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ABSTRACT

A pathologist makes a diagnosis using a light microscope on glass slides containing tissue samples. The entire tissue specimen
can be stored as a Whole Slide Image (WSI) for further analysis. However, managing and manually diagnosing hundreds of
images is time-consuming and requires specific expertise. As a result, there is extensive ongoing research for computer-aided
diagnosis of these digitally acquired pathology images. Deep learning has gained significant attention for its effectiveness for
disease classification and segmentation of cancer cells in histopathologic images. Building a robust and accurate model for
deep learning requires a large number of annotated images. However, it is challenging to find a sufficient number of annotated
public images to validate or construct a new pre-trained model based on pathology images due to the labor-intensive and
time-consuming nature of annotation, the need for expert knowledge, and privacy concerns surrounding medical data. Current
public datasets are often limited to specific organs, types of cancer, or binary classification tasks, which hinders their ability
to generalize across diverse pathology applications. This lack of diversity makes it challenging to develop models that can
perform well on a wide range of diseases, organs, or multiclass classification problems, limiting their use in broader real-world
diagnostic scenarios. To combat this limitation, we are introducing UCF multi-organ histopathologic (UCF-MultiOrgan-Path)
dataset where 977 WSIs are available from cadavers containing tissues of multiple organs such as the lung, kidney, liver,
pancreas, etc. We constructed the WSI dataset filtering from ∼ 1700 WSIs with 15 distinct organ classes and ∼ 2.38 million
patches with a size of 512X512 pixels. For technical validation, we provide two approaches: a patch-based approach for patch
and slide-level classification and a slide-based approach using multiple instance learning (MIL) for slide-level classification. Our
dataset can be used as a benchmark dataset for training and validating deep learning models, especially organ classification
models, which contain a large number of WSIs with millions of extracted patches representative of diverse organ classes.

Background & Summary
Histopathology, the study of tissues at the microscopic level, is an important component in disease diagnosis and cancer
detection1–5. Traditionally, a pathologist examines stained tissue specimens under a microscope to identify abnormalities and
make diagnoses6. However, with the emergence of digital pathology7, whole slide image (WSI) has become increasingly
popular, allowing for the digitization and storage of entire tissue specimens for further analysis8. This transformation has greatly
expanded histopathology’s practical utility, including enhanced teaching efficiency, reduced diagnosis costs9, and improved
research capabilities10, 11.

Despite these advances, manually diagnosing and analyzing hundreds of WSIs is a labor-intensive and challenging task10,
requiring a high level of digital pathology expertise and thorough file management. To alleviate these challenges, significant
research has focused on developing computer-aided diagnosis (CAD) systems for digitally acquired pathology images12, 13.
Among these advancements, deep learning, a subfield of machine learning, has emerged as a powerful tool due to its ability
to learn complex patterns and features from large datasets14, 15. A major challenge in developing deep learning models
for histopathologic image analysis is the scarcity of large, annotated public datasets that accurately represent real-world
clinical scenarios16–19. While existing datasets are often curated for specific machine learning applications, they frequently
lack the diversity and complexity of real clinical data. The performance of deep learning models heavily depends on the
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Table 1. This table provides a comparative analysis of existing histopathologic datasets, highlighting the newly introduced
UCF-MultiOrgan-Path dataset, which consists of 977 whole slide images (WSIs) and approximately 2.38 million patches. The
UCF-MultiOrgan-Path dataset enables comprehensive multi-organ classification, surpassing the capabilities of previously
established specialized datasets.

Dataset Dataset Statistics Dataset purpose

Kimia Path2425 24 WSIs, 24 different
texture pattern

Benchmark dataset
for the classification of

24 different texture patterns

Kimia Path24C26
Colored version of
the Kimia Path24,

same dataset statistics

Benchmark dataset
for the classification

of 24 different texture patterns

Atlas of Digital
Pathology27

100 WSIs,
17688 patches of
1088x1088 pixels

A generalized benchmark dataset
for multi-label classification of
histological tissue types from

various organs with 57 distinct categories

CAMELYON16/1728–30
399 WSIs (CAMELYON16) and

1,000 WSIs (CAMELYON17), 2 classes
(metastasis or no metastasis in lymph nodes)

A benchmark dataset
for binary classification

of metastasis in lymph node tissue

TCGA31
Over 20,000 cancer tissue

slides withover 30 cancer types
across multiple organ

A comprehensive dataset
primarily used for cancer

classification across multiple organs

BACH32
400 training, 100 testing microscopy

images for four classes– normal, benign,
in situ carcinoma, invasive carcinoma

A benchmark dataset
for the classification of different

breast cancer tissue types

PatchCamelyon33 327,680 image patches, binary classification
of Metastasis vs No Metastasis

A benchmark dataset
for binary classification of tumor
presence in lymph node patches

UCF-MultiOrgan-Path 977 WSIs, approximately 2.38 million
patches for 15 organ class

A benchmark dataset
for organ classification

availability of such diverse and accurately labeled datasets20. The FAIR principles (Findability, Accessibility, Interoperability,
and Reusability) were developed to address this gap and foster collaboration within the scientific community21, 22. However,
many existing datasets remain limited in size, diversity, and annotations, hindering the development of robust and generalizable
models16–20, 23, 24. To address these limitations, we have curated a public dataset named UCF-MultiOrgan-Path that provides a
more realistic representation of clinical data. This dataset includes a large number of histopathologic WSIs collected from
cadavers during medical school education at the University of Central Florida (UCF) over the course of 10 years (2010-2019).
By spanning a decade, it captures a wide variety of patient cases, different types of diseases, and variations in causes of death,
reflecting the natural variability and changes in medical practices over time. Our dataset contains WSIs from 15 organs, such as
the lung, kidney, liver, pancreas, and others, reflecting the variety and complexity of cases encountered in real clinical settings.
It offers important knowledge on histological structures and additionally can act as an outstanding educational resource, further
showcasing its high quality and usefulness.

Table 1 compares existing histopathologic datasets, including their statistics and intended purposes, with our UCF-
MultiOrgan-Path dataset. The UCF-MultiOrgan-Path dataset offers significant advantages over other public datasets in terms of
dataset size, number of classes, and purpose. With 977 WSIs and approximately 2.38 million patches representing 15 organ
classes, UCF-MultiOrgan-Path provides a broader scope for deep learning classification benchmarks in the context of multi-class
pathology analysis. In contrast, other datasets such as Kimia Path2425 and Kimia Path24C26 are highly specialized, focusing on
the classification of texture patterns from just 24 WSIs, restricting their applicability to broader tasks. Similarly, the Atlas of
Digital Pathology27 includes 100 WSIs with a focus on multi-label classification across 57 categories but with only 17,688
patches, which is notably smaller compared to the extensive number of patches provided by UCF-MultiOrgan-Path. Datasets
such as CAMELYON16/1728–30 and PatchCamelyon33 are constrained by their binary classification tasks (e.g., metastasis vs.
no metastasis in lymph nodes), which reduces their utility as benchmarks for evaluating complex, multi-class scenarios in deep
learning models. Similarly, TCGA31 offers a substantial number of tissue slides across various cancers, yet its narrow focus
limits its effectiveness as a benchmark for evaluating models on a more diverse set of histopathological classes. Meanwhile,
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Figure 1. Overall process of dataset curation and validation procedures: (a) WSI Pre-processing: from the 1700 WSIs, we
exclude slides that are blurry, limited class organs, and stains other than H&E to get 977 WSIs. (b) Patch Pre-processing:
patches with a size of 512X512 are selected while excluding white spaces. (c) Two splits such as Selective and Standard Split
are created to validate both patch and slide-based approaches, which are explained in detail in the Technical Validation section.

BACH32 focuses specifically on breast cancer classification, providing just 400 training and 100 testing images, which is
extensively smaller than UCF-MultiOrgan-Path.

In summary, UCF-MultiOrgan-Path stands out due to its extensive dataset size and emphasis on multi-organ classification.
It also has the potential to become a benchmark for developing and validating deep learning models across various tissue types,
providing more versatility and generalizability than specialized datasets. By providing a diverse and annotated collection of
whole slide histopathologic images aligned with FAIR principles, this publicly available dataset addresses a crucial need in
digital pathology. Its realistic representation of clinical data makes it a valuable resource not only for organ classification but also
for tackling more complex challenges. Furthermore, the extensive set of image patches enhances its utility for transfer learning,
which is essential for refining models that can be applied in clinical settings. Overall, this dataset fosters the development
of more robust deep-learning models that reflect clinical practice, thereby contributing to improved diagnostic accuracy and
personalized treatment strategies.
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Data Curation and Pre-processing
Our methodology encompassed a comprehensive dataset preparation process, carefully structured through several key steps of
WSI pre-processing and patch pre-processing as illustrated in Figure 1. 1,700 tissue samples were collected through autopsy
during the anatomy classes for students learning for 10 years (2010-2019) at the University of Central Florida (UCF). The
slides were stained with standard Hematoxylin and Eosin (H&E), Congo Red, GRAM, PAS-F, Trichrome, etc. The WSIs were
prepared using an Aperio scanner at a magnification level of 20x. These WSIs represent a wide variety of tissues from various
organs, ensuring a diverse and comprehensive dataset. We will discuss the technical validation in the subsequent section.

Figure 2. Sample WSI image for each organ class

WSI Pre-processing
We began by curating an extensive dataset of approximately 1,700 WSIs at 20x magnification derived from cadaver specimens
with the assistance of three pathologists. These WSIs were purposefully selected to represent a wide range of tissues from
various organs, ensuring a diverse and comprehensive dataset. To support machine learning analysis, we collaborated with
Dr. Borowsky’s laboratory to digitize the WSIs, transforming them from their original wet slide format into digital pathology
images. This digitization process enabled us to apply advanced deep-learning techniques to our research, enhancing our
analytical capabilities. After the initial process of digitalization of 1700 WSIs, we selected 977 slides based on multiple criteria.

First, some slides became blurry or accumulated debris during the digitization process. To ensure a clean and robust dataset,
we excluded these compromised slides from our analysis. The majority of slides are stained with H&E; therefore, due to
the limited representation of organ classes in slides stained with other techniques and the variability introduced by different
staining methods, we focused exclusively on slides with H&E staining. A sample image of corrupted and different WSI staining
rather than H&E is presented in Figure S1 of the supplementary materials. Furthermore, certain organs such as the spinal cord,
esophagus, and bone were represented by a very limited number of WSIs, complicating the division of data into training, testing,
validation, and expanded test sets. Slides from these underrepresented organs were excluded from the final processed dataset.
After applying all pre-processing steps, we finalized a dataset comprising 977 slides across 15 organ classes. A representative
WSI image for each organ class is shown in Figure 2.

Patch Pre-processing
For patch extraction, we implemented a method previously described by Vrabac et al.24 to remove excessive white space from
WSIs, ensuring that only relevant tissue areas are selected as patches. Non-overlapping patches were extracted at a resolution of
512x512 pixels to capture detailed patterns and textures within the tissue, while also maintaining computational efficiency to
ensure compatibility with deep learning models34, 35. White spaces were excluded through a two-step process. First, the RGB
color space of each patch was converted to HSV color space, focusing on the saturation channel to differentiate between colored
and white regions. Patches were excluded if the proportion of pixels with low saturation exceeded a predefined threshold,
indicating a predominance of white space. In the second step, patches were converted to grayscale, and the Sobel operator
was applied to detect edges and compute gradient magnitude. Patches with a high proportion of pixels having zero gradient

4/12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 6, 2024. ; https://doi.org/10.1101/2024.11.05.24316736doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.05.24316736
http://creativecommons.org/licenses/by-nc-nd/4.0/


magnitude, which also indicates white space, were excluded from further analysis. This combination of techniques allowed us
to effectively eliminate patches with excessive white space, ensuring that the retained patches were informative and suitable for
subsequent analysis. Multiple patches for each organ class are provided in the supplementary materials.

Data Records
The WSIs included in this dataset is accessible at https://stars.library.ucf.edu/ucfnecropsywsi/. The
WSI images have been uploaded as bundles of approximately 30 WSIs per bundle. Each dataset bundle is designated as UCF
WSI Batch XX, with specific sample bundles referenced in36, 37. In addition to the WSIs, 2,379,949 image patches from 15
organ classes have been included on the same website. The patch files have been organized and bundled by anatomical region,
with each zip file approximately 20 GB in size to facilitate usability and ease of downloading. The number of patches per zip
file and the number of zip files for each organ vary depending on the dataset. Each zip file is clearly labeled by organ type
and batch number (e.g., UCF Adrenal Patch, UCF Bladder Patch Batch 01, UCF Brain Patch Batch 03)38–52, enabling users
to efficiently locate and use the data for their research needs. For larger zip files exceeding 20 GB, the patch data has been
split into multiple parts using a split archive system for ease of use, with examples including UCF Heart Patch Batch, UCF
Heart Patch Batch 01, UCF Heart Patch Batch 02, ..., up to UCF Heart Patch Batch 09. To recombine these files, ensure all the
split parts are present in the same directory, use a compatible unarchiving tool like WinRAR or 7-Zip, open the main .zip file
(e.g., UCF Heart Patch Batch), and extract the data following the software instructions. Overall, the site hosts over 2 TB of
compressed zip data, providing a comprehensive and valuable resource for researchers.

Table 2. Accuracy, precision, recall, F1-Score of different deep-learning models for patch and slide level classification task for
test set for patch-based approach for Selective Split

Patch Level Slide Level
Model Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

EfficientNet53 60.20 60.28 60.20 58.74 69.12 77.37 69.12 67.28
ResNet5054 59.82 59.17 59.82 57.96 69.12 74.98 69.12 65.92

ViT55 60.02 58.91 60.02 58.61 76.47 78.08 76.47 75.35
Swin Transformer56 62.11 62.21 62.11 60.55 73.53 79.75 73.53 72.22

VGG1957 57.91 57.28 57.91 54.97 63.24 65.72 63.24 57.95

Table 3. Accuracy, precision, recall, F1-Score of different deep-learning models for patch and slide level classification task for
expanded test set for patch-based approach for Selective Split

Patch-level Slide-level
Model Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

EfficientNet53 48.05 73.66 48.05 53.41 67.62 84.86 67.62 72.26
ResNet5054 46.69 72.47 46.69 51.32 63.70 81.23 63.70 67.17

ViT55 46.05 72.77 46.05 49.95 60.85 81.64 60.85 64.58
Swin Transformer56 47.92 73.75 47.92 52.65 64.65 83.95 64.65 68.80

VGG1957 41.83 70.05 41.83 42.84 54.69 79.53 54.69 55.24

Technical Validation
We conduct a comprehensive technical validation of the dataset and explore the effectiveness of state-of-the-art (SOTA) deep
learning models on the UCF-MultiOrgan-Path dataset both at the patch and slide level classification. To achieve this, we provide
two approaches such as patch-based approach and a slide-based approach, as illustrated in Figure 1. In the patch-based approach,
individual patches are input into the deep learning model for classification, with the final slide classification determined by
majority voting across the patch predictions. In the slide-based approach, MIL58 is used to classify the slide. Both the patch
and slide-based methods are used due to their prevalence and to provide different aspects of analysis of the data.

Patch-based Approach
Dataset Splitting
Whole slide images are split into distinct sets for training, validation, testing, and expanded testing, which we refer to as the
Selective Split. Specifically, we randomly selected 105 WSIs for the training set, 29 for the validation set, and 68 for the test set.
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Figure 3. Confusion matrix for patch-level classification for
test set using ViT

Figure 4. Confusion matrix for slide-level classification for
test set using ViT

Figure 5. Confusion matrix for patch-level classification for
expanded test set using ViT

Figure 6. Confusion matrix for slide-level classification for
expanded test set using ViT

The remaining 775 WSIs were combined with the initial test set to form an expanded test set, totaling 843 WSIs. The total
number of WSIs and patches for each organ class in each set, along with the overall slide and patch counts for each organ, is
presented in Table 4.

The primary goal of this study is to introduce the dataset and provide initial validation, as training and validating a deep
learning model on the entire dataset of nearly 2.38 million patches would be time-consuming. Therefore, we limited our
analysis to the aforementioned number of slides. To expedite the validation process and reduce computational overhead, we
performed a selective evaluation by randomly sampling 100 patches from the WSIs in the expanded test set. This Selective
Split approach enables an efficient and representative assessment of the model’s performance without the need to use the entire
patch set for each WSI. We encourage other researchers to conduct experiments using the complete dataset to facilitate the
development of pre-trained models for pathology patches. These models could serve as valuable pre-trained encoders for
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Table 4. Number of slides and patches used in train, validation, test, and expanded test set in Selective Split for model training
and validation, along with total slide and patch count for each organ

Organ Name
Slides Patches

Train Val Test Exp. Test Total Train Val Test Exp. Test Total
Lung 8 2 5 374 384 17856 1533 4013 37400 627760
Liver 8 2 5 79 89 29546 7209 21435 7900 336676

Kidney 8 2 5 82 92 22858 7949 16074 8200 286876
Brain 8 2 5 29 39 38534 9803 18933 2900 161173
Spleen 8 2 5 14 24 31848 7223 19231 1400 87053

Pancreas 8 2 5 18 28 19839 4502 10772 1800 67053
Prostate 8 2 5 47 57 25455 7097 19792 4700 205439

Skin 8 2 5 57 67 2406 1223 1536 5323 32118
Bladder 8 2 5 19 29 16952 4502 12852 1900 61474
Heart 8 2 5 102 112 27267 7739 17250 10200 372844

Adrenal 4 2 3 3 9 13530 5945 8642 300 28117
Colon 3 1 3 3 7 10179 1701 8676 300 20556

Lymph Node 8 2 5 9 19 21864 6288 13205 900 50008
Thyroid 5 2 3 3 10 12248 1685 4951 300 18884
Breast 5 2 4 4 11 10994 5400 7524 400 23918
Total 105 29 68 843 977 301376 79799 184886 83923 2379949

transfer learning applications, such as classification or segmentation tasks in digital pathology.

Implementation Details
Five pre-trained backbones—EfficientNet53, ResNet5054, Vision Transformer (ViT)55, Swin Transformer56, and VGG1957—were
selected to evaluate our dataset’s performance. These architectures represent a mix of both convolutional and transformer-based
architectures, allowing a robust evaluation of the dataset’s performance across diverse model types.

All the patches extracted from the train and validation set (Figure 1) are used for model training and validation. All models
included in this study are trained using the PyTorch framework, employing a Tesla T4 GPU (NVIDIA, Santa Clara, CA). The
method is trained to perform patch-level classification and to achieve slide-level classification through majority voting. As
the primary objective of this paper is to introduce an organ classification method and a single epoch takes a lot of time to
run, we trained all the models with 5 epochs only. The patches are resized to 224x224 pixels to be compatible with the deep
learning models. A batch size of 128, Adam as the optimizer59, and cross-entropy loss function are used to train the models. To
validate the trained models, we utilize both the test and expanded test set and provide the results as patch-level and slide-level
predictions in Table 2 and 3. Accuracy, precision, recall, and F1-Score are used as the primary evaluation metrics to assess
the model’s performance, providing a comprehensive view of both classification correctness and the balance between false
positives and false negatives.

Results and Discussion
The patch-based approach provides notable variability in performance across different deep learning models, with Swin
Transformer achieving the highest accuracy of 62.11% for patch-level prediction on the test set and ViT with an accuracy
of 76.47% for slide-level prediction. However, both the patch-level and slide-level accuracy decreased for the expanded
test set due to the use of 100 randomly sampled patches. Random sampling of fewer patches increases the likelihood of
missing distinguishing features or selecting less informative tissues with more background and less distinctive patterns, creating
sampling bias and potentially reducing prediction accuracy.

In Figure 3, 4, 5, 6, we present confusion matrices for patch-level and slide-level prediction for both test and expanded
test sets using ViT to illustrate the accuracy of each organ class separately. Additionally, confusion matrices and classification
results for each organ for all the models are provided in the supplementary materials. Sample patches for all the organs are
also provided in the supplementary materials. This class-wise analysis reveals that organs such as the brain and heart, which
possess distinctive histopathological features, consistently achieved higher F1-Scores indicating fewer false positives and false
negatives. On the other hand, lower accuracy of lung in the test set may be due to the limited number of patches (4,013) derived
from only five test slides, as shown in Table 4. This limited patch counts likely results in fewer informative patches, which may
not fully capture the histological diversity needed for accurate classification. Increasing the number of lung slides in the training
set could help the model learn to classify lung tissue more accurately. The lower accuracy for adrenal and colon classification
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may also be due to the relatively small number of slides and patches used for training these organs compared to others (Table 4).
With fewer examples, the model may struggle to generalize well for these tissues. Additionally, confusion matrices for most
models reveal that lymph nodes are frequently misclassified as the spleen, as these tissues have similar histological features
such as lymphoid follicles (Figure S6, S14) making it challenging for the model to distinguish them accurately. Interestingly,
lymph nodes are often misclassified as spleen, but the opposite is less common. This could be due to patch distribution, as
shown in Table 4, where the spleen has approximately 1.5 times more training patches than the lymph node. This imbalance
may cause the model to be more biased toward classifying lymph node patches as the spleen.

The confusion matrices highlight common misclassification patterns, particularly among organs with similar structures,
suggesting the need for balanced datasets and advanced sampling techniques. Additionally, as we only experimented with
a patch size of 512x512 pixels, future work could explore using patches of varying sizes to assess how different scales
impact classification accuracy for the patch-based approach. Overall, the findings highlight the ability of various models to
capture complex patterns for multi-organ classification, while also pointing to areas for future improvement in addressing class
imbalance and optimizing patch selection strategies.

Slide-based Approach
Dataset Splitting
We use a different splitting scheme, called the Standard Split, which applies a random 80%-10%-10% train-validation-test
split to the 977 WSIs, in contrast to the Selective Split. This approach results in 781 WSIs for the training set, 97 WSIs for the
validation set, and 99 WSIs for the test set. This splitting scheme allows for consistent dataset evaluation by leveraging the MIL
approach to utilize the entire dataset efficiently. Unlike the patch-based method, it minimizes training complexity regarding
time and computational resources.

Table 5. Precision, Recall, F1-Score for each organ class on Standard Split using MIL with Patch Count 30 and 44

Organ Patch Count = 30 Patch Count = 44
Precision Recall F1-Score Precision Recall F1-Score

Lung 84.62 84.62 84.62 94.44 87.18 90.67
Liver 28.57 20.00 23.53 80.00 80.00 80.00

Kidney 69.23 90.00 78.26 64.29 90.00 75.00
Brain 45.45 100.00 62.50 66.67 80.00 72.73

Spleen 0.00 0.00 0.00 100.00 33.33 50.00
Pancreas 0.00 0.00 0.00 0.00 0.00 0.00
Prostrate 0.00 0.00 0.00 50.00 28.57 36.36

Skin 35.00 87.50 50.00 28.57 100.00 44.44
Bladder 12.50 25.00 16.67 0.00 0.00 0.00
Heart 60.00 25.00 35.29 100.00 41.67 58.82

Adrenal 0.00 0.00 0.00 0.00 0.00 0.00
Colon 0.00 0.00 0.00 0.00 0.00 0.00

Lymph Node 0.00 0.00 0.00 0.00 0.00 0.00
Thyroid 100.00 100.00 100.00 0.00 0.00 0.00
Breast 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy 55.45 64.54

Implementation Details
MIL is a weakly-supervised deep learning approach where a single class label is assigned to a bag of instances58. Transformer
MIL60, with a ResNet5054 backbone, is the improved version of the original MIL paper chosen as the slide-based method for
evaluating the UCF-MultiOrgan-Path dataset. For the sake of simplicity, we refer to Transformer MIL as MIL in this paper.
The approach selects random patches from each WSI, trains a backbone to represent each patch as a feature, and then uses an
attention and multi-layer perception head for classification.

Patches of size 256x256 are chosen from each WSI and undergo random flip and rotation augmentations during training. The
AdamW optimizer, binary cross-entropy loss, and a cosine annealing scheduler are adapted from the original implementation.
Unlike the original paper, we only select 30 random patches from each WSI rather than 56. The slide-based approach used the
same hardware and platform as the patch-based approach.
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Figure 7. Confusion matrix on Standard Split using MIL
with Patch Count equal to 30

Figure 8. Confusion matrix on Standard Split with Patch
Count equal to 44

Results and Discussion
In the Standard Split where the classes are balanced for each split. This split focuses more on evaluating the whole dataset,
where the MIL method achieves 55.45% accuracy, shown in Table 5. We observe in Figure 7 that due to the class imbalance,
MIL achieves 84.6% on lung classification and 0.0% accuracy on seven of the other organs. Notably, the model manages to
accurately (100%) predict the brain organ even with only 39 slides total which, suggests how starkly different the cellular
structure of the brain is compared to other organ classes (Figure S5). These results illustrate the rigor of the multi-organ
classification task with slide-level approaches and the need for additional datasets in this direction. Additionally, we managed
to achieve a 64.54% accuracy in Table 5 with the MIL method when expanding the random patch selection count from 30 to 44.
With additional computational resources, the MIL method would be able to achieve even higher accuracy; however, it would
still not be as effective as a patch-based approach simply due to the difference in granularity of annotations. The confusion
matrix for a patch count of 44 is provided in Figure 8 to illustrate how accurately each specific organ is classified using this
approach.

Future work could focus on developing an adaptive patch selection approach to identify informative patches unique to
specific organ classes, thereby enhancing classification accuracy. Increasing the number of patches selected per WSI could
further improve the model’s ability to capture diverse tissue characteristics; however, this approach would require substantial
GPU memory and computational resources.

Conclusion
The potential of UCF-MultiOrgan-Path lies in its ability to address the limitations of existing datasets, such as limited organ
diversity, small patch counts, and narrow focus on specific diseases or textures. By offering a wide range of organ types,
this dataset enables the development and validation of deep learning models that can learn richer, more diverse features,
resulting in robust, generalizable models suited for real-world clinical applications. With approximately 2.38 million patches,
UCF-MultiOrgan-Path allows models to capture complex histological variations and subtle patterns that smaller datasets often
miss. This comprehensive, large-scale resource fills a critical gap in histopathologic research, supporting the development of
more accurate and scalable models. While the dataset’s size presents computational challenges, requiring powerful resources
such as GPUs with high memory and extended training time, it also provides a valuable benchmark for advancing computational
pathology and clinical diagnostic tools, bridging the gap between academic research and practical applications.

Usage Notes
The dataset is the property of the University of Central Florida, which holds all rights to it. Licensors provide non-exclusive
rights to utilize the dataset for research purposes, free of charge, to both academic and industrial research users. However,
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sublicensing rights are not granted. Usage is limited to non-commercial purposes, specifically for research and/or evaluation
only. Subject to the terms and conditions of this License, users are granted a non-exclusive, royalty-free license to reproduce,
prepare derivative works of, publicly display, publicly perform, and distribute the dataset and any resulting derivative works in
any form.

Code availability
The code for patch extraction, models of technical validation, validation results, and patch distribution for training are
publicly accessible on GitHub. Visit our GitHub repository at https://github.com/Md-Sanzid-Bin-Hossain/
UCF-WSI-Dataset to explore and contribute to our work.
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