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ABSTRACT11

Heritability enrichment analysis using data from Genome-Wide Association Studies (GWAS) is often

used to understand the functional basis of genetic architecture. Stratified LD score regression (S-

LDSC) is a widely used method-of-moments estimator for heritability enrichment, but S-LDSC has low

statistical power compared with likelihood-based approaches. We introduce graphREML, a precise and

powerful likelihood-based heritability partition and enrichment analysis method. graphREML operates on

GWAS summary statistics and linkage disequilibrium graphical models (LDGMs), whose sparsity makes

likelihood calculations tractable. We validate our method using extensive simulations and in analyses of

a wide range of real traits. On average across traits, graphREML produces enrichment estimates that

are concordant with S-LDSC, indicating that both methods are unbiased; however, graphREML identifies

2.5 times more significant trait-annotation enrichments, demonstrating greater power compared to the

moment-based S-LDSC approach. graphREML can also more flexibly model the relationship between

the annotations of a SNP and its heritability, producing well-calibrated estimates of per-SNP heritability.
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Introduction13

Heritability partitioning is a powerful approach to integrate genetic association data with variance func-14

tional genomic data1, by quantifying the heritability enrichment of a derived annotation. This approach15

has been used to identify disease-relevant regulatory annotations2–4, to prioritize disease-relevant genes16

and cell types5, 6, to investigate the effect of negative selection on genetic architecture7–10, and to compare17

common vs. rare variant architecture8, 11, 12.18

For common and low-frequency variants, the most widely used heritablity enrichmen method is19

stratified LD score regression (S-LDSC)3, 7, 13. This method is fast, and it operates on publicly available20

summary association statistics; S-LDSC can also jointly analyze a large number of overlapping annotations.21

These features distinguish S-LDSC from REML-based methods14–16, which require individual level GWAS22

data and cannot handle overlapping annotations. However, S-LDSC can have much lower statistical power23

compared with likelihood-based methods, such that many enrichments may go undetected.24

This trade-off arises from the difficulty of fully modeling linkage disequilibrium (LD), and in particular,25

incorporating it into likelihood calculations. S-LDSC relies on "LD scores," which summarize the LD26

matrix but result in loss of information17. This has motivated various approaches to represent LD27

parsimoniously, such as shrinkage regularization18, banding19–21, truncated SVD22, 23 or a combination of28

the latter two17, 24, 25. Recently, Nowbandegani and Wohns et al. proposed LD graphical models (LDGMs),29

which represent LD patterns using extremely sparse matrices derived from genome-wide genealogies26.30

The edge between two adjacent SNPs in the LDGM corresponds to a genealogical relationship between31

the ancestral haplotypes on which they arise as mutations27. LDGMs enable the use of efficient sparse32

matrix operations to perform likelihood calculations with GWAS data, potentially addressing the challenge33

of likelihood-based heritability partitioning.34

We propose graphREML, a likelihood-based heritability partitioning method that operates on GWAS35

summary statistics and LDGMs. graphREML improves upon S-LDSC by modeling the full likelihood36

of the summary statistics, making it more precise and powerful than S-LDSC. Moreover, by directly37

modeling the likelihood of variant-level summary statistics, graphREML is capable of handling overlapping38
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annotations, unlike the existing REML-based methods which require individual-level data. Because of39

its higher precision and statistical power, graphREML is particularly advantageous for estimating the40

heritability enrichment of disease traits which are under-powered using S-LDSC. graphREML is also41

robust to various forms of model misspecification, e.g., when there is sample mismatch between the42

GWAS statistics and the LDGM precision matrices.43

We validated our method in simulations and in analyses of real traits, comparing the enrichment44

estimates from our method to those from the S-LDSC. We chose S-LDSC in particular because it is45

the most widely used method that also operates on summary statistics. One other method that uses46

summary statistics is SumHer28; SumHer fits a different heritability model from S-LDSC, but its inference47

approach is similar. We also estimated heritability at a per-SNP level, as opposed to at an aggregate level,48

highlighting the advantages of our approach. Lastly, we note that graphREML can be integrated with49

other analytical frameworks that utilize enrichment estimates, such as the Abstract Mediation Model50

(AMM)29; this led to a more precise quantification of the degree of mediated heritability by a gene set51

(e.g., constrained genes).52

Results53

Overview of graphREML54

We propose using a maximum-likelihood approach to estimate partitioned heritability and enrichment.55

Under the standard assumptions of genetic association modeling, the distribution of the summary asso-56

ciation statistics can be derived17, 30. Ideally, a maximum-likelihood estimator would be used; however,57

the likelihood is parameterized by the LD matrix, such that it can be expensive to compute. We exploit58

the sparsity of the LDGM precision matrices to enable tractable maximization of the GWAS likelihood59

(Online Methods). We employ a second-order optimization method with an approximate Hessian and60

a trust region algorithm to make the maximization algorithm stable16 (Online Methods). With these61

optimizations, the estimation is tractable but still slow, typically requiring 1-3 days for convergence.62

A peculiarity of S-LDSC is that for many individual SNPs, its linear heritability model would suggest

3/44

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.04.24316716doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.04.24316716


that their heritability is negative. Because S-LDSC cannot accommodate a non-linear relationship between

the heritability of a SNP and its annotations, it cannot enforce non-negativity. In contrast, graphREML

uses a non-negative inverse link function to map between the linear combination of the annotations of a

SNP and its expected heritability. Let a j denote the annotation values of SNP j. We model the per-SNP

heritability of SNP j as:

σ
2
j = g−1(η j),where η j = a⊤j τττ,

where τ is a vector of unknown parameters that encodes the genetic architecture of a trait, and g(·) is a63

non-negative link function31. S-LDSC assumes an identity link, g(x) = x. graphREML is guaranteed to64

produce valid non-negative per-SNP heritability estimates, as long as an appropriate link g(·) is applied.65

An important feature of S-LDSC is that it can distinguish polygenic effects from confounding due66

to population stratification and relatedness13. graphREML does not model uncorrected population67

stratification. Instead, it requires the appropriate correction for population stratification either directly at68

the individual-level (before association testing), or at the summary-statistics level by taking the S-LDSC69

intercept as an input in order to account for confounding (Online Methods).70

The marginal heritability enrichment of an annotation may differ from the conditional enrichment. The71

marginal enrichment can be driven by overlap with other annotations, whereas the conditional enrichment72

measures the additional enrichment in an annotation after accounting for its overlap with others3. A positive73

conditional enrichment implies that SNPs in that annotation have greater heritability than expected given74

their other annotations. graphREML (like S-LDSC) estimates both types of enrichment. In this manuscript,75

we report enrichments estimated under the baselineLD model, which is widely used in conjunction with76

S-LDSC7. This model has been shown to account for frequency-dependent and LD-dependent architecture,77

which otherwise cause bias when estimating either conditional or marginal heritability enrichments32.78

We estimate the standard error of enrichment using an approximate jackknife estimator. More79

specifically, we compute the empirical variance of the leave-one-LD-block-out estimates of the parameters80

as the jackknife covariance estimator of the conditional enrichment coefficients τ (Online Methods). The81

jackknife procedure is computationally efficient, not requiring the model to be re-fitted. For significance82
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testing, we adopt a similar procedure as S-LDSC, applying a Wald test with jackknife standard errors83

to the difference, rather than the ratio, between the per-SNP heritability in versus out of an annotation.84

We apply the Delta method to obtain the asymptotic variance of these enrichment test statistics (Online85

Methods).86

Some users may wish to test a large set of annotations – for example, derived from pathways or cell87

types – conditional on a shared baseline model. We developed a fast score test for conditional heritability88

enrichment, graphREML-ST, that only requires fitting the baseline model once. This test runs in a few89

seconds, and does not even require access to the original summary statistics or LDGMs (Online Methods).90

Performance of graphREML in simulations91

To evaluate the performance of graphREML and to compare it with that of S-LDSC, we simulated marginal92

association statistics using the LDGM precision matrices calculated from the European samples in the93

1000 Genome project (Online Methods). Directly simulating summary statistics provides us with the94

flexibility to vary the sample size of the underlying association study. We used the S-LDSC baseline LD95

heritability model, and included 13 real functional annotations from the baselineLD model of the imputed96

SNPs on chromosome 1 (p = 513,012) and 4 simulated annotations comprising randomly selected SNPs97

(Online Methods, Supplementary Table 1). We applied graphREML and S-LDSC to the simulated98

summary statistics and evaluated the bias and the variance of each method. In particular, we report their99

statistical relative efficiency ("RE"), defined as the ratio between the sampling variances of S-LDSC100

and graphREML. A RE value greater than one indicates graphREML is more statistically efficient than101

S-LDSC and vice versa for values less than one.102

We found that both graphREML and S-LDSC produced unbiased enrichment estimates, but graphREML103

was much more precise with a RE of 2.47 averaged across annotations (Figure 1a, Supplementary Figure104

1). For both methods, sampling variance is inversely correlated to sample size (Supplementary Figure105

2); however, graphREML is more precise at any sample size, and its improvement upon S-LDSC is106

roughly equivalent to a two-fold increase in sample size (Supplementary Table 2). We analyzed random107

annotations of different size and connectedness, comprising 1% or 10% of either SNPs or LD blocks. For108
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both methods, sampling variance was dependent on both factors (Supplementary Figure 3). The relative109

performance between graphREML and S-LDSC was similar when measured by mean square error, which110

accounts for both bias and variance (Supplementary Table 2).111

Misspecification of the random-effect model is a potential source of bias in heritability estimation. To112

test the robustness of graphREML, we varied the genetic architecture of a simulated phenotype in three113

ways (Online Methods). First, we simulated effect sizes under a sparse, non-infinitesimal distribution,114

varying the proportion of causal SNPs. Second, we generated summary statistics using several different115

link functions, with its inverse mapping from the annotations of a SNP to its heritability. Third, we116

explicitly modeled the MAF-dependent genetic architectures and varied the strength of the dependency9.117

Under a sparse genetic architecture, both graphREML and S-LDSC remained unbiased and had118

higher sampling variance than that under an infinitesimal architecture. Across all settings of different119

mixture components and parameters, graphREML has a higher statistical efficiency, with an average RE120

of 2.73 compared to S-LDSC (Figure 1b, Supplementary Figure 4, Supplementary Table 3). Similarly,121

both methods were robust to the choice of link function and remain unbiased, but graphREML is more122

statistically efficient than S-LDSC, with an average RE of 2.54 across link functions (Supplementary123

Figure 5, Supplementary Table 5). In simulations involving MAF-dependent architecture, again, both124

methods were robust when we included MAF bins as binary annotations (as implemented in the baselineLD125

model7) (Figure 1b). This approach, with binary MAF-bin annotations, yielded more robust heritability126

estimates than the approach of using a single continuous-valued MAF annotation, likely because the127

former is nonparametric and imposes less constraint on the form of the relationship between allele128

frequency and effect size (Supplementary Figure 6, Online Methods). We did not detect any correlation129

between sparsity or the degree of MAF-dependency and the relative efficiency comparing graphREML130

with S-LDSC (Supplementary Figure 7, Supplementary Table 3-4).131

We evaluated the calibration of our estimated standard errors. Under the null, we found that the132

jackknife-based significance for the conditional enrichment has well-controlled type I error rates (Figure133

1c). We observed slightly inflated type I error rates for small null annotations, but only under the sparsest134
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simulated architecture (Supplementary Figure 19), consistent with previous studies33. In non-null135

simulations, graphREML was well-powered (Supplementary Figure 18). We compared our jackknife136

approach with the Huber-White sandwich estimator (Online Methods). The inference results for the137

conditional enrichment coefficients are similar between using the jackknife estimator and the sandwich138

estimator (Supplementary Figure 20), but the jackknife estimator leads to more well-calibrated SE for139

the marginal enrichments than the sandwich estimator under sparse architectures (Supplemetnary Figure140

8). Therefore, graphREML produces both estimators of SE but uses jackknife for testing by default.141

A limitation of S-LDSC is that for individual SNPs as opposed to annotations, its per-SNP heritability142

estimates are unreliable, and in particular often negative. Weissbrod et al. proposed a procedure that led143

to well-calibrated per-SNP heritability estimates (which were used as valid prior causal probabilities in144

PolyFun), but the procedure requires re-fitting the S-LDSC after binning the SNPs, which is ad hoc and can145

be computationally intensive20. graphREML produces nonnegative per-SNP heritability estimates, which146

may be more reliable. We evaluated their calibration in our simulations involving different sample sizes147

and forms of model misspecification. We fit the graphREML model, used it to estimate the heritability of148

each SNP, and ranked SNPs by their estimated heritability. Then, we calculated the cumulative heritability149

explained by the top x%, for x ranging from 0 to 100, of variants in our list, and compared this curve150

with our estimates. These curves were highly concordant overall, though the degree of concordance is151

reduced when the genetic architecture is sparse, when sample size is low or when the genetic architecture152

is MAF-dependent (Figure 2, Supplementary Figure 10-11).153

To further evaluate the calibration of per-SNP heritability, we regressed the estimated values onto154

the true values, constraining the intercept to be 0 . The slope estimate from these regressions are155

close to 1, indicating a high degree of agreement between the estimated and true per-SNP heritability156

(Supplementary Table 6). We considered other approaches to assess the calibration of per-SNP heritability157

(Online Methods) and observed similar results (Supplementary Figure 9-11). These analyses indicates158

that for well-powered traits, variants with an estimated per-SNP heritability of some value x do indeed159

explain that much heritability on average.160
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Real summary statistics often contain a limited set of SNPs, for example the 1.1M HapMap 3 SNPs34.161

Missingness is potentially problematic in heritability enrichment analyses because when a missing causal162

variant in one annotation is in LD with a non-missing tag variant in a different annotation, its heritability163

might be misassigned. A particular advantage of S-LDSC is that it addresses this problem by explicitly164

modeling the LD of the "regression SNPs" via LD scores, which are computed based on a maximally165

comprehensive set of "reference SNPs". Other methods for partitioned heritability estimation, such as166

RSS30 and GREML-LDMS35, cannot account for missingness or the mis-alignemnet between the set of167

variants with GWAS effect sizes and the set of variants with LD information. Our BaselineLD annotation168

matrices and LDGMs both contain a relatively comprehensive set of common SNPs; in particular, LDGMs169

contain most common SNPs in 1000 Genomes (MAF > 0.01; p = 8,392,958 for Europeans).170

graphREML handles missingness in the summary statistics by assigning, for every missing SNP, a171

"surrogate marker" SNP in high LD (Online Methods). The heritability of the missing SNP is assigned to172

its surrogate marker appropriately. To test this approach, we simulated different degrees of missingness,173

and applied graphREML with and without surrogate markers. With surrogate markers, graphREML174

enrichment estimates were highly robust even when up to 90% of SNPs were missing, at which point it was175

strongly biased without surrogate markers (Supplementary Figure 12-13). Total heritability estimates176

were robust with up to 30% missingness, and they were downwardly biased (even with surrogate markers)177

when missingness was 40% or greater (Supplementary Figure 14).178

Methods comparison on UK Biobank phenotypes179

On the basis of our simulation results, we expected that graphREML enrichment estimates would be180

concordant with those from S-LDSC on average, but that they would be less noisy, especially for traits181

with lower power. We analyzed UK Biobank summary statistics (average n = 451,069 European-ancestry182

individuals) for 7 well-powered quantitative traits36, 37 as well as 11 less-well-powered disease phenotypes183

derived using the liability threshold family history model ("LTFH")4 (Supplementary Table 7). We used184

a new set of LDGMs derived from UK Biobank data, closely matching the summary statistics; these185

LDGMs were highly accurate (Supplementary Figure 15). We applied both S-LDSC and graphREML186
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to estimate the heritability enrichment of six selected annotations (coding, conserved, DHS, enhancer,187

promoter and repressed), in a joint analysis including the 96 annotations of the baselineLD model derived188

from the UK Biobank8.189

Because both graphREML and S-LDSC were approximately unbiased in simulations, we expected that190

they produce concordant enrichment estimates on average across traits. We meta-analyzed 7 well-powered191

quantitative traits and the 11 disease traits, and found that indeed, the enrichment estimates were largely192

concordant between the two methods, and the estimates from graphREML are much less variable than193

S-LDSC (Figure 3a). Moreover, the enrichments of individual (i.e., as opposed to meta-analyzed) well-194

powered quantitative traits are similar as well (Figure 3b), For example, for height, coding variants had a195

heritability enrichment of 13.52 (s.e.= 2.47) with S-LDSC and 13.88 (s.e.= 1.83) for graphREML. The196

enrichment of variants in DHS are 3.56 (s.e.= 0.563) based on S-LDSC and 3.59 (s.e.= 0.214) based on197

graphREML.198

For the less-well-powered LTFH phenotypes, S-LDSC and graphREML still produced similarly199

concordant estimates on average, but for individual diseases, their estimates diverged (Figure 3b). For200

example, for cardiovascular disease, repressed variants had a heritability enrichment of 0.58 from S-201

LDSC and 0.59 from graphREML, but the standard error from S-LDSC is more than three times larger202

(s.e. = 0.247) than that from graphREML (s.e. = 0.082). Thus, this annotation would be identified as203

significantly depleted by graphREML but not by S-LDSC. Another example is prostate cancer, for which204

the enrichment of enhancer variants was estimated to be 6.9 from both S-LDSC and graphREML, but the205

standard error estimates were 4.11 from S-LDSC vs. 2.66 from graphREML.206

More generally, graphREML better prioritizes the functional categories that are expected to be207

significantly enriched (or depleted) due to its better statistical efficiency (Figure 3c). For instance,208

graphREML identifies both DHS variants (×2.17, p = 4.42×10−12) and promoters (×3.47, p = 5.35×209

10−8) as highly significantly enriched for neuroticism. In contrast, S-LDSC produces noisy estimates210

for these two categories of SNPs – ×0.78 (p = 0.0724) for DHS and 0.51 (p = 0.57) for promoters,211

respectively. Across all trait-annotation pairs considered, 81 were statistically significant using graphREML212

9/44

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.04.24316716doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.04.24316716


vs. 32 using S-LDSC (Supplementary Table 8). Reassuringly, all of the significant discoveries identified213

from S-LDSC and graphREML have the expected directions of enrichment/depletion.214

Next, we performed a secondary analysis to assess the impact of missing SNPs on graphREML. Many215

GWAS report summary statistics for HapMap3 SNPs only, or some other limited set of SNPs, potentially216

leading to bias. To evaluate the effectiveness of surrogate markers when missingness is more severe, we217

applied graphREML to the subset of HapMap3 SNPs for the traits we studied above. Despite having218

almost 89% of missingness in the summary statistics, the enrichment analyses using HapMap3 SNPs only219

produced estimates that were highly concordant with those from using the full set of SNPs in UK Biobank.220

(Figure 4a). Furthermore, we found that accounting for the missing variants led to improved power221

compared to ignoring them, although the improvement was modest due to the low level of missingness in222

the UKB summary statistics (Figure 4b).223

Lastly, we analyzed the UK Biobank traits using non-UK Biobank LDGMs derived from 1000224

Genomes European individuals. These enrichment estimates were concordant with those involving UKB-225

derived LDGM precision matrices, although power was reduced (Supplementary Figure 17). These226

results support the use of graphREML with out-of-sample LDGMs, and highlight the broad utility of227

graphREML for publicly available GWAS summary statistics.228

Validation of graphREML in non-UK Biobank datasets229

Most GWAS involve genotype data that is not publicly available, and they release summary association230

statistics but no in-sample LD information. Our method is derived under a model where the genotype231

matrix is random, with a population LD matrix that could potentially be estimated out-of-sample. We232

evaluated the performance of graphREML in such datasets, comparing its results with those obtained233

within UK Biobank. We identified non-UK Biobank, European-ancestry summary statistics for 12 of the234

traits analyzed above (average n = 235,331; Supplementary Table 9). We additionally analyzed Biobank235

Japan summary statistics for 19 of the traits analyzed using European individuals and the LDGM precision236

matrices derived from East Asians in the 1000 Genome (average n = 91,045; Supplementary Table 10).237

Most of these summary statistics were limited to HapMap3 SNPs (around 11% of those contained in the238
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LDGM).239

Enrichment estimates were concordant between UK Biobank and non-UK Biobank summary statistics240

for the same traits (Figure 5a-b, Supplementary Figure 21, Supplementary Table 11), both across the 6241

annotations analyzed above and across a larger set of annotations having > 5% of SNPs (Online Methods).242

Well-powered quantitative traits had strongly concordant estimates; for example, the enrichment estimates243

for height based on UKB and non-UKB Europeans have a correlation of r2 = 0.973 with a mean enrichment244

across annotations of 4.89 and 4.99 based on UKB and non-UKB European GWAS, respectively. Less-245

well-powered disease traits had less concordant estimates, consistent with sampling error, but they were246

still concordant after meta-analyzing across traits (Figure 5b). These results also support the application247

of graphREML to estimate heritability enrichment in a sample which is potentially different from the248

LDGM sample.249

Finally, we analyzed summary statistics from Biobank Japan in conjunction with LDGMs derived from250

East Asian individuals in 1000 Genomes. For most traits, estimates were concordant with those based251

on UK Biobank, including height and BMI (Figure 5c-d). For all seven blood traits or hematopoietic252

phenotypes in our study, enrichments in Biobank Japan were consistently smaller than those derived from253

European ancestry GWAS (Supplementary Figure 22). We observed similar results when comparing254

between East Asians and non-UKB Europeans (Supplementary Figure 23, Supplementary Table 12-13).255

To remove the potentially large effect of the MHC/HLA region on the enrichments of hematopoietic256

phenotypes, we reran the analyses with the variants in the MHC/HLA region excluded. The enrichment es-257

timates were largely concordant when we included vs. excluded the HLA region. (Supplementary Figure258

24); the cross-ancestry comparison had a similar pattern with the HLA region excluded (Supplementary259

Figure 25). Together, these estimates are consistent with previous studies finding a high cross-population260

genetic correlation between European and East Asian populations38–40. They support the notion that261

different ancestry groups have differences in their allele frequencies and LD patterns, leading to different262

GWAS results, but that the underlying biology (in particular, function architecture) is mostly shared.263
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A fast test for heritability enrichment264

In many studies, a large number of annotations are tested for heritability enrichment, conditional on the265

same baseline annotations5, 41–43. Using a Wald test to obtain the significance of a conditional enrichment266

requires refitting graphREML multiple times, with the annotation of interest swapped in and out. This is267

analogous to the heritability enrichment analyses of specifically expressed genes (SEG) using S-LDSC,268

where a separate regression is ran for each SEG annotation and inference is performed on the regression269

coefficient on the SEG annotation5. While the regression step of S-LDSC is fast, estimating the enrichment270

of a new annotation requires calculating a new set of LD scores first, which is not computationally trivial.271

We derived a fast test for heritability enrichment, graphREML-ST, that circumvents the need of refitting272

graphREML or computing the LD scores for each new annotation, conditional upon a shared null model273

(Online Methods). The main advantage of this procedure is that it is based on a score test, and hence only274

requires running graphREML once to fit the null model (Online Methods). The test is computationally275

efficient, with runtime linear in the number of markers (Supplementary Notes).276

We evaluated the performance of the score test in simulations (Online Methods). We first assessed the277

type I error rate and the power of the score test. We found that the false positive rate is well-controlled278

across different genetic architectures with varying degree of polygenicity (Supplementary Table 14).279

Moreover, the score test has sufficient statistical power to detect true enrichment under a range of realistic280

generative models (Supplementary Table 15). We also compared the inference results based on the Wald281

test versus the score test from the real-trait enrichment analyses of 8 quantitative and 12 disease phenotypes282

in the UK Biobank (Online Methods). Reassuringly, we observed a high degree of concordance between283

the two set of inference results, with a Kendall’s coefficient of concordance greater than 0.87 and 0.82284

for the marginal and joint enrichment, respectively (Supplementary Table 16). Taken together with the285

simulation results validating the Wald test (shown above), the agreement between the two tests lends286

support to using the score test as an optimal and robust approach to identify relevant annotations that are287

significantly enriched for a disease or trait.288

This test is highly convenient for users because it allows them to test their new annotation for289
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enrichment against traits for which we have already run graphREML. They can do so without re-fitting290

graphREML to the summary statistics; they do not need to download LDGMs or even the original summary291

statistics. We have released the null fit from applying graphREML to the baseline LD annotations for a set292

of complex traits and diseases in the UK biobank (see data availability).293

Application of graphREML to the Abstract Mediation Model294

The abstract mediation model (AMM) is a model for the distance-dependent relationship between trait-295

associated variants and the genes that might mediate their effects. Under the assumption that all variant296

effects are mediated by some nearby gene, it quantifies the fraction of heritability that is mediated by the297

closest, second-closest, or kth-closest genes. It leverages the proximity of SNPs to genes belonging to an298

enriched gene set to partition gene-mediated heritability.299

AMM was previously paired with S-LDSC for estimation, because it requires an enrichment model that300

can handle overlapping annotations. As a result, its estimates are noisy. Consequently, the estimates have301

the limitations that they have low statistical efficiency, and are derived based on a linear assumption about302

the effect of an annotation on per-SNP heritability. To address these limitations, we apply graphREML303

to AMM to estimate the fraction of heritability mediated by the k-th nearest genes (Online Methods).304

Notably, we adopt a flexible mapping to relax the linear assumption on the relationship between the305

annotation values of a SNP and its per-SNP heritability. We also allow the background heritability of306

a SNP (i.e., per-SNP heritability if no nearby genes lies in the gene set) to depend on its functional307

annotations. Denote by p(k) the proportion of the total heritability mediated by the k-th nearest genes. To308

increase power and to ensure the stability of our estimates of the p(k) estimates, we bin the gene proximity309

annotations, and perform meta-analyses across traits (Online Methods).310

In simulations, we verified that the p(k) estimates are approximately unbiased under different sample311

sizes and misspecified genetic architectures (Supplementary Table 17). We observed slight downward312

bias for the true non-null bins and upward bias for the true null bins. We emphasize that such biases313

are expected as we use a non-negative estimator of p(k) with the implicit constraints that p(k) > 0 and314

∑k p(k) = 1. We next applied graphREML in conjunction with AMM to estimate p(k) for the same315
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set of traits as we used to validate graphREML using real-trait data. We found that the p(k) estimates316

are largely consistent with those reported in the previous study, with the closest and the 2nd closest317

gene mediating approximately 22.9% and 9.9% of the SNP-heritability in meta-analyses (Figure 6a,318

Supplementary Table 19). Notably, our estimates are more precise than those reported in the original319

AMM, even with fewer traits used for meta-analyses29. For instance, the standard errors of p(1) and p(2)320

from meta-analyzing 15 traits using the graphREML enrichments are 2.91% and 2.32%, whereas those321

from meta-analyzing 47 traits using the S-LDSC enrichments are 6.37% and 3.79%, respectively. We322

observed large variation in the p(k) estimates across traits; in particular, these estimates are more precise323

for well-powered and polygenic traits (Figure 6b-c, Supplementary Table 18). For well powered traits,324

graphREML can produce precise estimates of p(k) for each individual trait, whereas such estimates were325

not reported in Weiner et al. due to lack of power.326

Discussion327

Heritability enrichment analysis has been one of the most valuable approaches to understand genetic328

architecture and to link functional genomic datasets with disease genetics. Here we proposed a new329

summary statistics-based approach and demonstrated through extensive simulations and real-trait analyses330

that compared to existing methods, graphREML has significantly improved statistical efficiency and power331

for enrichment analyses, and is robust to mismatches between the summary statistics and LD.332

Model-based estimates of heritability and heritability enrichment can be biased due to misspecification333

of the assumed heritability model7, 15, 28, 32. graphREML can be used to fit essentially any heritability334

model, notably including the baselineLD model, which includes a set of annotations that are designed to335

account for LD-dependent and frequency-dependent architecture, and which has been extensively validated336

using S-LDSC. These phenomena should affect graphREML and S-LDSC similarly, and indeed, both337

methods produce concordant estimates under the baselineLD model (Figure 3a). A completely different338

approach is to eschew the use of any heritability model, treating genetic effects as fixed; this approach339

is impervious to misspecification-related bias, but it has not been successfully applied to heritability340
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partitioning with overlapping annotations44, 45.341

Two other types of model misspecification are non-infinitesimal effect sizes and misspecified link342

functions. Bayesian methods such as RSS-NET explicitly models the null effects through its specification343

of the prior46. In contrast, graphREML assumes a Gaussian likelihood, similar to that of GCTA. Though344

our simulation results support the application of graphREML to non-infinitesimal architectures, further345

research is needed to study the impact of a sparse architecture on enrichment estimation. We proposed346

using a non-negative link function to map the annotation vector of a genetic marker to its per-SNP347

heritability. While our results suggest that the softmax function leads to well-calibrated estimates and is348

generally robust to model misspecification, future research is needed to improve the modeling of per-SNP349

heritability, in particular the form of the link function. For example, one can develop a data-adaptive350

procedure to select the most appropriate link systematically.351

Another important source of bias when estimating heritability is assortative mating47, which causes352

long-range correlations between trait associated variants, magnifying their marginal effects. Assortative353

mating is expected to affect total heritability estimates more strongly than it does enrichment estimates.354

However, cross-trait assortative mating48 would affect graphREML-estimated enrichments to the extent355

that the pattern of enrichment varies between the traits under assortment. This bias is expected to be356

similar for any heritability estimator that does not model assortative mating explicitly.357

The likelihood of the marginal summary statistics we use in graphREML has been used in other358

methods as well. One such method is High-Definition Likelihood ("HDL")17, which estimates the genetic359

correlation between two traits with higher statistical efficiency than cross-trait LDSC. A possible extension360

of graphREML would be to partitioned genetic correlation. Another is "Regression with Summary361

Statistics (RSS)30," which estimates heritability but does not allow for overlapping annotations; moreover,362

it operates on a limited set of SNPs due to computational limitations. We recently developed a likelihood-363

based estimator, HEELS, which is approximately equivalent to individual-level REML estimator, again364

operating on a limited set of SNPs and not allowing for annotation overlap. A key difference between365

the two methods is that HEELS requires in-sample LD whereas graphREML can incorporate LDGM366
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precision matrices that are estimated either in-sample or out-of-sample25. For precise total heritability367

estimation, we recommend using HEELS when in-sample LD information is available.368

It is worth noting that because graphREML cannot distinguish polygenic effects from confounding369

due to population stratification, it requires the S-LDSC intercept as an input to correct for confounding.370

Nevertheless, we observed largely consistent heritability enrichment estimates when we ignored population371

stratification (i.e., fixing the intercept at 1 instead of the S-LDSC estimated intercept) (Supplementary372

Figure 26). Another limitation of graphREML in comparison with S-LDSC is that it is much slower, with373

a runtime on the order of hours vs. minutes (Supplementary Table 20). This makes it less well-suited374

for exploratory analyses involving hundreds of traits and annotations. graphREML-ST can alleviate this375

limitation to the extent that when a large number of annotations need to be tested conditional on a shared376

set of annotations, one only needs to run graphREML once for the null fit and apply score test to the new377

annotations, which only takes a few seconds. Another potential approach to improve the graphREML378

runtime would be stochastic optimization, where each update is computed from a subset of the genome.379

Increasingly, genomic datasets resolve subtle differences between cell types, between nearby SNPs,380

across time points, and within tissues. With such an increasing resolution, these datasets will require381

powerful methods to prioritize disease-relevant mechanisms. The statistical efficiency of graphREML can382

be leveraged, in conjunction with high-resolution functional data, to identify highly specific features of383

disease biology.384
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Figure 1. Performance of graphREML in simulation studies. Summary statistics are directly

simulated based on the LDGM precision matrices on chromosome 1 from the Europeans in 1000 Genome

(p = 513,012). a. Comparison of heritability and enrichment estimates between S-LDSC and

graphREML under the infinitesimal model, n = 100,000. b. The enrichment estimates of conserved SNPs

across different scenarios of model misspecifications and sample size. Low sample size: n = 10,000;

Sparse signal: 0.1% of SNPs are causal; misspecified link: use the max function to simulate genetic

variances; MAF-dependent: assume the per-SNP heritability is proportional to ( f j(1− f j))
1+α , where

α =−0.25 and f j is the allele frequency of SNP j. The results for the complete set of model

misspecifications and for other functional annotations (e.g., coding) are reported in Supplementary Table
3-5. In panels a and b, the red dashed lines represent the true values of heritability enrichment; the black

long dashed lines represent null or an enrichment of one. The box plots for the "Low sample size" setting

in panel b are truncated due to the large variation of the estimates. c. Type I error rate of the joint

enrichment estimates from graphREML. Y-axis is the proportion of true nulls that have been falsely

rejected. The null annotation is DHS (18.9% of SNPs). InSample and OutSample indicate whether the

LDGMs are matched with the summary statistics. The red dashed line is the level used for testing 0.05.
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Figure 2. Calibration of per-SNP heritability from graphREML in simulations. Summary statistics

are directly simulated based on the LDGM precision matrices on chromosome 1 from the Europeans in

1000 Genome (p = 513,012). Each dot represent the estimated or true heritability from the top k

percentiles of SNPs. Default is the infinitesimal model with n = 100,000. Column panels represent

different generative models or genetic architectures, similar to those defined in Figure 1b.
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Figure 3. Comparison of marginal enrichment estimates from real trait analyses using
graphREML vs. S-LDSC. Phenotypes are categorized into two groups: quantitative and disease, colored

in yellow and blue respectively. The quantitative traits are generally better powered than the disease traits.

Since the association statistics for the disease traits we use are based on the liability threshold model

conditional on family history4, the disease traits are sufficiently well-powered as well. a. Marginal

enrichment estimates from a meta-analysis of 18 traits based on the GWAS summary statistics in the UK

Biobank. Error bars represent standard deviations (not standard errors) across traits. b. Marginal

enrichment estimates for individual traits. The red reference line in panels a and b is the 45 degree line. c.

Counts of significant enrichments identified by S-LDSC and graphREML across the 18 traits analyzed.

Shown here are 81 significant trait-annotation pairs prioritized by graphREML vs. 32 pairs by S-LDSC.

All significant enrichments identified by graphREML and S-LDSC have the correct direction (enrichment

vs. depletion). The full set of enrichment estimates from the comparison are reported in Supplementary
Table 8.
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Figure 4. Robustness of graphREML in the presence of missing SNPs. The set of phenotypes is the

same as those used for method comparison in Figure 3. a. Comparison of the enrichment estimates when

the full set of SNPs (x-axis) vs. HapMap3 only (y-axis) are included in the summary statistics.

Approximately 89% of the SNPs in the full summary statistics are not HapMap3 SNPs. b. Enrichment

estimates from meta-analyses of 18 traits from GWAS in the UK Biobank when ignoring the missing

SNPs (x-axis) vs. when accounting for the missing SNPs using surrogate markers (y-axis). Approximately

17.82% of the SNPs in the UKB summary statistics are missing in the LDGMs (UKB-based). Gray dots

represent the enrichment estimates for specific trait-annotation pairs. Phenotypes are categorized into two

groups: well-powered traits and low-powered traits, colored in yellow and blue respectively. The lines

represent SD within each group. The red reference line is the 45 degree line. c. Counts of significant

enrichment/depletion identified by graphREML when accounting for the missing SNPs via surrogate

marker vs. ignoring the missing SNPs.
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Figure 5. Validation of graphREML in non-UK Biobank datasets. a. Enrichment estimates from

applying graphREML to GWAS for BMI and height in UKB or non-UKB Europeans. LDGM precision

matrices derived from the UKB are used. b. Meta-analysis results from applying graphREML to 12 traits

with both UKB and non-UKB summary statistics. The red reference line is the 45 degree line. The full set

of enrichment estimates are reported in Supplementary Table 11. c. Enrichment estimates from applying

graphREML to BMI and Height GWAS based on Biobank Japan (BBJ) and UKB. LDGM precision

matrices derived from UKB and 1000 Genomes East Asians are used with UKB and BBJ GWAS

respectively. d. Meta-analysis results from applying graphREML to 11 traits with both UKB and BBJ

summary statistics. The red reference line is the 45 degree line. The full set of enrichment estimates are

reported in Supplementary Table 13.
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Figure 6. Application of graphREML to the Abstract Mediation Model (AMM). Fraction of

mediated heritability across gene-proximity bins estimated with the constrained gene set (pLI≥0.9). The

estimate of p(k) is the average for genes in that bin; per-bin p(k) multiplied by the number of genes in the

bin, summed across bins, equals 100% of heritability. Error bars represent standard errors from jackknife.

a. Meta-analyzed estimates across traits, weighted by the precision of excess heritability (τA). b and c.

p(k) estimates for two individual traits: neuroticism and breast cancer. The numerical results for all panels

are reported in Supplementary Table 18-19.
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Online Methods491

Statistical model492

Let y be a length-n vector that denotes the phenotypes of n samples. Denote by X ∈ Rn×p the genotype493

matrix of n individuals based on p markers or SNPs. We standardize X and y such that the variance of494

the phenotype is 1 and the variance of each marker-specific genotype vector is 1. We adopt the standard495

assumptions of genetic association modeling, and use an additive genetic model for the phenotypes as496

y = Xβ + ε , where both X and β are assumed to be random. We define the population LD matrix as497

ΣΣΣ ≡ E(X⊤X/n), and we assume the true effect sizes are drawn from β ∼ N(0,D(θ)), similar to Yang498

et al.14, θ is the set of parameters that determine the genetic architecture of a trait. For example, θ499

can include the total heritability of a trait; it can also include the set of enrichment coefficients for the500

functional annotations, i.e., τ . The diagonal elements of D(θ) are the per-SNP heritability, which we501

model using the link function, g(·). We use the softmax by default in graphREML: for SNP j, we allow502

for a non-linear relationship between the annotation values of a SNP and its per-SNP heritability value,503

as described above, σ2
j = g−1(η j) = g−1(a⊤j τττ). We assume that the individual-specific noise is i.i.d.,504

following ε ∼ N(0,σ2
e In). Under this random-design random-effect model, the marginal association505

statistics, z, is normally distributed with mean zero, and variance approximately equal to nΣΣΣD(θ)ΣΣΣ+ΣΣΣ506

(Supplementary Notes,49).507

Maximizing the likelihood of this model requires computationally expensive operations involving the508

LD matrix Σ. We propose to approximate the likelihood using the LDGM precision matrix26, P, which is509

a sparse matrix whose inverse approximates Σ. We define transformed Z-statistics, i.e., z̃ ≡ Pz, whose510

likelihood is:511

ℓ(θ) ∝ z̃⊤ (nD(θ)+P)−1 z̃+ log|nD(θ)+P)|+ c. (1)

The graphREML estimator is defined as θ̂ = argmaxθ ℓ(θ).512
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Estimation513

We use the Newton-Raphson algorithm to maximize the likelihood function (1) and we exploit the sparse

representation of ΣΣΣ
−1 with the LDGM precision matrices. We iteratively update our estimate of the

parameters as the following,

θ
(k+1) = θ

(k)− (H(k)+ eI)−1
∇
(k),

where ∇(k) and H(k) are the gradient and Hessian of the likelihood function evaluated at the current514

estimate of the parameters θ (k). e is some small-valued number that is added to the diagonal of the Hessian515

matrix to prevent singularity in estimation.516

Let M(θ (k)) = nD(θ (k))+P. At each iteration, we first perform a Cholesky factorization of the matrix517

M(θ (k)), which is feasible and computationally tractable due to the sparsity of P. Specifically, we use the518

sparse matrix operations in MATLAB to efficiently obtain the Cholesky factors. The diagonal elements of519

D(θ) correspond to the true SNP-specific genetic variance, which are normalized such that they summed520

up to the true total heritability. Denote by ∂Da(θ)
∂θi

the diagonal matrix where the diagonal elements are the521

partial derivatives of the per-SNP heritability with respect to the parameters,
(

∂g−1(a1)
∂θi

, ...,
∂g−1(ap)

∂θi

)
. The522

gradient is:523

∇
(k+1)
i =

1
2

n
[

z̃⊤(M(k))−1 ∂Da(θ)

∂θi
(M(k))−1z̃−Tr

{
∂Da(θ)

∂θi
(M(k))−1

}]
, (2)

where we have used M(k) to denote M(θ (k)) for simplicity of notation, and i indexes the parameters. The524

second term is computationally intensive to evaluate; for this, we calculate the sparse inverse subset50
525

using the suitesparse library in MATLAB51, 52.526

For the Hessian matrix, we apply the trace trick to compute the expected value of a quadratic527

form and approximate the expected information using the observed information, similar to Loh et al.16
528

(Supplementary Notes). This leads to an approximation of the Hessian as,529

H(k+1)
il ≈ 1

2
n2z̃⊤

{
(M(k))−1 ∂Da(θ)

∂θi
(M(k))−1 ∂Da(θ)

∂θl
(M(k))−1

}
z̃, (3)
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where i and l index the parameters. We compute the inverse M−1 in both equation (2) and (3) using530

the Cholesky factors described above. All computations are performed at LD-block level (the LDGM531

precision matrices are provided by LD block as well), which can be parallelized. We use the trust-region532

algorithm to control the step size of each update in a principled way, and employ an adaptive bound on533

the maximum change at each iteration (see Algorithm 1 in the Supplementary Notes). This allows us to534

balance between convergence speed and robustness of the updates. We apply other techniques to improve535

the computational efficiency of our algorithm. Notably, out calculations critically rely on the sparsity536

of the LDGMs, as we use sparse matrix operations for matrix multiplication, division, log-determinant537

and inverse (Supplementary Notes). It is possible to have multiple SNPs on the same LDGM node.538

graphREML chooses just of the SNPs with available summary statistics for a given node, and sum up the539

estimated per-SNP heritabilities across the SNPs that are assigned to the same node.540

Standard error calibration541

We estimate the standard error of our estimates using an approximate jackknife estimator. Specifically, we542

compute a set of leave-one-LD-block-out scores (the score is the gradient of the log-likelihood function)543

at the optimum, after the Newton Raphson algorithm has completed. This amounts to performing one544

more NR update using all but one LD block. Such an approximation is appropriate because our variance545

estimator is most exact when it is evaluated at the true parameter value, and we expect our estimates to be546

close to the optimum upon completion of the Newton updates. We then use the empirical variance of these547

leave-one-LD-block-out parameter estimates as the jackknife covariance of the conditional enrichment548

coefficients, τ . graphREML also produces the Huber-White sandwich estimator, where we plug in the549

empirical covariance of the scores across the LD blocks as the weight, sandwiched by inverse of the naive550

variance estimator which is the inverse of the negative Hessian. Both the jackknife estimator and the551

sandwich estimator of SE lead to well-controlled type I error rates except under very sparse architectures,552

e.g., 0.1% causal (Supplementary Figure 19-20).553

For inference on the marginal enrichment, we adopt an approach similar to S-LDSC, testing the554

significance of the difference rather than the ratio between the partitioned heritability in vs. out of an555
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annotation. We apply the Delta method to obtain the asymptotic variance of the enrichment test statistics556

Dk, which are functions of the conditional enrichment estimates τ . By default, graphREML reports557

inference results based on the jackknife estimator of SE, as it is slightly more conservative for the marginal558

enrichment under sparse architectures (Supplementary Figure 8). We apply the standard Benjamini-559

Hochberg procedure to correct for multiple hypothesis testing when prioritizing trait-annotation pairs,560

such that the false discovery rate (FDR) is less than 5%.561

Accounting for missing SNPs562

In practice, the sets of SNPs that are present in the summary statistics are almost always different from563

the set of SNPs with annotation and/or the LD information available. To address such missingness issue,564

graphREML assigns to each missing SNP a surrogate marker, selected as the non-missing SNP which has565

the highest LD with the missing SNP, and uses these surrogate markers in heritability enrichment estimation.566

Note that this procedure accounts for the set of SNPs that we have annotation and LD information for but567

are absent in the summary statistics. We cannot model or include SNPs with association statistics available568

but no annotation or LD information in the graphREML estimation. This latter type of missingness is not569

concerning because in practice, the set of SNPs that are included in the LDGM precision matrices and with570

annotation information is usually a superset of the common variants with available association statistics.571

We note two important points about merging between variant-level data in real data analyses due to the572

imperfect alignment of the SNPs across datasets. First, we explicitly model the covariance of the effects573

of SNPs that overlap between the summary statistics and the LDGM nodes in modeling the per-SNP574

heritability. Due to the surrogate markers we assign to the missing SNPs, it is possible that one LDGM575

node is linked with multiple SNPs. In this case, we aggregate the per-SNP heritability of all of the SNPs on576

a given node. Second, it is possible for multiple SNPs to be assigned to the same LDGM node (i.e., if their577

LD is almost perfect), in which case we retain all of the variants with available annotation information as578

opposed to randomly selecting one.579

To evaluate the impact of SNP missingness in real data analyses, we first compared the enrichment580

estimates from applying graphREML with versus without accounting for missing SNPs, using summary581
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statistics in the UK Biobank. Since the proportion of missing SNPs is small in UK Biobank (especially if582

we use the LDGM precision matrices derived from the UK Biobank), we next applied graphREML to the583

subset of summary statistics that overlap with the HapMap3 SNPs. This led to approximately 1.2 million584

variants in the summary statistics and close to 89% missingness.585

Simulation studies586

We simulated summary statistics using the simulateSumstats function in the LDGM package (see Code587

Availability). To simulate the association statistics directly, we drew marginal effect size from the588

multivariate normal, N (0,nΣΣΣD(θ)ΣΣΣ), where ΣΣΣ is the inverse of the LDGM precision matrix inferred from589

European individuals in the 1000 Genome or in the UK Biobank. We used the imputed common SNPs590

on Chromosome 1 (p = 513,012 for 1000 Genome or p = 504,907 for UK Biobank). We varied the591

form of D(θ) to (mis)specify different generative models and architectures. The diagonal elements of592

D(θ) correspond to the true SNP-specific genetic variance, which are normalized such that they summed593

up to the true total heritability. Under the infinitesimal model, D(θ) = diag(h2/p, ...,h2/p); for sparse594

architectures, we simulated the joint effect sizes from a mixture of normal components, one of which is595

null (i.e., point mass at zero); for frequency-dependent architectures, we assumed that the genetic variance596

of SNP j was proportional to a function of its allele frequency, σ2
j ∝ ( f j(1− f j))

α , where α determines597

the strength of the dependency9, 28. We considered two alternative links for SNP-specific heritability, the598

exponential function, g−1
τ (a j) = exp(a⊤j τττ), and the ReLU activation function, g−1

τ (a j) = max{0,a⊤j τττ}599

(Note that the max function is not invertible, but we keep using the g−1 notation to be consistent with the600

GLM literature, where link refers to the mapping from the expected response to a linear combination of601

predictors).602

We computed the LD scores using the LDGM precision matrices by taking the sum of the squared603

correlations between two SNPs. This ensures that the set of variants used for graphREML and S-LDSC is604

closely aligned. To further increase comparability between graphREML and S-LDSC in simulations, we605

included SNPs with large χ2 in S-LDSC at the regression step (since graphREML accounts for all SNPs606

regardless of their effect sizes) even though by default, S-LDSC removes SNPs with χ2 greater than 80.607
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We also fixed the intercept of graphREML at the intercept estimated by S-LDSC such that confounding608

related to population stratification is adjusted in the same way between two methods. The 14 functional real609

functional annotations we included in the simulation studies are coding, conserved, enhancer, DHS, DHS610

peaks, promoter and repressed, along with their flanking regions (<500kb). We chose these annotations611

because they are well-known and studied; they are also well-powered (i.e., the annotations are not too612

small). In addition, we simulated 4 random annotations, which comprise 1% of the SNPs, 10% of the613

SNPs 1% of the LD blocks and 10% of the LD blocks. To account for frequency-dependent architecture in614

estimation, we either incorporated a single continuous-valued MAF annotation or a set of 10 binary MAF615

bins (same as the baselineLD model).616

Real trait analyses617

We analyzed a diverse set of GWAS summary statistics downloaded from different sources (see URLs).618

For method comparisons, we applied graphREML and S-LDSC to estimate the heritability enrichment of619

7 well-powered quantitative traits – height, BMI, red blood count (RBC), monocyte count (Mono), platelet620

count (Plt), years of education, and neuroticism, using the publicly available summary statistics36, 37. We621

also applied the two methods to the summary statistics of 11 less-well-powered disease phenotypes –622

Alzheimer’s disease (AD), bowel cancer, breast cancer, cardiovascular diseases (CAD), chronic obstructive623

pulmonery diseases (COPD), depression (DEP), hypertension (HTN), lung cancer, Parkinson’s disease624

(PD), prostate cancer and type II diabetes (T2D). The summary statistics for these traits were derived625

using the liability threshold family history model (LTFH)4.626

For validation analyses, we applied graphREML to European-ancestry summary statistics for which627

UKB was not the major source of GWAS sample (average n= 235,331; Supplementary Table 9). We also628

analyzed a set of summary statistics that are based on GWAS of East Asians (n = 91,045; Supplementary629

Table 10). These summary statistics were identified based on their availability and to maximize overlap630

with traits we used for method comparison (Supplementary Table 7).631
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Score test for inference on joint enrichment632

We derived a score test to circumvent the need of refitting graphREML for every new annotation, as long633

as the set of baseline annotations to be conditioned on is the same. Below we outline the key steps of the634

score test procedure. Further details, such as its derivation, the intuitions and the computational aspects of635

the test are provided in the Supplementary Notes.636

1. Run graphREML to fit the null model (i.e., only including the baseline annotations), and store637

two variant-wise statistics. (These values roughly correspond to the gradient and Hessian of the638

likelihoods, with respect to the per-SNP heritability. The exact definitions of these values are639

provided in the Supplementary Notes.)640

2. Perform the score test641

(a) Construct the score statistic using the SNP-specific values stored in Step 1, along with the new

annotation to be tested. The score statistics for the test of a single annotation can be written

as,

SK+1 =
UK+1(θ

∗)2

Var(UK+1(θ ∗))
,

where UK+1(θ
∗) is the score for the new annotation aggregated from all markers, and642

Var(UK+1(θ
∗)) is the jackknife variance estimator (see details in Supplementary Notes).643

(b) Compute the empirical variance of the score statistic using jackknife, leaving one LD block644

at a time. We account for the uncertainty in the parameter estimates of the null model645

(Supplementary Notes).646

(c) Compute the p-value by comparing the normalized score statistic against the chi-squared647

distribution (with one degree of freedom if only one annotation is tested).648

3. Compare the significance levels across the set of annotations tested and control for multiple testing.649

This test is performed using an efficient block jackknife procedure, such that it accounts for the uncertainty650

in the parameter estimates from the null model (Supplementary Notes).651
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To evaluate the type I error rate and power of the score test, we simulated quantitative traits under652

different genetic architectures, using the real LDGM precision matrices derived from the UK Biobank,653

along with the same set of annotations as those used in the validation analyses (i.e., coding, conserved,654

DHS, enhancer, promoter and repressed). The joint effect sizes are drawn from a mixture of normal655

components, one of which is null (i.e., point mass at zero); we varied the proportion of null variants from656

0% to 99.9% and normalized the total heritability to be 0.1 in all simulation settings. We assumed the657

true non-null annotations are coding and conserved. For type I error rate, we ran score test on promoter658

and repressed, conditional on all the other annotations. Note that our null model excludes the annotations659

to be tested for type I error, but includes the non-null annotations due to potential overlaps between the660

non-null and the null annotations (e.g., coding and promoter have large overlaps). For the power analyses,661

we varied the true enrichment of the non-null annotations, but largely kept them at realistic values. We662

referenced the published meta-analyses results from Finucane et al.3 for the estimated enrichment of663

coding and conserved SNPs from real traits. Their estimates from the meta-analyses are 7.124(0.842) and664

13.318(1.503) for coding and conserved respectively. Alpha level is set to 0.05 for all of our tests.665

To assess the concordance between the inference results from the Wald test and those from the Score666

test, we compared the enrichment estimates and their p-values for the same set of annotations and real667

traits as those used in the validation analyses. For clarity, we call the set of annotations we are interested668

in testing their enrichment the "new annotations", and the set of annotations we want to condition on the669

"baseline annotations". For the marginal enrichment, the p-values of the Wald test are based on fitting670

graphREML to the set of baseline annotations and new annotations jointly, after which we extract the671

p-values for the marginal enrichments of the new annotations; the p-values of the Score test are based672

on fitting graphREML to the all-one annotation first and then applying the score test to each of the new673

annotations separately in turn. For the joint enrichment, the p-values of the Wald test are based on fitting674

graphREML to the baseline annotations plus a new annotations, one at a time, and then extracting the675

p-values for the new annotations; the p-values of the Score test are based on fitting graphREML to the676

baseline annotations first and then applying the score test to each of the new annotations separately in turn.677
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Applying graphREML to Abstract Mediation Model (AMM)678

The abstract mediation model (AMM) characterizes the distance-dependent relationship between trait-679

associated variants and the genes that mediate their effects. In particular, it quantifies the fraction of680

heritability mediated by the closest, second-closest, or kth-closest genes, and leverages the proximity of681

SNPs to genes that belong to an enriched gene set to partition gene-mediated heritability.682

Let G(k)
j denote the kth closest gene to SNP j and let a(k)j be an indicator i.e., binary annotation, of683

whether G(k)
j is in the gene set of interest, A. We model the heritability of SNP j mediated by its kth684

nearest gene as the following,685

σ
2
j (G

(k)
j ) = f (θ⊤b j)p(k)

(
1+∑

k
f (γk)a

(k)
j

)
(4)

where f (·) is some smooth and non-negative function we choose for estimation, analogous to the inverse686

link above, e.g., softmax. For clarity, we use separate notations – θ and γ as parameters, b j and a j as687

annotation values – for the baseline and the kth nearest gene annotations, respectively.688

We define the excess per-SNP heritability mediated by the nearest genes (in gene set A) as τ(A)≡689

∑k f (γk). In other words, the excess heritability explained by a SNP with its closest kth gene in A, scaled690

by its background heritability, is p(k)τ(A). Summing up the mediated heritability across all nearest genes691

considered, we have the model for the expected per-SNP heritability j,692

σ
2
j = f (θ⊤b j)

(
1+∑

k
f (γk)a

(k)
j

)
. (5)

Similar to Weiner et al., we bin the gene proximity annotations to increase power. Let q denote a gene bin693

and let nq denote the number of genes aggregated together for bin q. We estimate the fraction of per-SNP694

heritability mediated by the nearest genes in gene set A as p(q) = f (γq)nq
∑l f (γl)nl

=
f (γq)nq
τ(A) . For meta-analyses,695

we weigh each trait by its total heritability before obtaining the average p(k) across traits. We define the696

average mediated heritability enrichment of a gene set as e(A) = 1+τ(A)

1+τ(A)N(A)
N

, where N(A)/N is the fraction697

of genes in set A.698
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Our model differs from the original AMM model in two main ways. First, we allow the baseline699

annotations of a SNP (b j) to affect its "background heritability" or the per-SNP heritability if none of its700

nearby genes lies in the gene set. More specifically, S-LDSC models the heritability contributed from701

the baseline annotations and the excess heritability mediated by genes in the gene set additively, θ⊤b j +702

∑k γka(k)j ; graphREML, on the other hand, assumes a multiplicative model and enables the "interaction"703

between the baseline annotations and the nearest gene annotations, f (θ⊤b j)
(

1+∑k f (γk)a
(k)
j

)
. Second,704

we apply a non-negative link f (·) to ensure the validity of our per-SNP heritability estimates. In other705

words, S-LDSC accounts for the AMM annotations as ∑k γka(k)j whereas graphREML uses ∑k f (γk)a
(k)
j .706

Our definition of enrichment is similiar to Equation 6 in Weiner et al. but differs slightly in that we assume707

τ(A) has been scaled by the background heritability at the SNP level, i.e., divided out by f (θ⊤b j) as in708

Equation (4).709

In simulations, we generated GWAS Z-scores using the simulateSumstats function in the LDGM710

package (see Code Availability). The true per-SNP heritability was defined using the following generative711

link function,712

σ
2
j = f (θ⊤b j)

(
1+∑

k
τ(A)p(k)a(k)j

)
. (6)

We started with the set of "baselineLD minus" annotations which exclude annotations that control for genic713

elements relevant to constrained genes, such as conservation, minor allele frequency, and ancient sequence714

annotation. Out of these 66 annotations, we randomly selected four baseline annotations to assign heritable715

signals (non-zero θ elements; these values are set to [1,2,1.5,2.5]). We assume the fraction of mediated716

heritability across the four nearest genes as p(k) = [0.4,0.3,0.2,0.1]. The total excess per-SNP heritability717

of the enriched gene set A is τ(A) = 2. We applied graphREML to AMM and estimated the heritability718

mediated by the constrained genes. We varied the sample size to be 104, 106 and 108, and generated the719

effect sizes under three levels of polygenicity, assuming 99.9%,99%,90% of the variants are null. Under720

each of these six settings, we repeated the simulations 30 time and ran graphREML using the full set of721

baseline annotations and the AMM link function in equation (4). Because we observed numerical stability722

issues due to the exponential terms, we modified our link function to address these overflow issues by723
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implementing a piece-wise version of the softmax (Supplementary Notes).724

For real-trait analyses, we applied AMM to the GWAS summary statistics for the same set of traits as

we analyzed before, including both well-powered quantitative traits and disease traits with less power. We

used the LDGM precision matrices derived from the UK biobank. We used highly constrained genes (pLI

> 0.9) which are intolerant of heterozygous loss-of-function variation (see Weiner et al.) as our enriched

gene set. To increase the power of our p(k) estimates, we binned annotations in the 3rd through 5th, 6th

through 10th, 11th through 20th, and 21st through 50th nearest genes. We performed meta-analyses across

traits by taking the ratio of the weighted averages,

p(k)meta =
∑t f (γk,t) ·h2

t

∑t ∑l f (γl,t) ·h2
t
,

where the weights are the trait-specific total heritability. To obtain standard errors on the estimates, we use725

the jackknife values of γk,t to compute the jackknife estimates of p(k)meta. The standard error is computed as726

the standard deviation of these jackknife estimates, multiplied by square root of the number of LD blocks.727

Data availability728

The baselineLD annotations can be downloaded on Google Cloud (https://storage.googleapis.com/broad-729

alkesgroup-public-requester-pays/LDSCORE/baselineLF_v2.2.UKB.tar.gz). The constrained gene sets730

can be downloaded from the AMM Github repository731

(https://github.com/danjweiner/AMM21/blob/main/AMM_genesets/AMM_gs_constrained.txt). LDGM732

precision matrices derived from the 1000 Genome are available from Zenodo733

(https://doi.org/10.5281/zenodo.8157131).734

Code availability735

Our method (graphREML) has been implemented as an open-source package, written primarily in736

Matlab, available on Github at https://github.com/huilisabrina/graphREML. We also used the open-source737

LDGM package and S-LDSC package, available on Github at https://github.com/awohns/ldgm and738
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https://github.com/bulik/ldsc.739
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