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Abstract

Non-pharmaceutical public health measures (PHMs) were central to pre-vaccination efforts to
reduce Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) exposure risk;
heterogeneity in adherence placed bounds on their potential effectiveness, and correlation in their
adoption makes assessing the impact attributable to an individual PHM difficult. During the Fall
2020 semester, we used a longitudinal cohort design in a university student population to conduct a
behavioral survey of intention to adhere to PHMs, paired with an IgG serosurvey to quantify SARS-
CoV-2 exposure at the end of the semester. Using Latent Class Analysis on behavioral survey
responses, we identified three distinct groups among the 673 students with IgG samples: 256 (38.04%)
students were in the most adherent group, intending to follow all guidelines, 306 (46.21%) in the
moderately-adherent group, and 111 (15.75%) in the least-adherent group, rarely intending to follow
any measure, with adherence negatively correlated with seropositivity of 25.4%, 32.2% and 37.7%,
respectively. Moving all individuals in an SIR model into the most adherent group resulted in a
76-93% reduction in seroprevalence, dependent on assumed assortativity. The potential impact of
increasing PHM adherence was limited by the substantial exposure risk in the large proportion of
students already following all PHMs.

Key words: Latent Class Analysis; SIR Model; Approximate Bayesian Computation; Behavioral
Survey; IgG Serosurvey.
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Background

Within epidemiology, the importance of heterogeneity, whether that host, population, statistical, or
environmental, has long been recognized [1-5]. For example, when designing targeted interventions,
it is crucial to understand and account for differences that may exist within populations [6-8]. These
differences can present in a variety of forms: heterogeneity in susceptibility, transmission, response
to guidance, and treatment effects etc.; all of which affect the dynamics of an infectious disease
[1,2,6,9-14]. While heterogeneity may exist on a continuous spectrum, it can be difficult to
incorporate into analysis and interpretation, so individuals are often placed in discrete groups
according to a characteristic that aims to represent the true differences [15-19]. When examining
optimal influenza vaccination policy in the United Kingdom, Baguelin et al. [20] classified
individuals within one of seven age groups. Explicitly accounting for, and grouping, individuals by
whether they inject drugs can help target interventions to reduce human immunodeficiency virus
(HIV) and Hepatitis C Virus incidence [21]. Similarly, epidemiological models have demonstrated the
potential for HIV pre-exposure prophylaxis to reduce racial disparities in HIV incidence [22].
Therefore, heterogeneity can be used to inform more complete theories of change, increasing
intervention effectiveness [23]

When discretizing a population for the purposes of inclusion within a mechanistic model, three
properties need to be defined: 1) the number of groups, 2) the size of the groups, and 3) the
differences between the groups. Typically, as seen in the examples above, demographic data is used
e.g., age, sex, race, ethnicity, socio-economic status, etc., often in conjunction with the contact
patterns and rates [7,9,15,17,20,22,24]. There are several reasons for this: the data is widely available,
and therefore can be applied almost universally; it is easily understandable; and there are clear
demarcations of the groups, addressing properties 1) and 2). However, epidemiological models often
aim to assess the effects of heterogeneity with respect to infection, e.g., “how does an individual’s
risk tolerance affect their risk of infection for influenza?”. When addressing questions such as these,
demographic data does not necessarily provide a direct link between the discretization method and
the heterogeneous nature of the exposure and outcome, particularly if behavioral mechanisms are a
potential driver. Instead, it relies on assumptions and proxy measures e.g., an individual’s age
approximates their contact rates, which in turn approximates their risk of transmission. This paper
demonstrates an alternative approach to discretizing populations for use within mechanistic models,
highlighting the benefits of an interdisciplinary approach to characterize heterogeneity in a manner
more closely related to the risk of infection.

In early 2020, shortly after the World Health Organization (WHO) declared the SARS-CoV-2
outbreak a public health emergency of international concern [25], universities across the United
States began to close their campuses and accommodations, shifting to remote instruction [26,27]. By
Fall 2020, academic institutions transitioned to a hybrid working environment (in-person and
online), requiring students to return to campuses [28-30]. In a prior paper [31] we documented the
results of a large prospective serosurvey conducted in State College, home to The Pennsylvania State
University (PSU) University Park (UP) campus. We examined the effect of 35,000 returning students
(representing a nearly 20% increase in the county population [32]) on the community infection rates,
testing serum for the presence of anti-Spike Receptor Binding Domain (S/RBD) IgG, indicating prior
exposure [33]. Despite widespread concern that campus re-openings would lead to substantial
increases in surrounding community infections [28,34,35], very little sustained transmission was
observed between the two geographically coincident populations [31].

Given the high infection rate observed among the student body (30.4% seroprevalence), coupled with
the substantial heterogeneity in infection rates between the two populations, we hypothesized that
there may be further variation in exposure within the student body, resulting from behavioral
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heterogeneity. Despite extensive messaging campaigns conducted by the University [36], it is
unlikely that all students equally adhered to public health guidance regarding SARS-CoV-2
transmission prevention. We use students’ responses to the behavioral survey to determine and
classify individuals based on their intention to adhere to public health measures (PHMs). We then
show that these latent classes are correlated with SARS-CoV-2 seroprevalence. Finally, we
parameterize a mechanistic model of disease transmission within and between these groups, and
explore the impact of public health guidance campaigns, such as those conducted at PSU [36]. We
show that interventions designed to increase student compliance with PHMs would likely reduce
overall transmission, but the relatively high initial compliance limits the scope for improvement via
PHM adherence alone.

Methods

Design, Setting, and Participants

This research was conducted with PSU Institutional Review Board approval and in accordance with
the Declaration of Helsinki, and informed consent was obtained for all participants. The student
population has been described in detail previously [31], but in brief, students were eligible for the
student cohort if they were: > 18 years old; fluent in English; capable of providing their own consent;
residing in Centre County at the time of recruitment (October 2020) with the intention to stay
through April 2021; and officially enrolled as PSU UP students for the Fall 2020 term. Upon
enrollment, students completed a behavioral survey in REDCap [37] to assess adherence and
attitudes towards public health guidance, such as attendance at gatherings, travel patterns, and non-
pharmaceutical interventions. Shortly after, they were scheduled for a clinic visit where blood
samples were collected. Students were recruited via word-of-mouth and cold-emails.

Outcomes

The primary outcome was the presence of S/RBD IgG antibodies, measured using an indirect
isotype-specific (IgG) screening ELISA developed at PSU [38]. An optical density (absorbance at 450
nm) higher than six standard deviations above the mean of 100 pre-SARS-CoV-2 samples collected in
November 2019, determined a threshold value of 0.169 for a positive result. Comparison against
virus neutralization assays and RT-PCR returned sensitivities of 98% and 90%, and specificities of
96% and 100%, respectively [39]. Further details in the Supplement of the previous paper [31].

Statistical Methods

To identify behavioral risk classes, we fit a range of latent class analysis (LCA) models (two to seven
class models) to the student’s behavioral survey responses, using the poLCA package [40] in the R
programming language, version 4.3.3 (2024-02-29) [41]. We considered their answers regarding the
frequency with which they intended to engage in the following behaviors to be a priori indicators of
behavioral risk tolerance: wash hands with soap and water for at least 20s; wear a mask in public;
avoid touching their face with unwashed hands; cover cough and sneeze; stay home when ill; seek
medical attention when experiencing symptoms and call in advance; stay at least 6 feet (about 2
arms lengths) from other people when outside of their home; and, stay out of crowded places and
avoid mass gatherings of more than 25 people. The behavioral survey collected responses on the
Likert scale of: Never, Rarely, Sometimes, Most of the time, and Always. For all PHMs, Always and
Most of the time accounted for > 80% of responses (with the exception of intention to stay out of
crowded places and avoid mass gatherings, where Always and Most of the time accounted for 78.8%
of responses). To reduce the parameter space of the LCA and minimize overfitting, the behavioral
responses were recoded as Always and Not Always. Measures of SARS-CoV-2 exposure e.g., IgG
status, were not included in the LCA model fitting, as they reflect the outcome of interest. We
focused on responses regarding intention to follow behaviors because this information can be
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feasibly collected during a public health campaign for a novel or emerging outbreak; it has also been
shown that intentions are well-correlated with actual behaviors for coronavirus disease 2019
(COVID-19) public health guidelines, as well as actions that have short-term benefits [42,43]. We
examined the latent class models using Bayesian Information Criterion, which is a commonly
recommended as part of LCA model evaluation [44,45], to select the model that represented the best
balance between parsimony and maximal likelihood fit.

Using the best-fit LCA model, we performed multivariate logistic regression of modal class
assignment against IgG seropositivity to assess the association between the latent classes and
infection. This “three-step” approach is recommended over the “one-step” LCA model fit that
includes the outcome of interest as a covariate in the LCA model [45,46]. The following variables
were determined a priori to be potential risk factors for exposure [31]: close proximity (6 feet or less)
to an individual who tested positive for SARS-CoV-2; close proximity to an individual showing key
COVID-19 symptoms (fever, cough, shortness of breath); lives in University housing; ate in a
restaurant in the past 7 days; ate in a dining hall in the past 7 days; only ate in their room/apartment
in the past 7 days; travelled in the 3 months prior to returning to campus; and travelled since
returning to campus for the Fall term. Variables relating to attending gatherings were not included
in the logistic regression due to overlap with intention variables of the initial LCA fit. Missing
variables were deemed “Missing At Random” and imputed using the mice package [47], as described
in the supplement of the previous paper [31].

We parameterized a deterministic compartmental Susceptible-Infected-Recovered (SIR) model using
approximate Bayesian computation (ABC) against the seroprevalence within each latent class. The
recovery rate was set to 8 days. Diagonal values of the transmission matrix were constrained such
that By < By < Brp (Hrepresents high-adherence to public health guidelines, and M and L
represent medium- and low-adherence, respectively), with the following parameters fit: the
transmission matrix diagonals, a scaling factor for the off-diagonal values (¢), and a scaling factor
for the whole transmission matrix (p). The off-diagonal values are equal to a within-group value
(diagonal) multiplied by a scaling factor (¢). This scaling factor can either multiply the within-group
beta value of the source group (e.g., By, = ¢ - Br1; Eq. 1A), or the recipient group (e.g., 8.y = ¢ -
Br1; Eq. 1B), each with a different interpretation.

Buu Bum BuL Buu PBvm PBLL
ol Bur Buam Bur | = el ¢Buy Bum ¢Brr | mixing structure A
Bru Bum Brr PBug PByum Brr

Bun Bun ®Bum
= o Byum Bum Baua | mixing structure B

$Brr #Prr Brr

The former assumes that between-group transmission is dominated by the transmissibility of the
source individuals, implying that adherence to the PHMs primarily prevents onwards transmission,
rather than protecting against infection. The latter assumes that between-group transmission is
dominated by the susceptibility of the recipient individuals, implying that adherence to the PHMs
primarily prevents infection, rather than protecting against onwards transmission. A range of
between-group scaling values (¢) were simulated to perform sensitivity analysis for the degree of
assortativity. Results are only shown for matrix structure A, but alternative assumptions about
between-group mixing can be found in the supplement (Supplemental Figures 1-4). To examine the
effect of an intervention to increase PHM adherence, we redistributed a proportion of low- and
medium adherence individuals to the high adherence latent class, i.e., a fully effective intervention is
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equivalent to a single-group SIR model of high adherent individuals. Model fitting and simulation
was conducted using the Julia programming language, version 1.10.5 [48].

Results

Demographics

Full details can be found in the prior paper [31], but briefly: 1410 returning students were recruited,
725 were enrolled, and 684 students completed clinic visits for serum collection between 26 October
and 21 December 2020. Of these, 673 students also completed the behavioral survey between 23
October and 8 December 2020. The median age of the participants was 20 years (IQR: 19-21), 64.5%
identified as female and 34.6% as male, and 81.9% identified as white. A large proportion (30.4%) were
positive for IgG antibodies, and 93.5% (100) of the 107 students with a prior positive test reported
testing positive only after their return to campus.

LCA Fitting

Of the 673 participants, most students intended to always mask (81.0%), always cover their coughs/
sneezes (81.9%), and always stay home when ill (78.2%) (Table 1). Two of the least common
intentions were social distancing by maintaining a distance of at least 6 feet from others outside of
their home, avoiding crowded places and mass gatherings > 25 people (43.4% and 53.1%
respectively), and avoiding face-touching with unwashed hands (43.5%).

The four- and the three-class LCA models had the lowest BIC respectively (Table 2). Examining the
four-class model, there was minimal difference in the classification of individuals, relative to the
three-class model. In the four-class model, the middle class (of the three-class model) was split into
two groups with qualitatively similar class-conditional item response probabilities i.e., conditional
on class membership, the probability of responding “Always” to a given question, except for hand
washing and avoiding face-touching with unwashed hands (Supplemental Tables 1 & 2).

We fit a logistic regression model to predict binary IgG serostatus that included inferred class
membership, in addition to other predictor variables we previously identified in [31]. The mean and
median BIC and AIC indicated similar predictive ability of the three- and four-class LCA models
(Table 3). Given these factors, the three-class model was selected for use in simulation for
parsimony, requiring fewer assumptions and parameters to fit.

In the three-class model, approximately 15.75% of individuals were members of the group that rarely
intended to always follow the PHMs, 38.04% intended to always follow all guidelines, and the
remaining 46.21% mostly intended to mask, test, and manage symptoms, but not distance or avoid
crowds (Table 4). We have labelled the three classes as “Low-”, “High-" and “Medium-Adherence”
groups, respectively, for ease of interpretation. Examining the class-conditional item response
probabilities, the Medium Adherence class had a probability of 0.88 of always wearing a mask in
public, but a probability of only 0.19 of social distancing when outside of their homes, for example.
Calculating the class-specific seroprevalence, the Low Adherence group had the highest infection
rates (37.7%, 95% Binomial CI: 28.5-47.7%), the medium adherence the next highest (32.2%, 95%
Binomial CI: 27.0-37.7%), and the most adherent group experienced the lowest infection rates (25.4%,
95% Binomial CI: 20.2-31.1%). Incorporating latent class membership into the imputed GLM model
described in our previous paper (30) retained the relationship between adherence and infection.
Relative to the least adherent group, the Medium Adherence group experienced a non-significant
reduction in infection risk (aOR, 95% CI: 0.73, 0.45-1.18), and the most adherent group a significant
reduction (aOR, 95% CI: 0.59, 0.36-0.98) (Table 5).
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Compartmental Model

The ABC distance distributions indicated that near-homogeneous levels of between-group mixing
better fit the data (Figure 1). After model parameterization, we examined the effect of increasing
adherence to public health guidance. Moving all individuals into the High Adherence class resulted
in a 76-93% reduction in final size; when moderate between-group mixing is simulated, a fully
effective intervention results in approximately 80% reduction in final seroprevalence, and when
between-group mixing is as likely as within-group mixing, a 93% reduction is observed (Figure 2).

Discussion

In this interdisciplinary analysis, we collected behavioral data from surveys and integrated it with
serosurveillance results. This approach allowed us to use LCA to categorize a population’s
transmission potential with measures related to risk tolerance and behavior. The LCA model was fit
without inclusion of infection status data, but class membership was correlated with IgG
seroprevalence. The classes that were the most adherent to PHMs experienced the lowest infection
rates, and the least adherent exhibited the highest seroprevalence.

Although a four-class LCA model was a marginally better fit for the data, there were not substantial
differences in class assignment relative to the three-class LCA model. The three-class model was
selected for use in simulation for parsimony, requiring fewer assumptions and parameters to fit.
Upon parametrizing the compartmental model, smaller ABC distance values were observed for
moderate to high levels of between-group mixing, implying some degree of assortativity in our
population, though the exact nature cannot be determined from our data. Examining the three
classes, 38% of individuals already intended to always follow all PHMs. As a result, only 62% of the
study population could have their risk reduced with respect to the PHMs surveyed. Further, the
infection rates observed in the High Adherence group indicates that even a perfectly effective
intervention aimed at increasing adherence to non-pharmaceutical PHMs (i.e., after the intervention,
all individuals always followed every measure) would not eliminate transmission in a population, an
observation that aligns with prior COVID-19 research [49-52]. The extent to which the infection in
the High Adherence group is a result of mixing with lower adherence classes cannot be explicitly
described, but the sensitivity analysis allows for an exploration of the effect and ABC fits suggest
near-homogeneous mixing occurred. Varying the structure of the transmission matrix yielded very
similar quantitative and qualitative results (Supplemental Figures 1-4).

Examining the impact of increasing adherence to PHMs (modeled as increasing the proportion of the
population in the High Adherence class), a fully effective intervention saw between a 76-93%
reduction in the final size of the simulation outbreak. The small but appreciable dependence of the
reduction’s magnitude on the degree of between-group mixing can be explained as such: with higher
levels of between-group mixing, the initial SIR parameterization results in lower transmission
parameters for the High-High adherence interactions, as more infections in the High Adherence
group originate from interactions with Low and Medium Adherence individuals. Increasing
adherence, therefore, results in a greater reduction of the overall transmission rate than in
simulations with less assortativity.

Limitations and Strengths

The student population was recruited using convenience sampling, and therefore may not be
representative of the wider population. Those participating may have been more cognizant and
willing to follow public health guidelines. Similarly, because of the University’s extensive messaging
campaigns and efforts to increase access to non-pharmaceutical measures [36], such as lateral flow
and polymerase-chain reaction diagnostic tests, the students likely had higher adherence rates than
would be observed in other populations. However, these limitations are not inherent to the modeling
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approach laid out, and efforts to minimize them would likely result in stronger associations and
conclusions due to larger differences in the latent behavioral classes and resulting group infection
rates.

It is well known that classification methods, like LCA, can lead to the “naming fallacy” [44], whereby
groups are assigned and then specific causal meaning is given to each cluster, affecting subsequent
analyses and interpretation of results. In this paper, this effect is reduced by virtue of the analysis
plan being pre-determined, and the relationship with the outcome showing a positive association
with the classes in the mechanistically plausible direction (i.e., increasing adherence to PHMs results
in reduced infection rates). Our decision to conduct the simulation analysis with the three-class
model was, in part, to avoid the potential bias that would arise from naming or assigning an order to
the two intermediate risk groups.

Despite these limitations, this work presents a novel application of a multidisciplinary technique,
outlining how alternate data sources can guide future model parameterization and be incorporated
into traditional epidemiological analysis, particularly within demographically homogeneous
populations where there is expected or observed heterogeneity in transmission dynamics. This is
particularly important in the design of interventions that aim to target individual behaviors,
allowing the categorization of populations into dynamically-relevant risk groups and aiding in the
efficient use of resources through targeted actions. Future research should consider including
perceived agency and efficacy for PHM adherence.
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Figure 1: Distribution of the distance from the ABC fits, with the minimum and maximum distances
illustrated by the whiskers, and the median distance by the point. Between-group mixing of 1.0 equates
to between-group mixing as likely as within-group mixing
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Figure 2: A) The reduction in final infection size across a range of intervention effectiveness (1.0 is a
fully effective intervention), accounting for a range of assortativity. Between-group mixing of 1.0 equates
to between-group mixing as likely as within-group mixing; B) The relative distribution of group sizes at
three levels of intervention effectiveness (0.0, 0.5, 1.0)
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Tables
Table 1

Intention to always:

Always

Not Always

Avoid face-touching with unwashed hands

293 (43.54%)

380 (56.46%)

Cover cough and sneeze

551 (81.87%)

122 (18.13%)

Seek medical attention when have symptoms and call in advance

193 (28.68%)

Stay at least 6 feet (about 2 arms lengths) from other people when
outside of home.

(
480 (71.32%)
292 (43.39%)

381 (56.61%)

Stay home when ill

526 (78.16%)

147 (21.84%)

Stay out of crowded places and avoid mass gatherings > 25 people

316 (46.95%)

Tested for COVID-19 twice or more

544 (80.83%)

129 (19.17%)

Wash hands often with soap and water for at least 20 seconds.

(

357 (53.05%)
(
(

434 (64.49%)

239 (35.51%)

Wear a face cover (mask) in public

545 (80.98%)

128 (19.02%)

Table 1: Participants’ intention to always or not always follow 8 public health measures
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Table 2
Classes | Log Likelihood | Akaike Information Criterion Bayesian Information
Criterion
2 -2895.40 5828.81 5914.53
3 -2715.67 5489.35 5620.19
4 -2673.50 5425.00 5600.96
5 -2658.46 5414.93 5636.00
6 -2647.01 5412.03 5678.22
7 -2636.05 5410.10 5721.41

Table 2: Log likelihood, AIC, and BIC of two to seven class LCA model fits
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Table 3
Classes | AIC (Mean) | BIC (Mean) | AIC (Median) | BIC (Median)
2 794.33 839.44 794.18 839.29
3 794.29 843.92 794.23 843.86
4 797.52 851.66 797.50 851.64
5 799.69 858.34 799.70 858.35
6 796.91 860.08 796.84 860.00
7 794.68 862.36 794.67 862.35

Table 3: Mean and median AIC and BIC of multiply-imputed logistic regressions for two to seven class
LCA models against IgG serostatus
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Table 4

Measure
Intention to Always:

Low Adherence Medium Adherence |High Adherence

Wash my hands often with soap

and water for at least 20 seconds. 096
Wear a face cover (mask) in public . . 0.99
Avoid face-touching with e
unwashed hands

Cover cough and sneeze 1.00
Stay home when ill 1.00

Seek medical attention when have

0.98
symptoms and call in advance

Stay at least 6 feet (about 2 arms
lengths) from other people when
outside of my home.

Stay out of crowded places and
avoid mass gatherings > 25 people

Tested for COVID-19 twice or

0.76
more
Group Size 15.75%
Seroprevalence 37.7%

Table 4: Class-conditional item response probabilities shown in the main body of the table for a three-
class LCA model, with footers indicating the size of the respective classes, and the class-specific
seroprevalence
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Table 5

Covariate (response) / reference levels aOR (multiple imputation)
Close proximity to known COVID-19 positive individual (yes) / no 3.41 (2.29-5.08, p<0.001)
Close proximity to individual showing COVID-19 symptoms 0.86 (0.58-1.29, p=0.474)
(yes) / no

Lives in University housing (yes) / no 0.90 (0.55-1.47, p=0.685)
Latent Class (medium adherence) / low adherence 0.73 (0.45-1.18, p=0.203)
Latent Class (high adherence) / low adherence 0.59 (0.36-0.98, p=0.043)
Travelled in the 3 months prior to campus arrival (yes) / no 1.12 (0.76-1.63, p=0.57)
Travelled since campus arrival (yes) / no 0.87 (0.6-1.25, p=0.447)
Ate in a dining hall in the past 7 days (yes) / no 1.32 (0.76-2.29, p=0.332)
Ate in a restaurant in the past 7 days (yes) / no 1.14 (0.8-1.64, p=0.465)
Only ate in their room in the past 7 days (yes) / no 0.87 (0.59-1.29, p=0.499)

Table 5: Adjusted odds ratio (aOR) for risk factors of infection among the returning PSU UP student
cohort
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