WGCNA [59, 60]. The 274 

significance threshold in module-trait correlation analysis was adjusted by Bonferroni. 275 

Kaplan-Meier analysis with clinical outcomes: We conducted Kaplan-Meier analysis using gene 276 

expression z-scores tertiles as surrogates for the gene module activation as previously reported [61, 62]. 277 

The endpoint outcomes were “Complete Remission” or “Composite Event”. Differences between the 278 

tertiles [high, medium, low] curves were tested using the log-rank test. Independent analyses were 279 

conducted on AA and noAA. We analyzed the following gene spaces: 1) MM2 (437 genes), 2) Midnightblue 280 

module (226 genes) and 3) the APOL1 ChDir signature (1481 genes). 281 

Functional enrichment analyses: We utilized EnrichR [63, 64] to conduct functional enrichment analysis 282 

using the Molecular Signatures Database (MSigDB) Hallmark gene sets [65, 66].  283 

Characteristic Direction (ChDir): ChDir [27] is a geometric multivariate approach to differential gene 284 

expression and was previously used by us and other investigators to obtain transcriptional signatures from 285 

proximal tubules [67, 68], podocytes [69], and human kidney cancerous cells [70]. ChDir generates 286 

normalized gene vectors representing the fractional contribution of each gene to the overall 287 

transcriptional differences between classes, which allows the extraction of the top-scoring classifier genes 288 

accounting for 75% of discrimination between classes.  In our analyses, these genes represent a signature 289 

that differentiates individual by number of APOL1 kidney risk alleles.  290 

Single-cell (sc) and single-nucleus (sn) RNAseq matrices: We used sc- and snRNAseq transcriptomes from 291 

the KPMP to generate Cell-Identity and Cell-Exclusive gene signatures from 13 anatomical sub-regions of 292 

the kidney: 1) POD, 2) PEC, 3) MC, 4) EC-GC, 5) Proximal Tubule (PT), 6) Loop of Henle thin portion (Thin 293 

Limbs), 7) Loop of Henle thick portion (TAL), 8) Distal Convolution (DCT), 9) Connecting Tubule (CNT), 10) 294 

Collecting Duct (CD), 11) Endothelium Non-Glomerular (EC), 12) Stroma Non-Glomerular (SC), and 13) 295 

Immune (IMN). The total number of genes on each signature can be found in Supplemental Table 5. 296 

Permutational Multivariate Analysis of Variance (PERMANOVA) and Principal Coordinates Analysis 297 

(PCoA): We used PERMANOVA [71, 72], as implemented in the R package 'vegan' [73],  to determine the 298 

statistical significance of the ability of different gene sets to distinguish between two or more groups of 299 

patients or transgenic mice. We inputted the Euclidian distance matrix as it emphasizes the actual 300 

proximity of gene expression values [74] as opposed to WGCNA and ChDir analyses, which are leveraged 301 

towards covariance analysis. When more than two groups were compared, p values were corrected using 302 

the function pairwise.adonis() with default parameters [75]. PCoA was performed on the Euclidean 303 

distance matrix to visualize the separation between groups in a reduced dimensional space. 304 

Module Scores: Gene module scores for MM2, MM4, and MM10 were generated in glomerular cells using 305 

the dataset from the "Integrated Single-nucleus and Single-cell RNA-seq of the Adult Human Kidney" 306 

(GSE169285). 307 

Statistics: Unless otherwise noted, all data were analyzed with “R: A language and environment for 308 

statistical computing and graphics” (https://www.R-project.org/). Some data inspection, cleaning or 309 

formatting were conducted in Notepad++ (https://notepad-plus-plus.org/) or in Microsoft Excel, which 310 

was also used to prepare tables for publication. 311 
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Study approval: The NEPTUNE protocol is approved by the University of Michigan IRBMED central IRB 312 

(HUM00158219), and the Cleveland Clinic IRB (15-182). The KPMP study protocol is approved using a 313 

central IRB at the Human Research Protection Office of Washington University in St. Louis (IRB no. 314 

201902013). NEPTUNE and KPMP participants provided written informed consent prior to enrollment. All 315 

animal studies were conducted under oversight of the Case Western Reserve University’s Institutional 316 

Animal Care and Use Committee (Protocol 2012-0099). 317 
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 346 

TABLE AND FIGURE LEGENDS 347 

Table 1: Participant characteristics stratified by inferred African ancestry (AA). Inferred AA was defined 348 

as either having an APOL1 genotype different from G0/G0 or a self-reported race of "Black/African 349 

American” (NEPTUNE classification). Individuals homozygous for the APOL1 G0 allele, who did not self-350 

identified as "Black/African American”, were designated as not having inferred African ancestry (noAA). 351 

Categorical variables are expressed as percentages, with p-values calculated using Fisher’s exact test. Age, 352 

eGFR and log(1 + UPCR [urinary protein creatinine ratio]) (UPCR_lg) are expressed as mean ± SD. The 353 
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Shapiro-Wilk test showed age (p≤1x10-9), eGFR (p≤2x10-6) and UPCR_lg (p≤2x10-16) significantly deviated 354 

from a normal distribution and the Wilcoxon rank sum test determined if differences between AA and 355 

noAA were significant. Subscripts (in parenthesis) are the numbers of individuals (n) in each group, which 356 

differs slightly between phenotypes due to missing data points.  357 

Figure 1: Boxplot of eGFR of the NEPTUNE study cohort participants. Individuals were stratified by 358 

inferred African ancestry (AA) or noAA (see Methods) and by number of APOL1 risk alleles (RA) as 0RA, 359 

1RA and 2RA. The Median (IQR) of eGFRs (ml/min/1.73 m2) were: noAA_0RA, 91 (71-113) [n=140]; 360 

AA_0RA, 101 (79-111) [n=20]; AA_1RA, 74 (43-91) [n=29] and AA_2RA, 62 (49-74) [n=21]. The median rank 361 

of these groups were significantly different (Kruskal Wallis, p≤2x10-5). Post-test comparisons were 362 

conducted using the Wilcoxon rank sum test. The median eGFR rank for noAA_0RA participants was 363 

significantly higher compared to the median eGFR ranks from AA_1RA (p≤0.01) and AA_2RA (p≤0.0002). 364 

The mean the eGFR rank from AA_0RA was significantly different to those from AA_1RA (p≤0.02) and 365 

AA_2RA (p≤0.002). There were no significant differences in the mean eGFR ranks between AA_0RA and 366 

noAA_0RA or between AA_1RA and AA_2RA. The p values were adjusted by the method of Benjamini & 367 

Hochberg. #, significantly different from noAA_0RA; @, significantly different from AA_0RA. Open circles 368 

represent outliers. 369 

Figure 2: Module-Trait Correlations (MTC) analyses using the African ancestry network. Independent 370 

MTC were conducted in all NEPTUNE participants (ALL), and ALL after adjustment for eGFR and UPCR (ALL 371 

eGFR/UPCR-Adjusted). The following traits were analyzed: eGFR, log(1 + UPCR) (UPCR_lg), FSGS, APOL1 372 

risk alleles number (APOL1_RA), and inferred African ancestry (African_Anc). Multiple metamodules 373 

significantly associated with eGFR and UPCR_lg. In addition, 6 modules associated with FSGS, 3 of which, 374 

Darkturquoise, Salmon and Midnightblue, also significantly associated with the number of APOL1 risk 375 

alleles (See Supplemental Table 2 for the genes contained in these modules). Orange/Up-arrows 376 

represent positive correlations, while Blue/Down-arrows represent negative correlations. Only significant 377 

correlations are shown. For each trait, we adjusted the p-values using the Bonferroni correction to 378 

account for the multiple tests conducted (1 test for each module). The complete statistics and nominal p 379 

values are presented in Supplemental Figure 3. Grey areas represent null data i.e. the correlations with 380 

eGFR or UPCR_lg in the adjusted data; and lack of any significant correlation in modules within MM5, 381 

MM6 or MM7. 382 

Figure 3: Kaplan-Meier curves stratified by tertiles of metamodule 2 (MM2) gene activation scores in 383 

NEPTUNE AA and noAA participants. Outcomes were time since kidney biopsy to a “Composite Event” of 384 

kidney failure or loss of 40% of eGFR, or to “Complete Remission” of proteinuria. Enrichr was used to 385 

obtain gene set enrichment analysis using the MSigDB Hallmark 2020 gene set (right panel and table).  386 

Figure 4: Principal Coordinates Analysis (PCoA) of the Euclidean distance matrix of the APOL1 ChDir 387 

gene expression signature. Statistical analysis was performed using PERMANOVA. Panel A displays the 388 

first two PCoA coordinates, showing the separation between the centroids of the AA_0RA (black) and 389 

AA_2RA (red) groups, with the ellipses representing the 95% confidence intervals. PERMANOVA indicates 390 

a statistically significant separation between these two groups, as evidenced by R² = 0.064 and p ≤ 0.001. 391 

Panel B expands the analysis to four groups of NEPTUNE participants: noAA_0RA (black), AA_0RA (black), 392 

AA_1RA (red), and AA_2RA (red). The ellipses indicate the 95% confidence intervals for each group, and 393 

PERMANOVA confirms significant differences between the group centroids (R² = 0.030, p ≤ 0.001). Post-394 

hoc pairwise comparisons (shown in the table) reveal significant separations between noAA_0RA and 395 
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AA_1RA (p ≤ 0.006), as well as AA_0RA and AA_2RA (p ≤ 0.006), but no significant differences between 396 

noAA_0RA and AA_0RA (p = 0.26) or AA_1RA and AA_2RA (p = 0.46). Panel C illustrates the separation 397 

between transgenic mice expressing the APOL1-G0 (black) and APOL1-G2 (red) variants, using 1237 398 

orthologues of the APOL1 ChDir gene signature. The analysis shows a significant separation between the 399 

two mice strains (R² = 0.088, p ≤ 0.032).  400 

Figure 5: Kaplan-Meier curves, stratified by tertiles of the APOL1 ChDir gene signature activation 401 

(n=1481 genes) in NEPTUNE AA and noAA participants. Outcomes were time since kidney biopsy to a 402 

“Composite Event” of kidney failure or loss of 40% of eGFR, or to “Complete Remission”. Enrichr was used 403 

to obtain gene set enrichment analysis using the MSigDB Hallmark 2020 gene set (right panel and table). 404 

Figure 6. Principal Coordinate Analysis (PCoA) using the Euclidean distance matrices of podocyte (POD, 405 

1814 genes) and parietal epithelial cell (PEC, 1220 genes) identity gene signatures. Panel A shows the 406 

two first coordinates and the separation of the centroids from noAA_0RA, AA_0RA, AA_1RA and AA_2RA 407 

NEPTUNE participants using the POD identity gene signature distance matrix. PERMANOVA analysis 408 

indicates that the centroids of these four groups are significantly separated (p≤0.024). Post-test 409 

comparisons show that only the noAA_0RA and AA_2RA centroids are statistically different in this gene 410 

space (p≤0.048). Panel B shows the first two coordinates of the same groups in the PEC identity signature 411 

gene distance matrix. PERMANOVA showed the group centroids were significantly separated (p≤0.001). 412 

Post-test pairwise comparisons showed that the centroid from noAA_0RA was significantly different from 413 

those from AA_1RA (p≤0.012) and AA_2RA (p≤0.006). Similarly, the centroid from AA_0RA was different 414 

from those from AA_1RA (p≤0.042) and AA_2RA (p≤0.018). Most importantly, the centroids from AA_0RA 415 

and noAA_0RA or AA_1RA and AA_2RA were not significantly separated. Red ellipses indicate patients 416 

with APOL1 risk alleles i.e. AA_2RA and AA_1RA, while black indicates AA_0RA and noAA_0RA. 417 

Figure 7-A: Overlap analysis between genes in metamodules and cell exclusive gene signatures obtained 418 

from the Kidney Precision Medicine Project. The total number of genes in each metamodule are 419 

presented in the “Genes” column. The number of cell-exclusive genes were as follows: POD, visceral 420 

epithelial cells (125 exclusive genes); PEC, parietal epithelial cells (26 exclusive genes); PT, proximal tubule 421 

cells (425 exclusive genes); DCT, distal convolute tubule cells (131 exclusive genes); SC, stromal cells (365 422 

exclusive genes); and IMN, immune cells (950 exclusive genes). Adjusted-Fisher exact test p-values are 423 

presented in the “p-Adj” column. Only, significant enrichments are presented in the table. Expression 424 

scores of MM2 (Panel B), MM4 (Panel C), and MM10 (Panel D) in glomerular cells of the adult human 425 

kidney. The gene spaces for each metamodule (437, 669 and 142 genes, respectively) were provided to 426 

compute aggregate expression scores across glomerular cell populations. Glomerular capillary 427 

endothelium (EC-GC), glomerular mesangium (MC). 428 

 429 

TABLES AND FIGURES  430 
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SUPPLEMENTAL FIGURES 

Supplemental Figure 1: Overview of the methodology used in this manuscript. 

Supplemental Figure 2: Module eigengene (ME) heatmap and dendrogram of the African ancestry (AA) 

network. Modules (shown on the right) of genes with correlated expression are grouped into 

metamodules (MM) shown on the left, which are derived from eigengene heatmap correlations and 

dendrogram structure. Some modules relevant in our downstream analyses are highlighted in yellow. The 

ME of the “Grey” module, containing one uncorrelated gene (SRGAP3) is not shown.  

Supplemental Figure 3: Module trait correlations for: Panel A) all participants (ALL), Panel B) ALL 

participants after adjusting by eGFR and UPCR (ALL_eGFR-UPCR-Adj). Each row corresponds to module 

eigengene and the rows are the traits. The values in the cells are Pearson correlation coefficient (r) and in 

parenthesis the nominal p-value, as well as the designation “sig.” if p≤0.012, the Bonferroni significant 

threshold or “n.s.” for p>0.012. The cells are color coded for the magnitude of r using the scale on the 

right (1, 0, -1; red, white, blue). 

Supplemental Figure 4: Unadjusted Kaplan-Meier curves stratified by tertiles of module Midnightblue 

(226 genes) gene activation scores in NEPTUNE AA and noAA participants. Outcomes were time since 

kidney biopsy to a “Composite Event” of kidney failure or loss of 40% of eGFR, or to “Complete Remission”. 

Enrichr was used to obtain gene set enrichment analysis using the MSigDB Hallmark 2020 gene set (right 

panel and table).  

Supplemental Figure 5: Principal Coordinate Analysis using the Euclidean distance matrices of the genes 

complementary to ChDir. PERMANOVA failed to separate NEPTUNE participants by APOL1 risk allele 

number within this gene space (13,151 genes).  

Supplemental Figure 6: PERMANOVA of NEPTUNE participants using the cell identity signatures for 

mesangial cells (MC) and glomerular endothelial cells (EC.GC gene). PERMANOVA and Principal 

Coordinates Analysis using the Euclidean distance matrices of cell-identity signatures for the glomerular 

mesangium (MC) and the glomerular capillary endothelium (EC-GC) show lack of separation between 

NEPTUNE participants with different APOL1 genotypes.  
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PERMANOVA does not differentiate the centroids of 
different APOL1 genotypes on the gene space 

complementary to the ChDir Top75% signature. The lower 
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SUPPLEMENTAL TABLES 

 

Table S1: APOL1 alleles in AA stratified by kidney biopsy histopathology. 

Table S2: WGCNA Network modules and metamodules gene assignments (Provided as *.csv file) 

Table S3: Characteristic direction gene signature and ranks for AA_2RA vs AA_0RA (Provided as *.xlsx 

file)  

Table S4: Kidney Precision Medicine Project single-cell and single-nuclei RNAseq data integration 

(Provided as *.xlsx file) 

Table S5: Number of genes in the Cell-Identity and Cell-Exclusive gene signatures  
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EXTENDED METHODS 

NEPTUNE Study Cohort: 

The NephroƟc Syndrome Study Network (NEPTUNE) is a longitudinal study of paƟents with primary 

nephroƟc syndrome [1]. ParƟcipants in the NEPTUNE Biopsy Cohort provide a biopsy core at enrollment, 

as well as blood, urine, and clinical data at enrollment and at 4 to 6 month intervals. The NEPTUNE Data 

CoordinaƟon Center controls access to the data and provided RNAseq glomerular batch-corrected count 

matrices from 224 individuals with associated clinical data, including APOL1 genotypes and clinical 

outcomes. Data is available from NEPTUNE upon request.  

A variable called inferred African ancestry (AA) was defined posiƟve for those paƟents having an APOL1 

genotype different from G0/G0, and/or a self-reported race of "Black/African American” (n=72); while 

G0/G0 individuals, who did not self-idenƟfy as "Black/African American,” were defined as not having 

African ancestry (noAA, n=152). Self-reported race and presence of APOL1 risk alleles highly correlated 

with African geneƟc ancestry in NEPTUNE parƟcipants [2, 3]. 

NEPTUNE glomerular RNAseq data: 

Glomerular transcriptomes from microdissected glomeruli were obtained from the NEPTUNE consorƟum 

with their associated clinical data. All available glomerular transcriptomes (n=224) from the NEPTUNE 

study cohort were quality controlled and normalized as a group yielding 14632 protein-coding genes. A 

geneINFO data frame was obtained using the R package Annotables and the grch38 genome informaƟon. 

The R package DESeq2 was used for quality control and normalizaƟon of count tables. Genes with 0 (zero) 

variance were eliminated and a DESeq2 object was created. Sequencing depth was normalized using the 

funcƟon es mateSizeFactors(), and size factors were saved to the Clinical/metadata data frame. Principal 

Component Analysis (PCA) was conducted using R packages FactoMineR and factoextra for quality control. 

Two sample outliers were idenƟfied and excluded from the remaining analyses, aŌer which the raw data 

was renormalized and re-inspected. Protein-coding genes with valid NCBI IDs were selected from the 

normalized count matrix, which yielded 14632 genes. One count was added to all values on the matrix and 

then a Log2 transformaƟon was applied. Data was re-inspected using boxplots and PCA. The 

Normalized/Filtered/Log2-transformed matrix, and the relaƟonal Clinical Data and geneINFO data frames 

were saved into an R object for downstream analyses. In some analyses, the Normalized/Filtered/Log2-

transformed matrix was adjusted for esƟmated glomerular filtraƟon rate (eGFR) and urinary protein 

creaƟnine raƟo (UPCR) (~ eGFR + UPCR), by fiƫng a linear model in the R package Limma [4] and extracƟng 

the residuals matrix. 

APOL1 transgenic mouse glomerular microarray data: 

We generated glomerular transcriptomes from 40-day old Tg26 transgenic mice with APOL1-G0 or APOL1-

G2 transgenes controlled by the murine Nphs1 promoter [5, 6]. Glomeruli were isolated by successive 

sieving as previously described [7]. Total RNA was extracted from the glomeruli using methods similar than 

before [8-10]. In brief, total RNA was extracted using RNeasy mini kit (QIAGEN) according to 

manufacturer’s recommendaƟons, quanƟtated using a NanoDrop 2000 spectrophotometer (Thermo 

ScienƟfic), and adjusted to a final concentraƟon of 50 ng/μl with nuclease free water (Qiagen). The 

concentraƟon-adjusted RNA was submiƩed to the Genomics Core at CWRU School of Medicine. RNA 

expression data were generated using the Mouse Gene 2.0 ST Array (Affymetrix). Individual cluster 

transcript IDs were mapped to the mouse genome, summarized and annotated using 23748 mouse 
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EntrezIDs. Batch correcƟon was performed using ComBat [11]. Genes that were not expressed above 

background in at least 50% of the samples were removed, yielding a total of 19170 annotated genes. The 

R package Limma [4] was used to fit a linear model for sex (~sex), and the residuals matrix was extracted 

for analysis.  

Weighted Gene Co-Expression Network Analysis (WGCNA) in individuals with AA: 

The 72 individuals with AA were selected to build a gene coexpression network. PCA did not idenƟfy any 

trait in the clinical data set that clustered the genomewide transcriptomes. A gene coexpression network 

was constructed using WGCNA methodology, as implemented in the R package WGCNA [12, 13]. WGCNA 

consists of two main steps. In the first step, a coexpression network is constructed from gene expression 

data. For this, a Pearson-correlaƟon coefficient is calculated for each gene pair using the gene expression 

pair values from each sample as individual points. The correlaƟon coefficient of all samples is then stored 

in a symmetric matrix (#genes, #genes). The correlaƟon matrix is transformed into an adjacency matrix by 

applying the adjacency funcƟon, and then into the topological overlap matrix (TOM) by counƟng the n-

step connecƟons shared by any pair of genes [14]. We used the “signed” version of the adjacency funcƟon 

and selected the soŌ thresholding power accordingly to the scale-free topology criterion [14]. Finally, 

genes with shared connecƟvity were clustered into coexpression modules. WGCNA summarizes the 

expression profiles of the genes within each coexpression module (in-module genes) into one vector called 

a module eigengene, which weights the expression of all genes within a module for each sample. The 

second step in WGCNA calculates if the module eigengene correlates with a trait of interest by using the 

eigengene/trait pairs for each sample.  For instance, to explore the significance of a module with FSGS, a 

discrete variable corresponding to a histopathological classificaƟon was created. PaƟents were coded as 

“1” if they were diagnosed with FSGS or as “0” if they were diagnosed with either MCD or MN. Then the 

module significance was calculated as the Pearson correlaƟon coefficient between the eigengene of each 

sample and FSGS [13, 15]. The significance threshold was adjusted by the number of coexpression modules 

using the Bonferroni method. This procedure can also be implemented with conƟnuous variables such as 

eGFR. 

Correla on of transcriptomics analyses with clinical outcomes: 

NEPTUNE parƟcipants are followed prospecƟvely for up to five years, providing longitudinal data for the 

following clinical outcomes: 1) “Complete Remission”, defined as UPCR≤0.3 at any visit aŌer screening 

among paƟents with acƟve disease at screening; and 2) “Composite Event” defined as a paƟent reaching 

ESKD (two consecuƟve eGFR < 15, dialysis or transplantaƟon) or an eGFR <90 and a decline ≥40% from 

baseline. We conducted Kaplan-Meier analysis using gene expression z-scores terƟles as surrogates for the 

gene acƟvaƟon signatures of interest at the Ɵme of kidney biopsy as previously reported [16, 17]. In brief, 

gene expression levels were z-transformed; then, an average z-score for each gene signature was 

calculated for the 191 NEPTUNE parƟcipants (60 AA and 161 noAA) with sufficient longitudinal data to 

assess outcomes. Finally, paƟents were straƟfied by gene acƟvaƟon terƟles [high, medium, low]. 

Differences between the curves were tested using the log-rank test. We conducted Kaplan-Meier analysis 

using the following gene spaces: 1) MM2 (437 genes), 2) Midnightblue module (226 genes) and 3) the 

APOL1 ChDir signature (1481 genes). Independent analyses were conducted on AA and nonAA NEPTUNE 

parƟcipants. 
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Func onal enrichment analyses: 

We uƟlized EnrichR [18, 19] to conduct funcƟonal enrichment analysis using the Molecular Signatures 

Database (MSigDB) Hallmark gene sets [20]. The Hallmark gene sets "summarize and represent specific 

well-defined biological states or processes and display coherent expression. These gene sets were 

generated by a computaƟonal methodology based on idenƟfying overlaps between gene sets in other 

MSigDB collecƟons and retaining genes that display coordinate expression" [21].  

Characteris c Direc on (ChDir): 

ChDir [22] is a geometric mulƟvariate approach to differenƟal gene expression and was previously used 

by us and other invesƟgators to obtain transcripƟonal signatures from proximal tubules [10, 23], podocytes 

[24], and human kidney cancerous cells [25]. This method generates a hyperplane that separates two 

classes in an n(gene)-dimensional space. The hyperplane orientaƟon, defined by a normal vector, describes 

overall differences in gene expression between two condiƟons. Variance shrinkage gives more weight to 

coexpressed genes than to those with large expression differences between classes. Expression differences 

are normalized, so that the sum of the squares of all genes adds up to 1 and then ranked in descending 

order. These normalized gene vectors represent the fracƟonal contribuƟon of each gene to the overall 

transcripƟonal differences between classes, which allows the extracƟon of the top-scoring classifier genes 

accounƟng for 75% of discriminaƟon between classes.  In our analyses, these genes represent a signature 

that differenƟates individual by number of APOL1 kidney risk alleles.  

Single-cell (sc) and single-nucleus (sn) RNAseq matrices: 

We previously used the Kidney Precision Medicine Project (KPMP) scRNAseq and snRNAseq data [26-28] 

to obtain quanƟtaƟve full transcriptomes [29] as well as gene enrichment [9] of kidney cells. In these 

approaches, some genes are enriched in several cell types and can reduce the accuracy of cell idenƟty 

signatures. To miƟgate this problem, we used a stringent method to obtain cell idenƟty signatures enriched 

in specific glomerular cells, as well as cell idenƟty signatures unique to specific kidney cell types.   

We downloaded single cell (scRNAseq) and single nuclear (snRNAseq) RNA sequencing data from the 

Kidney Tissue Atlas (hƩps://atlas.kpmp.org/explorer/) during September and October 2021. The 

scRNAseq expression dataset included 12 AKI and 15 CKD parƟcipants, and the snRNAseq expression 

dataset included 3 healthy reference Ɵssue, 6 AKI and 10 CKD parƟcipants. Together, both technologies 

detected 85 non-redundant clusters from 13 anatomical sub-regions defined by the KPMP as: 1) 

Glomerular Visceral Epithelium (POD), 2) Glomerular Parietal Epithelium (PEC), 3) Glomerular Mesangium 

(MC), 4) Glomerular Capillary Endothelium (ECGC), 5) Proximal Tubule (PT), 6) Loop of Henle thin porƟon 

(Thin Limbs), 7) Loop of Henle thick porƟon (TAL), 8) Distal ConvoluƟon (DCT), 9) ConnecƟng Tubule (CNT), 

10) CollecƟng Duct (CD), 11) Endothelium Non-Glomerular (EC), 12) Stroma Non-Glomerular (SC), and 13) 

Immune (IMN) (Supplemental Table 3; Tab: Metadata). 

The data integraƟon workflow can be found in Supplemental Table 3; Tab: Data Integra on and Followed 

mulƟple steps: Step 1) a matrix with dimensions (i x j), corresponding to genes (i) and cell-clusters (j) was 

created for each technology, i.e. scRNAseq and snRNAseq. Each of these matrices contained either a 

posiƟve log2 fold-change (FC) value for the genes expressed in each cluster compared to the average of all 

other clusters, which are defined as  non-enriched genes (NS); Step 2) both matrices were expanded to 

match the gene and cluster dimensions by impuƟng ‘NA’ in all new fields. Then, matrices were transformed 

to binary expression matrices by assigning a value of ‘1’ for any value larger than zero (>0) and a value of 

‘0’ for “NS” and “NA” cells; Step 3) A “Binary Sum” matrix was created by the element wise addiƟon of 
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both binary matrices. The possible values of the binary sum matrix were ‘0’, ‘1’ or ‘2’, indicaƟng that the 

expression of element ‘i’ (gene) was found above average in the ‘j’ (cell-cluster)  by ‘none’, ‘one’ or ‘two’ 

sequencing technologies, respecƟvely. Step 4) a subRegion expression signature matrix was created by 

grouping the expression of individual cell clusters by anatomical sub-regions as defined above. As an 

example, the sub-region Glomerular Visceral Epithelium (POD) integrates the data from both technologies, 

and contains all genes with a posiƟve fold change in either podocytes or degeneraƟve podocytes. Finally, 

the 14617 genes that mapped to the NEPTUNE network genes (14632 genes) were annotated and selected 

for downstream analysis (Supplemental Table 3; Tab: subRegion expression matrix). The total number of 

genes on each of the cell idenƟty and cell exclusive gene signatures can be found in Supplemental Table 

3; Tab: Cell Signatures. 

Permuta onal Mul variate Analysis of Variance (PERMANOVA) and Principal Coordinates Analysis 

(PCoA): 

We used PERMANOVA [30, 31] to determine the staƟsƟcal significance of differences between two or 

more groups of transcriptomes based on gene expression data. PERMANOVA evaluates group separaƟons 

by calculaƟng a pseudo-F staƟsƟc, comparing the variability within groups to the variability between 

groups, based on a specified distance matrix. The method provides an R² staƟsƟc, represenƟng the 

percentage of variability explained by group differences, and a p-value, indicaƟng the staƟsƟcal 

significance of the separaƟon. To implement this method, we applied the funcƟon adonis2() from the R 

package 'vegan' [32]. We inpuƩed the Euclidian distance matrix as it emphasizes the actual proximity of 

gene expression values [33] as opposed to WGCNA and ChDir, which are leveraged towards covariance 

analysis. This approach allowed us to look at different aspects of the transcripƟonal landscape. In cases 

where more than two groups were compared, we performed post-hoc pairwise comparisons using the 

pairwise.adonis() funcƟon with default parameters [81] to adjust the p-values. Other invesƟgators used 

PERMANOVA for transcriptome analysis before [36, 37], including in kidney transcriptomics [34, 35]. To 

visualize the separaƟon of groups, we performed Principal Coordinates Analysis (PCoA) using the Euclidean 

distance matrix. PCoA reduces the dimensionality of the data, allowing us to represent the relaƟonships 

between transcriptomes graphically while preserving as much distance informaƟon as possible. The first 

two principal coordinates were used to generate the ordinaƟon plots shown in the figures. 

Module Scores: gene module expression scores in kidney cells were calculated as previously reported [8]. 

In brief, the “Integrated Single-nucleus and Single-cell RNA-seq of the Adult Human Kidney” (GSE169285) 

dataset was downloaded on December 8th 2023, from 

hƩps://cellxgene.cziscience.com/collecƟons/bcb61471-2a44-4d00-a0af-ff085512674c. The downloaded 

file name was “baa97c56-c7a0-4858-bdcd-3ĩ5802177ed.rds”, which contains transcriptomes from 

304,652 cells from the kidney cortex, medulla, and papilla. Analyses were conducted using the R package 

Seurat (version 5.1.0). Glomerular cells were extracted based on the subclass.l2 annotaƟon, yielding 3,764 

EC-GC, 458 MC, 2,420 POD, 412 degeneraƟve POD (dPOD), and 2,417 PEC. Genes associated with MM2, 

MM4, and MM10 were mapped onto glomerular cell clusters, and module scores were calculated using 

the AddModuleScore() funcƟon and visualized using VlnPlot(). 
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