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 27 

ABSTRACT 28 

A key methodological challenge for genome wide association studies is how to leverage haplotype 29 

diversity and allelic heterogeneity to improve trait association power, especially in noncoding regions 30 

where it is difficult to predict variant impacts and define functional units for variant aggregation. 31 

Genealogy-based association methods have the potential to bridge this gap by testing combinations 32 

of common and rare haplotypes based purely on their ancestral relationships. In parallel work we 33 

developed an efficient local ancestry inference engine and a novel statistical method (LOCATER) for 34 

combining signals present on different branches of a locus specific haplotype tree. Here, we 35 

developed a genome-wide LOCATER analysis pipeline and applied it to a genome sequencing study 36 

of 6,795 Finnish individuals with 101 cardiometabolic traits and 18.9 million autosomal variants. We 37 

identified 351 significant trait associations at 47 genomic loci and found that LOCATER boosted single 38 

marker test (SMT) association power at 5 loci by combining independent signals from distinct alleles. 39 

LOCATER successfully recovered known quantitative trait loci not found by SMT, including LIPG, 40 

recovered known allelic heterogeneity at the APOE/C1/C4/C2 gene cluster, and suggested one novel 41 

association. We find that confounders have a more pronounced effect on genealogy-based methods 42 

than SMT; we propose a new randomization approach and a general method for genomic control to 43 

eliminate their effects. This study demonstrates that genealogy-based methods such as LOCATER 44 

excel when multiple causal variants are present and suggests that their application to larger and more 45 

diverse cohorts will be fruitful. 46 

 47 

INTRODUCTION 48 

 49 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.04.24316696doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.04.24316696


 

3 
 

Genome-wide association studies (GWAS) have been extremely successful at identifying variants and 50 

genes associated with common human diseases and other complex traits. The vast majority of studies 51 

have used one or both of two statistical methods for trait association: common variant association 52 

using single marker tests (SMT) and rare variant association using gene-based aggregation tests1,2. 53 

However, neither method is well suited for identifying rare variant associations in noncoding regions 54 

where most causal variants are known to reside3, or for testing the combined association of multiple 55 

independent common and/or rare variant signals (potentially with opposing effects) in cases of allelic 56 

heterogeneity. Region-based methods have been adapted to noncoding regions using sliding window 57 

approaches, with some success4, but this approach is limited by two major challenges. First, it is 58 

difficult to decide which intervals and sets of variants to test in noncoding regions where knowledge of 59 

variant function is limited. Second, including nonfunctional variants in these tests can greatly reduce 60 

power.  61 

 62 

In theory, genealogy-based methods that seek to associate local ancestral clades with traits have the 63 

potential to overcome these limitations through their ability to combine independent and potentially 64 

opposing signals present in different regions of the local ancestral tree, without the need to define 65 

functional regions or variant sets. Despite notable early progress5,6, these methods have proven 66 

difficult to implement in practice due to the computational challenges of genome-wide population-67 

scale haplotype inference and the statistical challenges of tree-based association testing. Recent 68 

advances in haplotype inference have eased the computational burden of building local genealogies7–69 

11, making genome-wide trait association studies feasible (albeit still computationally expensive). 70 

Building on this, three new methods have recently been developed to test local genealogies for trait 71 

association8,12,13.  72 

 73 
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The first, ARG-Needle8, builds local genealogies using a scalable ARG-based algorithm, samples a set 74 

of inferred clades that may harbor an unobserved variant, and adds the genotypes corresponding to 75 

those clades to the list of genotypes tested in genome-wide single marker testing (SMT).  Although 76 

ARG-Needle is an extremely powerful method for reference free imputation, this “inferred variant” SMT 77 

approach is not designed to combine independent genetic signals at loci with allelic heterogeneity.  78 

 79 

The second method, developed by Link et al.12, uses the Li and Stephens (LS) model HMM 80 

implemented in Relate9 to generate local expected genetic relatedness matrices (eGRMs) which are 81 

then tested for association with the phenotype. Link et al. showed via simulations that this approach 82 

can boost power when multiple independent causal variants are present at locus, and in their analysis 83 

of two chromosomes in a Native Hawaiian cohort of 5,384 individuals found evidence for a robust 84 

(albeit not genome-wide significant) BMI association signal with allelic heterogeneity. Shortly before 85 

the submission of this study, a preprint by Gunnarsson et al.14 (accompanied by Zhu et al.15) proposed 86 

a scalable local ancestry inference engine and a statistical testing approach similar to Link et al.12 87 

However, since their approaches are based purely on a quadratic form class test statistic, they 88 

struggle against the enormous multiple-testing burden incurred by attempting to test all of the clades 89 

in a local tree.  90 

 91 

The third method, LOCATER13, is a comprehensive genome-wide screening procedure that uses a 92 

novel statistical method to test for the association of local genealogical relationships with traits. In 93 

addition to employing a quadratic form (QForm) association test similar to the method used in Link et 94 

al.12, LOCATER also applies a novel statistic test that we developed, Stable Distillation (SD)16, that is 95 

much more powerful than QForm at assessing the combined effects of many small clades marked by 96 

ultra-rare variants. When used in conjunction with an optimized implementation of the LS model we 97 

developed to infer local ancestry, kalis11, our simulation studies have shown that LOCATER 98 
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outperforms SMT in cases of allelic heterogeneity (i.e., when multiple causal variants are present at a 99 

locus). Furthermore, that this advantage is more pronounced as the number of causal variants 100 

increases and their allele frequency decreases, and that the SD sub-test is the primary driver of power 101 

gains13.  102 

 103 

Recent evidence suggests that allelic heterogeneity is widespread in humans. For example, a recent 104 

massive parallel reporter assay (MPRA) study estimated that 10%~20% of expression quantitative trait 105 

loci (eQTLs) have multiple causal variants in humans17, and a previous study showed that by inference, 106 

the proportion of all loci with allelic heterogeneity is 4-23% in eQTLs, 35% in GWASs of high-density 107 

lipoprotein (HDL), and 23% in GWASs of schizophrenia18. These and related observations19 suggest 108 

that methods such as LOCATER that leverage allelic heterogeneity to improve power have the 109 

potential to discover novel trait associated alleles and genes not found by other methods.  110 

 111 

Here, we use LOCATER to screen for trait-associated loci in the METSIM cohort. METSIM is a 112 

population sampled cohort of Finnish men with whole-genome sequencing data and a large number of 113 

cardiometabolic traits. Prior genome-wide association studies in METSIM have mapped many loci 114 

associated with cardiometabolic traits and disease, including studies based on array-based genotype 115 

data20,21, exome sequencing data22, and whole-genome sequencing data23,24. Due to a recent 116 

population bottleneck and subsequent expansion, genetic diversity is somewhat reduced in Finland 117 

and there is a larger fraction of deleterious variants at intermediate allele frequencies, facilitating trait 118 

mapping at relatively modest sample sizes22,25. These features, coupled with extensive prior 119 

knowledge of Finnish genetics, make this an ideal cohort to test new trait mapping methods such as 120 

LOCATER.  121 

 122 

RESULTS 123 
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 124 

Applying LOCATER in this study required overcoming two key methodological challenges that were 125 

not addressed in our prior simulation-based work13: tuning our ancestry inference engine for use with 126 

real-world whole-genome sequencing (WGS) data, specifically from the METSIM cohort in Finland, 127 

and fully accounting for the effects of cryptic confounders in haplotype screening. Although the 128 

specific details of these analysis steps will need to be worked out for any new association study that 129 

uses LOCATER or similar methods on a new dataset, the approaches we describe below may provide 130 

a general solution that helps guide future implementation of these methods.  131 

 132 

Parameter tuning for local ancestry inference  133 

Although the LOCATER software can in principle use any ancestry inference engine as the substrate 134 

for genealogy based trait association, the LOCATER pipeline used for our prior and current work uses 135 

the Speidel version9 of the LS model implemented in kalis11, which includes recent developments to 136 

improve efficiency for genome-wide testing13. As described in Aslett & Christ11, the LS model in kalis 137 

has two parameters: the recombination scale parameter (Ne), and the mutation probability (𝜇). We will 138 

refer to -log10Ne as the recombination penalty parameter and -log10𝜇 as the mutation penalty 139 

parameter.  140 

 141 

Tuning these parameters has been a focus of recent work on the LS model9,26. Rather than using the 142 

data likelihood and expectation-maximization (EM)27 to select these two parameters for our METSIM 143 

analysis, Relate9 proposes using a more relevant objective aimed at maximizing the performance of 144 

the LS model for their specific purpose: capturing local variants in their inferred ancestral trees. Here, 145 

we propose an objective aimed at optimizing the discovery power of LOCATER and other methods 146 

aiming to leverage allelic heterogeneity. LOCATER boosts the power of SMT at a given locus by 147 

incorporating additional signals from nearby independent causal variants using Stable Distillation (SD) 148 
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and a quadratic form test (QForm)13, so we selected HMM parameters that optimize the propagation of 149 

nearby signals using the following objective function and sampling scheme. 150 

 151 

We randomly sampled many genomic regions from the dataset and assigned a causal variant and a 152 

target variant that are 0.05 cM away (see Methods for details). We then simulated a phenotype vector 153 

with a strong effect driven by the causal variant and ran LOCATER at the target variant to measure 154 

how well it could capture the signal driven by the nearby causal variant. We calculated relative 155 

efficiency as our metric, defined as 156 

!"#$(&!"
# &$

# )
!"#$(&!%&

' )
, 157 

where 𝑙 is the index of the target variant and 𝑚 is the index of the causal variant. 𝑝()* refers to p-158 

values returned by SMT, 𝑝(+ and 𝑝, refer to p-values returned by the SD and QForm sub-tests in 159 

LOCATER respectively. This objective focused on association signal propagation could be used to 160 

train parameters for any association method targeting loci with allelic heterogeneity. 161 

 162 

The trimmed mean surface for this relative efficiency showed that multiple parameters have 163 

comparable efficiency and formed a plateau (Figure S1) (See Supplementary Methods, see Table S3 164 

for HMM parameters evaluated). Our result aligns with a similar finding in Speidel et al.9 that high 165 

mutation penalties combined with low recombination penalties are not well suited for haplotype 166 

inference. After ruling out parameters that require a much longer time to run, we randomly picked one 167 

parameter (recombination penalty of 6 and a mutation penalty of 8) on the plateau of the surface, 168 

averaging across allele frequency bins. We also generated surfaces for different allele frequency bins 169 

and confirmed that the shape of the surfaces remains consistent across allele frequency bins for both 170 

the QForm and SD association methods. 171 

 172 

Methodological improvements to the LOCATER pipeline to account for cryptic confounders 173 
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In our initial trait association experiments we observed deviations in the empirical p-value distributions 174 

from LOCATER, with cases of both mild inflation and mild deflation across the 101 traits analyzed in 175 

this study, despite using standard procedures to correct for population structure using PCA. In 176 

contrast, we did not observe inflation when running SMT on the exact same data, nor did we observe 177 

inflation when running LOCATER on simulated phenotype data. This suggests that genealogy-based 178 

trait association methods are especially sensitive to the effects of cryptic confounders. We believe that 179 

this is due to the fact that there is a much greater degree of correlation between nearby genetic 180 

markers for tree-based tests than for SMT, and that this causes a much larger fraction of markers to 181 

be affected by confounders. Notably, this implies that these confounders are also affecting the SMT 182 

results, just in a less readily detectable way. 183 

 184 

To more precisely calibrate LOCATER results, we took inspiration from the phenotype rank-matching 185 

procedure used in LOCATER. By default, LOCATER normalizes phenotypes by mapping ranks to 186 

simulated Gaussian random variables rather than to fixed quantiles13. This approach avoids the subtle 187 

dependence induced when mapping to fixed quantiles. Under the assumption that the original 188 

residuals are exchangeable, matching to simulated Gaussian random variables indeed yields 189 

independent Gaussian phenotypes, which is required by the SD procedure underlying LOCATER. 190 

 191 

Building on this procedure, we repeated the rank-matching process for the same phenotype several 192 

times, each version of the phenotype vector is a subtly different perturbation of the original phenotype. 193 

We found that when we ran LOCATER across these different perturbations, the amount of inflation 194 

observed via Q-Q plots differed moderately across perturbations. We believe this variation reflects the 195 

fact that, by chance, different perturbations can have stronger or weaker correlations with 196 

confounding factors such as population structure. Thus, the rank-matching procedure allows us to 197 

modulate the correlation between the phenotype and confounding variables such that we can identify 198 
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a rank-matched version that is the least correlated with confounders. We therefore rank matched each 199 

phenotype 100 times and chose the version that showed the least alignment with confounders for later 200 

adjustment (see Methods). For each version of each phenotype, we conducted an association test for 201 

~30,000 evenly spaced variants and selected the version for which the p-value distribution is the 202 

closest to a uniform distribution for both SD and QForm (see Methods). We found that SMT p-values 203 

of all versions are consistently well calibrated, and SD and QForm p-values from different versions will 204 

have substantially different deviations from the theoretical null (Figures S2, S3 and S4, column “Rank 205 

matched chosen”, “Rank matched 2” and “Rank matched 3”). We also found that the rank-matched 206 

phenotype chosen for the association study indeed has the least deviation and eliminated the inflated 207 

body of the QForm p-value distribution. Our study is the first to report genome-wide Q-Q plots for a 208 

genealogy-based association method and demonstrate calibration of that method after rigorously 209 

adjust for unobserved confounding factors. 210 

 211 

We then sought to apply a more general genomic control to the p-values. In short, we fit a line to the 212 

Q-Q plot of LOCATER -log10p of the selected rank-matched phenotype. We adjusted p-values using 213 

the slope and intercept of the fitted line (see Methods). This is similar to traditional genomic control28, 214 

which only fits a slope to the Q-Q plot. By incorporating a non-zero intercept, we can achieve a much 215 

more accurate fit to the tail of our null distribution of -log10p. In order to gain a better intuition for the 216 

role of this intercept, it is helpful to think in terms of a simple application like single-marker testing 217 

where each p-value corresponds to a Z-score. In this setting, fitting a slope via classic genomic 218 

control to the Q-Q plot is equivalent to fitting a scale parameter to the distribution of null Z-scores 219 

while keeping the location of that null distribution fixed at zero. Introducing a non-zero intercept allows 220 

one to fit a null distribution to the Z-scores where the location may also be adjusted. A similar 221 

procedure is described in Chapter 6 of Efron29 and is standard in large-scale testing problems where 222 

the null assumptions are not satisfied (e.g. when there is confounding). In Figures S2, S3 and S4, we 223 
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applied this adjustment procedure to p-value distributions from LOCATER-specific tests, and all 224 

distributions align with the expected distribution much better (Figures S2, S3 and S4, row “SD 225 

adjusted” and “QForm adjusted”). 226 

 227 

GWAS of 101 traits 228 

We then performed an association analysis of 6,795 METSIM individuals with 101 quantitative 229 

metabolic phenotypes (see Table 1 for highlighted associations) using LOCATER. We also analyzed 230 

these traits with SMT as our benchmark. All traits were residualized based on trait-specific covariates 231 

beforehand, exactly as described in our prior exome based study of this same cohort22. After filtering 232 

out indels and variants lacking ancestral allele annotation (see Methods), we tested 18,949,137 233 

autosomal variants. We used the top 10 Finnish-specific principal components as background 234 

covariates for the association test. As mentioned above, during the pre-screening stage we selected 235 

the phenotype vector perturbation that yielded the most calibrated Q-Q plot (see Methods). Post-236 

screening we adjusted the resulting p-values based on the slope and intercept (as described above, 237 

see Methods) in the Q-Q plot to ensure that both SD and QForm sub-tests in LOCATER were well-238 

calibrated. 239 

 240 

Considering that this genome sequencing dataset contains an abundance of rare variants, applying 241 

the canonical genome-wide significance threshold (5 x 10-8), which assumes one million independent 242 

tests, is not appropriate. We used permuted phenotypes to estimate the effective number of 243 

independent tests30,31 (see Methods). Based on the distribution of minimum p-values, we estimated 244 

that the effective number of independent tests for SMT (𝑇()*) is 6,977,438, and for LOCATER 245 

(𝑇-./0*12) is 3,551,616 (α= 0.05). Based on 𝑇()*, the genome-wide significance threshold for SMT 246 

should be 7.17 x 10-9. Note that LOCATER and SMT used the exact same set of variants, but that the 247 

p-values reported by LOCATER are more dependent across loci due to shared local genealogies. For 248 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.04.24316696doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.04.24316696


 

11 
 

a clearer comparison with SMT in visualizations (e.g., Fig 2A), we further standardized the LOCATER 249 

p-value with 250 

𝑝-./0*12	45678698:;<8 = 𝑝-./0*12	68=>45<8 ∗ 𝑇-./0*12/𝑇()* 251 

to make the LOCATER genome-wide Bonferroni threshold match that of SMT (7.17 x 10-9). This does 252 

not change the interpretation of LOCATER results since both the results and the significance cutoff 253 

were rescaled to the same extent. To enable a direct comparison between SMT and LOCATOR, all 254 

LOCATER results reported below are standardized. 255 

 256 

After the screening, we identified loci of interest as genomic regions with one or more variants with 257 

significant p-values by either LOCATER or SMT in any of the 101 traits. To compare LOCATER and 258 

SMT signals at these loci, we defined a common shared association interval by merging the set of 259 

significantly associated variants identified by either method, where the merging includes a 600 kb 260 

flanking region for each variant. For convenience, we used a similar process to merge association 261 

intervals across traits to obtain a nonredundant set of genomic regions, although in this case, we note 262 

that independent signals for different traits may often be lumped together (see Table S2 for the full 263 

set). Altogether, we identified 47 genomic regions with 351 associations across all traits.  264 

 265 

When comparing the most significant signal for LOCATER and SMT at every identified association 266 

(identified as min(𝑝-./0*12	45678698:;<8) < threshold or min(𝑝()*) < threshold), we found that LOCATER 267 

and SMT identified many associations together (327 out of 351, Figure 1D). Many of these are in 268 

canonical regions known to be associated with cardiovascular diseases, such as PCSK9, APOB, LPL, 269 

LIPC, CETP, and the APOE/C1/C4/C2 gene cluster. A small number of associations are significant 270 

only in LOCATER (7 out of 351), and SMT found 17 associations that LOCATER did not (Figure 1B).  271 

 272 
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Notably, in the cases where SMT is more significant than LOCATER (321 out of 351 associations), it is 273 

typically by a very small margin, whereas in the cases where LOCATER is more significant (30 out of 274 

351), it is typically by a relatively substantial margin (Figure 1C). Our interpretation of this result is that 275 

LOCATER has less power than SMT at trait associations resulting from a single causal variant because 276 

of the statistical penalty incurred by attempting to incorporate nearby signals, but that LOCATER 277 

greatly outperforms SMT at loci with multiple causal variants. In total, 5 of the 47 significant loci 278 

(10.6%) show a signal boost from LOCATER, indicating that allelic heterogeneity is fairly common, 279 

even in a relatively small sample of the Finnish population that is known to be depleted of genetic 280 

diversity relative to most other human populations due to historical bottlenecks. 281 

 282 

For the 30 associations with a more significant signal from LOCATER, we inferred the number of 283 

independent causal variants based on the Stable Distillation (SD) and quadratic form (QForm) sub-test 284 

signals from LOCATER (Table S5). These 30 associations reside in 13 distinct genomic regions. After 285 

clumping associations that reside in the same genomic region (with 600 kb flanking regions) and 286 

involve traits that are highly correlated to each other (r2>0.8) in our dataset, there were 21 287 

nonredundant associations. Of these, the LOCATER signal boost came from SD in 15 cases, and from 288 

QForm in 6 cases.  289 

 290 

Of the 15 nonredundant associations that were boosted by SD, 7 of them were boosted by only one 291 

sprig (independent predictors, defined as the smallest possible inferred clades), while the other 8 of 292 

them had 2-12 significant sprigs contributing to the signal. All significant sprigs represent distinct 293 

haplotype groups in the local ancestry trees. As a result, the total number of inferred causal variants 294 

for these 15 associations ranges from 2 to 13. We also report the variants that are completely linked 295 

with significant sprigs in Table S4. For the six associations boosted by QForm, we used iterative 296 

conditional analysis to infer the number of causal variants. One association became insignificant after 297 
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accounting for the lead marker, and signals in 5 other associations were diminished after multiple (2-5) 298 

rounds of conditional analysis, suggesting that the total number of inferred causal variants for these 299 

six associations ranges from 1-5. 300 

 301 

Rare variant association methods such as STAAR32 also seek to assess the combined effects of 302 

multiple causal variants at a locus, albeit using a very different approach than LOCATER. To test 303 

whether STAAR could potentially detect the same signals as LOCATER, we ran STAAR (without 304 

variant annotations) on the 30 associations mentioned above for which LOCATER had a more 305 

significant p-value than SMT. Notably, STAAR did not detect any of these 30 associations at genome-306 

wide significance. It is important to note that there are many different ways to run STAAR based on 307 

window size, variant inclusion, variant annotation and weighting criteria, and so we cannot discount 308 

the possibility that STAAR might be able to detect some of these signals. Nonetheless, these results 309 

suggest that the trait association signals detected by LOCATER are not easily captured by current rare 310 

variant association methods such as STAAR. 311 

 312 

Below we discuss some of the trait associations detected by LOCATER. We highlight five known 313 

association signals that LOCATER detected but SMT did not, three cases where both LOCATER and 314 

SMT detected the association but LOCATER provided a substantial boost in signal strength, and two 315 

potentially novel association signals detected solely by LOCATER.  316 

 317 

LOCATER recovers known associations at the LIPG locus 318 

LOCATER recovered several known quantitative trait loci that would otherwise have been missed by 319 

SMT in our present study (see Figure 1B), an example being the LIPG locus. LIPG encodes a well-320 

known member of the triglyceride lipase family of proteins and is primarily involved in the metabolism 321 

of HDL33–36. LOCATER recovered genome-wide significant associations for triglycerides in medium 322 
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HDL (𝑝=1.68 x 10-9) and apolipoprotein A-I (𝑝=6.51 x 10-9), the major protein component of HDL 323 

particles. These two trait associations are likely to be independent given that the lead markers are in 324 

low LD (r2 of 7.29 x 10-4) and the two traits are not significantly correlated (Pearson correlation of 325 

0.132), which is consistent with prior work21. Neither of these associations was captured by SMT at 326 

genome-wide significance. The smallest SMT p-value for triglycerides in medium HDL within a 1.2 Mb 327 

window of LIPG was 4.71x10-7, and that for apolipoprotein A-I was 2.15x10-8 (Table 1). The lead 328 

variant for apolipoprotein A-I was also found in a prior study of Finns (𝑝=2 x 10-10) using many of the 329 

same METSIM samples analyzed here21, and the lead variant for triglycerides in medium HDL was 330 

found in a large study of 233 metabolic traits in 33 cohorts20. 331 

 332 

We first discuss the LIPG association with triglycerides in medium HDL, where LOCATER detected a 333 

significant signal but SMT did not (Figure 2A). LOCATER's improved power over SMT in this case 334 

comes from the Stable Distillation (SD) sub-test (Figure S5C, D), which indicates contributions from 335 

multiple ultra-rare causal variants. We confirmed that the p-value distribution after adjustment aligns 336 

very well with the expected distribution, and the QQ-plot-based adjustment required to control 337 

confounding was minimal (Figure S5A, B). 338 

 339 

The LOCATER SD sub-test has the advantage that p-values from all predictors (sprigs, defined as the 340 

smallest possible inferred clades) are independent under the null hypothesis. A Q-Q plot of all -log10 341 

sprig p-values calculated at the lead marker shows that the top 12 sprigs significantly deviated from 342 

the expected distribution and thus contributed to the SD signal (Figure 2B). To highlight the coalescent 343 

path of significant haplotypes, we plotted a dendrogram of haplotypes based on hierarchical 344 

clustering of the similarity matrix at the lead marker, which showed that different significant sprigs 345 

were present within distinct clades in the local coalescent tree, and that haplotypes in the same sprig 346 

were very similar. Haplotypes in the same sprig have a very recent coalescence, and haplotypes from 347 
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different sprigs have a much more distant coalescence (Figure 2D). This suggests that the SD sub-test 348 

captured signals from multiple distinct haplotype groups rather than multiple signals driven by a single 349 

variant. 350 

 351 

Notably, SD is able to combine signals from individuals at both extremes of the phenotype 352 

distribution, which correspond to alleles with opposing effects. As expected, all samples within 353 

significant sprigs have phenotype values that are far from the mean (Figure 2C). Individuals within 354 

each sprig resided on the same side of the distribution, but different sprigs could reside on different 355 

sides.  356 

 357 

We next sought to visualize variants influencing the SD signal at this locus using residual analysis. The 358 

first phase involved conducting SMT based on a phenotype that projected out the lead marker 359 

genotype vector, removing its effect on the signal. We defined the p-values resulting from this 360 

experiment as 𝑝(. The second phase involved performing SMT based on the residualized phenotype 361 

orthogonal against the lead marker SMT and SD signal, yielding a second set of p-values defined as 362 

𝑝+. The difference between 𝑝( and 𝑝+ shows the contribution of genomic variants to the SD signal. We 363 

plotted -log10𝑝( and -log10𝑝+ on a Manhattan plot (Figure S5E) and a scatter plot (Figure S5F), 364 

highlighting variants where 𝑝( < 1 x 10-3 and 𝑝+ > 10 * 𝑝(. This experiment shows that SD captured 365 

signals from many variants scattered in an extensive genomic region (> 10 Mb), supporting the 366 

success of our ancestry inference model tuning procedure. 367 

 368 

By plotting principal components (PCs), we confirmed that SD-significant individuals do not form a 369 

tight cluster in any specific area of the plot, so this association signal was not obviously confounded 370 

by population structure (Figure S5G). 371 

 372 
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We now turn to the second LIPG association, apolipoprotein A-I. LIPG is known to regulate serum 373 

apolipoprotein A-I33,37. A previous study in METSIM21 showed that our lead marker is associated with 374 

five HDL subclass traits and apolipoprotein A-I (Figure 3A), and in this study, LOCATER recovered the 375 

signal in apolipoprotein A-I, but SMT missed it.  376 

 377 

LOCATER gained its advantage over SMT from SD (Figure S6A). The Q-Q inflation plot of sprig -log10 378 

p-values showed that 6 sprigs contributed to the signal (Figure S6B). Similar to the first LIPG 379 

association result discussed above, haplotypes from the same sprig have a very recent coalescence 380 

and those from different sprigs have a more distant coalescence (Figure S6C), and samples within 381 

outlying sprigs had phenotypes that were far away from the median and on different sides of the 382 

distribution (Figure 3B). 383 

 384 

In summary, LOCATER was able to discover two independent trait associations at LIPG based on the 385 

presence of allelic heterogeneity, where both trait associations were missed by SMT. In addition to 386 

these two examples at LIPG, three additional trait associations at other known loci were also detected 387 

by LOCATER but not SMT. The association with HDL2 cholesterol on chr11 (Figure S13) and the 388 

association of monounsaturated fatty acids (MUFA) on chr7 (Figure S9) were also identified based on 389 

SD signals and also showed consistent phenotype values across relevant individuals. Both 390 

associations were boosted by only one sprig, and phenotype values of individuals assigned to 391 

significant sprigs are all far from the mean of the corresponding phenotype distribution. There was 392 

also an association with 'large VLDL particle concentration' on chromosome 7 (Figure S11) that was 393 

boosted by QForm; however, this association is somewhat less confident than others given that only 394 

one variant crossed the significance threshold and that a substantial post-hoc adjustment for 395 

confounding was required to calibrate the corresponding QQ-plot. .   396 

 397 
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A potentially new association on chr11 398 

LOCATER found an association of 'triglycerides in medium VLDL' on chromosome 11, while SMT did 399 

not (Figure 4A), and the GWAS catalog38 did not report any known association with correlated traits. 400 

LOCATER was much more significant than SMT due to the SD sub-test, implying a contribution from 401 

ultra-rare haplotypes (Figure S7C). The SD signal was distributed evenly across the entire ~1 Mb locus 402 

(Figure 4B). Among all sprigs called at the lead marker position, the top five sprigs significantly 403 

deviated from the expected distribution (Figure 4C). The phenotype distribution of individuals in 404 

significant sprigs showed that they are outliers, and that trait outliers are found at both extremes of the 405 

distribution (Figure 4D). The dendrogram from hierarchical clustering of the local similarity matrix, with 406 

highlighted coalescent paths for significant haplotypes, showed that the signal was not coming from a 407 

larger clade but rather from multiple distinct small groups of haplotypes (Figure 4E). These results 408 

suggest that LOCATER is combining association signals from 5 rare haplotype groups with distinct 409 

genealogical histories, while these signals were not detectable by standard SMT.  410 

 411 

We performed residual analyses to investigate the contribution of genomic variants to the SD signal 412 

and noticed many variants with drastically different 𝑝( and 𝑝+ (i.e., substantial contribution to the SD 413 

signal). These variants extend across a mega-base long genomic distance, highlighting LOCATER’s 414 

ability to merge sub-significant signals from a large genomic region.   415 

 416 

In addition, we detected a second potentially novel association with HDL3 cholesterol on chr21 (Figure 417 

S14). This association was attributable to SD combining signals from a single sprig. However, in this 418 

case, only one variant is significant, and even though the lead marker is genotyped in gnomAD, it 419 

resides in a 305bp recent segmental duplication within which variant calling is likely to be prone to 420 

artifacts, making this result less confident than others presented here.  421 

 422 
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LOCATER boosted a classic association at the apolipoprotein gene cluster 423 

LOCATER recovered a known association for remnant cholesterol at the well studied APOE/C1/C4/C2 424 

gene cluster on chromosome 1920,39. This same locus is associated with various other traits that are 425 

correlated with remnant cholesterol (Table S2). Although SMT also achieved genome-wide 426 

significance for remnant cholesterol, LOCATER’s advantage over SMT implies that there are additional 427 

signals from other haplotypes (Figure 5A). 428 

 429 

In contrast to the other examples outlined above, LOCATER’s advantage over SMT in this case came 430 

from QForm (Figure 5B, Figure S8C), indicating that the causal haplotypes are likely to be more 431 

common (i.e., not ultra-rare). Unlike the SD subtest, QForm does not inherently provide direct insight 432 

into the number of distinct haplotypes and how they relate to each other in the genealogy; however, 433 

using multiple rounds of conditional analysis with SMT, we confirmed that there are at least four 434 

groups of causal variants. We iteratively conditioned on the genotype vector of lead markers, and 435 

observed that a significant association signal (𝑝 < 3.52 x 10-5)  persisted through three rounds of 436 

conditional analyses (Figure 5C, D). We found that the variants used as covariates in the conditional 437 

analyses are not in LD with each other, and one of them (chr19-44908822-C-T) is the most significant 438 

known marker associated with remnant cholesterol (Figure 5D, black arrow). These results show that 439 

LOCATER effectively combined signals from four distinct causal haplotypes, resulting in a substantial 440 

boost in power. 441 

 442 

There are also two additional examples of known loci found by both LOCATER and SMT, where 443 

LOCATER has a more significant p-value (implying the presence of multiple causal variants): the 444 

association with 'triglycerides in small HDL' on chromosome 20 (Figure S10) and the association of 445 

triglycerides in VLDL on chromosome 7 (Figure S12). In both of these cases the power boost was 446 

driven by the SD sub-test.  447 
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 448 

DISCUSSION 449 

 450 

We have used our new genealogy-based trait association method, LOCATER, to perform a genome-451 

wide screen in a cohort of 6,795 Finnish individuals with deep cardiometabolic trait measurements and 452 

whole-genome sequencing data. In total we identified 30 associations at 13 known GWAS loci at 453 

which LOCATER was genome-wide significant and provided a clear power boost over SMT, 7 454 

associations of which (at 5 loci) were not genome-wide significant by SMT and would have been 455 

missed. LOCATER also identified two novel association signals, one of which is fairly compelling 456 

based on the underlying haplotype structure. At each locus, dissection of the association signals and 457 

underlying haplotype structure revealed evidence for allelic heterogeneity in the form of multiple 458 

independent association signals present in distinct portions of the local ancestry tree. Moreover, in the 459 

process of optimizing LOCATER’s performance on real world genomic data, we made several key 460 

methodological improvements, including a novel approach for tuning ancestry inference parameters 461 

for trait association and a rigorous approach to account for the effects of cryptic confounders. 462 

 463 

Genealogy based trait association has been a topic of interest for nearly two decades. Seminal early 464 

work established its potential value using theory, simulations, and single-locus analysis5,6, yet the 465 

practical advantages of these methods are only now becoming accessible due to recent advances in 466 

scalable tree inference, “clade association” methods capable of testing unobserved variants inferred 467 

by reference-free imputation, and “global tree association” methods capable of combining association 468 

signals across multiple causal variants12,13,16. Our work makes several key contributions that promise to 469 

push the field forward. In particular, our genome-wide analysis of 101 traits across 6,795 individuals 470 

greatly exceeds the scale and statistical power of the two prior efforts8,12 that applied global tree 471 

association to human data, both of which focused on smaller cohorts, a single trait, and a subset of 472 
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the genome – a single locus in one case, and two chromosomes in the other – and failed to detect any 473 

trait associations at genome-wide significance. Two recent preprints14,15 from the same group 474 

proposed a genome-wide ancestral recombination graph inference engine and performed a gene-475 

based association study with multiple traits in the UK Biobank. This method is promising in terms of 476 

improving power for gene-based testing; however, it remains unclear whether the approach is well 477 

calibrated on real-world data with population structure, and whether it can be corrected for cryptic 478 

confounders. To our knowledge, ours is the first genome-wide study to use global tree association, 479 

the first to use Stable Distillation, and the first to identify genome-wide significant trait associations 480 

with rigorous empirical correction for cryptic confounders. In the process, we encountered and 481 

overcame several key methodological obstacles related to parameter tuning and statistical calibration 482 

that have not previously been examined at this level of detail. These lessons are applicable to any 483 

haplotype association method, not just LOCATER, and thus this work may serve as a roadmap for 484 

future efforts. More specifically, this work provides a detailed framework for how to perform genome-485 

wide screens using LOCATER, the only software of which we are aware that is capable of genome-486 

wide global tree association in large cohorts. 487 

  488 

Our work also demonstrates that genealogy based methods such as LOCATER show considerable 489 

promise for increasing the power of genetic association studies. LOCATER’s ability to combine 490 

multiple signals improved power over SMT at 8.5% of genome-wide significant associations and for 491 

10.6% of loci, and the difference in p-value exceeded an order of magnitude difference in 7 of these 492 

associations at 5 loci. The fact that such notable power gains are observed in the Finnish population – 493 

one of the least diverse human populations studied to date – suggests that our results are likely to be 494 

an underestimate of the performance improvements possible in more diverse populations that harbor 495 

more causal alleles per locus. LOCATER may be especially valuable for multi-ethnic studies, where 496 
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allelic heterogeneity is greatest, and where standard association methods have shown poor 497 

performance.  498 

 499 

Notably, few of the 30 association signals for which LOCATER provided a power boost could have 500 

been captured by other existing methods. None of these signals were captured by STAAR using the 501 

window-based screening approach that has been employed previously for association studies, 502 

indicating that genealogy-based methods provide unique value. Moreover, although two recently 503 

developed methods12,14,15 have some similarities with LOCATER, they almost certainly would not have 504 

been able to detect most of the 30 associations reported here. LOCATER employs two distinct 505 

statistical tests, QForm and Stable Distillation (SD)16, of which only the former corresponds to the 506 

testing employed by the other two methods12,14,15. That test (QForm) contributed minimal benefit above 507 

SMT in the analyses presented here, and in simulated data13; most of the power gains come from the 508 

unique ability of SD to efficiently combine association signals across many clades. This suggests that 509 

LOCATER’s use of the recently developed SD test makes it uniquely powerful for haplotype 510 

association. Despite these promising results, global tree association remains a difficult statistical 511 

problem, and we expect that future work in this area will continue to yield significant power 512 

improvements.  513 

 514 

Tree-based trait association also presents unique challenges relative to SMT and gene-based testing.  515 

Perhaps the most difficult aspect of this study was the detailed work required to optimize haplotype 516 

inference and to control for cryptic confounders, both of which are important practical considerations 517 

for future studies. First, it is well known that the performance of the LS model HMMs is sensitive to the 518 

mutation and recombination penalty parameters, and prior studies have used different approaches for 519 

selecting them. We developed a novel tuning approach that optimizes regional trait association power 520 

at a distance of 0.05 cM rather than local variant imputation as in Relate9, and we explored a broad 521 
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range of potential parameters to optimize haplotype inference for this specific population and dataset. 522 

Optimizing for trait association power rather than imputation ensures that the resulting haplotype 523 

representations used carry long-range information required to combine independent signals at loci 524 

with allelic heterogeneity. 525 

 526 

Second, we found that genealogy-based methods such as LOCATER are extremely sensitive to 527 

cryptic confounders, much more so than standard SMT, and that special measures are required to 528 

control for these effects. We studied this issue in detail and devised two new approaches to control 529 

for type I error: permuted rank matching of phenotype data to simulated Gaussian random variables to 530 

produce independent Gaussian phenotypes with minimal confounding, and a more general type of 531 

genomic control that fits both a slope and intercept. In combination, these measures led to a well 532 

calibrated analysis in our study and are likely to be applicable to future genealogy based screens as 533 

well. Interestingly, the confounding effect of cryptic confounders was only apparent in our LOCATER 534 

analysis, whereas SMT appeared to be well calibrated after standard PCA-based measures. We 535 

hypothesize that LOCATER is more sensitive to confounders than SMT because of the high correlation 536 

between proximal inferred genealogies along the genome. For intuition, consider the simple case 537 

where there is a small sub-population within a dataset that has some environmental exposure that 538 

affects the phenotype of interest. There will be variants that tag that sub-population throughout the 539 

genome. Every local ancestral tree inferred near those confounded variants will have a clade marking 540 

that sub-population and thus have inflated test statistics. Thus, any potential confounders will affect 541 

LOCATER at many more markers than SMT, making the resulting inflation obvious in Q-Q plots. 542 

Importantly, these effects are expected to be equally problematic for SMT in terms of false positives, if 543 

more difficult to discern; thus, a SMT study may appear to be well calibrated even while it has false 544 

positives, especially in rare variants, due to latent sub-populations or other unobserved 545 

confounders40,41.  546 
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 547 

Although there is more work to be done before these methods are mature, the work presented here  – 548 

in combination with our prior simulation based results13 and recent work from others12,14,15 – suggests 549 

that genealogy-based trait association methods such as LOCATER are finally ready to fulfill their long-550 

promised potential as practical tools for genome-wide association studies.  551 

 552 

METHODS 553 

 554 

The METSIM study 555 

METSIM is a single-site study investigating cardiometabolic disorders and related traits in 10,197 men 556 

randomly selected from the population register of Kuopio, Eastern Finland, aged 45 to 73 years at 557 

initial examination from 2005 to 201042. All participants provided informed consent. The phenotype 558 

data used for the work described here was adapted from Locke et al.22, in which the authors 559 

accounted for different factors (including trait specific background covariates) during linear regressing 560 

raw phenotypes, and used rank-based inverse normal transformation.  561 

 562 

Whole-genome sequencing, data processing, and variant calling 563 

DNA samples were extracted from blood. We constructed DNA libraries with automated Kapa Hyper 564 

PCR free, automated TruSeq PCR free, Kapa Hyper PCR free, or TruSeq PCR free kit, with target 565 

insert size varying from 260 to 475. The libraries were sequenced with Illumina HiSeq 2000, 2500, X10, 566 

or NovaSeq 6000, generating 2 x 151-bp paired-end sequencing data.  567 

 568 

We performed alignment and data processing using the “functional equivalence” pipeline43. Briefly, we 569 

aligned reads to the GRCh38 human reference genome using bwa-mem (v.0.7.15) and used Picard 570 

MarkDuplicates (v.2.4.1; http://broadinstitute.github.io/picard) to remove duplicate reads. We excluded 571 
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samples that had estimated contamination >5% or that were likely to represent sample swaps 572 

(verifyBamID v.1.1.3). We also required a discordant rate of <5%, haploid coverage ≥19.5X, inter-573 

chromosomal rate of <5%, and first-of-pair mismatch rate of <5%. 574 

 575 

We performed variant calling with HaplotypeCaller in GATK (v.3.5) and concatenated the output into 576 

full single sample GVCFs (Picard MergeVcfs, v2.4.1). Since standard joint genotyping with GATK 577 

GenotypeGVCFs function could not scale to our CCDG callset, we used ReblockGVCFs (GATK 578 

v.4.2.2.0) to decrease GVCF file sizes for future joint analysis in Hail. We used the ValidateVariants 579 

function to ensure the quality of the reblocking process. We then used the VariantDatasetCombiner 580 

function in Hail (v.0.2.78) to combine GVCFs from each sample into multi-sample VariantDataset (VDS) 581 

files before running GnarlyGenotyper (unpublished version from Docker image gcr.io/broad-dsde-582 

methods/gnarly_genotyper:hail_ukbb_300K, image hash ID: 7cc8cfa6e9af; created April 2020; 583 

received August 2021) for joint genotyping and VQSR to annotate variant quality. Finally, we converted 584 

VDS files into MatrixTable (MT) files (Hail v.0.2.97) and decomposed multi-allelic variants into bi-allelic 585 

variants.  586 

 587 

To QC the variant callset, we excluded samples that had a low het/hom ratio (<5 MADs less than the 588 

median), low sequencing depth (number of bases with depth >10 is <20 MADs less than the median), 589 

or excessive number of singleton variants (>20 MADs more than the median), where each of these 590 

criteria was applied separately to each self-reported ancestry group. We also removed samples with 591 

fewer than 580,000 insertions or deletions in joint variant calling, genetic-phenotypic sex mismatches, 592 

withdrawal of consent, sample swaps, or inheritance inconsistencies and other sample identity issues. 593 

The maximal independent set of these samples was calculated in Hail using 594 

`hl.maximal_independent_set` and individuals up to second-degree related were removed. For variant 595 
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level QC, we flagged genotype calls with genotype quality (GQ) < 20, depth (DP) < 10, and 596 

heterozygous calls with allele balance (AB) ≤ 0.2 or ≥ 0.8 as low quality, and filtered out variants that 597 

had AS_VQSLOD < 0 or that had a high proportion (>95%) of missing or low quality genotypes.  598 

 599 

Phasing and variant annotation 600 

We performed a more stringent variant quality control for phasing. After exporting Hail MT files to 601 

VCFs (Hail 0.2.95), we selected PASS and non-singleton variants and filtered out sites with high quality 602 

genotype call rate < 90% or Hardy-Weinberg 𝑝 < 10-7 (one-sided p-value for excess heterozygotes). 603 

METSIM samples were phased with other WashU CCDG samples without a reference panel with 604 

Eagle2 (v.2.4.1). Due to memory restraints, we divided chromosomes into 20 Mb chunks with 2 Mb 605 

overlaps on both ends. Phasing was done with default options except for a bigger `Kpbwt` value (200k) 606 

for better phasing accuracy. Missing genotypes were imputed during phasing. 607 

 608 

 609 

Ancestral allele encoding 610 

The Speidel version of the LS model9 assumes the ancestral allele is known for all variants and uses 611 

that information in its ancestry inference. For this study, we used ancestral allele calls obtained via a 612 

10-way EPO alignment of primates from Ensembl v106 44. With `bcftools`, we updated the REF and 613 

ALT allele and the genotype fields in VCF files to make the REF allele the ancestral allele. Encoding 614 

VCFs with the ancestral allele in large-scale data requires ancestral allele calls in FASTA format. 615 

Explicitly, we downloaded the human ancestral genome FASTA from 10-way EPO alignment of 616 

primates from Ensembl v106 available at https://ftp.ensembl.org/pub/release-617 

106/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz created on March 19, 2022. In the 618 

FASTA file, lowercase indicated lower quality. For simplicity, all lowercase were converted to 619 
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uppercase. Since the conversion works best when multiallelic variants are merged, we merged them 620 

with `bcftools norm -m +any` (bcftools v1.9). We then used `bcftools norm --check-ref s --fasta-ref 621 

{fasta_file} ` (bcftools v1.9) to edit the REF allele in VCF files to be ancestral allele, which automatically 622 

updated the genotype field. The files also went through `bcftools +fill-tags` (bcftools v1.16) to make 623 

sure the AC tag of the INFO column in VCF files is correct. Finally, we split multiallelic sites into 624 

biallelic variants with `bcftools norm -m -any` (bcftools v1.16).  625 

 626 

The LOCATER pipeline 627 

We performed ancestry-based association testing using the LOCATER pipeline, which is described in 628 

detail elsewhere, including methodological details and an in-depth evaluation of simulated data13. The 629 

detailed description of the real data pipeline of this study is described here: https://github.com/Xinxin-630 

Wang-0128/LOCATER_real_data_vignette. Briefly, the first step is to run local ancestry inference at 631 

each genetic marker included in the study. For this we used the newest version (v2) of our local 632 

ancestry inference engine, kalis11, which is an optimized implementation of the Speidel version of the 633 

LS model9. Notably, unlike other LS model implementations, kalis v2 uses an optimal checkpointing 634 

algorithm which allows it to be run on arbitrarily large sequences (e.g., whole chromosomes). Here, in 635 

the interests of computational efficiency, we only performed local ancestry inference on genomic 636 

segments that contained one or more single markers with a promising p-value (P < 10-3 in this study). 637 

In total, this included 5.7% of the genome. This step produces an N x N matrix (where N is the number 638 

of haplotypes; 13,590 in this case) of genomic distances at each genetic marker.  639 

 640 

The second step is to identify small clades, which we refer to as “sprigs”. LOCATER includes a sprig 641 

calling algorithm that uses a multithreaded partial sorting algorithm to cluster the genomic distances 642 

into level sets separately for each haplotype, followed by a greedy clique finding procedure to rapidly 643 

call sprigs.  644 
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 645 

Then, at each genetic marker, LOCATER performs three types of association tests: (1) a standard SMT 646 

to measure the contribution of that specific marker; (2) Stable Distillation (SD) to measure the 647 

contribution of the inferred small clades; and (3) a quadratic-form based test to measure the 648 

contribution of remaining ancestral relationships present at deeper portions of the tree13. Steps 2 and 649 

3 use a residualized phenotype vector from the prior step. This, combined with the independence 650 

guarantees of SD, ensures that the resulting three p-values at a given site are mutually independent 651 

under the null hypothesis. We then combine the three p-values using an adapted version of Fisher's 652 

method that we call Maximizing over Subsets of Summed Exponentials (MSSE)13.  653 

 654 

Rank matching and selection 655 

The SD procedure used in LOCATER requires that all phenotypes have a Gaussian distribution. As we 656 

show in Figures S2, S3 and S4, since the quadratic form testing procedure is downstream of SD, 657 

violating this assumption can affect the null distribution of both SD and QForm. We ensured the 658 

Gaussianity of our phenotype vector by rank-matching our phenotypes to a vector of simulated 659 

independent Gaussian random variables.  660 

 661 

During preliminary analyses, we repeated this rank-matching process for the same phenotype several 662 

times, yielding a set of vectors, each a subtly different perturbation of the original phenotype. When 663 

we ran LOCATER across these different perturbations, the amount of inflation observed via the Q-Q 664 

plot of genome-wide LOCATER p-values differed moderately across perturbations (see examples in 665 

Figures S2, S3, and S4). We believe this variation reflects the fact that, by chance, different 666 

perturbations can have stronger or weaker correlations with confounding processes such as 667 

population structure. Note that genome-wide SMT p-values are consistently well-calibrated for all 668 

perturbations; thus, no adjustments were needed for SMT. Based on this observation, we simulated 669 
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100 perturbations of each phenotype and selected the perturbation that minimized the deviation from 670 

the expected tail distribution under the null hypothesis. Explicitly, for all perturbations of each 671 

phenotype, we ran LOCATER across evenly spaced variants (~30,000 variants) along the genome, and 672 

after plotting the Q-Q inflation plot for -log10𝑝 of SD and QForm in LOCATER, we fitted a least-squares 673 

line over the 𝑥 ∈ [2,2.5] domain of the resulting Q-Q inflation plot. This corresponds to fitting the tail of 674 

the null distribution based on all p-values in [0.01,0.0032]. We then used the parameters of each least 675 

square line (the slope and intercept) to select the perturbation that was closest to the expected null 676 

distribution. More explicitly, let the slopes of SD and QForm Q-Q plots be  𝑚(+and 𝑚,, while intercepts 677 

are 𝑏(+ and 𝑏,, respectively. First, we selected all perturbations satisfying the following boolean 678 

expression 𝑚(+ ∈ [0.8, 1.1] AND 𝑏(+ ∈ [-0.1, 0.1] AND (( 𝑚, ∈ [0.7, 1.2] AND 𝑏, ∈ [-0.1, 0.1] ) OR (𝑚, ∈ 679 

[0.6, 0.8] AND 𝑏,  ∈ [0, 0.4])). If multiple perturbations met this requirement, the perturbation with the 680 

largest 𝑚𝑖𝑛(𝑚(+ , 𝑚,) was chosen. If no perturbation met this requirement, which happened for 15 of 681 

our 101 phenotypes, the standard rank-based inverse normalized phenotype was used.  682 

After the screening, we adjusted the p-value for each sub-test based on the estimated tail parameters, 683 

𝑚 and 𝑏, via  684 

−𝑙𝑜𝑔2𝑃(+	68=>45<8	4 =
!"#$(?!")–	A!"

B!"
   and   −𝑙𝑜𝑔2𝑃,	68=>45<8	4 =

!"#$C?$D–	A$
B$

. 685 

Since SMT is consistently well-calibrated, no adjustments were applied to SMT p-values. To combine 686 

the resulting SMT, SD, and QForm p-values returned by LOCATER, we used the MSSE method in 687 

Christ et al.13.  688 

 689 

Tuning ancestry inference for trait association  690 
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The LS model at the heart of the ancestry inference we used in this study, kalis, is a hidden Markov 691 

model (HMM) with two parameters that can be interpreted as tolerance for recombination and 692 

mutation, respectively. As we will delineate below, rather than using expectation-maximization or other 693 

more standard tuning objectives to select our recombination and mutation parameters, we chose 694 

parameters to optimize the propagation of proximal association signals along the genome in order to 695 

maximize LOCATER’s power. 696 

 697 

In our tuning procedure, we randomly sampled core genomic regions with at least 15,000 variants, 698 

each with flanking regions of 5,000 variants on both sides. These flanking regions served as “burn-in” 699 

regions to ensure accurate ancestry inference along the full length of the core region. We then 700 

selected a variant in the middle of the core region as our target variant and used kalis to perform 701 

ancestry inference at that site.  702 

 703 

We then selected a causal variant 0.05 (± 0.005) cM away. In LOCATER, as in all GWAS studies, any 704 

association signals driven by variants that are colinear with the background covariates are assumed to 705 

be attributable to confounding processes. Thus, we only chose causal variants that were not colinear 706 

with the background covariates (multiple r2 ≤ 0.02). We then simulated a pseudo-phenotype vector 707 

with a strong effect driven by the causal variant. In order to ensure that the strength of this causal 708 

variant’s signal (in terms of the observed -log10 p-value) would be roughly consistent across 709 

simulations, we increased the strength of the causal variant’s effect as a function of the number of 710 

clades inferred at the target locus: more null clades yield a higher multiple testing burden for the 711 

causal variant to overcome.  712 

Given our pseudo-phenotype vector, we ran LOCATER at our target variant l, yielding two p-values 713 

𝑝(+" and  𝑝,". We assessed how these two p-values captured the signal at the nearby causal variant 714 

using  715 
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−𝑙𝑜𝑔(𝑝(+" 𝑝," )
−𝑙𝑜𝑔(𝑝()*B )

 716 

as our relative efficiency metric. Here 𝑝()*B  is the SMT p-value at the causal variant. 717 

 718 

We calculated this relative efficiency metric for 14 parameter settings (see Table S3) across 144 719 

distinct core regions sampled from our METSIM dataset. Altogether, this procedure allowed us to 720 

select LS HMM parameters to maximize LOCATER’s power in this METSIM study. 721 

 722 

Estimating the effective number of independent tests 723 

Our dataset has a huge number of rare variants, and the canonical 5 x 10-8 threshold for p-value was 724 

based on 1 million independent tests. This effective number of tests was identified in the array 725 

genotyping era, and a couple of studies45,46 argued that this was an overly generous threshold. There 726 

are papers describing methods to calculate the effective number of independent tests30, and they 727 

agreed that the gold standard is the permutation-based method31. Permutation-based methods 728 

permute the phenotype N times and do the association analysis for those permuted phenotypes. Then 729 

the minimum p-value (𝑝B:7) was recorded for all these permuted phenotypes. If we want to control the 730 

type I error rate to be 0.05, the new threshold should be the 95th percentile of the 𝑝B:7 distribution. 731 

Here we used N = 1000 permutations and targeted a type I error rate of 0.0530.  732 

 733 

We simulated 1000 normally distributed quantitative traits, ran SMT first, and used the subset of 734 

variants with 𝑝()* < 10-4.5 for LOCATER association. Based on the 𝑝B:7 distribution, the experiment-735 

wise significance threshold should be 7.17 x 10-9 for 𝑝()* and 1.41 x 10-8 for 𝑝-./0*12 if the type I error 736 

rate is 0.05. To directly compare LOCATER and SMT, the final p-values of LOCATER were 737 

standardized so that its effective number of tests matches with SMT and both tests use the same 738 

threshold 7.17 x 10-9. 739 

 740 
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Association Screening 741 

Since the Speidel version of the LS model requires ancestral allele calls9, we only included SNPs with 742 

ancestral allele calls in the 10-way EPO alignment of primates from Ensembl v106. Indels were ignored 743 

due to their lower quality of phasing and variant calling. After removing monomorphic sites and 744 

singletons, we obtained a final dataset of 18.9 million variants. 745 

 746 

Kinship among individuals was calculated and only unrelated individuals were included. Ethnicity-747 

specific principal component (PC) outliers were also removed. This yielded a final dataset of 101 traits 748 

and 6,795 individuals. Background covariates in this study were the top 10 principal components. 749 

 750 

For computational efficiency, we adopted the following three strategies. First, we divided the whole 751 

genome into 4,587 segments, with ± ~6,000 variants of overlap between segments. Second, while all 752 

of our variants were used for ancestry inference by kalis, we only ran LOCATER on a relatively small 753 

subset of target variants. We skipped variants where the SMT p-values from all phenotypes were 754 

greater than 10-3 while ensuring that the recombination distance between consecutive target variants 755 

was at most 0.1 cM. Third, we avoided any expensive eigendecomposition steps in calculating 𝑝, at 756 

our target loci by using the Satterthwaite approximation to 𝑝,13 in our first round of screening. 757 

 758 

We identified any variant with a LOCATER combined p-value smaller than 7.17 x 10-8 in our first round 759 

of screening as putative variants. We then merged putative variants in all the phenotypes to generate 760 

putative loci (see main text) for follow-up. During association follow-up, we only focused on 10 cM 761 

regions centered around putative loci, which doubly ensured reliable ancestry inference. During 762 

LOCATER testing, we used partial eigendecomposition and Chi-square-based approximation on the 763 

local relatedness matrix to obtain precise 𝑝,.  764 

 765 
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Because of the stochastic nature of the SD procedure, the p-values 𝑝(+ and 𝑝, returned by LOCATER 766 

are a function of the seed of the R environment. Setting the same seed for all segments along the 767 

genome is not recommended, since it will cause additional correlation between variants, which will 768 

cause the p-value distribution to deviate from the expected uniform distribution. Instead, we strongly 769 

suggest setting different seeds for different segments along the genome. However, for reproducibility 770 

or for follow up experiments of the same region or segment, we suggest using the same seed across 771 

experiments for consistent results. 772 

 773 

To assess the novelty of the association results we used the GWAS catalog (April 22nd, 2024 version; 774 

https://www.ebi.ac.uk/gwas/home) 775 

 776 

Rare variant association experiment with STAAR 777 

We applied STAAR with the sliding window method using default parameters. The window size is 2 kb 778 

and the sliding step length is 1 kb. For each window, we included all rare variants with AF < 0.01 and 779 

removed any window with less than two rare variants. We did not apply functional annotation data and 780 

we reported the STAAR-O p-value.  781 

 782 

Hierarchical clustering and visualization of local distance matrices 783 

At loci with significant LOCATER associations driven by SD, we constructed a local tree based on the 784 

local relatedness matrix obtained by kalis in order to understand the relative placement of the sprigs 785 

driving that SD signal. Following the method used in Speidel et al9, we did this using mean-based 786 

hierarchical clustering (UPGMA) implemented in the `fastcluster` R package47. For plotting clarity, 95% 787 

of haplotypes under insignificant sprigs were pruned from the displayed dendrograms.  788 

 789 

Residual analysis to visualize SD signals 790 
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We employed a residual analysis procedure to visualize the association signals that contributed to the 791 

SD signal at a locus. Recall that LOCATER is a three-stage procedure where a phenotype vector is 792 

passed between each step. In order to isolate the signals extracted by SD, we made a local 793 

Manhattan plot regressing the phenotype vector passed to SD (above we refer to the resulting p-value 794 

at a given variant as 𝑝() and overlaid it with a Manhattan plot regressing the phenotype vector returned 795 

by SD (above we refer to the resulting p-value at a given variant as 𝑝+). We highlighted variants where 796 

𝑝( <1 x 10-3 and 𝑝+ > 10 * 𝑝(. 797 
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Figure 1. Schematic of our genealogy-based screening procedure, LOCATER, and summary of screening results. (A) 
Diagram of the experimental design and association testing method. Kalis is an implementation of the Li & Stephens 
model for local ancestry inference. QForm: quadratic form testing. (B) Venn diagram showing the number of 
associations and number of loci (in parentheses) with significant SMT and/or significant LOCATER results. Note that 
a given locus may have distinct associations represented in different parts of the Venn diagram. (C) Distribution of 
max(-log10(PLOCATER standardized)) - max(-log10(PSMT)) for all 351 associations. All associations that are genome-wide 
significant by either SMT or LOCATER are included. (D) Overview of significant associations and highlighted 
associations. The genome-wide significance threshold is 7.17 x 10-9 for SMT and standardized LOCATER. 
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Figure 2. Association of triglycerides in medium HDL at LIPG locus. (A) Local Manhattan plot of the association signal 
for “triglycerides in medium HDL” on chr18:49038347-50253146, including results for single marker test (SMT; blue 
and black), LOCATER (orange) and STAAR (yellow). Note that LOCATER results are only shown for variants with an 
SMT p-value less than 1x10-3, since for computational efficiency only these variants were tested by LOCATER (see 
Methods). SMT results from variants tested by LOCATER are shown in blue, and those from variants not tested by 
LOCATER are shown in black. The black dashed line corresponds to the genome-wide significance threshold for SMT, 
standardized LOCATER, and standardized STAAR. (B) Q-Q inflation plot of -log10(p-values) from all “sprigs” at the 
lead marker chr18:49653146, where “sprigs” are defined as the smallest possible inferred clades. The gray area 
corresponds to the 95% confidence interval, and the red line denotes x=y. (C) Histogram of phenotype values after 
projecting out the genotype vector of the LOCATER lead marker (chr18:49653146), thus removing signal that can be 
accounted for by the SMT sub-test. Connected dots show the phenotype value of individuals assigned to significant 
sprigs. (D) Dendrogram generated from the haplotype-level local distance matrix at the lead marker chr18:49653146. 
The UPGMA method was used for hierarchical clustering. Orange branches highlight the path of all haplotypes in 
significant sprigs shown previously in (C). Labels at the bottom show the sprig assignment. For plotting clarity, 95% of 
haplotypes under insignificant sprigs were pruned.
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Figure 3. Association of apolipoprotein A1 at LIPG 
locus. (A) Local Manhattan plot of the association 
signal for apolipoprotein A1 on 
chr18:49217040-50417040, shown using the exact 
same data types and color scheme as Figure 2A. 
(B) Histogram of phenotype values after projecting 
out the genotype vector of the LOCATER lead 
marker (chr18:49817040), thus removing signal that 
can be accounted for by the SMT sub-test. 
Connected dots show the phenotype value of 
individuals assigned to significant sprigs.
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Figure 4. Association of triglycerides in medium VLDL on chr11. (A) Local Manhattan plot of the association signal 
for “triglycerides in medium VLDL” on chr11:104727888-105927888, shown using the exact same data types and 
color scheme as Figure 2A.(B) Local Manhattan plot of “triglycerides in medium VLDL” at 
chr11:104727888-105927888, showing adjusted -log10(P) for the 3 LOCATER sub-tests. (C) Q-Q inflation plot of 
-log10(p-values) from all “sprigs” at the lead marker chr11:105327888, where “sprigs” are defined as the smallest 
possible inferred clades. The gray area corresponds to the 95% confidence interval, and the red line denotes x=y. (D) 
Histogram of phenotype values after projecting out the genotype vector of the LOCATER lead marker 
(chr11:105327888), thus removing signal that can be accounted for by the SMT sub-test. Connected dots show the 
phenotype value of individuals assigned to significant sprigs. (E) Dendrogram generated from the haplotype-level 
local distance matrix at the lead marker chr11:105327888. The UPGMA method was used for hierarchical clustering. 
Orange branches highlight the path of all haplotypes in significant sprigs shown previously in part (D). Labels at the 
right show the sprig assignment. For plotting clarity, 95% of haplotypes under insignificant sprigs were pruned.
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Figure 5. Association of remnant cholesterol at APOE cluster. (A) Local Manhattan plot of the association signal 
for remnant cholesterol on chr19:44308684-45809149, shown using the exact same data types and color scheme 
as Figure 2A. (B) Local Manhattan plot showing adjusted -log10(P) for the 3 LOCATER sub-tests. (C) LocusZoom 
plot of SMT results. Variants are colored based on their r2 with the SMT lead marker chr19:44922203 (purple 
diamond), where LD is calculated in the studied samples. The black line shows the recombination rate in Finns 
(See Methods). Gene annotations are from GENCODE v45. (D) Zoomed in LocusZoom plots showing the original 
association at top, followed by the results from stepwise conditional analysis. Results were zoomed in based on 
the shaded region in (C). Variants are colored based on their r2 with the SMT lead marker of each experiment 
(purple diamond). Black arrows point to the most significant variant from the GWAS catalog. The black dashed line 
corresponds to the genome-wide significance threshold (7.17 x 10-9) in the top panel, and the conditional analysis 
threshold (3.52 x 10-5) for the rest. 
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Variant ID Mapped Gene Trait 
LOCATER P 

(adjusted) 
LOCATER lead 

marker MAF 
Variant ID of SMT lead 

marker 
SMT P 

SMT lead 
marker 
MAF 

Known hit 
in GWAS 
catalog 

SMT Lead 
marker LD w/ 

GWAS 
catalog 
marker 

LOCATER 
Lead marker 
LD w/ GWAS 

catalog 
marker 

chr7-73440219-C-T  FZD9, BAZ1B MUFA 1.57E-09 0.0956 chr7-73440219-C-T* 2.52E-08 0.0956 Yes 0.701 0.701 

chr7-73482065-A-C BAZ1B 
Triglycerides in 

VLDL 1.64E-11 0.117 chr7-73467477-C-T 1.11E-09 0.117 Yes 0.852 0.854 

chr7-73643687-A-G  VPS37D, MLXIPL 
Concentration of 

large VLDL 
particles 

2.82E-09 0.118 chr7-73641131-A-C 3.40E-08 0.118 
Yes - 

related 
trait 

0.933 0.932 

chr11-61843278-G-A  FADS2 HDL2-C 6.58E-09 0.427 chr11-61798436-T-C 1.65E-08 0.454 
Yes - 

related 
trait 

0.871 0.994 

chr11-105327888-G-C CARD18 Triglycerides in 
medium VLDL 

2.31E-09 0.428 chr11-105331384-A-T 1.05E-05 0.428 No NA NA 

chr18-49653146-G-A  ACAA2, SMUG1P1 
Triglycerides in 
medium HDL 

1.68E-09 0.150 chr18-49642278-G-A 4.71E-07 0.159 Yes 0.864 1 

chr18-49817040-T-A  SNHG22 ApoA1 6.51E-09 0.00411 chr18-49817040-T-A* 2.15E-08 0.00411 Yes 1 1 

chr19-44922203-A-G  APOC1, APOC1P1 Remnant-C 7.53E-11 0.290 chr19-44922203-A-G* 1.40E-09 0.290 Yes 0.0783 0.0783 

chr20-45906012-G-A PLTP 
Triglycerides in 

small HDL 1.80E-11 0.228 chr20-45923216-T-C 3.10E-10 0.180 Yes 1 0.659 

chr21-16318536-C-T MIR99AHG HDL3-C 3.87E-09 0.0904 chr21-16318536-C-T* 1.77E-08 0.0904 No NA NA 

Chromosome positions are based on GRCh38. See Table S1 for trait descriptors, see Table S2 for full results. The 
genome-wide significance threshold is 7.17 x 10-9. To allow for a straightforward comparison, the LOCATER p-value 
was standardized to match the effective number of independent tests for single marker association. 
* denotes the associations that SMT lead marker is the same as LOCATER lead marker. 

Table 1: Summary of highlighted associations 
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