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ABSTRACT 

Objectives: The relative significance of predictive factors for cancer and coronary heart disease (CHD) is 

still unclear. This study aims to identify and evaluate the risk factors contributing to the development of 

both conditions using the CatBoost machine learning algorithm. 

Methods: Data from twelve datasets of the 2009–2010 National Health and Nutrition Examination 

Survey (NHANES), incorporating both survey responses and laboratory results, were used. Separate 

CatBoost models were developed to predict cancer and CHD occurrences, by using Shapley Additive 

Explanations (SHAP), with the help of Recursive Feature Elimination with Cross-Validation (RFECV), and 

by adjusting class weights, and model performance was assessed using Receiver Operating Characteristic 

(ROC) curves. 

Results: The datasets were combined to form a cohort of 5,012 participants, each with 24 selected 

features. The cancer prediction model achieved a ROC Area Under the Curve (AUC) of 0.76, with 13 

selected features, yielding an accuracy of 0.70, sensitivity of 0.67, and specificity of 0.70. In contrast, the 

CHD prediction model achieved a higher ROC AUC of 0.87, with an accuracy of 0.83, sensitivity of 0.78, 

and specificity of 0.83. Accordingly, top predictive features for each disease have been ranked and 

selected by the CatBoost algorithm. 

Conclusions: This study identifies key demographic and laboratory features significantly associated with 

cancer and CHD risk in the NHANES dataset. The findings suggest that these factors could be valuable for 

estimating individual risk and could inform machine learning models aimed at early detection and 

screening.  

Keywords: NHANES, cancer, coronary disease, Machine Learning 
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INTRODUCTION 

Cancer and coronary heart disease (CHD) are two major causes of morbidity and mortality worldwide, 

and they share several common etiological factors. Both conditions are particularly prevalent in older 

populations [1-3]. While numerous predictive factors have been identified for each disease individually, 

the exact mechanisms through which these factors interact, and the specific pathways involved in the 

simultaneous development of both cancer and CHD, remain incompletely understood. There is a subset 

of patients who develop both diseases concurrently, yet the specific predisposing factors that drive the 

co-occurrence of these conditions remain elusive, leaving a significant gap in our knowledge of the 

underlying mechanisms and risk factors. 

Machine learning is increasingly being applied across various medical disciplines and has shown great 

promise in transforming clinical care. By using tabular, image, and sound data, machine learning 

algorithms are capable of detecting patterns that can aid in diagnosing diseases, predicting prognoses, 

and selecting treatment plans [4,5]. These algorithms have already demonstrated substantial utility in 

applications such as breast cancer diagnosis, personalized treatment plans based on genetic profiles, and 

correlating brain function with imaging findings from Positron Emission Tomography/Computed 

Tomography (PET/CT) in non-small cell lung cancer [6-8]. Moreover, machine learning has been 

successfully employed to predict short-term outcomes in spontaneous intracerebral hemorrhage by 

identifying key predictors, demonstrating its valuable potential in prognostic models [9]. 

Among the various machine learning algorithms, CatBoost (short for Categorical Boosting) stands out as 

a particularly powerful gradient boosting algorithm. Developed by Yandex, CatBoost is user-friendly and 

often requires less parameter tuning than other gradient boosting algorithms, such as XGBoost or 

LightGBM [10]. 
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Within the National Health and Nutrition Examination Survey (NHANES) dataset, certain subgroups have 

been diagnosed with either cancer, CHD, or both [11]. However, it remains unclear whether the factors 

that predict the development of cancer and CHD overlap or are distinct.  Therefore, the aim of this study 

is to identify the predictors of cancer and CHD using comprehensive data from the NHANES survey and 

to evaluate the potential of the CatBoost machine learning algorithm in this task. By leveraging the 

NHANES dataset and applying CatBoost, I seek to uncover key predictive features for each disease, 

aiming to support early detection and intervention strategies.  

METHODS 

General Issues, Collection, and Processing of Data 

The open-access database from the National Health and Nutrition Examination Survey (NHANES) was 

obtained from its official website at the following web address: 

“https://www.cdc.gov/nchs/nhanes/index.htm” [11]. For this study, focusing on the period of 2009–

2010, twelve datasets were downloaded from the NHANES website. These datasets included ALQ_F.XPT 

(for alcohol use), CBC_F.XPT (for complete blood count), WHQ_F.XPT (for weight history), SMQ_F.XPT (for 

smoking and cigarette use), PAQ_F.XPT (for physical activity), MCQ_F.XPT (for medical conditions), 

INQ_F.XPT (for income), CRP_F.XPT (for C-Reactive Protein; CRP), GHB_F.XPT (for Glycosylated 

Hemoglobin; HbA1c), DBQ_F.XPT (for diet and nutrition), TCHOL_F.XPT (for cholesterol), and 

DEMO_F.XPT (for demographics). Initially, these datasets were in XPT format, which were subsequently 

converted into Pandas data frames for further analysis. 

The next step involved filtering each dataset to include only the common SEQN values across all 

databases. SEQN, or "Sequence Number," serves as a unique identifier assigned to each participant in 

the survey. By focusing on the SEQN values present in all datasets, a combined dataset was generated 

that contained features from each database. This combined dataset was further processed by removing 
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rows with any missing values, ensuring that only complete cases were included for the analysis. This 

clean, processed dataset was then saved in Excel format for subsequent steps. All data processing was 

conducted in Google Colab, utilizing Python programming, with the Pandas and Openpyxl libraries [12-

14]. 

The variables tested as potential predictors in this study encompassed a wide range of demographic, 

behavioral, and biological factors. These included age, gender, alcohol consumption, smoking history, 

dietary habits, body weight, physical activity level, income, family history of heart attack, previous cancer 

diagnosis, CHD diagnosis, white blood cell count, percentages of lymphocytes and neutrophils, 

hemoglobin levels, red cell distribution width, platelet count, mean platelet volume, CRP, total 

cholesterol, and HbA1c. These variables were selected due to their relevance to the development of 

cancer and CHD, their possible links to chronic inflammation, and accessibility in the NHANES database.  

This draft of the study was initially linguistically enhanced with the assistance of ChatGPT 4.0, but the 

final version of the article was carefully reviewed and approved by the author. 

Development of CatBoost Models to Predict Cancer or CHD 

The descriptive analysis for this study was conducted using SPSS version 21.0.0 [15]. In the second phase, 

the CatBoost machine learning algorithm was employed to develop predictive models for the occurrence 

of cancer and CHD. Considering that the cancer and CHD subgroups comprised only a minority of the 

total cohort, I specifically adjusted the class weights in the CatBoost model to account for the imbalance 

between the minority and majority subgroups. This adjustment aimed to ensure that the model could 

learn effectively from the minority class data. 

To select the most important predictive features, I made use of the Recursive Feature Elimination with 

Cross-Validation (RFECV) algorithm [16]. The RFECV algorithm is a feature selection method that 

iteratively removes the least important features from a model to find the most relevant subset of 
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predictors. It starts by training a model using all features and ranks their importance based on a specified 

metric, such as feature weights or coefficients. The least important feature is then removed, and the 

model is retrained. This process repeats until a predefined number of features remain or performance 

plateaus. Cross-validation is used to ensure the selected features improve the model's performance in a 

robust manner, preventing overfitting and making the selection process more reliable. In this study, in 

order to optimize the set of predictive features, I manually adjusted the parameters of the RFECV 

algorithm; particularly “select” and “min_features_to_select”, using F1 score for scoring. 

The F1 score, as I used for scoring the RFECV algorithm in this study, is a performance metric used in 

classification that balances precision and recall [17]. It is the harmonic mean of these two metrics, 

making it particularly useful when the classes are imbalanced. It is calculated as: 

F1 = 2 x ((Precision × Recall) / (Precision + Recall)). 

Feature importance rankings were calculated based on the dataset, and Shapley Additive Explanations 

(SHAP) values were computed and visualized to evaluate the contribution of each feature to the 

predictions [18]. Additionally, confusion matrices were generated to assess model performance, along 

with key evaluation metrics, such as accuracy, sensitivity, and specificity. Receiver Operating 

Characteristic (ROC) curves were also plotted, and the Area Under the Curve (AUC) values were 

calculated to assess the overall predictive performance of the models for both cancer and CHD [19]. 

This second CatBoost analysis phase of the study was also completed using Google Colab, with the 

analysis performed in Python, utilizing several libraries, including Numpy, Pandas, Scikit-learn, CatBoost, 

and Matplotlib [12,20-23]. These tools allowed for the efficient handling of the dataset and the 

development of accurate machine learning models to predict cancer and CHD risk based on the selected 

features. 
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RESULTS 

General Findings 

A total of 5,012 cases were analyzed, with a gender distribution of 50.3% female and 49.7% male. 

Additionally, 55.3% of the cases were categorized as overweight. Of the total sample, 4,343 cases 

(86.7%) had no diagnosis of either cancer or CHD, while 462 cases (9.2%) were diagnosed with cancer, 

and 157 cases (3.1%) were diagnosed with CHD. Co-occurrence of both cancer and CHD was observed in 

50 cases (1%). Laboratory values for the participants were generally within normal ranges, with some 

variability. For example, the mean hemoglobin level was 14.1 g/dL (standard error = 1.5). The 

demographic characteristics, along with other features derived from questionnaires and laboratory tests, 

are presented in Table 1. 
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Table 1. Demographics, questionnaire and laboratory-based data from NHANES study (2009-2010).  

 

Features Abbreviation* n % Mean Standard Deviation Percentile 50

Total 5012 100.0

Questionairre Based

Age RIDAGEYR 49.6 17.8 49.0

Gender RIAGENDR

Male 2489 49.7

Female 2523 50.3

Alcohol exposure ALQ101

12 or more drinks per year 3679 73.4

Less than 12 drinks per year 1330 26.5

Missing 3 0.1

Smoking exposure SMQ020

Smoked at least 100 cigarettes lifetime 2338 46.6

Did not smoke 100 cigarettes lifetime 2674 53.4

Diet habits DBD910

Number of frozen meals/pizza in past 30 days 5010 100.0 2.3 5.3 0.0

Missing 2 0.0

Weight status** WHQ030

Overweight 2772 55.3

Right weight 1996 39.8

Underweight 231 4.6

Missing 13 0.3

Physical activity-1 PAQ605

Vigorous work activity 923 18.4

No vigorous work activity 4089 81.6

Physical activity-2 PAQ620

Moderate work activity 1787 35.7

No moderate work activity 3225 64.3

Income INQ140

Income from interest, dividend or rentals 1396 27.9

No income from interest, dividend or rentals 3578 71.4

Relative with heart attack MCQ300A

Present 593 11.8

Absent 4291 85.6

Asthma diagnosis MCQ010

Present 687 13.7

Absent 4319 86.2

Cancer diagnosis MCQ220

Present 512 10.2

Absent 4500 89.8

Coronary artery disease diagnosis MCQ160C

Present 207 4.1

Absent 4805 95.9

Diagnostic category n/e***

No cancer or coronary heart disease 4343 86.7

Cancer only 462 9.2

Coronary heart disease only 157 3.1

Both cancer and coronary heart disease 50 1.0

Laboratory Based

White blood cell count (x10
3
 /mm3) LBXWBCSI 7.2 2.6 6.9

Lymphocyte percent (%) LBXLYPCT 30.3 8.6 29.8

Neutrophil percent (%) LBXNEPCT 58.4 9.6 58.8

Neutrophil to lymphocyte ratio (NLR) n/e*** 2.2 1.2 2

Hemoglobin (g/dL) LBXHGB 14.1 1.5 14.1

Red cell distribution width; RDW (%) LBXRDW 12.9 1.3 12.6

Platelet count (x10
3
 /mm3) LBXPLTSI 240.1 64.9 232.0

Mean platelet volume; MPV (fL) LBXMPSI 7.9 0.9 7.9

C reactive protein; CRP (mg/L) LBXCRP 0.4 0.8 0.2

Total ckolesterol (mg/dL) LBXTC 195.8 40.8 193.0

HbA1c (%) LBXGH 5.8 1.0 5.5
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Footnote: General characteristics of the cases and summary of their laboratory data in the study. *; 

Abbreviation for the variable in the NHANES database, **; Weight status as perceived by the respondent, 

***; not eligible. 

CatBoost Machine Learning Model to Predict Cancer or CHD 

The CatBoost machine learning model developed to predict cancer yielded a moderate Area Under the 

Curve (AUC) value of 0.76, while the model designed to predict CHD performed better, achieving a 

higher AUC value of 0.87. These AUC values, which reflect the model's ability to distinguish between 

positive and negative cases for both cancer and CHD, are visualized in Figure 1. Additionally, the 

sensitivity figure, also known as recall, that measures the proportion of actual positive cases that are 

correctly identified by the model, indicating its ability to detect true positives, was calculated to be 0.67 

for cancer and 0.78 for CHD, by using 13 and 12 predictive features respectively, as selected by the 

RFECV algorithm. A summary of efficacy metrics, revealed by the CatBoost model, for both cancer and 

CHD predictions is provided in Table 2. 

Table 2. Performance metrics of the cancer and CHD prediction models. 

 

Footnote: AUC; area under curve, Accuracy=TP+TN/(TP+TN+FP+FN), where True Positives (TP): correctly 

predicted positive cases, True Negatives (TN): correctly predicted negative cases, False Positives (FP): 

incorrectly predicted positive cases (actual negatives predicted as positives), False Negatives (FN): 

incorrectly predicted negative cases (actual positives predicted as negatives). Sensitivity=TP/(TP+FN), 

Specifity=TN/(TN+FP), Precision=TP/(TP+FP), F1 Score=2 x (Precision x Sensitivity) / (Precision + 

Sensitivity). 

 

Endpoint AUC Accuracy Sensitivity Specifity Precision F1 score

Cancer 0.76 0.70 0.67 0.70 0.20 0.31

Coronary heart disease 0.87 0.83 0.78 0.83 0.14 0.22
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Feature Importance of Predictor Variables in the CatBoost Model 

The optimal number of predictor variables that were selected by the RFECV algorithm and maximized 

the performance of the CatBoost models, in terms of sensitivity, specificity, and accuracy, were identified 

as 13 for cancer and 12 for CHD. In the cancer model, the 5 most influential features were age, gender, 

financial status (income from interest, dividends, or rentals), Neutrophil to Lymphocyte Ratio, and HbA1C 

levels., with mean SHAP values of 0.84, 0.15, 0.11, 0.08 and 0.04, respectively. In the CHD model, the top 

5 predictors were age, gender, platelet count, family history of CHD, and Red Cell Distribution Width, 

with mean SHAP values of 1.60, 0.46, 0.32, 0.28, and 0.21, respectively. Refer to Figure 2 for mean 

absolute SHAP values for the cancer and CHD outcomes. 

Among the top 5 predictors for cancer; older age (in cases with and without cancer: 65 versus 48), 

female gender (52% versus 50%), higher income (44% versus 26%), higher neutrophil to lymphocyte ratio 

(logarithmic transformation; 0.35 versus 0.30), and higher glycosylated hemoglobin (HbA1c; 5.86 versus 

5.74) levels were associated with an increased likelihood of developing cancer. In addition, for CHD, older 

age (in cases with and without CHD: 69 versus 49), male gender (73% versus 27%), %), lower platelet 

counts (208000 versus 242000/mm3), a family history of heart attack (27% versus 12), and higher red 

cell distribution width (RDW; 13.5% versus 12.9%) levels were identified as key risk factors, constituting 

the 5 top predictors, for the occurrence of CHD. Figure 3 displays the association directions of the top 3 

individual features with cancer and CHD. 

DISCUSSION 

This study demonstrated that the primary predictors for cancer and CHD from the NHANES database, as 

identified through the machine learning models, are largely related to aging, sociodemographic factors, 

and laboratory measurements. These findings suggest that these variables can be considered 

predisposing factors or correlates for the development of both cancer and CHD. As a result, the panel of 
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predictors identified in this study has the potential to be used as an initial screening tool for assessing 

the risk of developing cancer, CHD, or both conditions. However, while our machine learning models 

achieved reasonable accuracy in predicting both diseases, the precision rates were low, at 20% for cancer 

and 14% for CHD. This indicates that any positive prediction should be interpreted with caution, as there 

is a significant chance it could be a false positive. Thus, in theory, while the model may be useful for 

initial risk assessment, its predictions—particularly positive ones—should be validated through clinical 

assessments or additional diagnostic testing. 

It is well known that approximately 40-50% of the risk for coronary heart disease (CHD) and 10-20% of 

the risk for common cancers can be attributed to genetic factors [24,25]. Given this strong genetic 

component, it is logical to consider genetic approaches for predicting cancer or CHD risk in otherwise 

healthy individuals. Employing such genetic risk models can encourage proactive lifestyle changes—such 

as improved diet and exercise habits—and enable early prophylactic interventions before disease 

development. Thus, any predictive model for the prediction of cancer or CHD risk, including ours, is 

expected to improve in accuracy by the integration of genomic data as additional predictive features. 

Genome-wide association studies (GWAS) have identified around 450 high-risk genetic variants linked to 

various cancers and approximately 160 genome-wide significant loci (P < 5 × 10⁻⁸) associated with CHD 

[25,26]. These genetic markers offer promising opportunities for identifying individuals at high risk early 

on, especially as advances in technology make genetic testing more accessible and affordable. 

Incorporating genetic data into predictive models could significantly enhance their accuracy. So, as noted 

above, in the context of our study, integrating genetic information into our machine learning models 

could improve their predictive power for both cancer and CHD. 

In addition to genetic data, non-genetic clinical data have proven effective in quantifying the risk of 

cancer and CHD. For example, a Support Vector Machine (SVM) model has been used to assess CHD risk, 
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achieving an AUC of 0.89, which demonstrates strong predictive capability using clinical, non-genetic 

inputs [27]. Similarly, a Gradient Boosting algorithm, utilizing laboratory, demographic, and comorbidity 

data, reported an AUC of 0.761, further validating the utility of clinical data in predicting CHD risk [28]. In 

the field of lung cancer detection, machine learning models have also shown substantial promise. One 

machine learning algorithm applied in the National Lung Screening Trial demonstrated an AUC of 0.797 

in the validation set, with a sensitivity of 0.830, indicating its effectiveness in detecting lung cancer cases 

[29]. These examples underscore the potential of non-genetic, data-driven approaches, similar to mine, 

for identifying individuals at risk of these diseases. 

Aging is known to be associated with chronic inflammation, mediated by cytokines, which is one of the 

causal factors in the development of atherosclerosis and cancer. Chronic inflammation is a shared factor 

contributing to both cancer and CHD [30]. Other related factors, such as lymphopenia, leukocytosis, and 

elevated glycosylated hemoglobin levels, may also occur alongside chronic inflammation and metabolic 

syndrome. These factors emerged as important predictors in our study, reinforcing their role in the 

pathogenesis of both cancer and CHD [31,32]. These findings highlight the interconnectedness of 

inflammation, metabolic syndrome, and hematologic changes in the development of these conditions, 

justifying their use as predictive markers in machine learning models. 

In our study, the CatBoost machine learning algorithm exhibited performance metrics that were 

comparable to other models reported in the literature. The AUC values for cancer and CHD were 0.76 

and 0.87, respectively, demonstrating a reasonable level of accuracy. These results are consistent with 

AUC values reported in prior studies (28, 29). However, despite the strong performance in terms of AUC, 

our models yielded a substantial proportion of false positives in the predictions, which limits the clinical 

utility of the models. Nevertheless, our models successfully ranked and compared the importance of 

various features, and this may prove useful in future longitudinal studies. With the inclusion of additional 

cases and features, more accurate and discriminative predictive models could be developed for cancer 
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and CHD. This study adds to the growing body of literature in medicine, where machine learning models 

can be useful in early prediction. 

One significant limitation of our study is the nature of the NHANES database and the way participants 

are recruited. NHANES is not a longitudinal study, meaning it does not involve long-term follow-up of 

participants. Each survey cycle is cross-sectional, capturing data at a single point in time from a new 

representative sample for that cycle. As a result, cancer or CHD diagnoses in the dataset represent the 

presence of these conditions at the time of data collection, rather than reflecting a prospective 

observation of disease development over time. This makes it challenging to interpret our results fully for 

several reasons. First, causal associations cannot be inferred because the data lack a temporal 

dimension. Second, some of the predictor variables may be influenced by the outcomes (i.e., the 

presence of cancer or CHD) rather than serving solely as risk factors. 

The primary objectives of this study were twofold: to compare the feature importance of predictor 

variables and to test the utility of a general machine learning algorithm in predicting the occurrence of 

cancer and CHD. From the perspective of feature importance, I successfully ranked the relevant 

predictors from the NHANES database for cancer and CHD occurrence. Although I developed reasonably 

performant binary classification models for both conditions, I acknowledge that their clinical utility is 

limited by the low Precision Rate and the non-temporal nature of the data. Future studies incorporating 

longitudinal and genetic data, involving many thousands of cases, could be analyzed using machine 

learning or neural network models to develop more accurate algorithms for the prediction of cancer and 

CHD. The development of such models would be promising from a public health perspective. 

KEY MESSAGE  

Various personal, demographic, and laboratory features can predict the occurrence of cancer or CHD. 

Applying machine learning to larger datasets—especially those incorporating genomic features—could 
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lead to more accurate algorithms for classifying individuals at high risk of developing these diseases. 

Machine learning algorithms, using a methodology similar to that of this study, could be highly valuable 

for screening purposes. 
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FIGURE LEGENDS 

Figure 1: ROC Curves for cancer and coronary heart disease (CHD) occurrence. 

1a. ROC curve for binary classification of cancer. 1b. ROC Curve for binary classification of CHD. The 

curve plots the true positive rate (sensitivity) against the false positive rate (1 - specificity) at various 

threshold settings. An AUC value closer to 1 representing a better classification model. The dashed 

diagonal line represents the performance of a random classifier (AUC = 0.5). 

Figure 2: Mean absolute SHAP value plots for cancer and coronary heart disease classification using the 

CatBoost model. 

 2a. Mean SHAP value plot for cancer classification. 2b. Mean SHAP value plot for CHD classification. The 

x-axis represents the mean absolute SHAP values for each feature, showing their contribution to the 

model's prediction of cancer, or CHD. The plots illustrate the key predictors in the model. RIDAGEYR; age, 

RIAGENDR; gender, DBD910; diet habits, INQ140; income, MCQ300A; relative with heart attack, 

LBXWBCSI; white blood cell count, LBXHGB; hemoglobin level, LBXRDW; red cell distribution width, 

LBXPLTSI; platelet count, LBXMPSI; mean platelet volume, LBXCRP; C reactive protein, LBXTC; total 

cholesterol, LBXGH; HbA1c, NLR; neutrophil to lymphocyte ratio. Also, refer to Table 1 for more 

information about the predictors used in this study. 

Figure 3: Plot for cancer and CHD related features. 

3a. Age for cancer. 3b. Gender for cancer. 3c. Income for cancer. 3d. Age for CHD. 3e. Gender for CHD. 3f. 

Platelet count for CHD. Top 3 predictor features for cancer and CHD occurrence are presented. 
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