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Abstract 

Background 

Identifying patients who would benefit from whole genome sequencing (WGS) is difficult and 
time-consuming due to complex eligibility criteria, lack of neonatologist familiarity with WGS 
ordering, and evolving clinical features. In previous work, we showed that MPSE, the Mendelian 
Phenotype Search Engine, can provide automated prioritization of probands for WGS while 
maintaining current diagnostic rates. MPSE is now in use in multiple hospital networks, but 
questions still surround how to best prioritize patients for WGS. 

Methods 

Here we use the clinical histories of 2,885 neonatal intensive care unit (NICU) admits from two 
institutions to explore further questions regarding how to best prioritize NICU admits for WGS. 
First, we ask if changes to the machine learning (ML) classifier and the clinical natural language 
processing (CNLP) tools used for generating patient phenotype descriptions might improve 
MPSE’s performance. Second, we explore the utility of using alternative data types as inputs to 
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MPSE. Lastly, we conduct a longitudinal analysis of MPSE’s ability to identify probands for 
WGS. 

Results 

Eight different ML classifiers, five CNLP tools, and four previously untested alternative data 
types were used to train and validate MPSE models. MPSE achieved high predictive 
performance across multiple classifiers (max AUC=0.93), CNLP tools (max AUC=0.91), and 
input data types (max AUC=0.91). Longitudinal analysis of MPSE scores revealed a significant 
separation between cases/controls and diagnostic/non-diagnostic cases within 48 hours of NICU 
admission. 

Conclusions 

MPSE provides a highly flexible and portable framework for automated prioritization of 
critically ill newborns for WGS. We find that MPSE’s performance is largely agnostic with 
respect to CNLP tools. Moreover, structured data such as ICD codes can serve as an effective 
alternative input to MPSE when access to clinical notes or CNLP pipelines is problematic. 
Finally, MPSE can identify children most likely to benefit from WGS within 48 hours of 
admission to the NICU, a critical window for maximally impactful care. 
 

Background 
Each year approximately 7 million infants worldwide are born with genetic disorders. Many are 
diagnosed and treated in the neonatal intensive care unit (NICU)1. Rapid progression of disease 
in acutely ill infants necessitates equally rapid diagnosis to implement personalized 
interventions. In recent years, whole genome sequencing (WGS) has emerged as a primary 
diagnostic tool2–4. An estimated one-fifth of NICU admissions involve Mendelian diseases, with 
WGS diagnostic yield commonly in the range of 25-50%5–8. However, identifying infants for 
WGS is difficult and time-consuming due to complex eligibility criteria, lack of neonatologist 
familiarity with WGS ordering, and evolving clinical features. 
 
Manual review and prioritized selection of patient phenotypes is a time-consuming and 
expensive process, hindering WGS application in the NICU9,10. Since interpretation is 
phenotype-driven, incomplete or erroneous phenotype selection can result in false negative 
results. Failure to adhere to payer eligibility criteria can lead to refusal of reimbursement. 
Complicating this are the complexity of eligibility criteria and differences between payers. 
Recent efforts explore clinical natural language processing (CNLP) to automatically generate 
Human Phenotype Ontology (HPO)-based phenotype descriptions from clinical notes, and have 
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demonstrated diagnostic rates comparable to manual methods9,11. Automation promises 
scalability and efficiency in patient triage for sequencing. In previously published work, we have 
shown that combining CNLP with a machine learning-based prioritization tool, the Mendelian 
Phenotype Search Engine (MPSE) provides effective means to prioritize patients for WGS using 
electronic health records (EHRs)12,13. 
 
Perhaps the greatest benefit from tools like MPSE will be seen by limited resource healthcare 
systems which may lack the expertise, funding, or data necessary to develop in-house 
computational frameworks for driving genomics-based clinical care. Generalizability and 
adaptability are therefore essential. With these facts in mind, we have explored MPSE’s utility 
across multiple patient populations, data sources, and input data types. Our results reveal that 
MPSE is fast, flexible, generalizable, and highly portable. 
  
Flexibility, generalizability, and portability are important characteristics of MPSE, but time to 
WGS order is of critical importance in the NICU clinical setting. Earlier identification of patients 
likely to benefit from WGS, ideally as soon as possible after NICU admission, can significantly 
enhance care by enabling earlier disease diagnosis and timelier, more personalized 
interventions2,14,15. Here we show that MPSE can identify those children most likely to benefit 
from WGS within the first 24 hours of admission to the NICU, a critical window for maximally 
impactful care. Moreover, we find that the MPSE scores of patients who are ultimately 
diagnosed with Mendelian diseases are higher than those of sequenced but non-diagnostic cases, 
a statistically significant trend that appears at 48 hours post-admission and continues across the 
entire duration of the NICU stay. These findings argue for MPSE’s use as a proactive monitoring 
tool throughout the NICU stay. 
 

Methods 

Datasets 

Our clinical cohort comprised 293 probands who underwent rapid whole genome sequencing 
(rWGS) at Rady Children’s Hospital in San Diego (RCHSD), 85 of whom received a molecular 
diagnosis for a Mendelian disorder. These 293 individuals were selected from symptomatic 
children enrolled in prior studies exploring the diagnostic rate, time to diagnosis, clinical utility, 
outcomes, and healthcare utilization of rWGS between July 26, 2016, and September 25, 2018, 
at RCHSD (ClinicalTrials.gov identifiers: NCT03211039, NCT02917460, and NCT03385876). 
All participants presented with symptomatic illnesses of unknown etiology and suspected genetic 
disorders. The diagnosed cases provide a real-world population displaying various Mendelian 
conditions arising from diverse modes of disease inheritance and disease-causing genotypes. An 
additional 756 patients admitted to the NICU at RCHSD in 2018 were also included. These 
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patients were added to enrich the dataset with a broader spectrum of phenotypes not necessarily 
associated with Mendelian diseases. In total, the RCHSD dataset used in this study contains a 
total of 1,049 individuals. Additional details are provided in2,7,9,14,15. 
 
We also employed a second, independent dataset consisting of 1,838 newborn patients admitted 
to the University of Utah level III NICU from January 2020 to December 2022, the approximate 
study period of the Utah NeoSeq Project. The Utah NeoSeq Project was a multidisciplinary, 
longitudinal rapid genome sequencing program conducted at the University of Utah to improve 
genetic diagnosis in critically ill infants in the NICU. Within the Utah cohort of 1,838 patients, 
65 were selected for rWGS based on manual chart review as part of the NeoSeq study. 26 of 
these children received a molecular diagnosis. 
 

Statistical classifiers 

Various Machine Learning (ML) classifiers were used to train multiple independent MPSE 
models. The original MPSE algorithm employed a Naive Bayes classifier and is described in 
detail in our proof-of-concept work12. Additional MPSE models were trained using the following 
ML classifiers: K-Nearest Neighbors (KNN), Decision Trees (DT), Random Forests (RF), 
Logistic Regression (LR), Gradient Boost Machine (GBM), Support Vector Machine (SVM), 
and Multi-Layer Perceptron (MLP). Each classifier was implemented using scikit-learn, a 
general-purpose machine learning library written in the Python programming language16. Each 
method was run with scikit-learn version 1.4.2 default parameters. Models were trained using the 
RCHSD cohort (n=1,049) and internally validated using stratified K-fold cross validation (K=8). 
Each of the trained classifiers was subsequently validated externally with five randomly split 
subsets of the Utah cohort (n=419 per set). 
 

Phenotype and alternative data types 

Highly curated, manually created HPO-based phenotype descriptions were provided for each of 
the 65 sequenced University of Utah probands. CNLP-derived phenotype descriptions were 
generated for all 1,049 RCHSD probands and the 1,838 University of Utah probands by CNLP 
analysis of clinical notes recorded during NICU stay using CLiX17. Additional CNLP-derived 
phenotype descriptions were generated using the following text mining and CNLP methods: 
ClinPhen18, cTAKES19, MedLEE20, and MetaMapLite21 for the University of Utah probands. 
CLiX and ClinPhen generate HPO terms directly from clinic notes, while cTAKES, MedLEE, 
and MetaMapLite return Unified Medical Language System (UMLS)22 Concept Unique 
Identifiers (CUIs) which were then mapped to HPO terms using the UMLS Metathesaurus’ 
network hierarchy. For sequenced patients, clinical notes dated post-WGS were excluded from 
analysis to remove notes containing sequencing results. In addition to CNLP-derived phenotype 
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data, ICD-10 diagnosis codes, laboratory tests, medications, and other hospital orders were 
collected for all University of Utah probands to serve as alternative data sources for MPSE 
modeling. Unlike free-text clinic notes, these alternative data types are stored in structured form 
within the University of Utah’s Enterprise Data Warehouse (EDW) and were extracted using 
automated database queries. Laboratory tests and medication orders were encoded as binary 
variables to represent the presence/absence of a test or order without the context of the test result 
or medication dosage, frequency, adherence, etc.. 
 

Calculating semantic similarity between phenotype sets 

We calculated pairwise semantic similarity between physician- and CNLP-generated HPO term 
sets for patients using the Python package PyHPO v3.1.4. PyHPO calculates the similarity 
between two HPO sets as described in23,24. We also generated simulated, ‘randomized’, HPO 
term sets for every proband in order to provide a “null” distribution for our semantic similarity 
calculations. For each “real” pairwise set comparison, simulated HPO sets of equal size were 
randomly sampled from the HPO. Semantic similarity between these sets of randomly sampled 
terms was then calculated using the same method that was used to compare the manual and 
CNLP sets to one another. Significant differences between “real” and “randomized” set 
similarities were tested for using paired Student’s T-test. 
 

Testing the precision and diagnostic yield of MPSE 

We calculated the precision and diagnostic yield at K for the 5, 10, 25, 45, and 65 top-scoring 
patients by dividing the number of true positives by K. For calculating precision, a true positive 
was defined as a WGS-selected patient that was classified (flagged) by MPSE as a WGS 
candidate based upon the contents of its clinical notes using a particular C-NLP tool, i.e., its 
MPSE score > 0. For calculating diagnostic yield, a true positive was defined as a WGS-
diagnosed patient that was flagged by MPSE (MPSE score > 0). 
 

Gene prioritization using NLP-derived phenotype descriptions 

Artificial Intelligence (AI)-based prioritization and scoring of candidate disease genes for the 
diagnosed probands was performed using Fabric GEM11. GEM is a commercial tool for AI-
assisted clinical interpretation of WES and WGS. It has been licensed by the University of Utah 
and Rady Children’s Hospitals from Fabric Genomics Inc. Additional licensing information is 
available from Fabric Genomics Inc. GEM inputs are genetic variant calls in VCF format and 
case metadata, including parental affection status, and patient phenotypes in the form of HPO 
terms. For these analyses, GEM was run six times for each NeoSeq proband, varying only the 
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input HPO lists, the first with the proband’s physician-selected terms and the remaining runs 
using HPO term sets created with the five different CNLP tools. 
 

Longitudinal analysis of MPSE scores 

We conducted a longitudinal analysis of MPSE scores across each University of Utah patient's 
NICU stay. For this analysis, we employed the original MPSE model trained on the RCHSD 
cohort and utilized CLiX-derived HPO phenotype descriptions. Human Phenotype Ontology 
(HPO) terms were timestamped according to the date of the clinical note, with each day's 
cumulative HPO list being used for MPSE score calculations. Six sequenced University of Utah 
patients had to be excluded from this analysis because a data upload error left clinic note 
timestamps unavailable for these patients, leaving 59 remaining sequenced patients available for 
longitudinal analysis. Subsequently, we calculated average daily MPSE scores for unsequenced 
controls, sequenced but not diagnostic cases, and diagnostic cases. We estimated the daily 
probability MPSE would recommend patients from these groups for sequencing using a score 
threshold (calculated individually for each day) of 2 standard deviations above the mean score of 
unsequenced control patients, and calculated the associated hazards ratio with Cox proportional 
hazards regression analysis using the R survival package (v3.7.0). 
 

Comparing diagnostic yield between MPSE and ACMG practice 
guideline 

We calculated the 10-day post-admission diagnostic yields achieved by MPSE versus that 
achieved using American College of Medical Genetics and Genomics (ACMG) criteria25. 
University of Utah cohort patients (n=1838) were selected for WGS by MPSE at day 10 using 
the score thresholding approach detailed in the longitudinal analysis section (above). Patients 
from the same group and time point were again selected for WGS according to the 2021 ACMG 
Practice Guideline25 for the use of exome and genome sequencing for pediatric patients with 
congenital anomalies or intellectual disability. This guideline strongly recommends clinical 
genome sequencing as a first or second-tier test for patients with congenital anomalies prior to 
one year of age. Thus, the selection criteria for ACMG was one or more HPO terms indicating a 
congenital anomaly. Because phenotype terms representing congenital anomalies are scattered 
throughout the HPO hierarchy and not related under a single top-level parent term, we manually 
gathered a list of 12 common and clinically impactful congenital anomalies: Neural tube defect 
(HP:0045005), Spina bifida (HP:0002414), Status epilepticus (HP:0002133), Hypotonia 
(HP:0001252), Hyperammonemia (HP:0001987), Arthrogryposis multiplex congenita 
(HP:0002804), Congenital hypothyroidism (HP:0000851), Abnormal heart morphology 
(HP:0001627), Abnormal EKG (HP:0003115), Congenital lactic acidosis (HP:0004902), Cleft 
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lip (HP:0410030), and Cleft palate (HP:0000175). The proportion of selected individuals who 
were previously diagnosed by WGS was then calculated using these two methods. 
 

Results and discussion 

In previous work12,13, we showed that MPSE provides scalable, automated means for prioritizing 
probands for WGS while maintaining diagnostic rates. Here we use the clinical histories of 2,941 
NICU admits drawn from two different institutions to explore three outstanding questions 
regarding automated prioritization of NICU admits for WGS. 
  
First, we explore how changes to the ML classifier and the CNLP tools used for generating 
patient phenotype descriptions affect prioritization accuracy. Second, we explore the utility of 
using additional data types as inputs to MPSE, such as laboratory test orders and ICD diagnostic 
and procedure codes, both as an adjunct to CNLP-derived (HPO) phenotype descriptions and as 
alternative inputs. Lastly, we conduct a longitudinal analysis of MPSE’s discriminative abilities, 
exploring its power to successfully identify probands for WGS within the first 24 to 48 hours of 
NICU admission, a critical window for maximally impactful care. 
  
Our findings speak directly to the ability of the MPSE approach to assist with scalable and cost-
effective democratization of WGS nationwide. We show that our approach performs well using a 
variety of commercial and open-source ML algorithms and CNLP tools. We also observe strong 
performance using either clinical notes and/or structured data in the form of ICD codes and 
laboratory test orders. Most importantly of all, we show that MPSE can identify those children 
most likely to benefit from WGS within the first 24 to 48 hours of their admission to the NICU, 
in some cases long before human case review led to the same conclusion. 
 

Naive Bayes and Support Vector Machines are well-suited for robust 
phenotype-driven patient prioritization 

MPSE uses Bernoulli Naive Bayes (BNB) as its default classifier12,26. To test the hypothesis that 
other ML approaches might outperform Naïve Bayes, we created versions of MPSE using 7 
additional classifiers: K-Nearest Neighbors (KNN)27, Decision Trees (DT)28, Random Forests 
(RF)29, Logistic Regression (LR)30, Gradient Boost Machine (GBM)31, Support Vector Machine 
(SVM)32, Multi-Layer Perceptron (MLP)33. All models were built using the scikit-learn34 Python 
package using default model parameters.  
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We used a two-tiered approach to evaluate each model’s performance: internally resampling the 
RCHSD dataset, followed by a second round of cross-validation using the orthogonal University 
of Utah dataset to assess transportability.  
 
Cross-Validation. The first validation tier consisted of stratified 8-fold internal cross-validation 
using the RCHSD dataset. Stratified K-fold cross-validation splits the training data into K folds 
while ensuring that each fold has approximately the same proportion of cases and controls as the 
original dataset. Each fold serves as a test set for a model trained using the remaining K-1 folds. 
Stratifying the splits helps prevent the model from being biased towards the majority class. 
Performance statistics for the eight splits were averaged within each model and are presented in 
Table 1. The results of this resampling-based cross-validation using the RCHSD dataset show 
that sophisticated classifiers, such as Support Vector Machines and Multi-Layer Perceptrons, 
outperform Naive Bayes. K-Nearest Neighbors and Decision Trees proved inferior to BNB by 
most measures. 
 
Table 1 More sophisticated MPSE models achieve high classification accuracy and 
outperform simpler ones within the training cohort. Averaged internal cross-validation 
performance metrics for different statistical classifiers. Each model was trained on the same 
RCHSD cohort (756 unsequenced controls; 293 sequenced cases) using stratified K-fold cross-
validation with K=8. Table rows are ordered by increasing F1-score. Classifier abbreviations: 
Bernoulli Naive Bayes (BNB), K-Nearest Neighbors (KNN), Decision Trees (DT), Random 
Forests (RF), Logistic Regression (LR), Gradient Boost Machine (GBM), Support Vector 
Machine (SVM), Multi-Layer Perceptron (MLP). Precision = TP/(TP+FP); Recall = 
TP/(TP+FN); F1 = 2*TP/(2*TP+FP+FN); Accuracy = (TP+TN)/(TP+TN+FP+FN); AUROC = 
area under the receiver operator characteristic curve 

Rank Classifier Precision Recall F1 Accuracy AUROC 

1 SVM 0.83 0.72 0.77 0.88 0.93 

2 MLP 0.82 0.73 0.77 0.88 0.92 

3 LR 0.81 0.73 0.76 0.88 0.92 

4 GBM 0.85 0.60 0.70 0.86 0.90 

5 RF 0.89 0.53 0.66 0.85 0.92 

6 BNB 0.68 0.54 0.60 0.80 0.85 

7 DT 0.64 0.58 0.60 0.79 0.72 

8 KNN 0.76 0.11 0.20 0.74 0.68 
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Transportability Analysis. The second validation tier, external validation, consisted of using 
the 8 MPSE models trained with RCHSD data to make predictions on five randomly split subsets 
of the Utah dataset. Each model was applied to the same five external validation sets and 
performance statistics for the five sets were averaged and are presented in Table 2. The external 
validation results contrast with the internal validation results, with MPSE’s original model, 
Bernoulli Naive Bayes (BNB), being the top-performing approach. The BNB model was the only 
model that did not see a significant drop in prediction performance moving from internal to 
external validation; in fact, BNB exhibited an increase in F1-score, accuracy, and AUROC with 
external validation. The difference in relative performance between internal and external 
validations is likely caused by overfitting and the curse of dimensionality. Naive Bayes is known 
to be less susceptible to both35,36. Interestingly, the other models largely maintained their rank 
order between internal and external validation, except GBM, which dropped from rank 4 to rank 
7, and BNB which jumped from rank 6 to rank 1. To summarize, some classifiers performed well 
on the training data (LR, MLP, and SVM), while some models are more transportable (SVM, 
BNB). Transportability is essential if MPSE is to be deployed in different health systems.  
 
Table 2 MPSE’s Naive Bayes (BNB) model is the most robust ML technique by external 
validation. Averaged external validation performance metrics for different statistical classifiers. 
Each model was validated on the same five randomly split subsets of the University of Utah 
cohort (354 unsequenced controls per split; 65 sequenced cases per split). Rows are ordered by 
increasing F1-score. Precision = TP/(TP+FP); Recall = TP/(TP+FN); F1 = 
2*TP/(2*TP+FP+FN); Accuracy = (TP+TN)/(TP+TN+FP+FN); AUROC = area under the 
receiver operator characteristic curve 

Rank Classifier Precision Recall F1 Accuracy AUROC 

1 BNB 0.73 0.52 0.61 0.89 0.89 

2 SVM 0.45 0.49 0.47 0.83 0.83 

3 MLP 0.39 0.49 0.43 0.80 0.73 

4 LR 0.35 0.48 0.41 0.78 0.71 

5 RF 0.57 0.29 0.38 0.86 0.79 

6 DT 0.24 0.49 0.32 0.68 0.60 

7 GBM 0.20 0.49 0.28 0.61 0.59 

8 KNN 1.00 0.02 0.03 0.85 0.54 
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Comparing clinical NLP tool outputs 

All phenotype data used in our initial publications12,13 was generated from patient clinic notes 
using the CNLP software CLiX. CLiX is a proprietary clinical NLP technology developed by the 
commercial healthcare analytics company Clinithink17. Given the ultimate goal of developing 
MPSE for adoption by diverse hospital and clinic systems, we sought to determine MPSE’s 
performance using phenotype data produced by other tools as well. We conducted a series of 
analyses on 5 different CNLP tools to compare their relative utility for use with MPSE: 
ClinPhen18, CLiX, cTAKES19, MedLEE20, and MetaMapLite21. A brief description of these tools 
is given in Additional file 1: Table S1. Before assessing MPSE’s performance using phenotype 
data produced by these different CNLP tools, we first compared the phenotype descriptions 
(HPO term sets) generated by these tools using the same sets of clinic notes -- in this case, the 
notes from 1,838 University of Utah NICU admits.  
 
Term Counts. Summary statistics for unique HPO term counts generated by each CNLP tool as 
well as the “manual” term sets identified by expert physicians are given in Additional file 1: 
Table S2. The HPO term sets used throughout this work were pre-processed by removing parent 
terms to keep only the most specific phenotype terms. In every case, the CNLP tools all 
produced larger HPO term sets per patient than did expert review. Among HPO term sets for the 
University of Utah NeoSeq patients, MedLEE yielded the fewest terms (average 31.4 terms per 
patient) while CLiX yielded the most terms (average 111.2 terms per patient), nearly twice as 
many as the next most prolific tool cTAKES (70.5 terms per patient). Unsequenced University of 
Utah NICU patients had significantly fewer terms in their phenotype descriptions than NeoSeq 
patients, consistent with our observations from other patient cohorts12. 
 
Semantic Similarity. We also calculated pairwise semantic similarity coefficients across all the 
NeoSeq phenotype sets. Semantic similarity is different from strict identity-based similarity 
measures, such as unweighted Jaccard similarity, in that two terms can be non-identical but still 
contribute positively to the similarity coefficient if they are neighbors, i.e., they lie near one 
another in the HPO directed acyclic graph. Note, however, that due to the nature of semantic 
similarity, any two arbitrary term sets sampled from the HPO will have a semantic similarity 
above zero even if no terms are shared between the sets. To estimate the probability that the 
semantic similarities of the term sets produced by the tools are statistically different from a null 
or random distribution, for each pairwise comparison, we sampled the HPO to yield two random 
term sets with sizes identical to the original sets. Semantic similarity coefficients were then 
calculated for these randomized sets and plotted alongside the real data in Figure 1. 
 
The pronounced separation between semantic similarity distributions of real and simulated data 
suggests the HPO term sets produced by the tools reflects a common underlying phenotypic 
reality that is being identified to a greater or lesser degree by all the tools. Consistent with this, 
the difference in mean similarity between real and simulated datasets is highly statistically 
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significant for every tool by Student’s paired T-test, even after multiple test corrections (data not 
shown). Interestingly, the Manual sets showed the lowest similarity with the CNLP sets, perhaps 
due to their smaller number of terms, while overall, cTAKES generally showed the highest mean 
similarity with other CNLP tools. Among the Manual/NLP comparisons, MetaMapLite had the 
lowest average similarity coefficient (mean: 0.227, min: 0.02, max: 0.429), while ClinPhen 
(mean: 0.485, min: 0.174, max: 0.663) and CLiX (mean: 0.479, min: 0.238, max: 0.630) had the 
highest average similarity coefficients. Among the NLP/NLP comparisons, cTAKES and 
MetaMapLite had the highest average similarity to one another (mean: 0.722, min: 0.543, max: 
0.836), while ClinPhen and MetaMapLite had the lowest average similarity (mean: 0.461, min: 
0.171, max: 0.634). 
 
 

 
Figure 1 HPO term sets produced by different CNLP tools share robust semantic overlap. 
Histograms depict the distributions of semantic similarity between phenotype term sets. The 
histograms in the leftmost column represent comparisons between the CNLP-derived term sets 
and the manually curated term sets. Blue distributions correspond to the similarity coefficients 
calculated from the real data, while red distributions represent the similarity coefficients obtained 
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from random sampling of the HPO, with the sample sizes matching those of the respective real 
term sets. The analysis was conducted on term sets from 65 sequenced Utah NeoSeq patients. 
 
NLP Sensitivity and Accuracy. Next, we performed an orthogonal test of CNLP tool sensitivity 
and accuracy by calculating the overlap between the CNLP-generated phenotype sets and two 
distinct “ground truth” reference sets: expert-generated phenotypes and OMIM disease-
associated phenotypes. The expert reference sets constituted the HPO term lists manually curated 
by physicians for the 65 sequenced University of Utah NICU patients. The OMIM disease 
reference sets were restricted to the HPO phenotype terms associated with the OMIM disease 
diagnosis for the subset of 26 WGS-diagnosed Utah NICU patients. For these analyses, a CNLP 
term is considered a “true positive” if it or any of its parent terms are found in the ground truth 
set. This approach is justified by the ontological relationship between parent and child terms in 
HPO, where a child term inherently implies the presence of its parent term(s). Since HPO is 
structured in a manner where more specific terms (i.e., child terms) represent refined phenotypic 
descriptions, they subsume the more general terms (i.e., parent terms). For example, having 
Thrombocytosis (HP:0001894) necessarily indicates the presence of the parent phenotype 
Abnormal platelet count (HP:0011873). Consequently, the presence of a specific term in the 
CNLP set reasonably reflects the occurrence of a broader, related phenotype in the ground truth 
set. 
 
Additional file 2: Figure S1 shows sensitivity and accuracy distributions for CNLP terms sets 
compared with physician manual terms and OMIM disease-associated terms. The relative 
sensitivity among the CNLP tools roughly correlates with the tools’ average term counts (see 
Additional file 1: Table S2), which isn’t surprising; the more terms a tool generates, the more 
likely it will capture terms in the reference set. CLiX had the highest average sensitivity among 
the tools (manual terms sensitivity: 63%; OMIM terms sensitivity: 21%), while MetaMapLite 
had the lowest (manual terms sensitivity: 15%; OMIM terms sensitivity: 9%). The accuracy 
measure differs from sensitivity by controlling for the variable sizes of the CNLP term sets. 
Thus, a CNLP tool with high sensitivity may have a low relative accuracy if it has many more 
terms than another tool with lower sensitivity. ClinPhen had the highest average accuracy among 
the tools (manual terms sensitivity: 13%; OMIM terms sensitivity: 11%), while MetaMapLite 
had the lowest (manual terms sensitivity: 2%; OMIM terms sensitivity: 4%). Despite the modest 
sensitivity and accuracy of these CNLP tools compared to physician manual terms and OMIM 
disease-associated terms, MPSE and other phenotype-driven clinical diagnostics tools such as 
GEM11, appear to be very robust against “noisy” phenotype data inputs (see next results for 
justification). 
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MPSE flexibly handles input data from a variety of sources 

To further evaluate the practical utility of the MPSE algorithm, we conducted a comparative 
analysis of different CNLP tools and data types as inputs to MPSE. This analysis addresses 
several critical considerations for the deployment of MPSE in diverse clinical environments. 
First, we explored the interoperability of MPSE by assessing whether a model trained with data 
from one CNLP tool could reliably predict outcomes using data generated by a different tool. 
Second, we investigated the feasibility of using non-phenotype data with MPSE. The 
overarching purpose of these analyses is to better understand MPSE's flexibility, robustness, and 
broader applicability in real-world clinical settings. 
 
MPSE performance using different CNLP tools. To determine whether MPSE, trained with 
data from one CNLP tool, can reliably predict outcomes using data generated by a different 
CNLP tool, we began with the original MPSE model trained using CLiX-generated phenotype 
data from the RCHSD cohort. This model was used to make predictions on external phenotype 
data from the Utah cohort generated with ClinPhen, CLiX, cTAKES, MedLEE, and 
MetaMapLite. MPSE’s precision and diagnostic yield among top-scoring probands is plotted in 
panel A of Figure 2. Apart from MetaMapLite, all the CNLP tools’ outputs work well when 
used as inputs for MPSE, a fact made clear by the high recovery rates of sequenced and 
diagnosed patients compared to choosing patients randomly for WGS (Figure 2). If MPSE was 
used to automatically select a volume of NICU patients for sequencing identical in size to the 
Utah NeoSeq study (n=65) from among the 1,838 total patients screened, CLiX and ClinPhen 
would maintain the NeoSeq study’s physician-mediated diagnostic yield (40%) throughout the 
top 50% of MPSE scores. This finding accords well with our previous publication, which 
showed high projected diagnostic yields from MPSE prioritization12. 
 
In addition to assessing yield among top-scoring probands, we also calculated cohort-wide 
performance metrics (see Additional file 1: Table S3). After the “native” CLiX data, ClinPhen 
yields the next-best overall predictions, with an average 20.7-point difference in MPSE score 
between cases and controls (p=2.2e-14), the highest area under the ROC curve (AUROC=0.91), 
and the highest area under the PRC curve (AUPRC=0.45). MetaMapLite exhibited the lowest 
performance, likely caused by the relative dissimilarity between CLiX and MetaMapLite as seen 
in the low semantic similarity coefficients of CLiX-MetaMapLite term sets in Figure 1. 
 
MPSE performance using alternative data types. To determine whether non-phenotype data 
types could be used with MPSE, we tested MPSE models built using diagnosis codes, lab tests, 
and medications and compared their predictive ability to phenotype-based models. A short 
description of these data types is given in Additional file 1: Table S4, and summary statistics of 
observation counts for each alternative data type are shown in Additional file 1: Table S5. 
MPSE models trained with alternative data types recovered fewer sequenced cases and 
diagnostic cases (Figure 2 panel B) among top-scoring probands than a corresponding 
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phenotype-based model but still performed much better than a random model. Among the 
alternative data types, the ICD-10 based model yielded the best overall predictions, approaching 
the performance of the CLiX-based model (Additional file 1: Table S3). Our analysis suggests 
that non-phenotype structured data from patient EHRs is less effective than CNLP-derived 
phenotype data at identifying NICU sequencing candidates, but is a useful and valid substitute 
for CNLP phenotype descriptions if these are not available. We also compared the utility of 
combining HPO terms with alternative data types (data not shown) and found that MPSE models 
trained with combined datasets did not yield better predictions than ones using only HPO terms 
alone, suggesting that for this application ICD-10 codes, laboratory tests, and medication use do 
not provide significant orthogonal information to patient phenotypes. However, it should be 
noted that this analysis was limited to only using the presence/absence of a lab test, medication 
order, etc. (see Methods) and not the test result or order specifications. An analysis using more 
precise laboratory and medication data may reveal higher MPSE performance when using these 
alternative data types. 
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Figure 2 MPSE can ingest different CNLP tool outputs and use alternative data types. 
Panel A displays MPSE precision rates of patients manually selected for WGS (left) and 
diagnostic yield for the subset of cases diagnosed by WGS (right) using different CNLP tools. A 
CLiX-trained MPSE model from the RCHSD cohort was applied to phenotype data from 1,838 
University of Utah NICU patients generated by five different CNLP tools. Panel B displays 
precision and diagnostic yield using MPSE models trained on four alternative data types 
(diagnosis codes, lab tests, medications, and all orders), compared to the corresponding HPO-
based (CLiX) model trained on the same Utah cohort. A solid black reference line in each panel 
represents the precision or diagnostic yield expected from a model that chooses candidates at 
random, while the black dashed line in the diagnostic yield graphs (right panels) indicates the 
NeoSeq study’s 40% total diagnostic yield. 
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Diagnostic performance using different CNLP tools. Lastly, we assayed the ultimate utility of 
the CNLP-derived phenotype term sets generated by each tool for clinical molecular diagnostic 
activities. For these analyses, we used an Artificial Intelligence (AI)-based gene prioritization 
tool called GEM11. Licensed from Fabric Genomics, by both RCHSD and the University of 
Utah, GEM is a commercial tool that combines HPO-based phenotype descriptions with WES 
and WGS sequences for rapid, AI-based diagnostic decision support. GEM was used by both 
RCHSD and the University of Utah for the original diagnosis of every sequenced proband in the 
datasets analyzed here. 
  
Comparison of GEM’s previously published diagnostic performance to the prospective Utah data 
reported here provides a unique opportunity both to reexamine GEM’s performance using new, 
orthogonal data, and to assay the impact of using different CNLP tools on GEM’s diagnostic 
performance. These data are shown in Figure 3. For reference, the original GEM benchmark 
results using manually curated HPO term sets for 119 RCHSD probands11 have been added for 
ease of comparison. Figure 3 shows the percentage of diagnosed Utah NeoSeq probands where 
the clinical molecular diagnostic genotype was reported by GEM among its top 1st, 2nd, 5th, and 
10th gene candidates. 
  
Two major conclusions emerge from these data. First, diagnostic performance using CNLP-
derived HPO data, regardless of the tool used to generate them, is nearly identical to the 
performance obtained using manual term sets, and second, the results shown here are highly 
concordant with the original published benchmarking results11. Moreover, the University of Utah 
data provides an entirely prospective orthogonal dataset, demonstrating transportability. These 
results demonstrate a powerful synergy between the MPSE approach and GEM. Namely, that the 
same HPO term sets used by MPSE for WGS prioritization can be directly consumed by GEM 
for downstream diagnoses. Moreover, Figure 3 makes it clear that GEM can use HPO term sets, 
manually curated or CNLP derived, regardless of tool, without compromising downstream 
diagnostic accuracy. 
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Figure 3 GEM AI performance is agnostic with respect to CNLP tool. Bars show the 
proportion of diagnosed NeoSeq probands where the true causal genes were identified by GEM 
among the top 1st, 2nd, 5th, and 10th gene candidates. Each GEM run differed by the input HPO 
term lists, which were made by extracting phenotypes from patient clinical notes using CNLP 
(ClinPhen, CLiX, cTAKES, MedLEE, MetaMapLite) or manual physician review. The RCHSD 
benchmark (n=119 patients) results from the original GEM paper are included for reference 
(redrawn with authors’ permission). 
 

MPSE can identify patients who would benefit from WGS within the 
first 48 hours of NICU admission 

Our initial work and that presented here has demonstrated MPSE’s ability to accurately identify 
sequencing candidates by aggregating information from the entirety of the patient's NICU stay. 
These findings underscore the tool's effectiveness in a retrospective context, using all notes up to 
the date at which the attending physicians place the order for WGS. However, the ultimate test of 
value lies in validating the real-time utility of MPSE. Early identification of patients who would 
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benefit from WGS, as soon as possible after NICU admission, could significantly enhance care, 
enabling earlier disease diagnosis and more timely interventions2,14,15. 
 
To measure MPSE’s real-time utility, we calculated daily MPSE scores for each patient in our 
Utah cohort using only HPO terms extracted from clinical notes present in the EHR at 24-hour 
intervals, beginning at the moment of their admission. Thus, each patient had a series of MPSE 
scores for each day spent in the NICU from admission to discharge. Longitudinal MPSE scores 
for patients who received a molecular diagnosis by WGS (diagnostic), those for whom WGS did 
not identify a molecular diagnosis (non-diagnostic), and patients who were not selected for WGS 
(unsequenced) are summarized in Additional file 1: Table S6 and plotted in Figure 4 to help 
visualize the change in MPSE score over time among these groups. By the end of the first day (0 
to 24 hours) in the NICU, both diagnostic and non-diagnostic sequenced cases had statistically 
significantly higher MPSE scores than did those who were not selected for sequencing 
(unsequenced mean: -48.4; diagnostic mean: -32.1, p=1.4e-5; non-diagnostic mean: -28.2, 
p=9.3e-6). Additionally, diagnostic cases have significantly higher average MPSE scores than 
non-diagnostic sequenced cases beginning 48 hours post-admission (non-diagnostic mean: -24.7; 
diagnostic mean: -9.0; p=0.018) and continuing thereafter. 
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Figure 4 MPSE enables automated WGS candidate identification within the first 24 hours 
in the NICU. Panel A shows MPSE score distributions across the first 96 hours in the NICU for 
diagnostic (red) and sequenced but non-diagnostic (blue) patients as well as unsequenced NICU 
patients (green). Diagnostic and non-diagnostic sequenced patients had significantly higher 
MPSE scores than unsequenced patients beginning 0 to 24 hours after admission. Diagnostic 
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patients had significantly higher MPSE scores than non-diagnostic patients beginning at 48 hours 
post-admission. Boxplot comparison significance levels: *** (p < 1e-5); * (p < 0.05). Panel B 
shows MPSE score trajectories for these groups across the first 30 days in the NICU. Solid lines 
show the mean MPSE score per group and the shaded regions cover one standard deviation from 
each mean. Panel C shows the probability of at-risk patients being classified as a WGS candidate 
by MPSE (i.e., MPSE score > 2 standard deviations above the unsequenced mean score) as a 
function of time. Cox proportional hazards regression analysis confirmed the significantly 
increased rate of MPSE candidate selection for diagnostic and non-diagnostic patients selected 
for WGS compared to unsequenced patients, with hazards ratios of 18.8 (95% CI 11.6-30.6; 
p=1.9e-32) and 9.8 (95% CI 6.2-15.3; p=2.8e-23) respectively. Diagnostic patients were also 
selected by MPSE at a higher rate than sequenced but non-diagnostic patients (HR=2.0; 95% CI 
1.1-3.9; p=0.03). 
 
In addition to initial differences in MPSE scores between unsequenced, non-diagnostic, and 
diagnostic patients, there are also significant differences in the daily change in MPSE score (day-
N delta) between these groups. Both diagnostic and non-diagnostic sequenced cases saw greater 
average day-N delta than unsequenced controls throughout the first 30 days post-admission 
(Additional file 1: Table S6). Importantly, the greatest difference in MPSE score increase was 
observed for the day-one delta, i.e. the change in MPSE score during the first 24 hours post-
admission, with average diagnostic MPSE score rising by 18.4 points, average non-diagnostic 
MPSE score rising by 7.7 points, and average unsequenced MPSE score rising by only 2.7 
points. These day-one delta differences were statistically significant for each subgroup 
comparison (diagnostic vs unsequenced p-value = 0.0015; non-diagnostic vs unsequenced p-
value = 0.004; diagnostic vs non-diagnostic p-value = 0.027). The observed MPSE score 
trajectories clearly show a marked separation between unsequenced controls, non-diagnostic 
cases, and diagnostic cases that appears immediately after admission and only grows more 
pronounced over time. 
 
To gain further insight into the temporal dynamics of MPSE's predictive capabilities across the 
NICU stay, we estimated the proportional risk of being identified as a WGS candidate by MPSE 
using Cox proportional hazards regression analysis37. The estimated probability and 95% CI of 
candidate selection by MPSE for diagnostic, non-diagnostic, and unsequenced patients is plotted 
in Panel C of Figure 4. Using a rule-of-thumb MPSE score threshold (calculated individually for 
each day) of 2 standard deviations above the mean score of unsequenced control patients, 
diagnostic patients were flagged by MPSE at a significantly higher frequency and speed than 
both unsequenced patients (HR=18.8, p=1.9e-32) and non-diagnostic sequenced patients 
(HR=2.0, p=0.03). At 72 hours post-admission, MPSE had already flagged 83% (19 of 23) of 
diagnostic patients, 50% (18 of 36) of non-diagnostic sequenced patients, and only 6% (113 of 
1773) of unsequenced patients. Furthermore, by 9 days post-admission all diagnostic patients had 
been flagged by MPSE or were censored as a result of death or NICU discharge, highlighting the 
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speed at which MPSE was able to determine correct clinical action for this group of patients. 
Additional file 1: Table S7 contains the daily score threshold, the number of candidates 
assessed by MPSE, and the cumulative number of patients who reached the score threshold as 
part of this longitudinal analysis. 
 
Taken together, these results in Figure 4, Additional file 1: Table S6, and Additional file 1: 
Table S7 show that MPSE can be used not only to identify patients who would likely benefit 
from WGS, but also which of those patients will ultimately prove diagnostic for Mendelian 
disease. Moreover, MPSE can do so within the first 24 to 48 hours post NICU admission. These 
findings make clear MPSE’s value as a real-time tool and how MPSE could be used to improve 
cost savings2,3,14,15 and the timeliness and effectiveness of care. The consistent performance of 
MPSE over the first 30 days post-admission argues for its utility as a monitoring tool throughout 
the entirety of a patient's NICU stay. 
 

Conclusions 

We previously demonstrated that an MPSE-based automated pipeline for prioritizing acutely ill 
infants for whole genome sequencing can meet or exceed diagnostic yields obtained by time-
consuming manual review of clinical notes and histories. Our work here serves to expand on 
those original findings. Here we have shown that MPSE’s performance is largely agnostic with 
respect to upstream CNLP tools. Moreover, we show that structured EHR data, such as ICD 
diagnosis codes, can provide an effective alternative for prioritizing patients for WGS in health 
settings where access to clinical notes and NLP pipelines is problematic. These two features of 
MPSE combine to greatly lower the IT burden for deployment. 
 
Our longitudinal analyses demonstrate that MPSE can identify those children most likely to 
benefit from WGS within the first 48 hours of admission to the NICU, a critical window for 
maximally impactful care. Moreover, the consistent performance of MPSE over the first 30 days 
post-admission argues for its utility as a monitoring tool throughout the entirety of a patient's 
NICU stay. 
 
Finally, we have also shown that the same HPO term sets used by MPSE for prioritization for 
WGS, regardless of the CNLP tool generating them, can be directly consumed by the AI tool 
GEM for downstream molecular diagnoses, further speeding and facilitating personalized care. 
These results collectively demonstrate that MPSE provides fast, flexible, and highly scalable 
means for prioritizing critically ill newborns for whole genome sequencing. 
 
The American College of Medical Genetics and Genomics (ACMG) 2021 recommends clinical 
genome sequencing as a first or second-tier test for infants with one or more congenital 
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anomalies25. We compared the efficiency of using this ACMG guideline to using MPSE for 
patient selection. The MPSE diagnostic yield at day 10 post-admission was 11% (19 diagnostic 
patients out of 171 selected). The ACMG guideline-based diagnostic yield was 2% (21 
diagnostic patients out of 1029 selected). These results suggest MPSE can provide a 5.5-fold 
enrichment in diagnostic rate compared to ACMG criteria alone while achieving essentially the 
same number (19 vs. 21) of diagnosed children. 
 
Despite overwhelming clinical evidence that NICU and PICU genome sequencing saves lives 
and reduces costs3,14,15,25, several barriers still hinder its broad adoption. One significant obstacle 
is reimbursement for testing by payers38–40. Broader, more inclusive eligibility criteria simplify 
the candidate selection process, but increase cost-burden and decrease diagnostic yield. This can 
result in payer hesitancy to reimburse WGS, especially for negative results. While more stringent 
selection criteria can decrease cost-burden and increase diagnostic rates, they also increase the 
time-burden of candidate assessment. Collectively, our results demonstrate how MPSE can 
provide means to overcome the limitations of using rule-based eligibility criteria, democratizing 
WGS in the NICU and PICU. Moving forward, we will evaluate the benefits of large-scale 
MPSE implementation across the Intermountain West (funded by a grant from the Warren Alpert 
Foundation) and explore secondary applications of MPSE in assessing eligibility for 
reimbursement. 
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