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Abstract 32 

Randomized controlled trials (RCTs) are the gold standard for evaluating the efficacy and safety 33 

of medical interventions but ethical, practical, and financial limitations often necessitate decisions 34 

based on observational data. The increasing volume of such data has prompted regulatory bodies 35 

to rely more on real-world evidence, primarily obtained through trial emulations. This study 36 

explores how genetic data can improve the design of both emulated and traditional trials. We 37 

successfully emulated four major cardiometabolic RCTs within FinnGen (N=425 483) and showed 38 

how reduced differences in polygenic scores (PGS) between trial arms track improved study 39 

design and consequently reduced residual confounding. Complementing these results with 40 

simulations, we show that PGS cannot be directly used to adjust for residual or unmeasured 41 

confounding. Instead, we propose an approach that uses genetic instruments for confounding 42 

detection and apply this approach to identify likely confounders in Empareg trial emulation. Finally, 43 

our results suggest that trial emulations can inform the practical application of PGS in RCTs, 44 

potentially improving statistical power. Such prognostic enrichment strategies need to be 45 

assessed in a trial-relevant population, and we show that, for 2 out of 4 emulated trials, the 46 

association between PGS and trial outcomes in the general population was different from what 47 

observed in the population included in the trial. 48 

In conclusion, our work shows that genetic information can improve the design of emulated trials. 49 

These results contribute to the establishment of a promising new era of genetically-informed 50 

clinical trials. 51 
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Introduction 53 

When they are available, randomized controlled trials (RCT) are the gold standard to evaluate the 54 

comparative efficacy and safety of medical interventions.1 Randomization ensures that the 55 

interventional and non-interventional groups are closely comparable in their characteristics, thus 56 

allowing any observed effects to be causally linked to the treatment under investigation. In many 57 

real-world scenarios, however, RCT data are not available, and decisions need to be made based 58 

on the data at hand.  59 

 60 

As the volume of observational data continues to grow exponentially, regulatory bodies such as 61 

the U.S. Food and Drug Administration (FDA) or the European Medicines Agency (EMA) are 62 

increasingly inclined to utilize real-world evidence to gain insights into the effectiveness of medical 63 

interventions in clinical practice.2,3 Trial emulations based on real-world datasets are being 64 

increasingly leveraged to this purpose, with ongoing attempts to compare their results with 65 

findings from RCTs.4–6 However, trial emulations can be biased, and traditional epidemiological 66 

limitations of observational analyses, including the exchangeability assumption (“no unmeasured 67 

confounding”) remain.7–9 Residual and unmeasured confounding pose potential threats to the 68 

validity of epidemiological studies.10  69 

 70 

Trial emulations are typically based on claims or registry data that have detailed information on 71 

drug prescription and, importantly, purchases, ensuring accurate tracking of patient medication 72 

use. These datasets are large but not deep. They do not capture comprehensive biological 73 

information such as genomics and proteomics. Biobank studies, on the contrary, are rich of -omics 74 

information, but so far, there have been limited efforts to emulate trials within biobanks.11,12  The 75 

main reasons are the small sample size and the difficulty to link them with claims data, especially 76 

in the US. 77 

 78 

Yet, integrating genetic data, alongside comprehensive registry information and expert 79 

knowledge, offers a distinctive opportunity to improve trial emulation. For example, genetics offers 80 

the opportunity to augment clinical trial design by identifying individuals based on higher risk of 81 

disease (‘prognostic enrichment’), or increased probability of benefit (‘predictive enrichment’).13 82 

Further exploration of this concept within a trial emulation setting could pave the way for its 83 

implementation in subsequent RCTs. For example, trial emulations can be used to understand if 84 

polygenic scores can be used for prognostic enrichment within a study population selected with 85 
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similar inclusion and exclusion criteria as for the RCT, rather than in the general population, as 86 

routinely done.14  87 

 88 

Genetic information is also unique when compared to data available in claims datasets. Genetic 89 

information is stable across life, it is not impacted by reverse causation and has low measurement 90 

errors. Thousands of genetic variants have been associated with almost every possible 91 

measurable human trait creating a unique catalog of genotype-phenotype relationships. 92 

Analogously to the common use of e.g. socioeconomic or behavioral indicators as proxy variables 93 

for unmeasured confounders, using polygenic scores (PGS) as proxy measures for unobserved 94 

variables might represents an opportunity to overcome the challenge of accounting for 95 

confounding variables that are absent from the dataset.15–17 96 

 97 

Moreover, genetic differences among treatment groups in an emulated trial could potentially offer 98 

insights into residual confounding effects. Utilizing genetic variants as instrumental variables in a 99 

Mendelian Randomization (MR) analysis18,19 can help to understand the effect of a potential 100 

confounder on the treatment, as well as on the trial outcome at different stages of the emulation 101 

process. Genetic information is thus an attractive tool for causal inference and can be used, 102 

similar to what has been suggested for other causal inference approaches 17,20, to identify 103 

unmeasured confounding risks.  104 

 105 

In this study, we emulate four cardiometabolic RCTs within FinnGen21, a Finnish biobank-based 106 

study including 425 483 individuals with extensive linkage to drug purchases and other health 107 

records data. Leveraging both real data and simulations, we propose new applications of genetics 108 

to detect and mitigate confounding risks in trial emulations. Finally, we show how trial emulations 109 

within biobanks can inform on the value of PGS for prognostic and predictive enrichment in RCT.  110 
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Results 112 

Successful emulation of four major cardiometabolic RCTs in FinnGen 113 

We consider four large cardiometabolic RCTs, two (EMPA-REG OUTCOME22 [Empareg], and 114 

TECOS23 [Tecos]) focused on type 2 diabetes (T2D) patients and two (ARISTOTLE24 [Aristotle] 115 

and  ROCKET-AF25 [Rocket]) on patients with atrial fibrillation (AF). Briefly, Empareg established 116 

that empagliflozin, a SGLT-2 inhibitor, was associated with a significantly lower risk of 117 

cardiovascular events, represented by the composite endpoint 3-point Major Adverse 118 

Cardiovascular Events (3P-MACE). Tecos demonstrated that sitagliptin, a DPP4-inhibitor, was 119 

non-inferior to usual care for T2D without sitagliptin, with no significant difference in 120 

cardiovascular outcomes, as measured by 3P-MACE, thereby confirming the null hypothesis. 121 

Aristotle showed that AF patients at increased risk for stroke using apixaban had lower risk of 122 

stroke or systemic embolism compared to warfarin users. Among a similar patient population, 123 

Rocket showed lower risk of stroke or systemic embolism among rivaroxaban versus warfarin 124 

use. 125 

 126 

We closely replicated these four RCTs in FinnGen, a Finnish biobank study, using the trial 127 

emulation framework (Figure 1) used by the RCT-DUPLICATE initiative26, a major trial replication 128 

initiative that systematically evaluates the feasibility of using real-world evidence to emulate RCTs 129 

and assess the concordance of their findings. Patient characteristics for each trial can be found 130 

in the Supplementary Table 1. Supplementary Figure 1 and Supplementary Tables 2-3 131 

contain study design and event rate comparisons between the original RCTs and our emulations.  132 

On average, the number of individuals included in the emulated RCTs was smaller than the 133 

original trials, with reductions ranging from 36% in the EMPA-REG trial to lower percentages in 134 

others, reflecting the large sample sizes typically required for such studies. Despite a considerable 135 

number of individuals meeting the inclusion and exclusion criteria, a substantial drop in sample 136 

size occurred during 1:1 propensity score nearest-neighbor matching (e.g., N=13,677 eligible 137 

individuals in EMPA-REG, reduced to N=4,522 after matching). 138 

 139 

For all four emulated RCTs the hazard ratio estimates were within the 95% CI of the original 140 

RCT’s estimate and aligned with the same direction of the effect. Thus, according to this definition, 141 

and similar to what was done by the RCT-DUPLICATE initiative, all four trials were “successfully” 142 

emulated. However, in Rocket, Rivaroxaban was not significantly associated with a lower risk of 143 

the composite endpoint stroke/systemic embolism compared to Warfarin (HR = 0.88; 95% CI= 144 
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0.57-1.36) whereas the original trial observed a significant risk reduction (HR = 0.79; 95% CI= 145 

0.66-0.96). 146 

 147 
 148 

A

 

B

 

Figure 1. Agreement between randomized controlled trials and their real-world data 
emulations in FinnGen 
A. Comparison of the estimates (HR and 95% CI) of the RCT and their emulation in FinnGen. Empareg (EMPA-REG 
OUTCOME), BI 10773 (Empagliflozin) Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients; 
Tecos (TECOS), Sitagliptin Cardiovascular Outcomes Study (MK-0431-082); Aristotle (ARISTOTLE), Apixaban for 
the Prevention of Stroke in Subjects With Atrial Fibrillation; Rocket (ROCKET-AF), An Efficacy and Safety Study of 
Rivaroxaban With Warfarin for the Prevention of Stroke and Non-Central Nervous System Systemic Embolism in 
Patients With Non-Valvular Atrial Fibrillation 
B. Cumulative event Kaplan-Meier plots for primary endpoints in FinnGen trial emulations. 
HR, hazard ratio; CI, confidence interval; RCT, randomized controlled trial. 

 149 

Differences in polygenic scores between trial arms capture emulated 150 

trials reduction in residual confounding compared to naïve approaches  151 

 152 

Having emulated 4 RCTs in FinnGen, we assess whether genetic information could be used to 153 

evaluate the robustness of the emulation approach with regards to confounding 154 

As observational data is not randomized, confounding by indication is a major challenge in 155 

observational studies of medications. It occurs when the condition that prompts the prescription 156 

of a drug is the true cause of the outcome being studied. For instance, doctors may choose a 157 

specific drug based on patient characteristics (such as the severity of the disease or potential for 158 

adverse reactions), which are not always fully captured in the data. These characteristics can 159 

influence the outcome independently of the medication itself. As a result, differences in outcomes 160 
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between patients on different drugs may be due to underlying differences in patient 161 

characteristics, rather than the effects of the drugs. 162 

To alleviate this bias, emulated RCTs employ a series of precautions, from choosing a sensible 163 

comparator group, closely mimicking the trial outcome definition to matching individuals for 164 

potential confounders.27 However, not all factors considered when prescribing a drug over a 165 

comparator are captured in the data. For example, claims data are often poor in capturing 166 

laboratory markers. However, genetic information can be used to proxy, albeit imprecisely, many 167 

of these biological traits that are not available in observational data.  168 

 169 

With this goal in mind, we computed PGSs for 20 traits relevant to cardiometabolic diseases that 170 

might capture potential confounders. Some of these traits (e.g coronary heart disease) are directly 171 

available in the observational data, and thus matched upon in the emulated trial, others (e.g. C-172 

reactive protein) are not available, as FinnGen currently does not contain information on lab 173 

measurements. We examined the genetic differences between the trial arms across different 174 

stages of the emulation process with the expectation that, by implementing increasing precautions 175 

against bias, the differences in genetically-inferred factors between the trial arms would reduce. 176 

Overall, we observed a decreasing trend in genetic differences the higher the level of confounder 177 

adjustment (Figure 2 for Empareg and Supplementary Figures 2-4 for the other RCTs). In 178 

Empareg, we saw a higher imbalance across all PGS in the plain observational setting comparing 179 

empagliflozin with non-initiators, which reflects the original RCT design (Empareg vs placebo). 180 

We see a particularly high imbalance in the genetically-predicted T2D (standardized mean 181 

differences (SMD) = 0.56; 95% CI = 0.54 - 0.57), glycated hemoglobin (HbA1c) (SMD = 0.31; 182 

95% CI = 0.30 - 0.33) and BMI (SMD = 0.21; 95% CI = 0.19 - 0.22) reflecting characteristics of 183 

the patient population using empagliflozin. After applying eligibility criteria and considering a 184 

sensible comparator group (DPP4 inhibitors users) instead of non-initiators, the PGS differences 185 

were overall reduced, but for 7 out of 20 PGS remained statistically significant different between 186 

the two arms at a P-value < 2.5 x 10-3, including for coronary heart disease (SMD = 0.12; 95% 187 

CI= 0.08 - 0.15) and T2D (SMD = 0.08; 95% CI= 0.04 - 0.12). Of note, only T2D patients were 188 

included in the RCT emulation stage. Thus, the remaining difference in genetically-predicted T2D 189 

likely reflects the difference in liability or risk for T2D between the two arms, which can simply be 190 

captured by T2D diagnostic codes. 191 

After 1:1 propensity score nearest-neighbor matching for 26 to 30 covariates, differences were 192 

further reduced, and none was significantly different at a P-value < 2.5 x 10-3. 193 
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For the other three emulated RCTs, we observed similar trends (Supplementary Figures 2-4). 194 

Larger PGS differences in the plain observational analysis were observed for non-active 195 

comparator RCT (Tecos) vs active-comparator RCTs (Aristotle and Rocket). 196 

 197 

 198 

 

Figure 2. Standardized mean difference of 20 polygenic scores across different stages 
of the Empareg trial emulation 
Plain Observational: empagliflozin initiators vs non-initiators; After Eligibility Criteria: Empareg trial emulation cohort 
after applying inclusion/exclusion criteria and including an active comparator group (DPP4 inhibitors user). The 
comparison is between empagliflozin initiators vs DDP4 initiators; Propensity Score Adjusted: Empareg trial 
emulation cohorts after with inclusion/exclusion criteria and a 1:1 propensity score nearest-neighbor matching for 28 
covariates. The comparison is between empagliflozin initiators vs DDP4 initiators. 
The standardized differences in means of the two trial arms are plotted as point estimates and lines representing 
their 95% CI. A circle around the point estimates represents statistical significance after a Bonferroni-corrected P 
value threshold (2.5 x 10-3).  
Analogous plots for the other trial emulations can be found in the Supplementary Figures 2-4 
ALT, alanine transaminase; AST, aspartate transaminase; Hba1c, glycated hemoglobin A1c; CRP, C-reactive 
protein; LDL, low-density lipoprotein; HDL, high-density lipoprotein; CI, confidence interval. 

 199 

Polygenic scores are unlikely to help controlling for confounding in 200 

emulated trials 201 

 202 

Having established that PGS differences between trial arms track the level of confounder 203 

adjustment, one might speculate that directly controlling for PGS in an emulated trial, for example 204 
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via propensity score-matching, can help reduce confounders for traits that have not been directly 205 

measured.  206 

 207 

To better understand this scenario, we constructed directed acyclic graphs28 (DAG) and 208 

performed simulation studies. The DAG in Figure 3A lays out the graphical relationship between 209 

treatment, outcome, confounder and PGS assuming PGS is directly causal only to the 210 

confounder. Similar to other approaches that use proxy measures for unobserved confounding 211 

adjustment17, if the PGS was a strongly-predictive causal instrument for the confounder, one 212 

might consider adjusting for PGS when the confounder is not available. 213 

However, several aspects do not support this claim. The first observation is that while PGS is 214 

constructed to predict the confounder it can still be associated with both treatment and/or outcome 215 

independent from the confounder. This is because the PGS is a weighted sum of the effects of 216 

multiple genetic variants, some of which can be associated with treatment and/or outcome 217 

independently of their effect on the confounder (horizontal pleiotropy). We illustrate this possibility 218 

with the DAG and simulations in Supplementary Figure 5. Thus, controlling for PGS might induce 219 

bias by controlling for other non-confounding factors, including mediators. 220 

The second observation is that PGS are generally weak predictors of traits and diseases.29,30 221 

Thus, adjusting for PGS would only adjust for part of the variability in the confounders. Under 222 

realistic correlation between PGS and the confounder (r2 between 0.01 and 0.5) and different 223 

magnitude of confounding effect, PGS alone is unlikely to be able to adjust for residual 224 

confounding (Figure 3B and Supplementary Figure 6). 225 

 226 
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A

 

B

 

Figure 3. Evaluating the utility of polygenic scores for confounder adjustment.  
A. A directed acyclic graph (DAG) illustrates the causal structure between polygenic score (PGS), confounder (C), 
treatment (X) and outcome (Y). The PGS serves as an imperfect proxy variable for the confounder. The effect of the 
C on the exposure (X) and outcome (Y) are denoted as bcx and bcy , respectively. The true unconfounded effect of X 
on Y is bxy = 1.  
B. Simulation study: Under this model (see Methods), we changed the correlation between C and PGS simply by 
varying r, and the effect of confounding factor C on X and Y by varying bcx and bcy. Under each condition, we 
measured the observed effect of X on Y, conditioned on PGS and calculated the bias as a percentage of the inflated 

effect of X on Y. 
!!"#

"#$	(')
 = 

!!$#

"#$	())
 = 0.1 for small confounding effect, 0.2 for small-medium confounding effect, 0.3 

for medium-large confounding effect and 0.5 for large confounding effect. These simulations show that even if PGS 
is strongly correlated with the confounder (i.e. r2 = 0.5) - an unlikely scenario given the correlation between PGS and 
traits are generally lower – correcting for PGS does not completely account for the bias introduced by the confounder. 

 227 

Mendelian Randomization can help identify residual confounders in 228 

emulated trials 229 

 230 

Mendelian randomization (MR) is a powerful method to investigate causal relationships between 231 

exposure and outcome variables. By leveraging genetic variants as instrumental variables, MR 232 

can help infer causality in observational studies.19,31  233 

While MR is typically used to assess the causal relationships between an exposure and an 234 

outcome, it can be more generally used as a confounder detector.32 In this case, genetic variants 235 

are used as instruments to test the causal relationships between the potential confounder and 236 

both the exposure and the outcome. Unlike PGS, MR selects for variants that are directly 237 
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associated with the confounder and use different techniques to limit horizontal pleiotropy (i.e. to 238 

limit the impact of variants that are associated with the outcome not via the exposure)   239 

We use an MR framework to better understand whether 19 traits can be considered as 240 

confounders in the Empareg emulated RCT. Following the DAG in Figure 4A we tested whether 241 

the genetic instruments for the potential confounders were associated with both empagliflozin 242 

treatment (G → X) and coronary heart disease, a proxy for 3P-MACE (G → Y).  243 

Two-sample MR studies revealed putative causal effects of 14 out of 19 potential confounders on 244 

coronary heart disease (Figure 4B1). There is extensive orthogonal evidence supporting the 245 

causal nature of these relationships.33–38  When performing MR of the confounder on empagliflozin 246 

treatment, we observed 15 out of 19 traits to have a statistically significant effect (Figure 4B2). 247 

Since confounders are defined as variables with an effect on both, the exposure and outcome, 248 

we were specifically interested in traits where we observed an effect on both coronary heart 249 

disease and an empagliflozin treatment. This was the case for 12 traits when emulating Empareg 250 

with a plain observational approach. For example, BMI was a likely confounder being putatively 251 

causally associated, according to MR, with both empagliflozin treatment (OR= 2.68 [2.51 - 2.87], 252 

P < 2 x 10-16) and coronary heart disease (OR = 1.55 [1.48 - 1.64], P < 2 x 10-16). The putative 253 

causal effect on empagliflozin treatment highlights doctors' tendency to prescribe this medication 254 

to patients with higher BMI, a significant risk factor for T2D, which is the primary reason for the 255 

drug's prescription. 256 

 257 

After including eligibility criteria and a comparator group (Figure 4B3), only 2 traits, HbA1c and 258 

CRP remain significantly associated, according to MR, to both empagliflozin treatment and 259 

coronary heart disease. 260 

 261 

We further examined whether the causal effects of potential confounders on empagliflozin 262 

treatment was mediated by their effect on coronary heart disease. In other words, if the doctor’s 263 

choice to prescribe empagliflozin was informed by the potential confounder effect on the 264 

cardiovascular risk of the patient. If that would be the case, the confounder cannot be defined as 265 

such as it is associated with exposure via the outcome (C → Y → X). We show that these effects 266 

are small across all the putative confounders (Supplementary Figure 7) and hence the observed 267 

C → Y causal effect is direct. 268 

      269 

 270 
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B

 

Figure 4. Using mendelian randomization within Empareg trial emulation to identify 
confounders.  
A. A direct acyclic graph (DAG) illustrating the relationship between treatment initiation (X) and trial outcome (Y), as 
well as the effect of a genetic instrument (G) of a confounding variable (C) on both the treatment initiation and trial 
outcome only through the confounding variable.  
B. Results of a mendelian randomization (MR) analysis using inverse variance-weighted to study the causal effects 
of 18 traits on coronary heart disease, representing the trial outcome, and empagliflozin, representing the treatment 
initiation. B1. MR for association between 18 traits on coronary artery disease using two-sample MR. B2. MR for 
association between 18 traits on empagliflozin initiation in the full study population. B3  MR for association between 
18 traits on empagliflozin initiation after applying the randomized controlled trial’s eligibility criteria.  
The point estimates represent the odds ratios with lines representing their 95% confidence interval. For continuous 
confounders, the odds ratio reflects the change in the outcome variable associated with a 1 SD increase in the 
exposure variable; for binary confounders, the odds ratio represents the change in the outcome variable when 
comparing the presence versus the absence of the binary exposure. A circle around the point estimates represents 
statistical significance with a P value threshold of 5 x 10-2.  
* putative confounder, due to significance in B1 and B2; ** putative confounder, due to significance in B1 and B3; 
ALT, alanine transaminase; AST, aspartate transaminase; Hba1c, glycated hemoglobin A1c; CRP, C-reactive 
protein; LDL, low-density lipoprotein; HDL, high-density lipoprotein; elig. crit., eligibility criteria; X, treatment; Y, 
outcome; C, confounder; G, genetic instrument. 

 271 

Emulated trials can be used to better evaluate the prognostic and 272 

predictive enrichment of polygenic scores  273 

PGS can be used to enrich RCTs by identifying individuals based on higher risk of disease 274 

(‘prognostic enrichment’), or increased probability of benefit (‘predictive enrichment’).13 However, 275 

to evaluate these potential benefits, it is necessary to test both prognostic and predictive 276 

enrichment hypotheses between a study population that is as close as possible to that of the 277 

prospective RCT. In fact, PGS have shown different prediction performances across ages, sex, 278 
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socio-economic group and co-morbidities.14,39 Moreover, eligibility criteria can restrict the study 279 

population to high-risk individuals where PGS might have limited effects.40  280 

 281 

We first test prognostic enrichment by evaluating whether the PGS for the outcomes of the 4 282 

emulated trials (i.e. coronary heart disease and stroke) were associated with the trial outcome  283 

within the emulated RCT population (Figure 5A). We also compare these effects with those 284 

observed in the general population, to see if the performances of PGSs were different when 285 

restricting to eligible individuals in the RCTs. 286 

For both Empareg and Tecos emulation, we found the PGS for coronary heart disease to be 287 

associated with 3P-MACE (HR = 1.18; 95% CI= 1.06-1.32 in Empareg and HR = 1.43; 95% CI= 288 

1.09-1.88 in Tecos). These effects were consistent with what was observed in the full FinnGen 289 

(HR = 1.24; 95% CI= 1.23-1.25). 290 

However, for Aristotle and Rocket emulation the PGS for stroke was not associated with the 291 

composite endpoint stroke/systemic embolism (HR = 0.97; 95% CI= 0.79-1.20 for Aristotle and 292 

HR = 0.86; 95% CI= 0.62-1.18 for Rocket) despite the significant PGS association in the full 293 

population of FinnGen (HR = 1.14; 95% CI= 1.13-1.15). 294 

These results suggest that care should be taken when generalizing the PGS association from the 295 

general population to RCT participants.  296 

Given the significant prognostic enrichment for Empareg and Tecos, we calculated the reduction 297 

in sample size required to achieve a similar number of events, and consequently similar statistical 298 

power, if we had included individuals in the top 25% of the PGS for coronary heart disease. This 299 

prognostic enrichment approach strategy would have resulted in -8.6% and -26% reduction in 300 

sample size, given all the other inclusion and exclusion criteria being the same (Figure 5B). 301 

 302 

Finally, we tested predictive enrichment in Empareg and Tecos by evaluating the interaction 303 

between the PGS for coronary heart disease and the treatment arm indicator. A significant 304 

interaction would indicate the treatment being more effective in individuals with higher or lower 305 

PGS. There was no significant interaction either in the Empareg emulation (P = 0.99) or in the 306 

Tecos emulation (P = 0.24). 307 

 308 
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Figure 5. Effect of the polygenic scores on the primary trial outcomes among individuals 
included in trial emulations and in the full study population 
A. Effect of the outcome PGS on the primary outcome within each 1:1 nearest neighbor propensity score-matched 
trial cohort using Cox regression and adjusting for the treatment, as well as within the full FinnGen population. Hazard 
ratios per one standard deviation increase in genetic liability and their 95% confidence intervals are illustrated in the 
central forestplot.   
B. Sample size reduction of the emulated Empareg and Tecos trials after enriching the trial cohorts with individuals 
at top 25% genetic risk for CHD (top 25% CHD PGS) 
Empareg (EMPA-REG OUTCOME), BI 10773 (Empagliflozin) Cardiovascular Outcome Event Trial in Type 2 
Diabetes Mellitus Patients; Tecos (TECOS), Sitagliptin Cardiovascular Outcomes Study (MK-0431-082); Aristotle 
(ARISTOTLE), Apixaban for the Prevention of Stroke in Subjects With Atrial Fibrillation; Rocket (ROCKET-AF), An 
Efficacy and Safety Study of Rivaroxaban With Warfarin for the Prevention of Stroke and Non-Central Nervous 
System Systemic Embolism in Patients With Non-Valvular Atrial Fibrillation 
HR, hazard ratio; CI, confidence interval; PGS, polygenic score, 3PMACE, 3-point major adverse cardiovascular 
events; CHD, coronary heart disease; Sys. Embol., systemic embolism. 
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Discussion 310 

 311 
In this study we show how genetic data can benefit target trial emulation design and analysis and 312 

how a trial emulation framework can be used to better understand the value of polygenic scores 313 

for RCT design. 314 

 315 

To answer these questions, we first emulated 4 transformative cardiometabolic RCTs in FinnGen 316 

using the framework used by the RCT-DUPLICATE initiative.26 We learned that despite the large 317 

sample size and complete national coverage of drug purchases and health outcomes, RCT 318 

emulation requires a very large number of individuals. During the propensity score matching step, 319 

on average, 78% of individuals get discarded, as we aimed to match patients as closely as 320 

possible to ensure comparability between treatment groups, thus reducing the final sample size. 321 

Nonetheless, we were able to successfully emulate all 4 trials and generate real-world evidence 322 

that is concordant with the RCTs results. Emulation of smaller RCTs, as e.g. trials for rare 323 

diseases, is probably not possible at the current sample size of 500,000 genotyped individuals, 324 

highlighting how generation of ever larger genetic datasets is required if one aims to assess the 325 

role of genetics in trial-like populations. 326 

 327 

Confounding by indication is particularly severe in observational studies of medications. Our 328 

approach leverages the enormous catalog of genotype-phenotype relationships generated by 329 

genome-wide association studies to “impute” biological risk factors that might act as confounders. 330 

We show that polygenic scores can be used to identify both measured and unmeasured factors 331 

that are unbalanced between the two arms of the trials. Some of these factors are likely 332 

confounders, others are not; polygenic scores cannot distinguish between the two. However, 333 

polygenic scores can provide a more refined measure of the disease risk than simple disease 334 

diagnoses. For example, we show that in the emulated EMPAREG trial, which includes only T2D 335 

patients, a polygenic score with T2D was still unbalanced between the two arms of the trial. This 336 

might reflect unaccounted confounding by indication based on patients’ T2D risk of T2D-related 337 

factors. Reassuringly, we saw that in all emulated trials, the polygenic scores imbalance greatly 338 

reduced after propensity score matching. Our work highlights the importance of matching as a 339 

technique for confounding adjustment in observational data and suggest that polygenic scores 340 

can be used as an orthogonal assessment of the quality of matching, especially for biologically 341 

risk factors with genetic bases that are not comprehensively captured by claim or registry data 342 

(e.g. disease-specific biomarkers). It is also worth highlighting that if a polygenic score is balanced 343 
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between trial arms, this does not imply the predicted trait is also balanced. Polygenic scores are 344 

generally poor predictors of traits, even those with strong genetic bases, and adjusting or 345 

matching for polygenic scores, as shown by our simulations, is unlikely to control for the trait they 346 

are predicting. One should also consider that if the polygenic score for a potential confounder 347 

correlates with the genetics of the drug response, PGS differences between trial arms should be 348 

expected. 349 

 350 
Genetics-based instrumental variable approaches can however be used, together with specialist 351 

knowledge and other orthogonal evidence, to identify confounders. While others suggested that 352 

Mendelian Randomization can be used for confounder detection 41–43, we applied and extended 353 

this framework to emulated RCTs. While MR has numerous limitations that have been extensively 354 

described with regard to its most common use to assess the causal relationships between 355 

exposure and outcome19, here we mention a few limitations that are unique to its use in 356 

confounder detection. First, the causal relationship between an exposure (or potential 357 

confounder) and a treatment should be interpreted with caution. A putative causal effect is likely 358 

to indicate that the exposure is influencing the doctor's decision to prescribe the treatment and 359 

not the treatment effectiveness itself. For example, we identify a negative putative causal effect 360 

of chronic kidney disease (CKD) on empagliflozin treatment, reflecting the former doctor's 361 

decision to avoid prescribing empagliflozin to patients with severely impaired renal function before 362 

more recent evidence emerged showing its benefits for these patients.44–47 Second, the effect of 363 

the confounder on the treatment can be mediated by the outcome or the effect on the outcome 364 

can be mediated by the treatment. These effects can be addressed by closer examining the true 365 

causal structure and adjusting the confounder effects by the effects of all other pathways, 366 

excluding the direct effect of confounder on treatment or outcome, respectively.  367 

Despite these interpretational challenges, MR can be a powerful tool for confounder detection 368 

during RCT emulation. At the “eligibility criteria” stage MR could inform about residual 369 

confounding and suggest which factors, if measured, to include in propensity score-matching. 370 

After matching, MR can still be used to investigate non-adjusted residual confounding and, 371 

together with expert knowledge, better interpret the results of the emulated RCTs. 372 

While we only discussed MR for confounding detection, it would be theoretically possible to use 373 

MR for confounding adjustment.  374 

 375 

 376 
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The trial emulation framework is useful to better understand the value of genetics in trial design. 377 

The most promising use of trial emulation is to assess the prognostic enrichment for polygenic 378 

scores. Individuals enrolled in RCTs are highly selected and do not represent the general 379 

population. It would be naïve to assume the magnitude of association of a polygenic score with a 380 

certain outcome in the general population would be the same among RCT trial participants. A trial 381 

emulation framework can be used to draw a boundary on the expected association between the 382 

polygenic score and the trial outcome, a key piece of information when designing a RCT that uses 383 

genetics for either patient selection or as stratification criteria.  384 

A trial emulation is less valuable to understand predictive enrichment because, at current sample 385 

size, biobank-based emulated RCTs still have limited power to test for interaction between 386 

polygenic scores and treatment or to stratify individuals in different genetic risk bins. 387 

 388 

In conclusion, our work shows that genetic information can improve the design of emulated trials, 389 

which, in turn, can help inform the use of genetics in designing RCTs. Some of these results can 390 

be extended to other -omics that are getting measured in hundreds of thousands of biobanked 391 

samples.  392 

  393 
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Methods 394 

Study population 395 

In the current study, we included samples from 425 483 individuals from Finland, sourced from 396 

FinnGen Data Freeze 10 (https://www.finngen.fi/en).21 This biobank study includes samples from 397 

hospital biobanks, alongside prospective epidemiological and disease-based cohorts. Utilizing the 398 

unique national personal identification numbers, the data were interconnected with national 399 

registries including hospital discharge records (accessible from 1968), death records (from 1969), 400 

cancer registries (from 1953), and drug purchase records (from 1995). Registry information was 401 

accessible up to December 31, 2021. 402 

 403 

Trial Selection 404 

As the currently largest trial emulation effort, the RCT Duplicate project6,26 has been emulating 405 

numerous RCTs in US-American insurance claims datasets, the goal of which was to assess the 406 

utility of the obtained Real-World Evidence (RWE) for regulatory-decision making.  407 

We sought to identify four RCTs that have been previously replicated by RCT Duplicate and were 408 

feasible to be successfully emulated in our Real-World Data (RWD) dataset. By the time of 409 

initiation of our project, findings of the first 10 trial emulations were published by the RCT Duplicate 410 

project.26 The evaluation criteria deciding upon the feasibility of a RCT replication included critical 411 

aspects of the trial emulation protocol, such as the primary outcomes, eligibility criteria, treatment 412 

strategies, allowing for only minor deviations if features were not available in our data source 413 

(Supplementary Tables 2-3). The RCT was seen as closely emulated when the emulation of 414 

comparator and outcome were at least moderate, and at least one of them was good, as described 415 

in the meta-analysis of RCT Duplicate data.48 416 

 417 

Trial Emulation Design and Analysis 418 

Based on RCT Duplicate’s trial emulation efforts, we developed the protocols for the emulations 419 

of four trials (Empareg, Tecos, Aristotle and Rocket). Closely following the original trial protocols 420 

we emulated an observational data protocol for each trial, including the eligibility criteria, treatment 421 

strategies, assignment procedures, follow-up periods, primary outcomes, causal contrasts and an 422 

analysis plan.4  423 
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 424 

Different sets of eligibility criteria required fulfillment within distinct timeframes prior to therapy 425 

initiation. Flowcharts of cohort formations can be found in Supplementary Tables 4-7 and 426 

Supplementary Figures 8-11.   427 

 428 

The treatment strategies included new users of either the drug of interest or the comparator drug, 429 

starting from the date the newer drug received marketing authorization in Finland. For the two 430 

placebo-controlled trials, Empareg and Tecos, we selected an active comparator as a proxy for 431 

placebo regarding cardiovascular effects, similar to RCT Duplicate. This is due to the fact that 432 

confounding bias may become especially serious when active user groups are compared to 433 

nonuser groups, as nonuser comparator groups considerably differ from actively treated patients 434 

in ways that are poorly captured in observational datasets.49,50  435 

 436 

As a proxy for placebo DPP4-inhibitors for Empareg and second-generation sulfonylureas for 437 

Tecos were chosen, given they likewise antidiabetic treatments, commonly prescribed 438 

interchangeably to the treatments of interest and are known not have any causal effect on 439 

cardiovascular outcomes based on current evidence.23,51–53  440 

 441 

As the assignment procedures in observational studies are never at random, an adjustment for 442 

confounding variables is required in order to satisfy the exchangeability assumption. We selected 443 

sets of >25 confounding variables, measured within 6 months prior to drug initiation, reflecting 444 

demographics, comorbidities, comedications and cardiovascular procedures. We adopted 1:1 445 

propensity score (PS) nearest-neighbor matching with a caliper of 0.1 or 0.01 on the PS scale, 446 

depending on the initial overlap.54,55 PS matching statistics and details on covariate balance for 447 

all trial emulations can be found in Supplementary Tables 8-11. 448 

 449 

Follow-up started at the first purchase of either of the defined therapeutics and ended with the 450 

occurrence of a primary outcome event, death, discontinuation or switch to a comparator or end 451 

of registry information, whichever occurs first. The time point of a discontinuation of therapy was 452 

calculated based on the number of packages purchased by the patient multiplied by the package 453 

size.  454 

 455 
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The primary outcome for Empareg and Tecos was 3P-MACE and for Aristotle and Rocket a 456 

composite endpoint of stroke and systemic embolism, adapted from the definition used in the 457 

corresponding trials.  458 

 459 

In our analysis we employed an “on-treatment” approach attempting to replicate an intention-to-460 

treat estimate derived from the RCT with particularly high treatment compliance. Hazard ratios 461 

(HR) and 95% confidence intervals (95% CI) were estimated in PS-matched cohorts using the 462 

Cox proportional hazard models. We defined “estimate agreement” as the emulation estimate 463 

being within the 95% CI for the RCT estimate.   464 

 465 

PGS Generation 466 

We computed genome-wide polygenic scores (PGS) for 20 traits (Supplementary Table 12) 467 

using the PGS-continuous shrinkage priors (CS) method.56 The input weights were derived from 468 

available summary statistics sourced from external GWAS data pertaining to the 20 traits. 469 

Variants were restricted to those present in the HapMap 3 reference panel.57 To ensure 470 

comparability, PGS were standardized (mean = 0; standard deviation = 1) in the whole FinnGen 471 

population. Detailed information regarding the summary statistics can be found in the 472 

supplementary material.  473 

 474 

PGS Analysis of Cohorts  475 

We investigated genetic differences between the treated and control groups at three different 476 

stages of the emulation process and how they change with increased confounder adjustment.  477 

For each PGS we calculated the difference in means (standardized mean difference, SMD) 478 

between the treated and control groups using logistic regression and determined its significance 479 

on the basis of a Bonferroni-corrected P value threshold (2.5 x 10-3). 480 

 481 

In the first stage, we looked at a plain observational setting that is best reflecting the original RCT 482 

question. Therefore, as Empareg and Tecos are both placebo-controlled trials, we defined the 483 

plain observational setting as initiators of the treatment vs non-initiators. Since Aristotle and 484 

Rocket are both active-comparator trials, the plain observational setting was defined as initiators 485 

of the treatment vs initiators of the active comparator. In the second stage, we looked at the 486 
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cohorts after applying the eligibility criteria. And in the third, we considered the PS-matched 487 

cohorts. 488 

 489 

Simulations 490 

To show that correcting on an imperfect proxy of the confounder can result in bias in effect size 491 

estimates, we carried out simulation experiments under the causal model shown in Figure 3A. 492 

We first generated PGS as a random variable following the standard normal distribution N(0,1), 493 

and the rest of the variables were subsequently created as 494 

 495 

	𝐶	 = 	𝑟𝑃𝐺𝑆	 +	)(1− 𝑟2)	𝜀*	, 496 

𝑋	 = 	𝑏*'𝐶	 +	0(1 −	𝑏*'
+)	𝜀' , 497 

and 𝑌	 = X + 𝑏*)𝐶	 , where 𝜀*		, 𝜀'	~	𝑁(0,1). 498 

 499 

The variables were simulated as such so that the variance of PGS, C and X were all 1, and the 500 

expected effect of X on Y is 1. Under this model, we could change the correlation between C and 501 

PGS simply by varying r, and the effect of confounding factor C on X and Y by varying bCX and  502 

bCY. Under each condition, we measured the observed effect of X on Y, conditioned on PGS, 503 

which was an imperfect proxy of C, through linear regression 𝑙𝑚(𝑌	~	𝑋	 + 𝑃𝐺𝑆). We denoted 504 

estimate bias as the observed regression coefficient – 1, which is the expected underlying effect 505 

of X on Y.  506 

 507 

We wanted to also demonstrate that even under a fixed correlation coefficient between C and 508 

PGS, extent of bias in observed X on Y effect can still vary due to additional components 509 

contributing to only PGS and X, Y but not C, we further carried out simulations under a different 510 

causal model showed in Supplementary Figure 6A, where PGS and confounder C are correlated 511 

due to a common underlying causal factor 𝐺∗. Meanwhile, an extra component G’ contribute only 512 

to PGS but not C. Under this model, we first generated shared causal factor 𝐺∗ and PGS unique 513 

causal factor G’ independently following the standard normal distribution N(0,1), and other 514 

variables as below: 515 

𝑃𝐺𝑆	 = 	𝑏-∗.-/𝐺∗ 	+ 	0(1 − 𝑏-∗.-/
+)	𝐺′	516 
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𝐶	 = 	𝑏-∗*𝐺∗ 	+ 	0(1 − 𝑏-∗*
+)	𝜀*	 , where 𝑏-∗* 	= 	

0
!&∗'&(

 and r is the correlation coefficient between 517 

C and PGS. We fixed the contribution of 𝐺∗ on PGS as !&∗'&(
#

"#$(.-/)
	=	0.8	and	r2 = 0.3 in this experiment.  518 

 519 

Subsequently, we simulated X and Y as 520 

𝑋	 = 	𝑏-1'𝐺′	 + 𝑏*'𝐶		 +	0(1 − 𝑏-1'
+ − 𝑏*'

+)	𝜀*	 and 𝑌 = 𝑋 + 𝑏-1)𝐺′	 + 𝑏*)𝐶 521 

The variables were simulated as such so that variance of G’, G*, PGS, C and X were all 1, and 522 

the expected effect of X on Y is 1. In this experiment, for simplicity, we fixed the contribution of C 523 

on X and Y so that  "#$(!!"*)
"#$(')

= "#$(!!$*)
"#$())

= 	0.3, and assumed that G’ has no effect on Y. 524 

Furthermore, as a proof of concept, we assumed that G’ has a negative effect on X (𝑏-1'+	<	0) 525 

since in this case, we expect to see an increment in estimate bias when G’ contributes more to 526 

the variance of X. We looked at estimate bias from a same linear regression  527 

𝑙𝑚(𝑌	~	𝑋	 + 𝑃𝐺𝑆) in respect of changes in (23!&∗'&(
#)

"#$(.-/)
and !&)"

#

"#$(')
.  528 

 529 

Genome-wide association studies 530 

We used REGENIE58 to perform a GWAS of empagliflozin initiation in the whole population, 531 

including 426,775 samples (cases: 14,996; controls: 411,779) as well as after applying the 532 

eligibility criteria of the Empareg emulation, including 11,349 samples (cases: 4,630; controls: 533 

6,719). Details on genotyping and imputation in FinnGen can be found in Kurki et al. 2023. 534 

 535 

Mendelian Randomization Analysis 536 

By utilizing genetic variants as instrumental variables, we employed two-sample Mendelian 537 

randomization (MR) to investigate the confounding status of numerous variables in a trial 538 

emulation setting.18 In our MR analysis we only focused on the Empareg trial emulation. We 539 

examined the effect of the 20 traits used in the PGS analysis (sources of external summary 540 

statistics can be found in Supplementary Table 12) on the trial outcome, represented by 541 

summary statistics for CHD, as well as on receiving the empagliflozin treatment in the whole 542 

population and after applying the eligibility criteria, both represented by summary statistics from 543 

our GWASs. We performed the MR analysis using the inverse variance-weighted method (IVW). 544 
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To obtain the independent instrumental variants (IVs) for each trait we filtered for significant 545 

exposure-associated SNPs (P Value < 5 × 10-8), performed linkage disequilibrium (LD) clumping 546 

(r2 < 0.001; clumping window = 10,000 kb) and excluded potential outcome-associated SNPs 547 

(defined as P Value < 5 × 10-8 with the outcome). 548 

 549 

We identified three key steps in using MR to explore confounding: (1) MR of potential confounder 550 

on treatment. Conducting an MR analysis to assess the causal effect of the proposed confounding 551 

trait on the treatment variable. If the MR analysis shows a significant association, it suggests the 552 

potential confounder is indeed related to the treatment. (2) MR of potential confounder on 553 

outcome. Performing a separate MR analysis to evaluate the causal effect of the proposed 554 

confounding trait on the trial outcome variable. If the MR analysis demonstrates a significant 555 

association, it indicates the potential confounder is also related to the outcome. (3) Interpretation. 556 

If both MR analyses (steps 1 and 2) show significant associations, it implies the proposed trait is 557 

very likely to be a true confounder that needs to be accounted for and addressed through 558 

statistical adjustment in the trial emulation to obtain widely unbiased average treatment effects. 559 

Expert knowledge is still required to assess the plausibility of the MR analyses. 560 

 561 

Statistical Analysis of the Outcome PGS within Trial Emulations 562 

Analogously to the MR analysis, we selected the CHD PGS as outcome PGS for MACE and 563 

Stroke PGS for the composite endpoint stroke/systemic embolism. We evaluated the effect of the 564 

outcome PGS on the primary outcome within each PS-matched cohort using Cox regression and 565 

adjusting for the treatment.  566 

 567 

ℎ(𝑡	|	𝑇, 𝑃𝐺𝑆) 	= 	ℎ4(𝑡) + 𝑒𝑥𝑝^(𝛽2 	 ∗ 𝑇	 +	𝛽+ 	 ∗ 𝑃𝐺𝑆)		568 
 569 

ℎ(𝑡) : hazard at time t  570 

ℎ4(𝑡)	: baseline hazard at time t 571 

𝑇 : treatment group 572 

𝑃𝐺𝑆 : outcome PGS 573 

𝛽2  and 𝛽+ : coefficients associated with the treatment group variable 𝑇 and 𝑃𝐺𝑆 respectively 574 

 575 
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Additionally, we predicted the outcome PGS effects on the primary outcome in the full population, 576 

using Cox regression. Survival times started at birth with follow-up until the occurrence of the 577 

primary outcome, death or end of registry information, whichever occurred first.  578 

Furthermore, we determined the event rate of the primary outcome for each trial and investigated 579 

the event rates within individuals with top 25% PGS. Based on that we calculated the required 580 

sample sizes given the new event rates, to reach the same statistical power. This was in order to 581 

assess the effect of PGS enrichment on sample sizes in clinical trials. 582 

  583 
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Code Availability 584 

The study utilized previously published analysis tools as described in the Methods section. 585 

Additional code used for these analyses is available at 586 

https://github.com/dsgelab/trial_emulations_genetics   587 

 588 

Data Availability 589 

Access to individual-level sensitive health data, as mandated by National and European 590 

regulations (GDPR), requires approval from national authorities for specific research projects and 591 

for researchers who are explicitly listed and approved. The health data referenced in this study 592 

was generated and provided by the National Health Register Authorities (Finnish Institute of 593 

Health and Welfare, Statistics Finland, KELA, Digital and Population Data Services Agency) and 594 

approved by either the respective authorities or the Finnish Data Authority, Findata, for use in the 595 

FinnGen project. As a result, we, the authors, are unable to grant access to individual-level data 596 

to third parties. However, researchers can apply for access to the health register data through the 597 

Finnish Data Authority, Findata (https://findata.fi/en/permits/), and for individual-level genotype 598 

data from Finnish biobanks through the Fingenious portal (https://site.fingenious.fi/en/), managed 599 

by the Finnish Biobank Cooperative FINBB (https://finbb.fi/en/). All Finnish biobanks can provide 600 

data for research projects under the scope of the Finnish Biobank Act, which includes research 601 

aimed at promoting health, understanding disease mechanisms, or developing health and medical 602 

care products and practices. More information on accessing FinnGen data can be found here: 603 

https://www.finngen.fi/en/access_results. A comprehensive list of FinnGen endpoints is available 604 

at: https://www.finngen.fi/en/researchers/clinical-endpoints. 605 

 606 

Ethics statement and materials & methods   607 

 608 

Patients and control subjects in FinnGen provided informed consent for biobank research, based 609 

on the Finnish Biobank Act. Alternatively, separate research cohorts, collected prior the Finnish 610 

Biobank Act came into effect (in September 2013) and start of FinnGen (August 2017), were 611 

collected based on study-specific consents and later transferred to the Finnish biobanks after 612 

approval by Fimea (Finnish Medicines Agency), the National Supervisory Authority for Welfare 613 

and Health. Recruitment protocols followed the biobank protocols approved by Fimea. The 614 
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Coordinating Ethics Committee of the Hospital District of Helsinki and Uusimaa (HUS) statement 615 

number for the FinnGen study is Nr HUS/990/2017.  616 

 617 

The FinnGen study is approved by Finnish Institute for Health and Welfare (permit numbers: 618 

THL/2031/6.02.00/2017, THL/1101/5.05.00/2017, THL/341/6.02.00/2018, 619 

THL/2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019 and 620 

THL/1524/5.05.00/2020), Digital and population data service agency (permit numbers: 621 

VRK43431/2017-3, VRK/6909/2018-3, VRK/4415/2019-3), the Social Insurance Institution 622 

(permit numbers: KELA 58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 623 

98/522/2019, KELA 134/522/2019, KELA 138/522/2019, KELA 2/522/2020, KELA 16/522/2020), 624 

Findata permit numbers THL/2364/14.02/2020, THL/4055/14.06.00/2020, 625 

THL/3433/14.06.00/2020, THL/4432/14.06/2020, THL/5189/14.06/2020, 626 

THL/5894/14.06.00/2020, THL/6619/14.06.00/2020, THL/209/14.06.00/2021, 627 

THL/688/14.06.00/2021, THL/1284/14.06.00/2021, THL/1965/14.06.00/2021, 628 

THL/5546/14.02.00/2020, THL/2658/14.06.00/2021, THL/4235/14.06.00/2021, Statistics Finland 629 

(permit numbers: TK-53-1041-17 and TK/143/07.03.00/2020 (earlier TK-53-90-20) 630 

TK/1735/07.03.00/2021, TK/3112/07.03.00/2021) and Finnish Registry for Kidney Diseases 631 

permission/extract from the meeting minutes on 4th July 2019.  632 

 633 

The Biobank Access Decisions for FinnGen samples and data utilized in FinnGen Data Freeze 634 

10  include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34, BB_2018_67, 635 

BB2018_71, BB2019_7, BB2019_8, BB2019_26, BB2020_1, BB2021_65, Finnish Red Cross 636 

Blood Service Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, HUS/248/2020, 637 

HUS/150/2022 § 12, §13, §14, §15, §16, §17, §18, and §23, Auria Biobank AB17-5154 and 638 

amendment #1 (August 17 2020) and amendments BB_2021-0140, BB_2021-0156 (August 26 639 

2021, Feb 2 2022), BB_2021-0169, BB_2021-0179, BB_2021-0161,  AB20-5926 and amendment 640 

#1 (April 23 2020)and it´s modification (Sep 22 2021), Biobank Borealis of Northern 641 

Finland_2017_1013, 2021_5010, 2021_5018, 2021_5015, 2021_5023, 2021_5017, 2022_6001,  642 

Biobank of Eastern Finland 1186/2018 and amendment 22 § /2020, 53§/2021, 13§/2022, 643 

14§/2022, 15§/2022, Finnish Clinical Biobank Tampere MH0004 and amendments (21.02.2020 644 

& 06.10.2020), §8/2021, §9/2022, §10/2022, §12/2022, §20/2022, §21/2022, §22/2022, 645 

§23/2022, Central Finland Biobank 1-2017, and Terveystalo Biobank STB 2018001 and 646 

amendment 25th Aug 2020, Finnish Hematological Registry and Clinical Biobank decision 18th 647 

June 2021, Arctic biobank P0844: ARC_2021_1001.  648 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.05.24316763doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.05.24316763
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 649 

Acknowledgements 650 

This work was supported by funding from the Eric and Wendy Schmidt Center at the Broad 651 

Institute of MIT and Harvard.  652 

The FinnGen project receives funding from two Business Finland grants (HUS 4685/31/2016 and 653 

UH 4386/31/2016) and the following industry partners: AbbVie Inc., AstraZeneca UK Ltd., Biogen 654 

MA Inc., Bristol Myers Squibb (and Celgene Corporation & Celgene International II), Genentech 655 

Inc., Merck Sharp & Dohme LLC, Pfizer Inc., GlaxoSmithKline Intellectual Property Development, 656 

Sanofi US Services, Maze Therapeutics Inc., Janssen Biotech Inc., Novartis AG, and Boehringer 657 

Ingelheim International GmbH. We acknowledge the contributions of the following biobanks for 658 

providing samples to FinnGen: Auria Biobank (https://www.auria.fi/biopankki/), THL Biobank 659 

(https://www.thl.fi/biobank), Helsinki Biobank (https://www.helsinginbiopankki.fi), Biobank 660 

Borealis of Northern Finland (https://www.ppshp.fi/Tutkimus-ja-opetus/Biopankki/Pages/Biobank-661 

Borealis-briefly-in-English.aspx), Finnish Clinical Biobank Tampere (https://www.tays.fi/en-662 

US/Research_and_development/Finnish_Clinical_Biobank_Tampere), Biobank of Eastern 663 

Finland (https://www.ita-suomenbiopankki.fi/en), Central Finland Biobank (https://www.ksshp.fi/fi-664 

FI/Potilaalle/Biopankki), Finnish Red Cross Blood Service Biobank 665 

(www.veripalvelu.fi/verenluovutus/biopankkitoiminta) and Terveystalo Biobank 666 

(https://www.terveystalo.com/fi/Yritystietoa/Terveystalo-Biopankki/Biopankki/). All Finnish 667 

biobanks are members of the BBMRI.fi infrastructure (https://www.bbmri.fi). The FINBB 668 

(https://finbb.fi/) is the coordinator of BBMRI-ERIC operations in Finland. Access to Finnish 669 

biobank data is facilitated through the Fingenious services (https://site.fingenious.fi/en/) operated 670 

by FINBB.  671 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.05.24316763doi: medRxiv preprint 

https://www.auria.fi/biopankki/
https://www.thl.fi/biobank
https://www.helsinginbiopankki.fi/
https://www.ppshp.fi/Tutkimus-ja-opetus/Biopankki/Pages/Biobank-Borealis-briefly-in-English.aspx
https://www.ppshp.fi/Tutkimus-ja-opetus/Biopankki/Pages/Biobank-Borealis-briefly-in-English.aspx
https://www.tays.fi/en-US/Research_and_development/Finnish_Clinical_Biobank_Tampere
https://www.tays.fi/en-US/Research_and_development/Finnish_Clinical_Biobank_Tampere
https://www.ita-suomenbiopankki.fi/en
https://www.ksshp.fi/fi-FI/Potilaalle/Biopankki
https://www.ksshp.fi/fi-FI/Potilaalle/Biopankki
http://www.veripalvelu.fi/verenluovutus/biopankkitoiminta
https://www.terveystalo.com/fi/Yritystietoa/Terveystalo-Biopankki/Biopankki/
https://www.bbmri.fi/
https://finbb.fi/
https://site.fingenious.fi/en/
https://doi.org/10.1101/2024.11.05.24316763
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

References 672 

1. Feinstein Alvan R. & Horwitz Ralph I. Double Standards, Scientific Methods, and 673 

Epidemiologic Research. N. Engl. J. Med. 307, 1611–1617 (1982). 674 

2. Bakker, E. et al. Contribution of Real-World Evidence in European Medicines Agency’s 675 

Regulatory Decision Making. Clin. Pharmacol. Ther. 113, 135–151 (2023). 676 

3. Office of the Commissioner. Real-World Evidence. U.S. Food and Drug Administration 677 

https://www.fda.gov/science-research/science-and-research-special-topics/real-world-678 

evidence (2023). 679 

4. Hernán, M. A. & Robins, J. M. Using Big Data to Emulate a Target Trial When a 680 

Randomized Trial Is Not Available. Am. J. Epidemiol. 183, 758–764 (2016). 681 

5. Didelez, V., Haug, U. & Garcia-Albeniz, X. Re: Are Target Trial Emulations the Gold 682 

Standard for Observational Studies? Epidemiology 35, e3 (2024). 683 

6. Wang, S. V. et al. Emulation of Randomized Clinical Trials With Nonrandomized Database 684 

Analyses: Results of 32 Clinical Trials. JAMA 329, 1376–1385 (2023). 685 

7. Bigirumurame, T. et al. Current practices in studies applying the target trial emulation 686 

framework: a protocol for a systematic review. BMJ Open 13, e070963 (2023). 687 

8. Cole, S. R. & Frangakis, C. E. The consistency statement in causal inference: a definition 688 

or an assumption? Epidemiology 20, 3–5 (2009). 689 

9. Holland, P. W. Statistics and Causal Inference. J. Am. Stat. Assoc. 81, 945–960 (1986). 690 

10. Fewell, Z., Davey Smith, G. & Sterne, J. A. C. The impact of residual and unmeasured 691 

confounding in epidemiologic studies: a simulation study. Am. J. Epidemiol. 166, 646–655 692 

(2007). 693 

11. Scola, G. et al. Implementation of the trial emulation approach in medical research: a 694 

scoping review. BMC Med. Res. Methodol. 23, 186 (2023). 695 

12. Hansford, H. J. et al. Reporting of Observational Studies Explicitly Aiming to Emulate 696 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.05.24316763doi: medRxiv preprint 

http://paperpile.com/b/Qp2vkz/LNEAV
http://paperpile.com/b/Qp2vkz/LNEAV
http://paperpile.com/b/Qp2vkz/LNEAV
http://paperpile.com/b/Qp2vkz/LNEAV
http://paperpile.com/b/Qp2vkz/LNEAV
http://paperpile.com/b/Qp2vkz/LNEAV
http://paperpile.com/b/Qp2vkz/v2BZI
http://paperpile.com/b/Qp2vkz/v2BZI
http://paperpile.com/b/Qp2vkz/v2BZI
http://paperpile.com/b/Qp2vkz/v2BZI
http://paperpile.com/b/Qp2vkz/v2BZI
http://paperpile.com/b/Qp2vkz/v2BZI
http://paperpile.com/b/Qp2vkz/v2BZI
http://paperpile.com/b/Qp2vkz/v2BZI
http://paperpile.com/b/Qp2vkz/WIedh
http://paperpile.com/b/Qp2vkz/WIedh
http://paperpile.com/b/Qp2vkz/WIedh
http://paperpile.com/b/Qp2vkz/WIedh
https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence
https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence
http://paperpile.com/b/nnujgd/cOE7DQp2vkz/WIedh
http://paperpile.com/b/Qp2vkz/pPaW5
http://paperpile.com/b/Qp2vkz/pPaW5
http://paperpile.com/b/Qp2vkz/pPaW5
http://paperpile.com/b/Qp2vkz/pPaW5
http://paperpile.com/b/Qp2vkz/pPaW5
http://paperpile.com/b/Qp2vkz/pPaW5
http://paperpile.com/b/Qp2vkz/EfTv3
http://paperpile.com/b/Qp2vkz/EfTv3
http://paperpile.com/b/Qp2vkz/EfTv3
http://paperpile.com/b/Qp2vkz/EfTv3
http://paperpile.com/b/Qp2vkz/EfTv3
http://paperpile.com/b/Qp2vkz/EfTv3
http://paperpile.com/b/Qp2vkz/aBJRl
http://paperpile.com/b/Qp2vkz/aBJRl
http://paperpile.com/b/Qp2vkz/aBJRl
http://paperpile.com/b/Qp2vkz/aBJRl
http://paperpile.com/b/Qp2vkz/aBJRl
http://paperpile.com/b/Qp2vkz/aBJRl
http://paperpile.com/b/Qp2vkz/aBJRl
http://paperpile.com/b/Qp2vkz/aBJRl
http://paperpile.com/b/Qp2vkz/zx2jP
http://paperpile.com/b/Qp2vkz/zx2jP
http://paperpile.com/b/Qp2vkz/zx2jP
http://paperpile.com/b/Qp2vkz/zx2jP
http://paperpile.com/b/Qp2vkz/zx2jP
http://paperpile.com/b/Qp2vkz/zx2jP
http://paperpile.com/b/Qp2vkz/zx2jP
http://paperpile.com/b/Qp2vkz/zx2jP
http://paperpile.com/b/Qp2vkz/1kdoQ
http://paperpile.com/b/Qp2vkz/1kdoQ
http://paperpile.com/b/Qp2vkz/1kdoQ
http://paperpile.com/b/Qp2vkz/1kdoQ
http://paperpile.com/b/Qp2vkz/1kdoQ
http://paperpile.com/b/Qp2vkz/1kdoQ
http://paperpile.com/b/Qp2vkz/JKwLV
http://paperpile.com/b/Qp2vkz/JKwLV
http://paperpile.com/b/Qp2vkz/JKwLV
http://paperpile.com/b/Qp2vkz/JKwLV
http://paperpile.com/b/Qp2vkz/JKwLV
http://paperpile.com/b/Qp2vkz/5WEM4
http://paperpile.com/b/Qp2vkz/5WEM4
http://paperpile.com/b/Qp2vkz/5WEM4
http://paperpile.com/b/Qp2vkz/5WEM4
http://paperpile.com/b/Qp2vkz/5WEM4
http://paperpile.com/b/Qp2vkz/5WEM4
http://paperpile.com/b/Qp2vkz/5WEM4
http://paperpile.com/b/Qp2vkz/rbPKw
http://paperpile.com/b/Qp2vkz/rbPKw
http://paperpile.com/b/Qp2vkz/rbPKw
http://paperpile.com/b/Qp2vkz/rbPKw
http://paperpile.com/b/Qp2vkz/rbPKw
http://paperpile.com/b/Qp2vkz/rbPKw
http://paperpile.com/b/Qp2vkz/rbPKw
http://paperpile.com/b/Qp2vkz/rbPKw
http://paperpile.com/b/Qp2vkz/XxKQN
http://paperpile.com/b/Qp2vkz/XxKQN
http://paperpile.com/b/Qp2vkz/XxKQN
https://doi.org/10.1101/2024.11.05.24316763
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Randomized Trials: A Systematic Review. JAMA Netw Open 6, e2336023 (2023). 697 

13. Fahed, A. C., Philippakis, A. A. & Khera, A. V. The potential of polygenic scores to improve 698 

cost and efficiency of clinical trials. Nat. Commun. 13, 2922 (2022). 699 

14. Jermy, B. et al. A unified framework for estimating country-specific cumulative incidence for 700 

18 diseases stratified by polygenic risk. Nat. Commun. 15, 5007 (2024). 701 

15. Nørgaard, M., Ehrenstein, V. & Vandenbroucke, J. P. Confounding in observational studies 702 

based on large health care databases: problems and potential solutions - a primer for the 703 

clinician. Clin. Epidemiol. 9, 185–193 (2017). 704 

16. Kuroki, M. & Pearl, J. Measurement bias and effect restoration in causal inference. 705 

Biometrika 101, 423–437 (2014). 706 

17. Miao, W., Geng, Z. & Tchetgen Tchetgen, E. Identifying Causal Effects With Proxy 707 

Variables of an Unmeasured Confounder. Biometrika 105, 987–993 (2018). 708 

18. Hartwig, F. P., Davies, N. M., Hemani, G. & Davey Smith, G. Two-sample Mendelian 709 

randomization: avoiding the downsides of a powerful, widely applicable but potentially 710 

fallible technique. Int. J. Epidemiol. 45, 1717–1726 (2016). 711 

19. Sanderson, E. et al. Mendelian randomization. Nat Rev Methods Primers 2, (2022). 712 

20. Flanders, W. D. et al. A method for detection of residual confounding in time-series and 713 

other observational studies. Epidemiology 22, 59–67 (2011). 714 

21. Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated 715 

population. Nature 613, 508–518 (2023). 716 

22. Zinman, B. et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 717 

Diabetes. N. Engl. J. Med. 373, 2117–2128 (2015). 718 

23. Green, J. B. et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. 719 

Engl. J. Med. 373, 232–242 (2015). 720 

24. Granger Christopher B. et al. Apixaban versus Warfarin in Patients with Atrial Fibrillation. N. 721 

Engl. J. Med. 365, 981–992. 722 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.05.24316763doi: medRxiv preprint 

http://paperpile.com/b/Qp2vkz/XxKQN
http://paperpile.com/b/Qp2vkz/XxKQN
http://paperpile.com/b/Qp2vkz/XxKQN
http://paperpile.com/b/Qp2vkz/XxKQN
http://paperpile.com/b/Qp2vkz/XxKQN
http://paperpile.com/b/Qp2vkz/auVc2
http://paperpile.com/b/Qp2vkz/auVc2
http://paperpile.com/b/Qp2vkz/auVc2
http://paperpile.com/b/Qp2vkz/auVc2
http://paperpile.com/b/Qp2vkz/auVc2
http://paperpile.com/b/Qp2vkz/auVc2
http://paperpile.com/b/Qp2vkz/Jmb87
http://paperpile.com/b/Qp2vkz/Jmb87
http://paperpile.com/b/Qp2vkz/Jmb87
http://paperpile.com/b/Qp2vkz/Jmb87
http://paperpile.com/b/Qp2vkz/Jmb87
http://paperpile.com/b/Qp2vkz/Jmb87
http://paperpile.com/b/Qp2vkz/Jmb87
http://paperpile.com/b/Qp2vkz/Jmb87
http://paperpile.com/b/Qp2vkz/iU81f
http://paperpile.com/b/Qp2vkz/iU81f
http://paperpile.com/b/Qp2vkz/iU81f
http://paperpile.com/b/Qp2vkz/iU81f
http://paperpile.com/b/Qp2vkz/iU81f
http://paperpile.com/b/Qp2vkz/iU81f
http://paperpile.com/b/Qp2vkz/iU81f
http://paperpile.com/b/Qp2vkz/JZCVB
http://paperpile.com/b/Qp2vkz/JZCVB
http://paperpile.com/b/Qp2vkz/JZCVB
http://paperpile.com/b/Qp2vkz/JZCVB
http://paperpile.com/b/Qp2vkz/JZCVB
http://paperpile.com/b/Qp2vkz/JZCVB
http://paperpile.com/b/Qp2vkz/TRrCu
http://paperpile.com/b/Qp2vkz/TRrCu
http://paperpile.com/b/Qp2vkz/TRrCu
http://paperpile.com/b/Qp2vkz/TRrCu
http://paperpile.com/b/Qp2vkz/TRrCu
http://paperpile.com/b/Qp2vkz/TRrCu
http://paperpile.com/b/Qp2vkz/y7jdx
http://paperpile.com/b/Qp2vkz/y7jdx
http://paperpile.com/b/Qp2vkz/y7jdx
http://paperpile.com/b/Qp2vkz/y7jdx
http://paperpile.com/b/Qp2vkz/y7jdx
http://paperpile.com/b/Qp2vkz/y7jdx
http://paperpile.com/b/Qp2vkz/y7jdx
http://paperpile.com/b/Qp2vkz/HxTjb
http://paperpile.com/b/Qp2vkz/HxTjb
http://paperpile.com/b/Qp2vkz/HxTjb
http://paperpile.com/b/Qp2vkz/HxTjb
http://paperpile.com/b/Qp2vkz/HxTjb
http://paperpile.com/b/Qp2vkz/HxTjb
http://paperpile.com/b/Qp2vkz/HxTjb
http://paperpile.com/b/Qp2vkz/MoYGa
http://paperpile.com/b/Qp2vkz/MoYGa
http://paperpile.com/b/Qp2vkz/MoYGa
http://paperpile.com/b/Qp2vkz/MoYGa
http://paperpile.com/b/Qp2vkz/MoYGa
http://paperpile.com/b/Qp2vkz/MoYGa
http://paperpile.com/b/Qp2vkz/MoYGa
http://paperpile.com/b/Qp2vkz/MoYGa
http://paperpile.com/b/Qp2vkz/tFIuE
http://paperpile.com/b/Qp2vkz/tFIuE
http://paperpile.com/b/Qp2vkz/tFIuE
http://paperpile.com/b/Qp2vkz/tFIuE
http://paperpile.com/b/Qp2vkz/tFIuE
http://paperpile.com/b/Qp2vkz/tFIuE
http://paperpile.com/b/Qp2vkz/tFIuE
http://paperpile.com/b/Qp2vkz/tFIuE
http://paperpile.com/b/Qp2vkz/8FQgH
http://paperpile.com/b/Qp2vkz/8FQgH
http://paperpile.com/b/Qp2vkz/8FQgH
http://paperpile.com/b/Qp2vkz/8FQgH
http://paperpile.com/b/Qp2vkz/8FQgH
http://paperpile.com/b/Qp2vkz/8FQgH
http://paperpile.com/b/Qp2vkz/8FQgH
http://paperpile.com/b/Qp2vkz/8FQgH
http://paperpile.com/b/Qp2vkz/6QAmS
http://paperpile.com/b/Qp2vkz/6QAmS
http://paperpile.com/b/Qp2vkz/6QAmS
http://paperpile.com/b/Qp2vkz/6QAmS
http://paperpile.com/b/Qp2vkz/6QAmS
http://paperpile.com/b/Qp2vkz/6QAmS
http://paperpile.com/b/Qp2vkz/6QAmS
http://paperpile.com/b/Qp2vkz/6QAmS
http://paperpile.com/b/Qp2vkz/jnRTH
http://paperpile.com/b/Qp2vkz/jnRTH
http://paperpile.com/b/Qp2vkz/jnRTH
http://paperpile.com/b/Qp2vkz/jnRTH
http://paperpile.com/b/Qp2vkz/jnRTH
http://paperpile.com/b/Qp2vkz/jnRTH
http://paperpile.com/b/Qp2vkz/jnRTH
http://paperpile.com/b/Qp2vkz/jnRTH
https://doi.org/10.1101/2024.11.05.24316763
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

25. Patel Manesh R. et al. Rivaroxaban versus Warfarin in Nonvalvular Atrial Fibrillation. N. 723 

Engl. J. Med. 365, 883–891. 724 

26. Franklin, J. M. et al. Emulating Randomized Clinical Trials With Nonrandomized Real-World 725 

Evidence Studies: First Results From the RCT DUPLICATE Initiative. Circulation 143, 726 

1002–1013 (2021). 727 

27. Hernán, M. A., Wang, W. & Leaf, D. E. Target Trial Emulation: A Framework for Causal 728 

Inference From Observational Data. JAMA 328, 2446–2447 (2022). 729 

28. Moodie, E. E. M. & Stephens, D. A. Using Directed Acyclic Graphs to detect limitations of 730 

traditional regression in longitudinal studies. Int. J. Public Health 55, 701–703 (2010). 731 

29. Ding, Y. et al. Large uncertainty in individual polygenic risk score estimation impacts PRS-732 

based risk stratification. Nat. Genet. 54, 30–39 (2022). 733 

30. Ding, Y. et al. Polygenic scoring accuracy varies across the genetic ancestry continuum. 734 

Nature 618, 774–781 (2023). 735 

31. Davies, N. M., Holmes, M. V. & Davey Smith, G. Reading Mendelian randomisation studies: 736 

a guide, glossary, and checklist for clinicians. BMJ 362, k601 (2018). 737 

32. Sadler, M. C. et al. Leveraging large-scale biobank EHRs to enhance pharmacogenetics of 738 

cardiometabolic disease medications. medRxiv (2024) doi:10.1101/2024.04.06.24305415. 739 

33. Held, C. et al. Body Mass Index and Association With Cardiovascular Outcomes in Patients 740 

With Stable Coronary Heart Disease - A STABILITY Substudy. J. Am. Heart Assoc. 11, 741 

e023667 (2022). 742 

34. Sundquist, K. et al. Elucidating causal effects of type 2 diabetes on ischemic heart disease 743 

from observational data on middle-aged Swedish women: a triangular analytical approach. 744 

Sci. Rep. 11, 12579 (2021). 745 

35. de Geus, E. J. C. Mendelian Randomization Supports a Causal Effect of Depression on 746 

Cardiovascular Disease as the Main Source of Their Comorbidity. J. Am. Heart Assoc. 10, 747 

e019861 (2021). 748 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.05.24316763doi: medRxiv preprint 

http://paperpile.com/b/Qp2vkz/MSFpC
http://paperpile.com/b/Qp2vkz/MSFpC
http://paperpile.com/b/Qp2vkz/MSFpC
http://paperpile.com/b/Qp2vkz/MSFpC
http://paperpile.com/b/Qp2vkz/MSFpC
http://paperpile.com/b/Qp2vkz/MSFpC
http://paperpile.com/b/Qp2vkz/MSFpC
http://paperpile.com/b/Qp2vkz/MSFpC
http://paperpile.com/b/Qp2vkz/Cy4uY
http://paperpile.com/b/Qp2vkz/Cy4uY
http://paperpile.com/b/Qp2vkz/Cy4uY
http://paperpile.com/b/Qp2vkz/Cy4uY
http://paperpile.com/b/Qp2vkz/Cy4uY
http://paperpile.com/b/Qp2vkz/Cy4uY
http://paperpile.com/b/Qp2vkz/Cy4uY
http://paperpile.com/b/Qp2vkz/Cy4uY
http://paperpile.com/b/Qp2vkz/Cy4uY
http://paperpile.com/b/Qp2vkz/zoUpE
http://paperpile.com/b/Qp2vkz/zoUpE
http://paperpile.com/b/Qp2vkz/zoUpE
http://paperpile.com/b/Qp2vkz/zoUpE
http://paperpile.com/b/Qp2vkz/zoUpE
http://paperpile.com/b/Qp2vkz/zoUpE
http://paperpile.com/b/Qp2vkz/TAjn0
http://paperpile.com/b/Qp2vkz/TAjn0
http://paperpile.com/b/Qp2vkz/TAjn0
http://paperpile.com/b/Qp2vkz/TAjn0
http://paperpile.com/b/Qp2vkz/TAjn0
http://paperpile.com/b/Qp2vkz/TAjn0
http://paperpile.com/b/Qp2vkz/LhJNh
http://paperpile.com/b/Qp2vkz/LhJNh
http://paperpile.com/b/Qp2vkz/LhJNh
http://paperpile.com/b/Qp2vkz/LhJNh
http://paperpile.com/b/Qp2vkz/LhJNh
http://paperpile.com/b/Qp2vkz/LhJNh
http://paperpile.com/b/Qp2vkz/LhJNh
http://paperpile.com/b/Qp2vkz/LhJNh
http://paperpile.com/b/Qp2vkz/VhG2F
http://paperpile.com/b/Qp2vkz/VhG2F
http://paperpile.com/b/Qp2vkz/VhG2F
http://paperpile.com/b/Qp2vkz/VhG2F
http://paperpile.com/b/Qp2vkz/VhG2F
http://paperpile.com/b/Qp2vkz/VhG2F
http://paperpile.com/b/Qp2vkz/VhG2F
http://paperpile.com/b/Qp2vkz/VhG2F
http://paperpile.com/b/Qp2vkz/twLQp
http://paperpile.com/b/Qp2vkz/twLQp
http://paperpile.com/b/Qp2vkz/twLQp
http://paperpile.com/b/Qp2vkz/twLQp
http://paperpile.com/b/Qp2vkz/twLQp
http://paperpile.com/b/Qp2vkz/twLQp
http://paperpile.com/b/Qp2vkz/1ItwO
http://paperpile.com/b/Qp2vkz/1ItwO
http://paperpile.com/b/Qp2vkz/1ItwO
http://paperpile.com/b/Qp2vkz/1ItwO
http://paperpile.com/b/Qp2vkz/1ItwO
http://paperpile.com/b/Qp2vkz/1ItwO
http://dx.doi.org/10.1101/2024.04.06.24305415
http://paperpile.com/b/nnujgd/klnvcQp2vkz/1ItwO
http://paperpile.com/b/Qp2vkz/4MBb6
http://paperpile.com/b/Qp2vkz/4MBb6
http://paperpile.com/b/Qp2vkz/4MBb6
http://paperpile.com/b/Qp2vkz/4MBb6
http://paperpile.com/b/Qp2vkz/4MBb6
http://paperpile.com/b/Qp2vkz/4MBb6
http://paperpile.com/b/Qp2vkz/4MBb6
http://paperpile.com/b/Qp2vkz/4MBb6
http://paperpile.com/b/Qp2vkz/4MBb6
http://paperpile.com/b/Qp2vkz/f6ZMS
http://paperpile.com/b/Qp2vkz/f6ZMS
http://paperpile.com/b/Qp2vkz/f6ZMS
http://paperpile.com/b/Qp2vkz/f6ZMS
http://paperpile.com/b/Qp2vkz/f6ZMS
http://paperpile.com/b/Qp2vkz/f6ZMS
http://paperpile.com/b/Qp2vkz/f6ZMS
http://paperpile.com/b/Qp2vkz/f6ZMS
http://paperpile.com/b/Qp2vkz/kYy3s
http://paperpile.com/b/Qp2vkz/kYy3s
http://paperpile.com/b/Qp2vkz/kYy3s
http://paperpile.com/b/Qp2vkz/kYy3s
http://paperpile.com/b/Qp2vkz/kYy3s
http://paperpile.com/b/Qp2vkz/kYy3s
http://paperpile.com/b/Qp2vkz/kYy3s
https://doi.org/10.1101/2024.11.05.24316763
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

36. Choi, K. M. et al. Implication of liver enzymes on incident cardiovascular diseases and 749 

mortality: A nationwide population-based cohort study. Sci. Rep. 8, 3764 (2018). 750 

37. Jiao, X., Zhang, Q., Peng, P. & Shen, Y. HbA1c is a predictive factor of severe coronary 751 

stenosis and major adverse cardiovascular events in patients with both type 2 diabetes and 752 

coronary heart disease. Diabetol. Metab. Syndr. 15, 50 (2023). 753 

38. Tillmann, T. et al. Education and coronary heart disease: mendelian randomisation study. 754 

BMJ 358, j3542 (2017). 755 

39. Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry 756 

group. Elife 9, (2020). 757 

40. Lee, J. et al. Clinical Conditions and Their Impact on Utility of Genetic Scores for Prediction 758 

of Acute Coronary Syndrome. Circ Genom Precis Med 14, e003283 (2021). 759 

41. Zhao, S. S. & Burgess, S. Use of Mendelian randomization to assess the causal status of 760 

modifiable exposures for rheumatic diseases. Best Pract. Res. Clin. Rheumatol. 101967 761 

(2024). 762 

42. Darrous, L., Hemani, G., Davey Smith, G. & Kutalik, Z. PheWAS-based clustering of 763 

Mendelian Randomisation instruments reveals distinct mechanism-specific causal effects 764 

between obesity and educational attainment. Nat. Commun. 15, 1420 (2024). 765 

43. Warwick, A. N. et al. Harnessing confounding and genetic pleiotropy to identify causes of 766 

disease through proteomics and Mendelian randomisation – ‘MR Fish’. bioRxiv (2024) 767 

doi:10.1101/2024.07.11.24310200. 768 

44. Overview | Empagliflozin for treating chronic kidney disease | Guidance | NICE. 769 

45. The EMPA-KIDNEY Collaborative Group. Empagliflozin in Patients with Chronic Kidney 770 

Disease. N Engl J Med 388, 117–127 (2023). 771 

46. Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. 772 

Engl. J. Med. 375, 323–334 (2016). 773 

47. Summary of the risk management plan (RMP) for Jardiance (empagliflozin). Preprint at 774 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.05.24316763doi: medRxiv preprint 

http://paperpile.com/b/Qp2vkz/mQKhi
http://paperpile.com/b/Qp2vkz/mQKhi
http://paperpile.com/b/Qp2vkz/mQKhi
http://paperpile.com/b/Qp2vkz/mQKhi
http://paperpile.com/b/Qp2vkz/mQKhi
http://paperpile.com/b/Qp2vkz/mQKhi
http://paperpile.com/b/Qp2vkz/mQKhi
http://paperpile.com/b/Qp2vkz/mQKhi
http://paperpile.com/b/Qp2vkz/2OcMq
http://paperpile.com/b/Qp2vkz/2OcMq
http://paperpile.com/b/Qp2vkz/2OcMq
http://paperpile.com/b/Qp2vkz/2OcMq
http://paperpile.com/b/Qp2vkz/2OcMq
http://paperpile.com/b/Qp2vkz/2OcMq
http://paperpile.com/b/Qp2vkz/2OcMq
http://paperpile.com/b/Qp2vkz/tfqQZ
http://paperpile.com/b/Qp2vkz/tfqQZ
http://paperpile.com/b/Qp2vkz/tfqQZ
http://paperpile.com/b/Qp2vkz/tfqQZ
http://paperpile.com/b/Qp2vkz/tfqQZ
http://paperpile.com/b/Qp2vkz/tfqQZ
http://paperpile.com/b/Qp2vkz/tfqQZ
http://paperpile.com/b/Qp2vkz/tfqQZ
http://paperpile.com/b/Qp2vkz/i8M9q
http://paperpile.com/b/Qp2vkz/i8M9q
http://paperpile.com/b/Qp2vkz/i8M9q
http://paperpile.com/b/Qp2vkz/i8M9q
http://paperpile.com/b/Qp2vkz/i8M9q
http://paperpile.com/b/Qp2vkz/i8M9q
http://paperpile.com/b/Qp2vkz/i8M9q
http://paperpile.com/b/Qp2vkz/i8M9q
http://paperpile.com/b/Qp2vkz/oZyJN
http://paperpile.com/b/Qp2vkz/oZyJN
http://paperpile.com/b/Qp2vkz/oZyJN
http://paperpile.com/b/Qp2vkz/oZyJN
http://paperpile.com/b/Qp2vkz/oZyJN
http://paperpile.com/b/Qp2vkz/oZyJN
http://paperpile.com/b/Qp2vkz/oZyJN
http://paperpile.com/b/Qp2vkz/oZyJN
http://paperpile.com/b/Qp2vkz/HoVs
http://paperpile.com/b/Qp2vkz/HoVs
http://paperpile.com/b/Qp2vkz/HoVs
http://paperpile.com/b/Qp2vkz/HoVs
http://paperpile.com/b/Qp2vkz/HoVs
http://paperpile.com/b/Qp2vkz/oyBv
http://paperpile.com/b/Qp2vkz/oyBv
http://paperpile.com/b/Qp2vkz/oyBv
http://paperpile.com/b/Qp2vkz/oyBv
http://paperpile.com/b/Qp2vkz/oyBv
http://paperpile.com/b/Qp2vkz/oyBv
http://paperpile.com/b/Qp2vkz/oyBv
http://paperpile.com/b/Qp2vkz/gABe
http://paperpile.com/b/Qp2vkz/gABe
http://paperpile.com/b/Qp2vkz/gABe
http://paperpile.com/b/Qp2vkz/gABe
http://paperpile.com/b/Qp2vkz/gABe
http://paperpile.com/b/Qp2vkz/gABe
http://paperpile.com/b/Qp2vkz/gABe
http://dx.doi.org/10.1101/2024.07.11.24310200
http://paperpile.com/b/Qp2vkz/gABe
http://paperpile.com/b/Qp2vkz/kFcDr
http://paperpile.com/b/Qp2vkz/j5HLl
http://paperpile.com/b/Qp2vkz/j5HLl
http://paperpile.com/b/Qp2vkz/j5HLl
http://paperpile.com/b/Qp2vkz/j5HLl
http://paperpile.com/b/Qp2vkz/j5HLl
http://paperpile.com/b/Qp2vkz/j5HLl
http://paperpile.com/b/Qp2vkz/AeIzA
http://paperpile.com/b/Qp2vkz/AeIzA
http://paperpile.com/b/Qp2vkz/AeIzA
http://paperpile.com/b/Qp2vkz/AeIzA
http://paperpile.com/b/Qp2vkz/AeIzA
http://paperpile.com/b/Qp2vkz/AeIzA
http://paperpile.com/b/Qp2vkz/AeIzA
http://paperpile.com/b/Qp2vkz/AeIzA
http://paperpile.com/b/Qp2vkz/nMQ4U
https://doi.org/10.1101/2024.11.05.24316763
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

https://fimea.fi/documents/147152901/159459773/27456_Jardiance_RMP_summary-775 

EN.pdf/a61cbbc0-5351-44b1-b590-247277e56438/27456_Jardiance_RMP_summary-776 

EN.pdf?t=1689835045091. 777 

48. Heyard, R., Held, L., Schneeweiss, S. & Wang, S. V. Design differences and variation in 778 

results between randomised trials and non-randomised emulations: meta-analysis of RCT-779 

DUPLICATE data. BMJ Med 3, e000709 (2024). 780 

49. Glynn, R. J., Knight, E. L., Levin, R. & Avorn, J. Paradoxical relations of drug treatment with 781 

mortality in older persons. Epidemiology 12, 682–689 (2001). 782 

50. Glynn, R. J., Schneeweiss, S., Wang, P. S., Levin, R. & Avorn, J. Selective prescribing led 783 

to overestimation of the benefits of lipid-lowering drugs. J. Clin. Epidemiol. 59, 819–828 784 

(2006). 785 

51. Hemmingsen, B. et al. Sulphonylurea monotherapy for patients with type 2 diabetes 786 

mellitus. Cochrane Database Syst. Rev. CD009008 (2013). 787 

52. Rosenstock, J. et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in 788 

Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA 789 

Randomized Clinical Trial. JAMA 321, 69–79 (2019). 790 

53. Scirica, B. M. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 791 

diabetes mellitus. N. Engl. J. Med. 369, 1317–1326 (2013). 792 

54. Rassen, J. A. et al. One-to-many propensity score matching in cohort studies. 793 

Pharmacoepidemiol. Drug Saf. 21 Suppl 2, 69–80 (2012). 794 

55. Rosenbaum, P. R. & Rubin, D. B. The central role of the propensity score in observational 795 

studies for causal effects. Biometrika 70, 41–55 (1983). 796 

56. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via 797 

Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019). 798 

57. International HapMap 3 Consortium et al. Integrating common and rare genetic variation in 799 

diverse human populations. Nature 467, 52–58 (2010). 800 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.05.24316763doi: medRxiv preprint 

https://fimea.fi/documents/147152901/159459773/27456_Jardiance_RMP_summary-EN.pdf/a61cbbc0-5351-44b1-b590-247277e56438/27456_Jardiance_RMP_summary-EN.pdf?t=1689835045091
https://fimea.fi/documents/147152901/159459773/27456_Jardiance_RMP_summary-EN.pdf/a61cbbc0-5351-44b1-b590-247277e56438/27456_Jardiance_RMP_summary-EN.pdf?t=1689835045091
https://fimea.fi/documents/147152901/159459773/27456_Jardiance_RMP_summary-EN.pdf/a61cbbc0-5351-44b1-b590-247277e56438/27456_Jardiance_RMP_summary-EN.pdf?t=1689835045091
http://paperpile.com/b/nnujgd/6CB4Qp2vkz/nMQ4U
http://paperpile.com/b/Qp2vkz/9xp3x
http://paperpile.com/b/Qp2vkz/9xp3x
http://paperpile.com/b/Qp2vkz/9xp3x
http://paperpile.com/b/Qp2vkz/9xp3x
http://paperpile.com/b/Qp2vkz/9xp3x
http://paperpile.com/b/Qp2vkz/9xp3x
http://paperpile.com/b/Qp2vkz/9xp3x
http://paperpile.com/b/Qp2vkz/cQy7T
http://paperpile.com/b/Qp2vkz/cQy7T
http://paperpile.com/b/Qp2vkz/cQy7T
http://paperpile.com/b/Qp2vkz/cQy7T
http://paperpile.com/b/Qp2vkz/cQy7T
http://paperpile.com/b/Qp2vkz/cQy7T
http://paperpile.com/b/Qp2vkz/dPLvu
http://paperpile.com/b/Qp2vkz/dPLvu
http://paperpile.com/b/Qp2vkz/dPLvu
http://paperpile.com/b/Qp2vkz/dPLvu
http://paperpile.com/b/Qp2vkz/dPLvu
http://paperpile.com/b/Qp2vkz/dPLvu
http://paperpile.com/b/Qp2vkz/dPLvu
http://paperpile.com/b/Qp2vkz/jPAMB
http://paperpile.com/b/Qp2vkz/jPAMB
http://paperpile.com/b/Qp2vkz/jPAMB
http://paperpile.com/b/Qp2vkz/jPAMB
http://paperpile.com/b/Qp2vkz/jPAMB
http://paperpile.com/b/Qp2vkz/jPAMB
http://paperpile.com/b/Qp2vkz/Tmx1I
http://paperpile.com/b/Qp2vkz/Tmx1I
http://paperpile.com/b/Qp2vkz/Tmx1I
http://paperpile.com/b/Qp2vkz/Tmx1I
http://paperpile.com/b/Qp2vkz/Tmx1I
http://paperpile.com/b/Qp2vkz/Tmx1I
http://paperpile.com/b/Qp2vkz/Tmx1I
http://paperpile.com/b/Qp2vkz/Tmx1I
http://paperpile.com/b/Qp2vkz/Tmx1I
http://paperpile.com/b/Qp2vkz/BDrVz
http://paperpile.com/b/Qp2vkz/BDrVz
http://paperpile.com/b/Qp2vkz/BDrVz
http://paperpile.com/b/Qp2vkz/BDrVz
http://paperpile.com/b/Qp2vkz/BDrVz
http://paperpile.com/b/Qp2vkz/BDrVz
http://paperpile.com/b/Qp2vkz/BDrVz
http://paperpile.com/b/Qp2vkz/BDrVz
http://paperpile.com/b/Qp2vkz/WZAe1
http://paperpile.com/b/Qp2vkz/WZAe1
http://paperpile.com/b/Qp2vkz/WZAe1
http://paperpile.com/b/Qp2vkz/WZAe1
http://paperpile.com/b/Qp2vkz/WZAe1
http://paperpile.com/b/Qp2vkz/WZAe1
http://paperpile.com/b/Qp2vkz/WZAe1
http://paperpile.com/b/Qp2vkz/WZAe1
http://paperpile.com/b/Qp2vkz/11luA
http://paperpile.com/b/Qp2vkz/11luA
http://paperpile.com/b/Qp2vkz/11luA
http://paperpile.com/b/Qp2vkz/11luA
http://paperpile.com/b/Qp2vkz/11luA
http://paperpile.com/b/Qp2vkz/11luA
http://paperpile.com/b/Qp2vkz/8l2ut
http://paperpile.com/b/Qp2vkz/8l2ut
http://paperpile.com/b/Qp2vkz/8l2ut
http://paperpile.com/b/Qp2vkz/8l2ut
http://paperpile.com/b/Qp2vkz/8l2ut
http://paperpile.com/b/Qp2vkz/8l2ut
http://paperpile.com/b/Qp2vkz/MQxWs
http://paperpile.com/b/Qp2vkz/MQxWs
http://paperpile.com/b/Qp2vkz/MQxWs
http://paperpile.com/b/Qp2vkz/MQxWs
http://paperpile.com/b/Qp2vkz/MQxWs
http://paperpile.com/b/Qp2vkz/MQxWs
http://paperpile.com/b/Qp2vkz/MQxWs
http://paperpile.com/b/Qp2vkz/MQxWs
https://doi.org/10.1101/2024.11.05.24316763
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

58. Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and 801 

binary traits. Nat. Genet. 53, 1097–1103 (2021). 802 

 803 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.05.24316763doi: medRxiv preprint 

http://paperpile.com/b/Qp2vkz/WFoQJ
http://paperpile.com/b/Qp2vkz/WFoQJ
http://paperpile.com/b/Qp2vkz/WFoQJ
http://paperpile.com/b/Qp2vkz/WFoQJ
http://paperpile.com/b/Qp2vkz/WFoQJ
http://paperpile.com/b/Qp2vkz/WFoQJ
http://paperpile.com/b/Qp2vkz/WFoQJ
http://paperpile.com/b/Qp2vkz/WFoQJ
https://doi.org/10.1101/2024.11.05.24316763
http://creativecommons.org/licenses/by-nc-nd/4.0/

