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Abstract

Breast cancer with overexpression of the Human Epidermal Growth Factor Receptor 2 (HER2) accounts for 15-20% of cases and
is associated with poor outcomes. Although trastuzumab-deruxtecan (T-DXd) has traditionally demonstrated survival benefits in
metastatic HER2-positive patients, the DESTINY-Breast04 trial expanded its effectiveness to those with immunohistochemistry
(IHC) scores of 1+, and 2+ with negative in situ hybridisation, a subset of patients that has since been termed “HER2-low”.
Accurate differentiation of HER2 scores has now become crucial. However, visual IHC scoring is labour-intensive and prone
to high interobserver variability. AI has emerged as a promising tool in diagnostic medicine, particularly within histopathology.
This study assesses AI’s ability to identify patients eligible for T-DXd and its performance in accurately classifying HER2 scores.
Electronic searches were conducted in MEDLINE, EMBASE, Scopus, and Web of Science up to May 2024. Eligibility criteria
were limited to studies evaluating the performance of AI compared to pathologists in classifying HER2 utilising IHC slides. Meta-
analysis was performed using the bivariate random-effects model to estimate pooled sensitivity, specificity, concordance, and area
under the curve (AUC). To explore sources of heterogeneity, subgroup analysis and meta-regression were performed. Risk of
bias was assessed using QUADAS-AI tool. We analysed 25 contingency tables across thirteen included publications, showing
excellent AI accuracy in predicting T-DXd eligibility, with a pooled sensitivity of 0.97 [95%CI 0.96-0.98], specificity of 0.82
[95%CI 0.73-0.88], and AUC of 0.98 [95%CI 0.96-0.99]. In the individual scores analysis, AI performed better particularly in
scores 2+ and 3+. Substantial heterogeneity was observed, and meta-regression revealed better performance with deep learning
and patch-based analysis, while performance declined in externally validated and those utilising commercially available algorithms.
Our findings indicate that AI holds promising potential in accurately identifying HER2-low patients and excels in distinguishing
2+ and 3+ scores. Upcoming validation studies should focus on enhancing AI’s precision in the 0-1+ range and improving the
reporting of clinical and pre-analytical data to standardise samples characteristics, ensuring models are more comparable to each
other. This review highlights that deep learning advancements are driving automation, requiring pathologists to adapt and integrate
this technology into their workflow.
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1. Introduction

Breast cancer is the leading cause of cancer among women
worldwide and is expected to result in approximately 1 mil-
lion deaths per year by 2040 [1]. Between 15% and 20% of
cases exhibit overexpression of the Human Epidermal Growth
Factor Receptor 2 (HER2) [2], which is associated to poor clin-
ical outcomes. The HER2 is a transmembrane tyrosine kinase
receptor often found in breast cancer cells, and its activation
promotes cell cycle progression and proliferation [3]. HER2
expression is routinely assessed semi-quantitatively by patholo-
gists using immunohistochemistry (IHC)-stained slides, where
HER2 is categorised based on the intensity and completeness
of membrane staining into negative (scores 0 and 1+), equivo-

cal (score 2+), or positive (score 3+). Equivocal cases undergo
further testing with in situ hybridization (ISH), and are subse-
quently classified as either positive or negative depending on
HER2 amplification status [2].

Historically, the use of antibody-drug conjugates, such as
trastuzumab-deruxtecan (T-DXd), has been recommended for
HER2-positive patients with metastatic disease, corresponding
to those with IHC scores of 3+, or 2+ with gene amplifica-
tion confirmed by ISH. Patients with scores of 0, 1+, or 2+
with negative ISH were typically eligible for clinician’s choice
chemotherapy [4]. However, findings from the DESTINY-
Breast04 (DB-04) [5] trial demonstrated that T-DXd signifi-
cantly improved both progression-free and overall survival in
individuals with low expression of HER2, with the latter partic-
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ularly remarkable in the context of metastatic disease. The eli-
gibility criteria for low HER2 expression in that study required
an IHC score of 1+, or 2+ with negative ISH, in patients with
metastatic breast cancer. This benefit in survival, observed in
a subset of patients categorised as “HER2-low”, a designation
introduced by the DB-04 trial, has prompted the American So-
ciety of Clinical Oncology/College of American Pathologists
(ASCO/CAP) to emphasise the importance of distinguishing
between scores 0 and 1+ [6], while maintaining the 2018 [2]
four-class classification system .

Approximately 60% of HER2-negative metastatic breast can-
cers express low levels of HER2 [5]. Accurate differentiation
between scores 1+/2+/3+ and 0 has become critical, as it in-
fluences clinical decision-making and affects the number of pa-
tients eligible for T-DXd.

Nevertheless, the standard IHC visual scoring of HER2 is
time-consuming, labour-intensive, and subject to high inter-
observer variability [7, 8]. Digital pathology has emerged as
a promising tool in medical diagnostics, aiding in the diagnosis
and grading of cancers such as breast, lung, liver, skin, and pan-
creatic cancers [9]. To address the subjective nature of IHC vi-
sual scoring, artificial intelligence (AI) and deep learning (DL)
have become powerful options for analysing histological speci-
mens, particularly for HER2 scoring [10].

Briefly, the workflow of an AI-based HER2 scoring model
involves pre-processing digitalised whole slide images (WSI)
by fragmenting the images into smaller patches and selecting
a region of interest (ROI) likely to contain relevant neoplastic
tissue. These patches are then split into a learning and testing
subsets to train and evaluate the algorithm’s performance, re-
spectively. An internal validation process is subsequently per-
formed to assess the model’s accuracy using WSIs from the
same training dataset. To assess the algorithm’s reproducibility,
some models undergo external validation, where performance is
tested with an independent external dataset. The final outcome
is the overall HER2 score, which is derived from the scoring
aggregation of each individual patch [10].

To the best of the author’s knowledge, only one meta-
analysis, conducted by Wu et al. [11], has been published on
the use of AI for HER2 scoring in breast cancer. However,
this review included a limited number of studies, leading to
performance metrics with a wide margin of uncertainty. Ad-
ditionally, sources of heterogeneity were not explored, given
the small sample size.

In line with the challenges associated with HER2 scoring and
the advancements in AI, we conducted an updated and clini-
cally focused meta-analysis aimed at: (1) evaluating the perfor-
mance of AI compared to pathologists’ visual scoring in accu-
rately identifying patients eligible for T-DXd based on HER2
IHC score; and (2) assessing the accuracy of AI in classifying
each individual HER2 score.

2. Materials and Methods

2.1. Protocol registration and study design
This systematic review adhered to the Preferred Reporting

Items for Systematic Reviews and Meta-Analysis for Diagnos-

tic Test Accuracy (PRISMA-DTA) guidelines (Table S1) and
was registered in the International Prospective Register of Sys-
tematic Reviews (PROSPERO) under the identification number
CRD42024540664.

2.2. Eligibility criteria

Inclusion in this meta-analysis was limited to studies that
fulfilled all of the following criteria: (1) studies that utilised
primary or metastatic breast cancer tissues in the form of dig-
italised WSIs, from female patients at any age, irrespective of
tumour stage, histological subtype and hormone receptor status,
employing conventional 3,3’-diaminobenzidine (DAB) stain-
ing; (2) studies evaluating the performance of AI algorithms as
an index test; (3) studies comparing these algorithms to pathol-
ogists’ visual scoring as the reference standard; and (4) studies
that reported AI performance metrics. Only original research
articles published in English in peer-reviewed journals were in-
cluded. No limitations were imposed on the publication date.

Studies were excluded if they lacked sufficient data to build
a 2 x 2 contingency table of true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN) across each
HER2 category (0, 1+, 2+, and 3+). Additionally, studies that
combined 0/1+ scores were excluded, given the clinical signifi-
cance of this distinction for the purposes of this review. Studies
conducted using animal tissues, those employing haematoxylin
and eosin (H&E) staining, multi-omics approaches, as well as
reviews, letters, preprints, and conference abstracts, were ex-
cluded.

2.3. Literature search

A comprehensive literature search was conducted in MED-
LINE, EMBASE, Scopus, and Web of Science from inception
up to 3 May 2024 using the following terms: (”artificial in-
telligence” OR ”machine learning” OR ”deep learning” OR
”convolutional neural networks”) AND ”breast cancer” AND
”HER2”. We also examined the reference lists of studies to
identify relevant articles. Two independent authors screened ti-
tles, abstracts, and full texts for eligibility. Disagreements were
resolved through consensus with a senior pathologist.

2.4. Data extraction

The following data were collected using a pre-designed
spreadsheet: study characteristics (author, year, and country),
participant details (tumour features, sample size, data unit, and
dataset), index test (algorithm specifications, deep learning,
transfer learning, autonomy, external validation, type of internal
validation, and the use of commercially available (CA) algo-
rithms), reference standard (manual scoring and classification
system), and 2 x 2 contingency tables for TP, FP, FN, and TN
for each 0, 1+, 2+, and 3+ score. Supplementary data were
requested from corresponding authors when necessary. Perfor-
mance metrics were calculated using three distinct data units:
cases, WSIs, and patches, which varied across the included
studies. A second independent reviewer cross-checked all the
collected data. If studies provided multiple contingency tables
representing various outcomes for a single AI algorithm, only
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the data reflecting the best performance were collected. In cases
where studies presented results evaluating different types of au-
tomation (assisted vs. automated) or different data units for the
same algorithm, these tables were treated as independent.

2.5. Outcomes

The primary outcome was the AI pooled sensitivity, speci-
ficity, area under the curve (AUC), and concordance in distin-
guishing HER2 scores of 1+/2+/3+ from 0. The cut-off for pos-
itivity was defined as a score of at least 1+, since the decision
to initiate T-DXd treatment is based on this threshold. The sec-
ondary outcome was to estimate the same pooled performance
metrics for each individual score of 1+, 2+, and 3+ compared
to their counterparts.

Each study contributed with at least four contingency tables,
corresponding to the performance of each individual score. Im-
portantly, the term “positivity,” as used here, applies solely to
defining the cut-off for the meta-analysis and is not related to
the histological classification of HER2.

2.6. Statistical analysis

Meta-analysis was conducted using the bivariate random-
effects model to calculate the pooled sensitivity and specificity,
as significant heterogeneity was expected. Summary receiver
operating characteristics (SROC) curves with 95% confidence
interval (CI) and 95% prediction region (PR) were employed
for visual comparisons and AUC estimation. Heterogeneity
was evaluated using the Higgins inconsistency index statis-
tic (I2), with 50% defined as moderate and ≥75% defined as
high. Pooled concordance was calculated using a random ef-
fects meta-analysis of proportions, following the DerSimonian

and Laird method. Potential sources of heterogeneity were ex-
plored through subgroup analysis and meta-regression, utilising
covariates that were most likely to contribute to heterogene-
ity. A ”leave-one-out” sensitivity analysis was performed by
sequentially excluding one study at a time. Publication bias
was evaluated using Deek’s funnel plot asymmetry test. Statis-
tical analysis was conducted using STATA (version 17.0, Stata-
Corp LLC, Texas, USA) with midas, metandi and metaprop

modules. To assess the threshold effect, the Spearman corre-
lation coefficient was calculated using Meta-DiSc (version 1.4,
Ramón y Cajal Hospital, Madrid, Spain). A p < 0.05 was con-
sidered significant for the meta-analysis, meta-regression, and
threshold effect evaluation. For the assessment of publication
bias, a significance cut-off of p < 0.10 was applied.

2.7. Quality assessment

The risk of bias and applicability concerns in the included
articles were meticulously evaluated independently by two au-
thors using the adapted Quality Assessment Tool for Artifi-
cial Intelligence-Centered Diagnostic Test Accuracy Studies
(QUADAS-AI) [12] across four domains: patient selection, in-
dex test, reference standard, and flow and timing. The detailed
questionnaire is provided in Table S2.

3. Results

3.1. Study selection and characteristics

Our search yielded a total of 1,581 records published from
inception to April 2024, which were reduced to 751 after the
removal of 830 duplicates. One relevant study [19] was found
through article’s bibliography search. The remaining records

1,581 records identified from:

MEDLINE (N = 315)

EMBASE (N = 478)

Scopus (N = 397)

Web of Science (N = 390)

Snowballing (N = 1)

Records removed before screening:

Duplicate records removed (N = 830)

Records screened by title and abstract

(N = 751)

Records excluded

(N = 679)

Reports assessed for eligibility

(N = 72)

Reports excluded (N = 59):

Abstracts, posters, editorials, reviews 
and letters (N = 32)

Insufficient performance data (N = 15)

Grouped 0/1+ scores (N = 6)

Non-conventional IHC staining (N = 2)

H&E staining (N = 1)

Genomics (N = 1)

Animal tissues (N = 1)

No access (N = 1)

Studies included in review

(N = 13)

Identification of Studies via Databases and Registers
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Figure 1: PRISMA flow diagram. H&E, haematoxylin and eosin; IHC, immunohistochemistry.
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First author
and year

Participants Sample
size

Data
unit

Index test Reference
standard

Deep
learning

Transfer
learn-
ing

Autonomy Internal
validation

External
validation

Commercially
available

Dataset

Bórquez et al. (2023) [13] 86 cases of invasive breast
carcinoma

41

2898

WSIs

Patches

Bayesian deep
learning with Monte
Carlo Dropout (CNN)

ASCO/CAP 2013 Yes No Fully
automated

5-fold
cross-validation

No No HER2 Scoring Contest
(HER2SC)

Fan et al. (2024) [14] 104 cases of breast tumour
with overexpressed HER2

4000 Patches CNN Average score of
three pathologists
(NR)

Yes No Fully
automated

Random
split-sample
validation

No No Nanjing Medical
University

Jung et al. (2024) [15] 201 breast cancer patients 201 Cases CNN:
DeepLabv3+
ResNet-34
DeepLabv3
ResNet-101

ASCO/CAP 2023 Yes Yes Fully
automated

Assisted

Random
split-sample
validation

Yes No Cureline (Brisbane, CA,
US)

Superbiochips (Seoul,
Republic of Korea)

Kyung Hee University
Hospital (Seoul,
Republic of Korea)

Kabir et al. (2024) [16] 86 cases of invasive breast
carcinoma

77

5626

WSIs

Patches

CNN:
DenseNet201
GoogleNet
MobileNetV2
Vision Transformer

ASCO/CAP 2018 Yes Yes Fully
automated

5-fold
cross-validation

No No HER2SC

Mirimoghaddam et al.
(2024) [17]

86 cases of invasive breast
carcinoma

126 cases of invasive
ductal breast carcinoma

3200 Patches CNN:
InceptionResNetV2
InceptionV3

ASCO/CAP 2018 Yes Yes Fully
automated

5-fold
cross-validation

No No HER2SC

Ghaem Educational
Research and Treatment
Centre (Mashhad
University)

Mukundan (2019) [18] 86 cases of invasive breast
carcinoma

1206 Patches Multi-class logistic
regression

ASCO/CAP 2018 No No Fully
automated

5-fold
cross-validation

No No HER2SC

Oliveira et al. (2020) [19] 52 cases of invasive breast
cancer

2495 Patches CNN ASCO/CAP 2018 Yes No Fully
automated

Random
split-sample
validation

No No HER2SC

Palm et al. (2023) [20] Core needle biopsies of 67
primary invasive breast
cancer

67

201

Cases

Patches

HER2 4B5® (Roche,
Switzerland)

ASCO/CAP 2018 No No Fully
automated

Assisted

NR Yes Yes Pathologie Institute Enge
(Zurich, Switzerland)

Pedraza et al. (2024) [21] 86 cases of invasive breast
carcinoma

52 cases of invasive ductal
carcinomas

15 cases of invasive and in
situ ductal carcinomas

5000 Patches CNN:
ResNet-101
DenseNet-201

ASCO/CAP 2018 Yes Yes Fully
automated

Random
split-sample
validation

Yes No HER2SC

Servicio de Salud de
Castilla-La Mancha

Servicio Andaluz de
Salud

Pham et al. (2023) [21] 86 cases of invasive breast
carcinoma

50 WSIs CNN:
U-Net
DenseNet121
ImageNet
ResNet18
ImageNet

ASCO/CAP 2018 Yes Yes Assisted 4-fold
cross-validation

Yes No HER2SC

Erasme Hospital

Qaiser et al. (2018) [22] 86 cases of invasive breast
carcinoma

28 Cases MUCS-1 team:
AlexNet (CNN)

VISILAB team:
GoogleNet (CNN)

ASCO/CAP 2018 Yes Yes Fully
automated

Random
split-sample
validation

No No ”Men versus Machine”
event of HER2SC

Sode et al. (2023) [23] 727 cases of invasive
primary breast carcinoma

761 Cases HER2-CONNECT®
(Visiopharm,
Denmark)

ASCO/CAP 2018 No No Assisted NR Yes Yes Zealand University
Hospital

Yao et al. (2022) [24] 228 biopsies of invasive
breast carcinoma of no
special type

228 Cases GrayMap + CNN ASCO/CAP 2018 Yes No Fully
automated

5-fold
cross-validation

No No Peking University
Cancer Hospital &
Institute

Table 1: Characteristics of the 13 included studies based on 25 contingency tables. ASCO, American Society of Clinical Oncology; CAP, College of American
Pathologists; CNN, convolutional neural networks; HER2, Human Epidermal Growth Factor Receptor 2; HER2SC, HER2 Scoring Contest; NR, not reported; WSI,
whole slide images.

were then screened for relevance based on their titles and ab-
stracts. Subsequently, 72 records were deemed suitable for in-
clusion and were assessed in full text. Of these, 59 studies were
excluded, with the reasons summarised in Figure 1. Publica-
tions that grouped 0/1+ scores together and those that reported
accuracy metrics solely as percentages without providing raw
data were excluded. Corresponding authors were contacted in
both instances, but failed to provide the necessary data. Fi-
nally, a total of 13 studies were included in this review for meta-
analysis.

Table 1 presents a summary of the included studies published
between 2018 and 2024, encompassing 1,285 cases, 168 WSIs,
and 24,626 patches collected from 25 contingency tables. Only
Palm et al. [20] and Sode et al. [23] specified the use of pri-
mary tumours, while the others did not mention the source.
All authors reported invasiveness status, except for [14]. The

type of tissue extraction (biopsy vs. resection) was reported in
only five studies. The IHC assay was described in five stud-
ies, and [14] failed to give scanner details. The discrepancies
in sample sizes observed in eight studies are attributable to the
use of patches as the data unit, as multiple patches can be de-
rived from a single WSI. Eight studies utilised, either wholly
or in part, the HER2 Scoring Contest HER2SC [22] database,
which may have resulted in some overlap of sample sizes. How-
ever, quantification of this was not possible, as authors did not
specify which cases were used in their analyses. Ten studies
employed DL, all of which utilised convolutional neural net-
works (CNN) algorithms. Only two studies exclusively utilised
pathologist-assisted algorithms. In Pham et al. [25], patholo-
gists manually selected a ROI before AI classification, while in
Sode et al. [23], the final scoring required a pathologist’s re-
view. Two studies [15, 20] tested the same algorithm for both

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.04.24316688doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.04.24316688
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

SENSITIVITY (95% CI)

Q =472.16, df = 24.00, p =  0.00

I2 = 94.92 [93.67 − 96.16]

 0.97[0.96 − 0.98]

0.99 [0.97 − 1.00]

0.94 [0.92 − 0.96]

1.00 [0.84 − 1.00]

1.00 [0.84 − 1.00]

1.00 [0.91 − 1.00]

0.97 [0.96 − 0.98]

0.97 [0.96 − 0.97]

0.92 [0.75 − 0.99]

0.92 [0.75 − 0.99]

0.92 [0.84 − 0.97]

0.95 [0.87 − 0.99]

0.92 [0.91 − 0.94]

0.95 [0.93 − 0.96]

0.99 [0.98 − 0.99]

0.98 [0.97 − 0.99]

0.96 [0.95 − 0.97]

0.96 [0.95 − 0.96]

0.94 [0.94 − 0.95]

0.97 [0.90 − 1.00]

0.94 [0.94 − 0.95]

0.97 [0.93 − 0.99]

0.99 [0.97 − 1.00]

1.00 [1.00 − 1.00]

1.00 [0.89 − 1.00]

0.99 [0.99 − 1.00]0.99 [0.99 − 1.00]

PUBLICATION

COMBINED

 

 

Yao et al. (2022)

Sode et al. (2023)

Qaiser et al. (2018)

Qaiser et al. (2018)

Pham et al. (2023)

Pedraza et al. (2024)

Pedraza et al. (2024)

Palm et al. (2023)

Palm et al. (2023)

Palm et al. (2023)

Palm et al. (2023)

Oliveira et al. (2020)

Mukundan (2019)

Mirimoghaddam et al. (2024)

Mirimoghaddam et al. (2024)

Kabir et al. (2024)

Kabir et al. (2024)

Kabir et al. (2024)

Kabir et al. (2024)

Kabir et al. (2024)

Jung et al. (2024)

Jung et al. (2024)

Fan et al. (2024)

Bórquez et al. (2023)

Bórquez et al. (2023)

0.7 1.0
SENSITIVITY

SPECIFICITY (95% CI)

Q =2497.86, df = 24.00, p =  0.00

I2 = 99.04 [98.90 − 99.18]

 0.82[0.73 − 0.88]

0.80 [0.28 − 0.99]

0.64 [0.57 − 0.70]

0.57 [0.18 − 0.90]

0.43 [0.10 − 0.82]

0.69 [0.39 − 0.91]

0.93 [0.92 − 0.95]

0.90 [0.88 − 0.92]

0.78 [0.62 − 0.89]

0.83 [0.68 − 0.93]

0.81 [0.73 − 0.88]

0.63 [0.54 − 0.72]

0.69 [0.65 − 0.72]

0.96 [0.94 − 0.98]

0.94 [0.91 − 0.96]

0.94 [0.91 − 0.96]

0.77 [0.75 − 0.80]

0.95 [0.93 − 0.96]

0.95 [0.93 − 0.96]

0.67 [0.30 − 0.93]

0.73 [0.70 − 0.76]

0.79 [0.58 − 0.93]

0.82 [0.63 − 0.94]

0.97 [0.96 − 0.98]

0.33 [0.07 − 0.70]

0.21 [0.17 − 0.24]0.21 [0.17 − 0.24]

PUBLICATION

COMBINED

 

 

Yao et al. (2022)

Sode et al. (2023)

Qaiser et al. (2018)

Qaiser et al. (2018)

Pham et al. (2023)

Pedraza et al. (2024)

Pedraza et al. (2024)

Palm et al. (2023)

Palm et al. (2023)

Palm et al. (2023)

Palm et al. (2023)

Oliveira et al. (2020)

Mukundan (2019)

Mirimoghaddam et al. (2024)

Mirimoghaddam et al. (2024)

Kabir et al. (2024)

Kabir et al. (2024)

Kabir et al. (2024)

Kabir et al. (2024)

Kabir et al. (2024)

Jung et al. (2024)

Jung et al. (2024)

Fan et al. (2024)

Bórquez et al. (2023)

Bórquez et al. (2023)
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SROC Curve
AUC = 0.98 [0.96 − 0.99]

95% Confidence Contour

95% Prediction Contour
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Figure 2: Pooled performance of AI in identifying HER2-low individuals from 25 contingency tables. (A) Forest plot of paired sensitivity and specificity for
HER2 scores 1+/2+/3+ vs. 0. (B) Summary receiver operating characteristics curves for HER2 scores 1+/2+3+ vs. 0. AUC, area under the curve; SENS, sensitivity,
SPEC, specificity

automated and pathologist-assisted modes. One contingency
table from [22] was excluded, as it used H&E-stained images
as inputs for training the algorithm. Oliveira et al. [19] reported
performance metrics using patches obtained from IHC-stained
WSIs as an input for further prediction of HER2 status on H&E-
stained WSIs, and as such, it was included in this meta-analysis.

3.2. Pooled performance of AI and heterogeneity

To assess the clinical relevance of AI in determining eligi-
bility for T-DXd, we evaluated its performance in distinguish-
ing scores 1+/2+/3+ from score 0 with data obtained from 25
contingency tables. When the threshold of positivity was set
at score 1+, 2+, or 3+, with score 0 considered negative, the
meta-analysis showed a pooled sensitivity of 0.97 [95% CI 0.96
- 0.98], a pooled specificity of 0.82 [95% CI 0.73 - 0.88], and
an AUC of 0.98 [95% CI 0.96 - 0.99] (Figure 2).

We also examined the performance of AI in distinguishing
scores 1+, 2+, and 3+ individually from their counterparts. In
this case, the test was considered positive if the respective score
was identified by the models and negative if any other score was
detected. Figures 3 and S1 present the corresponding SROC
curves and forest plots, respectively. Notably, the performance
improved with higher HER2 scores (2+ and 3+). The pooled
sensitivity for score 1+ was 0.69 [95% CI 0.57 - 0.79], with a
specificity of 0.94 [95% CI 0.90 - 0.96] and an AUC of 0.92
[95% CI 0.90 - 0.94]. For score 2+, AI achieved a pooled sen-
sitivity of 0.89 [95% CI 0.84 - 0.93], a pooled specificity of
0.96 [95% CI 0.93 - 0.97], and an AUC of 0.98 [95% CI 0.96
- 0.99]. Finally, for score 3+, the AI demonstrated near-perfect
performance, with a sensitivity of 0.97 [95% CI 0.96 - 0.99],

specificity of 0.99 [95% CI 0.97 - 0.99], and an AUC of 1.00
[95% CI 0.99 - 1.00].

Our results indicate substantial heterogeneity, with I2 values
ranging from 94% to 98% for both sensitivity and specificity
(Figures 2 and S1). In all analyses, no significant threshold
effect was identified (Table S3).

Figure 4 provides a heatmap with a visual representation of
the agreement between AI and pathologists across all HER2
scores. The highest agreement was observed at score 3+, with
a concordance of 97% [95% CI 96 - 98%], while AI performed
less accurately at score 1+ (88% [95% CI 86 - 90%]).

3.3. Subgroup analysis and meta-regression

To investigate sources of heterogeneity in the 1+/2+/3+ vs.
0 analysis, we conducted meta-regression utilising potential co-
variates, including: (1) DL (present vs. not present); (2) transfer
learning (present vs. not present); (3) CA algorithms (present
vs. not present); (4) autonomy (assisted vs. automated); (5) type
of internal validation (random split sample vs. k-fold cross-
validation); (6) external validation (present vs. not present); (7)
sample size (≤761 vs. >761, where 761 is the median across
studies); (8) data unit (WSIs/cases vs. patches); and (9) dataset
(own vs. HER2SC). The performance estimates corresponding
to each covariate and the meta-regression results is outlined in
Table S4. Two studies [20, 23] failed to provide information
about the type of internal validation and were not included in
this subgroup analysis.

Considering sensitivity alone, we identified statistically sig-
nificant differences across studies using DL, CA algorithms,
and external validation. Studies incorporating DL achieved
greater sensitivity (0.98 [95% CI 0.97 - 0.99] vs. 0.94 [95%
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Figure 3: Summary receiver operating characteristics curves for individual HER2 scores. (A) score 1+ vs. non-1+, (B) score 2+ vs. non-2+, and (C) score 3+
vs. non-3. AUC, area under the curve; SENS, sensitivity, SPEC, specificity.

CI 0.93 - 0.95]). In contrast, CA algorithms exhibited lower
sensitivity (0.93 [95% CI 0.90 - 0.95]) relative to experimental-
only algorithms (0.98 [95% CI 0.97 - 0.99]). Similarly, studies
employing external validation have also performed worse (Sen-
sitivity of 0.96 [95% CI 0.95 - 0.97] vs. 0.98 [95% CI 0.96 -
0.99]) (Table S4).

Regarding specificity, only the covariates sample size and
data unit demonstrated significant differences. Analyses with
sample sizes greater than 761 showed improved specificity
(0.88 [95% CI 0.81 - 0.93]) compared to those with sample
sizes ≤761 (0.70 [95% CI 0.55 - 0.82]). When patches were
used as the data unit, specificity was significantly higher (0.87
[95% CI 0.79 - 0.92]) in contrast to 0.70 [95% CI 0.53 - 0.83]
for WSIs/cases (Table S4). The covariates transfer learning,
autonomy, type of internal validation, and dataset did not show
a statistically significant impact on either sensitivity or speci-
ficity.

3.4. Publication bias and sensitivity analysis

To assess publication bias, we performed Deek’s funnel plot
asymmetry test for all threshold analyses. The studies showed
reasonable symmetry around the regression lines, with a non-
significant effect, indicating a low likelihood of publication
bias (Figure S2). Sensitivity analysis revealed no significant
changes in performance estimates for the 1+/2+/3+ vs. 0 meta-
analysis (Table S5).

3.5. Quality assessment

The QUADAS-AI assessment of the included studies is sum-
marised in Figure S3, with a detailed description of the ques-
tionnaire outlined in Table S2. Briefly, 11 studies demonstrated
a high risk of bias in the ”subject selection” domain due to
unclear reporting of eligibility criteria, such as the modality
of tissue extraction (biopsy vs. resection), tumour invasive-
ness, and failure to specify whether the tumours were primary

or metastatic. In the same domain, two studies [20, 23] that
utilised CA algorithms did not provide a clear rationale neither
a detailed breakdown of their training and validation sets. The
”index test” domain exhibited high risk of bias in eight studies,
as they lacked external validation. Furthermore, eight studies
that evaluated AI performance using patches were deemed to
have high applicability concerns regarding their index tests, as
the use of WSIs/cases instead, would be more representative of
real-world practice.

4. Discussion

In this meta-analysis, we found that AI demonstrated high
performance in distinguishing HER2 scores of 1+/2+/3+ from
0, a critical cut-off with significant clinical importance. Con-
sidering the 1+, 2+ and 3+ scores individually, the AI mod-
els showed increasing sensitivity and specificity as scores rose,
with particularly strong performance at higher scores. For score
3+, AI had almost perfect concordance with pathologist’s vi-
sual scoring. Meta-regression revealed that the use of DL,
larger sample sizes, and patches positively influenced AI per-
formance, while the use of externally validated and CA models
showed less favourable outcomes.

The classification of scores 0 and 1+ is often challenging for
pathologists, leading to significant inter-observer variability. A
survey by Fernandez et al. [8], conducted across 1,452 labo-
ratories over two years, found that pathologists agreed on the
differentiation of scores 0 vs. 1+ in only 70% of cases or fewer.
Given the findings of the DB-04 trial, our analysis primarily
focused on the distinction between scores 1+/2+/3+ and 0, as
patients scoring 1+, 2+, or 3+ are potentially eligible for T-DXd
therapy, irrespective of ISH amplification status. Clinically, it
is crucial to minimise the number of patients who might miss
the opportunity to benefit from T-DXd and those who might be
inappropriately treated. The pooled performance metrics found
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Figure 4: Concordance of AI vs. pathologists’ visual scoring. (A) Heatmap
displaying the frequency of accurate and inaccurate AI predictions for each
HER2 score. Cell values represent the cumulative sample sizes derived from 25
contingency tables corresponding to each prediction. (B) Concordance ratios of
correct vs. incorrect predictions across different HER2 scores. CI, confidence
interval; HER2, Human Epidermal Growth Factor Receptor 2.

in this work, however, may not be readily intuitive. Put sim-
ply, for every 100 patients diagnosed with metastatic breast
cancer, AI missed three eligible patients for T-DXd therapy,
while eighteen patients would be erroneously treated (Figure
2), experiencing the drug’s adverse effects without a clear ther-
apeutic benefit. This is especially relevant given the potential
life-threatening side-effects associated with antibody-drug con-
jugates. For instance, in the T-DXd arm of the DB-04 trial,
45 patients (12.1%) experienced drug-related interstitial lung
disease or pneumonitis, leading to the death of three patients
(0.8%).

A similar meta-analysis by Wu et al. [11], which assessed
AI-assisted HER2 status based on four studies differentiating
scores 1+/2+/3+ from 0, found a pooled sensitivity of 0.93
[95% CI 0.92 - 0.94], a pooled specificity of 0.80 [95% CI 0.56
- 0.92], and an AUC of 0.94 [95% CI 0.92 - 0.96]1. Despite
the broad 95% CI observed in that review, we found a signifi-

1It is noteworthy that, for comparison purposes, we swapped the values of
sensitivity and specificity, as the original criterion for positivity in their study
was set to score 0, whereas in this review the positivity threshold was set to
score 1+, 2+ or 3+.

cantly higher sensitivity (Figure 2). In contrast, our findings for
specificity were similar, and AUCs were borderline comparable
(Figure 2(b)). The less availability of studies in their analysis
likely explains the discrepancy in sensitivity. While they ap-
plied similar inclusion criteria and a broader search strategy,
yielding four times more studies than this review, five of our
included studies were published after their search period con-
cluded. Interestingly, these studies were released after the 2023
ASCO/CAP updated recommendations on HER2-low [6] were
made public, indicating a growing demand for more accurate
AI models since then.

Meta-regression indicated that DL improved significantly the
sensitivity in identifying patients eligible for T-DXd (Table
S4). DL is an AI tool that offers higher accuracy and robust-
ness compared to traditional machine learning (ML) models. It
has been widely applied in diagnostic medicine, particularly in
histopathology [26], due to its effectiveness in analysing visual
data. In this review, all studies that employed DL used CNN,
a type of DL model that automatically learns and extracts im-
age features, requiring minimal human intervention. CNN can
automatically identify features such as texture, colour intensity,
and shape with little need of pathologists’ annotations or selec-
tion of ROIs [27]. In contrast, traditional ML models are heav-
ily dependent on pathologists’ expertise and experience, usually
requiring human inputs for maximum effectiveness. The higher
sensitivity observed in the DL subgroup is likely explained by
its ability to identify image features that may have been over-
looked by the human eye. However, DL automation requires
large datasets and high-performance computing infra-structure
for optimal performance [28], which can be a limitation in prac-
tice, as laboratories may not be equipped with such resources.

We also found significantly better specificity in the sub-
groups with a sample size >761 and those that used patches
as the primary unit of analysis. These results are likely inter-
related, as both subgroups showed similar disparities in speci-
ficity (Table S4). Patches are small, localised segments of a
larger WSI, designed to facilitate the analysis of WSIs with
extremely high resolution [26], therefore studies that reported
performance metrics using patches are expected to have larger
sample sizes. In HER2 scoring, models typically analyse each
patch separately and then aggregate the results into a patient-
level overall score, taking into account spatial distribution and
the relative weight of scores across individual patches. Al-
though patches can be utilised at some point during AI training,
the overall WSI score is the most applicable in practice. How-
ever, studies that reported performance outcomes using patches
lacked an overall aggregated score. From a practical perspec-
tive, the higher specificity observed in the patches subgroup
suggests that the real-world performance of these models may
be overestimated, as the ability to reliably aggregate individual
patch scores into a comprehensive patient-level score was not
fully evaluated.

Studies that underwent external validation and utilised CA
models showed poorer sensitivity. Since CA algorithms rely on
pre-designed and pre-trained models, their testing datasets are
inherently external to the training data, leading to similar out-
comes across both subgroup analyses (Table S4). Indeed, to
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mitigate overfitting and ensure that models generalise beyond
the training set, it is essential to use samples from an exter-
nal dataset. This accounts for variations in WSIs across differ-
ent settings, such as distinct staining protocols, scanner resolu-
tions, and imaging artefacts. As a result, algorithms tested on
the same training dataset were expected to perform significantly
better, but not necessarily would be a viable option in practice.

The individual analysis of scores 1+, 2+, and 3+ vs. their
counterparts showed that sensitivity, specificity and concor-
dance improved as scores increases (Figures 3, 4 and S1). This
trend aligns with the similar meta-analysis by Wu et al. [11].
Unlike the analysis of T-DXd eligibility, where patient man-
agement and classification in HER2-low were clinician-driven,
AI’s performance in classifying individual HER2 scores is more
relevant in a histopathology context, as the classic four-class
HER2 recommendations remain in effect [6]. The lower sen-
sitivity in score 1+ may reflect AI’s limitations in detecting
subtle immunohistochemical changes, particularly at the 10%
threshold of faint membranes between scores 0 and 1+ as per
ASCO/CAP [29, 2]. This may suggest that either the detection
or counting of faint/barely perceptible membranes is downregu-
lated, as most incorrect predictions were biased towards score 0
(Figure 4). Conversely, the high specificity for score 2+ would
be beneficial for laboratory workflows, as for every 100 equiv-
ocal cases (2+), ISH would be erroneously performed in only
four, sparing costs and avoiding delays in clinical decision-
making.

The intra- and inter-observer concordance rates for IHC man-
ual HER2 scoring vary significantly across the literature. Con-
cordance studies differ in methodology, as pathologists’ perfor-
mance can be assessed either through agreement with peers or
with more advanced lab assays. Additionally, factors such as
the number of raters, wash-out period, variations in IHC as-
says, and the accuracy of the reference standard test used as the
ground truth introduce further heterogeneity to these studies. A
multi-institutional cohort study conducted with 170 breast can-
cer biopsies across 15 institutions reported an overall four-class
(0, 1+, 2+, and 3+) concordance among pathologists as low
as 28.82% [95% CI 22.01 - 35.63%] [30]. In contrast, another
study found a markedly better figure of 94.2% [95% CI 91.4 -
96.5%] [31]. Studies comparing pathologists’ performance in
IHC vs. other techniques reported concordance rates of 93.3%
[32], 91.7% [33], 82.9% [34] with RT-qPCR, and 82% [35] with
ISH. Based on these metrics, the overall concordance rate of
93% [95% CI 92 - 94%] (Figure 4) identified in this review
implies that AI may hold the potential to achieve performance
comparable to pathologists’ visual scoring.

However, the findings of this work have limitations. The ex-
clusion of studies that used grouped 0/1+ scores and those that
did not report sufficient performance outcomes may have in-
fluenced our pooled metrics. This is likely because, in earlier
studies, separating 0/1+ scores was not relevant for T-DXd el-
igibility at that time, and DL technology had not yet become
as widespread and advanced as it currently is. The notably
high heterogeneity found in our analyses suggests that AI may
lack standardisation, due to inherent differences in models de-
sign as well as pre-analytical factors, such as IHC assay, WSI

scanner resolution, tumour heterogeneity, and tissue artefacts.
The design of a standardised testing protocol is likely to make
the various AI models more comparable to each other. More-
over, the high risk of bias and applicability concerns identified
in QUADAS-AI (Figure S3) represent an additional limitation.
Some included studies failed to report important sample char-
acteristics, such as tumour invasiveness, method of extraction
(biopsy vs. resection), or whether tumours were metastatic or
primary, we cannot extrapolate our findings to samples that dif-
fer in these aspects. For instance, it cannot be ignored that algo-
rithms may perform differently if non-breast cells are present in
metastatic samples or if slides varies in size depending on the
method of extraction. It remains essential that upcoming vali-
dation studies in AI provide a more detailed description of the
samples, taking pre-analytical clinical and factors into account.

In light of the current ASCO/CAP recommendations, the
pooled performance findings in this meta-analysis apply to the
HER2-low population, though ongoing research may prompt
changes in the HER2 classification system. Despite the
US Food and Drug Administration [36] and the European
Medicines Agency [37] approvals of T-DXd for metastatic
breast cancer following the DB-04 trial, it is widely agreed
among ASCO/CAP and European Society of Medical Oncol-
ogy (ESMO) that HER2-low does not represent a biologically
distinct entity, but rather a heterogeneous group of tumours in-
fluenced by HER2 expression [6, 38]. We acknowledge that
the 2023 ASCO/CAP update reaffirms the 2018 version of the
HER2 scoring guideline, with no prognostic value attributed to
HER2-low and no changes recommended in reporting HER2
categories. The term HER2-low was used as an eligibility cri-
terion in the DB-04 trial and should guide clinical decision-
making only. To date, HER2 classification remains as nega-
tive (0 and 1+), equivocal (2+), and positive (3+). This is pri-
marily because the DB-04 trial did not include patients with
score 0, and the possibility that some patients in the 0-1+
threshold spectrum might benefit from T-DXd should not be
ignored. Addressing this uncertainty, the recently published
phase 3 DESTINY-Breast06 [39] trial found a survival bene-
fit in HER2-ultralow patients, i.e., a subset of patients within
the IHC category 0 who express faint membrane staining in
≤10% of tumour cells. Accordingly, HER2-ultralow hormone
receptor-positive patients who had undergone one or more lines
of endocrine-based therapy had longer progression-free sur-
vival when treated with T-DXd compared to those receiving
chemotherapy. These findings align with the interim outcomes
of the ongoing phase 2 DAISY trial [40]. The grey zone within
the 0-1+ threshold has several implications for this review’s
outcomes. All AI algorithms included in this analysis used the
conventional 4-class HER2 scoring system (0, 1+, 2+, 3+), and
it is clear that this classification may need to be revised. Sub-
sequent AI algorithms will need to be trained using inputs that
account for staining intensity and the proportion of stained cells
within the 0-1+ spectrum.

In conclusion, the results of this meta-analysis, encom-
passing 25 contingency tables across thirteen studies, suggest
that AI achieved promising outcomes in accurately identifying
HER2-low individuals eligible for T-DXd therapy. Our findings
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indicate that, to date, AI achieves substantial accuracy, partic-
ularly in distinguishing higher HER2 scores. Future validation
studies using AI should focus on improving accuracy in the 0-
1+ range and provide more detailed reporting of clinical and
pre-analytical data. Lastly, this review highlights that the pro-
gressive development of DL is steering towards greater automa-
tion, and pathologists will need to adapt to effectively integrate
this tool into their practice.
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1. PRISMA-DTA Checklist

Reported on 

page # 
PRISMA-DTA Checklist Item #Section/topic 

TITLE / ABSTRACT

1Identify the report as a systematic review (+/- meta-analysis) of diagnostic test accuracy (DTA) studies.1Title 

1Abstract: See PRISMA-DTA for abstracts.2Abstract

INTRODUCTION

1, 2Describe the rationale for the review in the context of what is already known. 3Rationale 

2State the scientific and clinical background, including the intended use and clinical role of the index test, and if applicable, the rationale for 

minimally acceptable test accuracy (or minimum difference in accuracy for comparative design).

D1Clinical role of index test

2Provide an explicit statement of question(s) being addressed in terms of participants, index test(s), and target condition(s).4Objectives 

METHODS

2Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information 

including registration number. 

5Protocol and registration 

2Specify study characteristics (participants, setting, index test(s), reference standard(s), target condition(s), and study design) and report 

characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.

6Eligibility criteria 

2Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search 

and date last searched. 

7Information sources 

2Present full search strategies for all electronic databases and other sources searched, including any limits used, such that they could be 

repeated.

8Search 

2State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-

analysis). 

9Study selection 

2, 3Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and 

confirming data from investigators. 

10Data collection process 

2, 3Provide definitions used in data extraction and classifications of target condition(s), index test(s), reference standard(s) and other 

characteristics (e.g. study design, clinical setting).

11Definitions for data 

extraction

3Describe methods used for assessing risk of bias in individual studies and concerns regarding the applicability to the review question.12Risk of bias and

applicability

3State the principal diagnostic accuracy measure(s) reported (e.g. sensitivity, specificity) and state the unit of assessment (e.g. per-patient, per-

lesion).

13Diagnostic accuracy 

measures

3Describe methods of handling data, combining results of studies and describing variability between studies. This could include but is not limited 

to: a) handling of multiple definitions of target condition. b) handling of multiple thresholds of test positivity, c) handling multiple index test 

readers, d) handling of indeterminate test results, e) grouping and comparing tests, f) handling of different reference standards

14Synthesis of results 

3Report the statistical methods used for meta-analyses, if performed.D2Meta-analysis

3Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified. 16Additional analyses

RESULTS

3Provide numbers of studies screened, assessed for eligibility, included in the review (and included in meta-analysis, if applicable) with reasons 

for exclusions at each stage, ideally with a flow diagram. 

17Study selection 

3, 4For each included study provide citations and present key characteristics including: a) participant characteristics (presentation, prior testing), b) 

clinical setting, c) study design, d) target condition definition, e) index test, f) reference standard, g) sample size, h) funding sources

18Study characteristics 

6Present evaluation of risk of bias and concerns regarding applicability for each study.19Risk of bias and 

applicability

5, 6For each analysis in each study (e.g. unique combination of index test, reference standard, and positivity threshold) report 2x2 data (TP, FP, 

FN, TN) with estimates of diagnostic accuracy and confidence intervals, ideally with a forest or receiver operator characteristic (ROC) plot.

20Results of individual 

studies 

5, 6, 7Describe test accuracy, including variability; if meta-analysis was done, include results and confidence intervals.21Synthesis of results 

6Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression; analysis of index test: failure rates, 

proportion of inconclusive results, adverse events).

23Additional analysis

DISCUSSION

6Summarize the main findings including the strength of evidence.24Summary of evidence 

8Discuss limitations from included studies (e.g. risk of bias and concerns regarding applicability) and from the review process (e.g. incomplete 

retrieval of identified research).

25Limitations 

8Provide a general interpretation of the results in the context of other evidence. Discuss implications for future research and clinical practice (e.g. 

the intended use and clinical role of the index test).

26Conclusions

FUNDING

9For the systematic review, describe the sources of funding and other support and the role of the funders.27Funding 

Table S1: PRISMA-DTA checklist.
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2. Description of QUADAS-AI Risk of Bias and Applicability Concerns

Domain Signalling question

Risk of bias

Subject
selection

• Is the source, size, and quality of the input data clearly defined, along with
patient eligibility criteria?

• Was the data obtained from non-open-source datasets?

• Is there a clear rationale and distribution provided for training, validation,
and test sets?

• Was image pre-processing performed?

• Is the scanner model used for imaging acquisition specified?

Applicability concerns

• Are there concerns that the included patients and setting do not match the
review question?

Risk of bias

Index test • Was external validation conducted?

Applicability concerns

• Are there concerns that the index test, its conduct, or interpretation differ
from the review question?

Risk of bias

Reference standard • Is the reference standard likely to correctly identify the target condition?

Applicability concerns

• Are there concerns that the target condition as defined by the reference
standard does not match the question?

Risk of bias

Flow and
timing

• Was the time between conducting the index test and the reference standard
appropriate?

Table S2: Description of QUADAS-AI questionnaire
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3. Forest Plots of Individual 1+, 2+, and 3+ HER2 Scores
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Figure S1: Forest plots of paired sensitivity and specificity for HER2 scores from 25 contingency tables. (A) score 1+ vs. non-1+, (B) score 2+ vs. non-2+,
and (C) score 3+ vs. non-3+
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4. Analysis of Threshold Effect

HER2 cut-off Spearman correlation coefficient p-value

1+/2+/3+ vs. 0 0.050 0.811

1+ 0.087 0.679

2+ -0.068 0.746

3+ 0.107 0.610

Table S3: Spearman correlation test. Coefficients were computed between sensitivity and specificity using logit transformations.
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5. Subgroup Analysis and Meta-Regression of HER2 scores 1+/2+/3+ vs. 0

Covariate Subgroup Sensitivity [95% CI] p-value Specificity [95% CI] p-value N

Deep learning
No

Yes

0.94 [0.93 - 0.95]

0.98 [0.97 - 0.99]
p < 0.001

0.81 [0.67 - 0.90]

0.81 [0.71 - 0.89]
p = 0.959

6

19

Commercially available algorithm
No

Yes

0.98 [0.97 - 0.99]

0.93 [0.90 - 0.95]
p = 0.001

0.83 [0.72 - 0.90]

0.73 [0.64 - 0.81]
p = 0.121

20

5

External validation
No

Yes

0.98 [0.96 - 0.99]

0.96 [0.95 - 0.97]
p = 0.006

0.82 [0.67 - 0.91]

0.82 [0.74 - 0.88]
p = 0.989

15

10

Sample size
≤761

>761

0.98 [0.95 - 0.99]

0.97 [0.96 - 0.98]
p = 0.897

0.70 [0.55 - 0.82]

0.88 [0.81 - 0.93]
p = 0.018

13

12

Data unit
WSIs/cases

Patches

0.98 [0.96 - 0.99]

0.97 [0.95 - 0.98]
p = 0.370

0.70 [0.53 - 0.83]

0.87 [0.79 - 0.92]
p = 0.048

11

14

Transfer learning
No

Yes

0.97 [0.95 - 0.99]

0.98 [0.96 - 0.99]
p = 0.872

0.76 [0.61 - 0.87]

0.85 [0.75 - 0.92]
p = 0.229

11

14

Autonomy
Assisted

Automated

0.97 [0.92 - 0.99]

0.98 [0.96 - 0.98]
p = 0.607

0.77 [0.53 - 0.91]

0.83 [0.73 - 0.89]
p = 0.614

5

20

Type of internal validation
Random split sample

k-fold cross validation

0.98 [0.96 - 0.99]

0.98 [0.96 - 0.99]
p = 0.492

0.83 [0.66 - 0.93]

0.82 [0.68 - 0.91]
p = 0.907

8

12

Dataset
Own

HER2SC

0.98 [0.96 - 0.99]

0.97 [0.96 - 0.98]
p = 0.619

0.82 [0.72 - 0.90]

0.81 [0.68 - 0.89]
p = 0.833

9

16

Table S4: Subgroup analysis and meta-regression of AI in distinguishing HER2 scores 1+/2+/3+ vs. 0. p-values were obtained from the likelihood ratio test
comparing models with and without the covariates using mixed-effect logistic regression. ”N” represents the number of contingency tables utilised in each subgroup.
CI, confidence interval; HER2SC, HER2 Scoring Contest; WSI, whole slide images
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6. Analysis of Publication Bias
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Figure S2: Deek’s funnel plot with superimposed regression line. The asymmetry test was performed using a regression of the diagnostic log odds ratio, weighted
by the 1/

√
ES S . A p < 0.10 for the slope coefficient indicates significant asymmetry and high likelihood of publication bias. (A) scores 1+/2+/3+ vs. 0, (B) score

1+ vs. non-1+, (C) score 2+ vs. non-2+, and (D) score 3+ vs. non-3+. ESS, effective sample size.
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7. Sensitivity Analysis

Excluded study Sensitivity [95% CI] Specificity [95% CI] AUC [95% CI]

Bórquez et al. (2023) 0.97 [0.96 - 0.98] 0.85 [0.79 - 0.90] 0.98 [0.96 - 0.99]

Fan et al. (2024) 0.97 [0.96 - 0.98] 0.80 [0.71 - 0.87] 0.98 [0.96 - 0.99]

Jung et al. (2024) 0.97 [0.96 - 0.98] 0.81 [0.72 - 0.88] 0.98 [0.96 - 0.99]

Kabir et al. (2024) 0.98 [0.97 - 0.99] 0.80 [0.69 - 0.88] 0.98 [0.96 - 0.99]

Mirimoghaddam et al. (2024) 0.97 [0.96 - 0.98] 0.80 [0.70 - 0.87] 0.98 [0.96 - 0.99]

Mukundan (2019) 0.98 [0.96 - 0.98] 0.80 [0.71 - 0.87] 0.98 [0.96 - 0.99]

Oliveira et al. (2020) 0.98 [0.96 - 0.98] 0.82 [0.73 - 0.88] 0.98 [0.96 - 0.99]

Palm et al. (2023) 0.98 [0.97 - 0.99] 0.82 [0.72 - 0.89] 0.98 [0.97 - 0.99]

Pedraza et al. (2024) 0.98 [0.96 - 0.98] 0.80 [0.70 - 0.87] 0.98 [0.96 - 0.99]

Pham et al. (2023) 0.97 [0.96 - 0.98] 0.82 [0.73 - 0.88] 0.98 [0.96 - 0.99]

Qaiser et al. (2018) 0.97 [0.96 - 0.98] 0.83 [0.75 - 0.89] 0.98 [0.96 - 0.99]

Sode et al. (2023) 0.98 [0.96 - 0.98] 0.82 [0.73 - 0.88] 0.98 [0.96 - 0.99]

Yao et al. (2022) 0.97 [0.96 - 0.98] 0.82 [0.73 - 0.88] 0.98 [0.96 - 0.99]

Combined 0.97 [0.96 - 0.98] 0.82 [0.73 - 0.88] 0.98 [0.96 - 0.99]

Table S5: Sensitivity analysis of the 1+/2+/3+ vs. 0 meta-analysis. Each row represents the performance when the corresponding study was excluded at a time
from the overall meta-analysis. CI, confidence interval.
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8. Adapted Risk of Bias and Applicability Concerns (QUADAS-AI)

Figure S3: Risk of bias and applicability concerns of the included studies using the adapted QUADAS-AI tool.
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