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Abstract 150 words 
The iCAP is a tool for blood-based diagnostics that addresses the low signal-to-noise ratio of blood biomarkers by using 
cells as biosensors. The assay exposes small volumes of patient serum to standardized cells in culture and classifies disease 
by AI analysis of gene-expression readouts from the cells. It simplifies the complexity of blood into a concise readout in a 
scalable cell-based assay. We developed the LC-iCAP as a rule-out test for nodule management in CT-based lung cancer 
screening. The assay achieved an AUC of 0.63 (95% CI 0.50-0.75) in retrospective-blind-temporal validation. When 
integrated with CT data after validation, it demonstrated potential to reduce unnecessary follow-up procedures by 
significantly outperforming the Mayo Clinic model with 90% sensitivity, 67% specificity and 95% NPV using an estimated 
25% prevalence. Analytical validation established LC-iCAP reproducibility and identified unwanted variation from long-
term serum storage suggesting a prospective study design could enhance performance. 
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Introduction 
Lung cancer is the deadliest cancer in US and worldwide, but early detection can save lives1. Therefore, the US has 
implemented low-dose computed tomography (CT) scans to screen for non-small cell lung cancer (NSCLC) in high-risk 
populations, a strategy estimated to reduce lung cancer deaths by 20%2,3. Nodules are managed based on a calculated 
malignancy risk from clinical and CT scan data using algorithms such as the Mayo Clinic model4. Based on the American 
College of Chest Physicians (ACCP) recommendations, those with less than 5% risk or greater than 65% risk have clear 
treatment paths. However, 50-76% of patients screened are assigned an intermediate risk and undergo a diagnostic 
odyssey often with invasive and costly procedures even though most of these patients do not have cancer5,6. Non-invasive 
tests are needed to more accurately predict malignancy risk in patients with indeterminate pulmonary nodules (IPNs)3,7. 
Specifically, rule-out type tests are needed to identify those with low risk of cancer to save those with benign nodules 
from invasive and expensive testing. Such a test must have an NPV of at least 95% to reclassify nodules with a 5-65% risk 
of malignancy to less than 5% to facilitate a meaningful shift in patient management strategies reducing unnecessary 
interventions and improving clinical outcomes.8  

There are a few liquid biopsy tests available to patients for nodule management. The data obtained from these liquid 
biopsies are independent of CT scan data, enabling combinatorial diagnostics. This approach involves combining data from 
two sufficiently distinct and accurate tests to achieve better performance than either test alone9. Patients have access to 
two rule-out tests from Biodesix10 and MagArray11. After integration with CT data, the test sensitivities are high, ranging 
from 90-97%, but the specificities are low ranging from 33-44%, which limits the number of patients with benign nodules 
who have actionable results from the tests. This limitation may be due to the fact that neither test showed significant 
stand-alone performance in validation studies10,11, which is not ideal for combinatorial analysis9,12. Another test from 
Veracyte outperforms these blood tests but requires invasive bronchoscopy13. A rule-out type blood test that has 
significant performance independent of CT data and outperforms existing blood tests when combined with CT data would 
be a significant advance in nodule management. Such a test could raise confidence for both patients and physicians by 
providing actionable results for more patients and reducing the number of unnecessary invasive follow-up tests. 

We are developing a tool called the indicator cell assay platform (iCAP)14, a novel approach that aims to overcome the low 
signal-to-noise ratio associated with direct measurement of blood biomarkers by using cultured cells as biosensors. 
Developing an iCAP involves exposing standardized, cultured cells to a small volume of serum or plasma samples from 
case and control participants, measuring a global differential gene expression response of the cells, and using machine 
learning to identify a subset of features for disease classification. Deploying the assay involves measuring only selected 
genes using a targeted approach like NanoStringâ or Quantigeneâ (Fig. 1A). The rationale is that through signal 
transduction, cells can amplify weak signals into strong readouts, enhancing the sensitivity of detection. In addition, cells 
naturally detect and respond to many types of analytes or combinations thereof, broadening the search space. These 
blood-based signatures are transformed into a cell-based gene expression readout, measured by well-established next-
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generation RNA sequencing (RNA-seq) or targeted transcriptomic approaches. This process effectively condenses vast 
complexity of blood into a concise readout in a scalable, multi-analyte cell-based assay. 

Here, we present development of an iCAP for the early detection of lung cancer (LC-iCAP) with utility for management of 
nodules identified by CT scan. We developed a model using banked serum from patients with IPNs to distinguish NSCLC 
from benign nodules and tested it by blind temporal validation. When integrated with CT data, the LC-iCAP demonstrated 
90% sensitivity and 67% specificity in blind validation using a cut-off point corresponding to a 95% negative predictive 
value (NPV) based on a prevalence of 25% in the intended use population.15,16 The integrated test had significantly better 
performance than the Mayo Clinic model and the specificity was better than that of the other rule-out blood tests, 
suggesting actionable results for a greater number of patients with benign nodules using the LC-iCAP. The iCAP has high-
throughput scalability and is orthogonal to other diagnostic approaches, suggesting potential for broader applications in 
multi-cancer early detection (MCED) and combinatorial diagnostics. 

Methods 
The study design description below follows recommendations of TRIPOD (Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis).17 

Participants and specimen characteristics 
The study used archived serum samples collected from adult patients from non-vulnerable populations performed with 
IRB approval (WCG IRB study 1283522). Banked specimens and clinical data used in this study were from subjects enrolled 
in the following previously IRB-approved studies: “Molecular Predictors of Lung Cancer behavior,” (NCT00898313, 
Vanderbilt University), “Gene-Environment Interactions in Lung Cancer” (IRB 806390, University of Pennsylvania), and “A 
Case Control Study of Smokers and Non-Smokers” (IRB 800924, University of Pennsylvania). The study consent forms had 
provisions allowing use of their samples for future research purposes. Patient identifiable information was not provided 
to the research team and was not used in this study. All identification numbers used in the manuscript are not known to 
anyone outside the research group. 
 
Patient attributes and serum characteristics are shown in Figure 2A and Data Files 1 and 4. All samples were collected 
within 3 months of the CT scan (and diagnostic biopsy, if performed) and prior to any invasive procedure, including surgical 
lung biopsy. All malignant nodules were diagnosed by follow-up pathological diagnosis; all were non-small cell lung cancer 
(NSCLC) except for 3 small cell lung cancers. 72% of malignant nodules in the blind test set were stage I and 22% were 
stage II. Benign nodules were diagnosed by either biopsy with a definitive benign histological diagnosis or by 2 or more 
years of follow-up with serial imaging. All patients had no known other cancers at time of screening and no previous cancer 
in the five years preceding the blood draw excluding previous skin cancers treated with surgery only (no radiation or 
chemotherapy). Serum samples were collected using the protocol recommended by the early detection research network 
(EDRN)18, stored at -80°C or below after collection, and unless otherwise stated, thawed once prior to LC-iCAP analysis. 
 
Study design 
The study was an observational case versus control study with blind validation following prospective-specimen-collection, 
retrospective-blinded-evaluation (PRoBE) design.19 Serum samples were collected at the time of CT scan from cohorts that 
represent the target population with the future intention of developing liquid biopsies. After outcome status was 
ascertained by follow-up testing, case and control subjects were selected randomly from the cohorts and their serum was 
used for developing the LC-iCAP and for blind validation of the assay. 

The study involved assay and model development as described in Figure 1B. Assay development including establishing 
standard controls, optimizing experimental parameters and measuring assay reproducibility (Stage 2). Model 
development included iterative disease modeling with increasing number of samples in Stages 1,3 and 4 (Fig. 2B). This 
process involved optimizing the parameters and hyperparameters of the models through several rounds of training and 
validation on held-out sets and testing fully parameterized models on a blind test set. During assay development, sample 
and data quality were evaluated and in the final model configuration, data from samples with technical assay failures and 
low-quality samples were excluded.  
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The study used a total 528 serum samples from two sources, Vanderbilt University and University of Pennsylvania in 5 
cohorts (Fig. 2A). Cohorts 1-4 were used for model development and cohort 5 was used for blind testing of the final model. 
The blind test set was collected 9 years later and analyzed greater than 1 year later than the other cohorts. For model 
development, the sample size was selected based on that of other liquid biopsy studies at similar stages of 
development11,20. For blind testing, the sample size was selected to have power to detect significant performance of a 
model with AUC of ROC >= 0.6221.  

Sample processing batch structure is described in Data files 1 and 4. Each cohort was shipped separately and assayed by 
LC-iCAP in batches of 20-50 samples. Each experimental batch had ~1:1 ratio of case and control samples, which were 
roughly balanced for patient gender, age and smoking history. A pair of standard controls were included on each 12-well 
plate for quality control (QC) consisting of either technical replicates of a reference serum sample from an unaffected 
male patient (cohorts 1-2), a pair of case and control pooled serum controls (cohort 3), or a pair of DMOG and PBS chemical 
controls (cohorts 4-5). LC-iCAP gene expression was measured by RNA-seq for cohorts 1-3 for modeling in Stages 1 and 3, 
and by NanoString Plexset for all cohorts for modeling in Stage 4. For cohort 5, only the DMOG samples were included in 
the NanoString Plexset analysis, excluding the PBS controls, to fit all samples on a single plate.  

Quantification of hemolysis of serum samples 
Prior to LC-iCAP analysis, thawed patient serum was evaluated for the breakdown of red blood cells (hemolysis), which 
has known interference with clinical biochemical tests22. Blind samples were visually compared to a reference card23 by a 
first scientist and given a score on a gradient of increasing hemolysis from 1-7. In addition, samples were photographed 
with an iPhone on a white background and later evaluated by a second scientist using the same approach. Sample ratings 
were averaged and round to the nearest integer. For project stages 3-4, all samples with average scores greater than 3 (> 
50 mg/dL of hemoglobin) were omitted from the study. Hemolysis scores are shown in Data files 1 and 4.  

Analytical parameters of LC-iCAP assay 
Unless otherwise indicated, the following standard protocol was used: 2 x 106 lung epithelial cell indicator cells (16HBE) 
were thawed and plated in a T75 flask in RPMI with 10% FBS (complete medium). After 2 d cells were dissociated with 
0.25% trypsin-EDTA for 10 min at 37 °C and plated at 30,000 cells/cm2 in 12-well Eppendorf moat plates in complete 
medium. After 24 h, cells were rinsed once with RPMI and incubated for 24 h with in 1 mL RPMI with 5% patient serum. 
Media was removed, lysis buffer was added, and cells were stored at -80°C for up to two weeks before RNA isolation. For 
cohorts 1 and 2 used in Stages 1-3, total RNA was isolated manually using RNeasy Mini Kit (Qiagen), for cohorts 3-5, RNA 
isolation was automated using a MagMax mirVana kit (Invitrogen A27828) on either a KingFisher Flex or a Kingfisher Duo 
Prime as per the manufacturer’s recommendation. RNA was eluted in 100 µL of elution buffer, quantified using a Qubit 
(Qubit RNA BR Assay Kit), and stored at -80°C. Transcript abundance levels were quantified using either RNA-Seq or 
NanoString as described below. For cohort 3, cells were passaged an additional time before initiating the experiment. 

LC-iCAP proof-of-concept studies in Stage 1 
To establish assay feasibility, LC-iCAP RNA-seq data for cohort 1 was used to train a model for lung cancer detection and 
tested on cohort 2. To identify model features, raw counts from cohort 1 data were used for differential expression 
analysis and identified 239 differentially expressed genes (DEGs) (Benjamini-Hochberg false discovery rate (FDR) < 0.05). 
Next, to develop the LC-iCAP classifier, all RNA-seq count data from cohorts 1 and 2 were normalized using the DESeq2 
rlog transformation and a series of random forest classifiers (R: randomForest package) were parameterized on cohort 1 
using increasing numbers of DEGs in increasing order of FDR as features (5, 10, 20, 25, 50, 75, 100). The 103 samples of 
cohort 2 were used to test the model performance. 

For hierarchical clustering of LC-iCAP data from cohorts 1 and 2, clustering was performed based on the expression of the 
top 20 differentially expressed in LC-iCAP RNA-seq data from cohort 1. The analysis utilized DEseq2 rlog-transformed 
counts from the LC-iCAP RNA-seq data, normalized to the mean expression of the benign samples of the same iCAP 
experimental batch and gene rank was based on median absolute deviation. Three outlier samples were identified and 
removed (all from the benign class).  
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RNA-Seq analysis of LC-iCAP RNA 
100-650 ng of total RNA per sample was used for automated library preparation and RNA sequencing (RNA-seq) performed 
by either Covance (cohorts 1-2) or Azenta Life Sciences (formerly Genewiz) (cohort 3). Strand-specific library prep was 
performed with PolyA selection using TruSeq RNA library Prep Kit (Illumina) with unique dual indices (IDT) and resulting 
DNA was sequenced on a HiSeq 4000 (Illumina) with paired end 150 bp reads. RNA-seq data were processed using a 
custom workflow including adapter read trimming using trimmomatic24, genome reference alignment to HG37 (pilot 
study) or HG38 using STAR25; and gene-level transcript quantification using R-featureCounts26. ERCC spike-ins and genes 
with mean absolute counts < 10 were removed. Quality was assessed using MultiQC, dupRadar and GATK estimate of 
library complexity. Where indicated, counts were adjusted to correct GC bias using the FQN27 or CQN28 determined by the 
R-EdgeR package29. Differential expression analysis was done using R-DESeq230. GSEA analysis was done using the R-fgsea 
package in combination with the 50 Hallmark pathway modules from MsigDB31. 

For Stage 1, read duplicates were removed by using –ignoreDups setting in R:featureCounts. For Stages 2-3, the data were 
normalized for heteroskedasticity by variance stabilizing transformation (VST) using the R-DESeq2 package and for inter-
iCAP batch variation using removeBatchEffect from the R-limma package32. Outlier samples were identified using robust 
principal components analysis (ROBPCA) implemented in the R-rrcov package33.  

Development of LC-iCAP standard controls 
Pooled serum standards were prepared, consisting of technical replicates of pooled patient serum for each case and 
control class. Each pool consisted of a mix of serum from 8 different subjects selected from cohorts 1 and 2 based on 
availability and class separation in hierarchical clustering analysis of LC-iCAP-RNA-seq data (Fig. 3B). Each serum pool was 
made by thawing aliquots of serum from each of 8 subjects, pooling, mixing, aliquoting the serum, and then flash freezing 
in liquid nitrogen before storing at -80°C. 

Dimethyloxalylglycine (DMOG) and PBS were used as a pair of chemical standards to monitor assay performance. To 
develop the control, we first characterized the response of indicator cells to 6 concentrations of DMOG (0, 0.025, 0.05, 
0.1, 0.25, 0.5 mM; Cayman Chemical) by measuring the gene expression readout of the 74-gene development gene set 
(Data file 2A) using NanoString. Responsive genes were identified as those whose expression fit a linear model as a 
function of DMOG concentration (p-value < 0.05) (data not shown). DMOG was used at 0.25 mM for monitoring assay 
performance; for most responsive genes, this condition was in the linear range of the model and had a similar magnitude 
of responsiveness compared with patient serum. DMOG was resuspended at 50 mM in PBS, aliquoted and stored at -20°C 
and thawed on ice before use.  

Optimization of LC-iCAP experimental parameters and LC-iCAP reproducibility testing  
The pooled serum standards described above were used for QC and for reproducibility and optimization studies. 4 
technical replicates of each case and control serum pool were analyzed for each LC-iCAP parameter and the number of 
significantly DEGs (FDR <0.1) for each configuration were compared. Differential expression was measured by analysis of 
the LC-iCAP development gene panel using NanoString nCounter® technology and/or by RNA-seq using HiSeq4000TM 
(Illumina). Configurations tested were various serum concentrations (1%, 5%, 10%, and 20%), serum incubation times (6 
hours, 24 hours), and 4 cell types (16HBE, A549, MRC5, and Nuli-1). Reproducibility testing included comparison across 3 
different 16HBE expansion batches and across different days, and different detection platforms.  

Western blot analysis 
Samples were processed in the LC-iCAP using standard parameters and protein was isolated and quantified using a BCA 
kit (Pierce). Equal protein for each sample were loaded on 12- or 15-well NuPage 4-12% Bis-Tris gels with Thermo 
PageRuler Plus prestained protein ladder and analyzed by western blotting according to LICOR Odyssey recommendations 
using PVDF membrane (Immobilon-FL) and probing with rabbit anti-HIF1a (D157W) XPÒ (or rabbit mAB HIF-2a (D9E3)) 
and mouse anti-beta-actin primary antibodies followed by LICOR NIR secondary antibodies. All primary antibodies were 
from Cell Signaling Technologies. Membranes were scanned on a LICOR Clx Odyssey imaging system, proteins were 
quantified using LiCOR Image Studio Lite and data analysis was done in Excel. Western blot images are shown in Figure S5. 
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Sample and Gene Filters for Comprehensive Modeling Study in Stage 3 
Data from 165 samples across cohorts 1-3 were partitioned into training and validation sets, and quality filters were 
applied, resulting in 137 samples for modeling (Fig. 2B, Data file 1). These data were used for a comprehensive modeling 
study including 13 different feature selection methods x 8 combinations of 3 optional filters. The three sample filters were: 
1) samples with predicted forced expiry volume (FEV) < 50% (based on data showing that low lung function affects LC-
iCAP readout (Fig. S6)), 2) samples from never-smokers, and 3) samples from a low-quality RNA-seq batch (identified by 
QC analysis with assay standards; Fig. S3). The 13 feature selection methods are described in Data file 3 and are based on 
3 approaches to identify case versus control differential expression in the training set: 1) Analysis of DEGs across samples 
from all batches, 2) analysis of DEGs within each individual experimental batch, and 3) GSEA of individual experimental 
batches. 

Gene sets for targeted analysis by NanoString 
Gene-specific capture probes for NanoString nCounter analysis were synthesized by Integrated DNA Technologies (IDT). 
The NanoString development gene set was used for LC-iCAP parameter optimization and reproducibility studies. The set 
consisted of 96 genes including 74 features with case versus control differential expression in cohort 1 selected for 
detecting the LC-iCAP readout and 7 housekeeping genes for normalization (Data file 2A). The NanoString deployment 
gene set was used for training and testing the final LC-iCAP models in Stage 4 using a NanoString Plexset readout. The 
gene set consisted of 95 genes including 85 candidate features for modeling (66 selected in Stage 3 and 19 of the 25 genes 
from the initial model developed Stage 1 not already in the list, 1 control gene responsive to DMOG and 9 housekeeping 
genes for normalization (Data file 3D).  
 
NanoString PlexsetTM analysis of LC-iCAP RNA 
Gene expression analysis of total RNA samples from the LC-iCAP was performed using NanoString PlexetTM technology, a 
direct detection approach for multiplexed gene expression analysis of up to 96 samples per run that does not involve PCR 
amplification. For this analysis, the deployment gene set consisting of 87 target genes and 9 candidate housekeeping genes 
were used as targets (Data file 3). Data were analyzed using an nCounter® Analysis System by the Genomics Resources 
Center at Fred Hutchinson Cancer Research Center following manufacturers recommendations. First, probe hybridization 
was performed in solution where gene-specific capture probes and reporter probes attached to fluorescent barcodes were 
used for detection of each of 96 mRNA molecules in each sample (see Data file 3 for Each reaction used 140 ng of LC-iCAP 
RNA for patient samples (and 100 ng for DMOG/PBS controls), which were pre-optimized in a calibration experiment to 
avoid saturating the chip). Next, samples were pooled in groups of 8 and loaded onto an nCounter Prep Station for 
automated excess probe removal and binding of the probe-target complexes on the surface of the cartridge by 
streptavidin-biotin linkage to the capture probes. Cartridges were placed in the nCounter Digital Analyzer for data 
collection, where molecules of RNA were counted by using the target specific “color codes” generated by a string of six 
fluorescent spots on each reporter probes. 
 
LC-iCAP RNA samples were processed on 9 plates total with up to 96 samples per plate (see Data file 4 for processing 
configuration). Existing LC-iCAP data were used for cohort 3 and new LC-iCAP data were generated for all other samples 
using our standard method, except serum samples for cohorts 1-2 were thawed twice before analysis. For quality control, 
each plate included 8 positive controls composed of in vitro transcribed RNA transcripts and corresponding probes, and 
eight negative controls consisting of probes with no sequence homology to human RNA sequences for lower limit of 
detection analysis. One positive and one negative control were used for each of the 8 multiplexed samples in each lane. 
The experiment was done in two batches separated by more than one year using two different code set lot numbers. The 
first batch consisted of 8 plates containing training and validation set samples (cohorts 1-4) and the second batch consisted 
of the 9th plate containing cohort 5 blind test samples. A calibration sample used for data normalization was run in the 
first column of the first Plexset plate for each batch. Although the manufacturer recommends using the same sample for 
all batches in the study, a different calibration sample was used for each batch due to limited material supply, potentially 
introducing a Plexset batch effect. 
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Processing of raw Plexset data was performed using the nSolver analysis package following manufacturer’s 
recommendations (MAN-C0019-08) with specifications as below. Data points falling below the lower limit of detection 
were floored using the background thresholding procedure with a threshold count value of 20. Next correction for lane 
and sample technical variation was done by housekeeping (HK) gene normalization, for which the expression value of each 
gene was divided by the geometric mean of 5 stably expressed housekeeping genes (ABCF1, FCF1, GUSB, POLR2A, and 
SDHA) in the same sample. Finally, code set calibration was performed to normalize the 8 sets of barcodes using 8 technical 
replicates of the same LC-iCAP samples, one for each barcode set in each row. Plates 1-8 and plate 9 were processed as 
two separate calibration batches and nSolver batch normalization was performed. Prior to using Nanostring data for 
modeling, raw counts were log2 transformed, and outlier removal was performed using ROBPCA34, for which only data for 
housekeeping genes for each sample were included in the analysis.  

Mitigation of NanoString Plexset miscalibration 
Due to the Plexset calibration issue discussed above in the NanoString Plexset analysis Section, which resulted in 
miscalibration of the training samples (in calibration set 1) with the test set samples (in calibration set 2) and an apparent 
effect on gene expression in the LC-iCAP (Fig. S7), four different approaches were tested to mitigate this effect. These 
approaches included: 1) An optional Plexset stability filter to exclude genes with the strongest calibration batch effect 
between the two calibration batches (plates 1-8 versus plate 9). These genes were defined as those with significant 
differential expression between DMOG controls on Plexset plates 7-8 (processed with cohort 4) versus those on Plexset 
plate 9 (processed with cohort 5) (with FDR < 0.1) (Fig. S7, Data File 4). 2) Two different modeling algorithms, including 
generalized linear modeling (GLM) and RF, each with a different approach to integrating information from different 
features, which could differently affect the impact of the calibration effect. 3) nSolver batch correction to normalize the 
two different calibration batches to each other (as described above). 4) The R-normR package of Bioconductor. 

Modeling 
RF modeling was implemented in the R-caret package35 using mtry values that were automatically selected for each seed 
using the default settings. In stage 1, modeling was done by leave-one-out cross-validation with 10 random seeds. In Stage 
3, modeling was done by leave-one-out cross-validation with 50 resampling iterations followed by validation on the 
independent validation set. For each model configuration, 20 random seeds were generated, each using a maximum of 
20 gene features selected based on variable importance score. The modeling study was repeated with downsampling of 
the training set to balance the number case and control samples within each experimental batch, this was done to assess 
model robustness and possible influence of batch imbalance on model performances. Top models were selected based 
on performance on the validation set (using either AUC or specificity at a fixed sensitivity of ³ 95%). In Stage 4, GLM 
modeling was implemented in the R-glmnet package36. Nested cross-validation was done using R-nestedcv37. For each 
modeling condition, nested cross-validation was repeated 10 times, each with a unique random seed. Optimal modeling 
conditions were those with best median AUCs and seeds either at 50th or 75th percentile of performance.  

Blind testing:  
80 serum samples were selected by Vanderbilt University to meet the selection criteria used for model development with 
two additional criteria: The selection only included samples of high quality (those with an estimated hemolysis less than 
50 mg/dL and storage times of 4 years or less) and samples from patients who were current and former smokers. Patient 
status and clinical data were blind to researchers at time of prediction. However, information on approximate overall ratio 
of case to control samples, and nodule size and smoking status were available. Samples were shipped in one batch and 
processed in random order in 4 LC-iCAP batches and one Plexset batch. LC-iCAP processing included 8 each of DMOG and 
PBS controls, but only the DMOG controls were included on the Plexset due to space limitations. 9 models using iCAP 
features and smoking status were tested on the blind validation set. For 3 of these models, a second version of the model 
including nodule size was tested to measure complementarity with CT scan data. Sample size of the blind test set was 
selected to have power to identify significant models with AUC of ROC >= 0.62 using an established method21. 

Mayo Clinic model 
Pre-test risk of cancer malignancy was calculated for the test set by researchers at Vanderbilt University using Solitary 
Pulmonary Nodule (SPN) Malignancy Risk Score (Mayo Clinic model)4. This model uses 6 clinical risk factors including 
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nodule spiculation, upper lobe location, smoking status (current or former vs non), nodule diameter, age, extrathoracic 
cancer diagnosis >= 5 years prior. The test excludes patients with prior lung cancer diagnosis or with history of 
extrathoracic cancer diagnosed within 5 years of nodule presentation. 

Integrated model 
A prototype integrated classifier was developed after blind testing by integrating LC-iCAP model M4 with the Mayo Clinic 
model using an approach similar to that used for the Nodify XL2.10 This approach is a decision tree model whereby the 
Mayo model’s output is conditionally adjusted by a fixed amount based on a threshold established using the liquid biopsy 
readout: For LC-iCAP probabilities ≤ 0.45, the Mayo model’s output was reduced by a fixed amount and for probabilities 
> 0.45, the Mayo model’s output was used without adjustment. A similar integrated classifier was also developed for LC-
iCAP model M3. See Figure S10 for the technical parameters.  

The integrated model performance on the blind test set was compared to that of the Mayo model by generating ROC 
curves for both models and comparing points on each curve corresponding to maximum specificity at ≥ 95% NPV (with 
25% disease prevalence) using McNemar’s test.12 Model calibration was not required for this comparison because it used 
points from the ROC curves corresponding to specific performance metrics rather than the absolute probability estimates. 
For verification, both models were calibrated to the test set prevalence using logistic regression (R-caret), and ROC curves 
were regenerated. 

Control for error and bias 
Key biological resources were authenticated: an aliquot of the 16HBE indicator cells was validated midway through the 
study externally at IDEXX bioanalytics by CellCheck 16TM Plus, and it passed all three tests. The cell line of origin was 
confirmed to be correct with 15 of 16 markers of the 16STR profile matching 16HBE from Sigma and no contamination 
from mycoplasma spp. or other species was detected. Serum samples were assayed for hemolysis and storage time and 
omitted if above established thresholds. Patient gender age and smoking history were approximately balanced between 
classes. All DNA constructs were sequenced. All chemical resources were from reputable commercial sources. 

Controls in data generation included: blinding researchers to disease status; randomizing sample positions; balancing 
classes within batches; balancing patient attributes between batches; using moat plates to control edge effects in the cell-
based assay; developing standard controls and using them to monitor assay performance and batch effects; performing 
reproducibility studies; measuring RNA integrity before RNA-seq and omitting samples below a threshold 7; and detecting 
and correcting biases from RNA-seq (GC bias and batch effect) and NanoString Plexset analyses (batch effect). 

Modeling practices were used that control for biases and overfitting including: training sets were balanced with 
approximately equal numbers of case and control samples; all models contained fewer features than samples to prevent 
overfitting (except for the pilot model, which had 25 features and 12 samples); validation was conducted using 
independent samples or nested cross-validation, both robust methods that mitigate overestimation of model 
performance regardless of sample size 40; different gene expression detection methods were used for feature selection 
and final model development to avoid effects of platform biases on model performance; final models were evaluated by 
blind testing with independent samples; and samples for blind testing had temporal independence from the training set 
for both sample collection and processing, increasing the rigor of the test.  

Results 
The iCAP is an in vitro cell-based assay platform for blood-based diagnostics that uses indicator cells as biosensors to 
detect and respond to disease signals in patient serum. The response of cells, discovered by gene expression machine 
learning analysis, is characteristic of the disease status (Fig. 1A;14). Here we describe the optimization and validation of 
the LC-iCAP for management of IPNs identified by CT scan to reduce false positives in lung cancer screening and reduce 
the number of unnecessary follow-up tests performed for those with benign nodules.  
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Study summary.  
The study had PRoBE design19 and used archived serum sample that were collected from 5 cohorts of patients with IPNs 
identified by CT scan (Fig. 2A). Nodules were later characterized as malignant or benign and samples were used to develop 
the LC-iCAP in 4 Stages outlined in Figure 1B using an iterative process of model training and validation with successively 
larger sample sizes to tune model parameters and hyperparameters, followed by an unbiased estimate of the performance 
of final models using a blind test set (Fig. 2B). Integrated into this approach were numerous analyses using both standard 
controls and patient metadata to pinpoint and mitigate various sources of unwanted variation in the assay readout from 
preanalytical and analytical sources. For modeling, sample numbers and data partitioning were based on power 
calculations and on sample and data quality assessments made during the study. Throughout the study, validation sets 
did not contain samples used for tuning model parameters and the research team was blinded to the final test set until 
after predictions were made. Both intermediate and final modeling steps followed the standard practice to use fewer 
features than samples to avoid overfitting 41,42. Additionally, to reduce potential for error due to systematic biases in 
detection of gene expression, different detection approaches were used for feature selection (RNA-seq) and for final 
model testing (NanoString Plexset). The study is described in detail below. 

Stage 1: Proof of concept: Training and testing a pilot LC-iCAP model  
The aim of this stage was to characterize and initial LC-iCAP readout and develop a first model to establish proof-of-
concept of the assay. To characterize an initial LC-iCAP readout, a 12-sample pilot cohort of case and control patient serum 
samples were acquired from Vanderbilt University (cohort 1; Fig. 2A, Data file 1). These samples were analyzed in the LC-
iCAP along with reference serum controls. Gene expression was measured by RNA-seq and despite the small sample size, 
239 differentially expressed genes were identified (FDR < 0.05; Benjamini-Hochberg). By STRING analysis, these genes had 
significantly more interactions than expected by chance, and were significantly enriched for HIF1A signaling (KEGG) and 
response to hypoxia (GO process) (FDR < 0.05), both of which are implicated in lung cancer 43. Cohort 1 was used to train 
a Random Forest (RF) classifier for lung cancer prediction using cross-validation with the top 25 DEGs sorted by FDR as 
features and 10 random seeds. 

Next, a set of 103 samples (cohort 2) was acquired and used to test the model (Fig. 2). This cohort was analyzed in 5 LC-
iCAP and 2 RNA-seq batches (Data file 1). The pilot model was validated using all samples from cohort 2 (Fig. 2A). The 
model had significant overall performance (median seed AUC 0.62; 95% CI 0.51-0.73) (Fig. 3A). Similar models with 50, 75 
or 100 features had comparable performances, but models developed using other data partitions were not significant 
(data not shown). 

LC-iCAP data from cohorts 1 and 2 were analyzed by hierarchical clustering based on the expression of 20 top DEGs in 
cohort 1 (Fig. 3B). This analysis separated the samples into two distinct clusters, each enriched for either case or control 
classes. The modeling and clustering data suggest that the LC-specific differential expression observed in cohort 1 is 
generalizable, establishing feasibility of the LC-iCAP. However, they also indicate the presence of noise in the assay, 
potentially arising from biological diversity among patients, preanalytical variability in serum quality, and/or analytical 
variability from the cell-based assay or RNA-seq analysis. These three sources of noise were explored in Stages 2-4. 

Stage 2: Analytical optimization of cell-based assay and reproducibility testing 

Optimization and Standardization of LC-iCAP Assay Parameters:  
Assay parameters were optimized with the goal of detecting and controlling for unwanted variation from analytical 
sources to improve reproducibility and magnitude of differential expression and thus model performance. 

First, two sets of assay standard controls were developed to use for these optimization studies and to monitor assay 
performance. Biological standards were case and control serum pools, each generated by combining aliquots of serum 
from 8 patients from cohorts 1 and 2 (indicated in Fig. 3B). The differential expression readout was quantified using 
NanoString with a ‘development gene set’ containing 58 genes with significant case versus control differential expression 
in cohort 1 (Fig. S2; Data file 2). Analysis of 4 replicates each of case and control pools yielded a baseline differential 
expression of 55 genes (FDR < 0.1). Chemical standards were PBS and DMOG, a small-molecule agonist of the hypoxia 
response selected to mimic the activation of the hypoxia response in the assay by case versus control serum (see Stage 
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1). 24 of the 58 genes were responsive to DMOG and 23 of the 24 responsive genes were coherent with the readout of 
the pooled serum standards.  

For assay optimization, 4 technical replicates of each serum pool standard were assayed under varying assay parameters 
and case versus control differential expression was compared. We first assessed the impact of multiple freeze-thaw cycles 
on the differential LC-iCAP readout comparing once-thawed versus twice-thawed serum pools. Both conditions yielded 
similar numbers of genes with significant differential expression suggesting that twice thawed serum is suitable for 
optimization studies (Fig. S1A). Next, indicator cell types, incubation times and serum concentrations were assessed to 
select the combination that maximized the differential expression response in the LC-iCAP. Testing parameters were 4 
candidate indicator cell types (16HBE, A549, MRC5, and Nuli-1); 2 serum incubation times (6 hours, 24 hours); 4 serum 
concentrations (1%, 5%, 10%, and 20%); and the effect of Trichostatin A (TCA) addition, an inhibitor of the hypoxic 
response. The optimal LC-iCAP parameters were found to be a 24 h incubation of either 5% or 10% serum with 16HBE lung 
epithelial indicator cells in the absence of TCA, which matched the baseline conditions used in Stage 1 (Fig. S1B-E). To 
avoid potential bias from measuring only 58 genes, RNA samples from the TCA and cell type experiments were reanalyzed 
by RNA-seq, which yielded similar results (data not shown). 

In addition to the analytical optimizations of the cell-based assay listed above, we detected and corrected sources of noise 
arising from RNA-seq and metadata analysis, including LC-iCAP and RNA-seq batch effects, artifactual duplicate reads RNA-
seq data, and GC biases in the RNA-seq data. This included analysis of case versus control differential expression in patient 
metadata and model performance before and after corrections in various combinations. All three corrections improved 
the number of significant DEGs and model performances (data not shown). Therefore, these corrections were included in 
data processing in stage 3. 

Assessment of Analytical Reproducibility of LC-iCAP Across Varied Experimental Conditions:  
Next, we measured the reproducibility of differential expression across a variety of conditions to assess the analytical 
variability of the LC-iCAP. This was done using the serum pool controls and individual patient serum samples (6 of each 
class). Reproducibility was measured between three different indicator cell expansion batches, two different LC-iCAP 
batches run on different days, two different gene expression detection platforms (RNA-seq versus NanoString) and two 
different NanoString batches. For comparisons with the serum pools, reproducibility of differential expression was 
measured by fitting a linear regression model to test-versus-baseline data yielding R2 values from 0.80-0.97 (Fig. S2A-D). 
For comparisons using individual samples, the expression profiles of individual genes across samples were compared 
between conditions showing that 92-98% of genes had significant correlations between conditions with FDR < 0.1 (Fig. 
S2B-D). For these experiments, reproducibility of differential expression (gene-level variability) was measured instead of 
the more commonly used measure of gene rank consistency across samples (sample-level variability) because the former 
is more stringent and has greater relevance in detecting subtle gene expression changes typical of biomarkers 44. These 
data show that the LC-iCAP has sufficient analytical reproducibility to detect signal above background across various 
conditions used for assay development and suggest that variability identified in Stage 1 is from pre-analytical sources. 
 
Validation of Hypoxia Signaling as a Generalizable Marker in LC-iCAP Using Pooled Serum Standards: 
To assess the generalizability of the hypoxia response identified in Stage 1, we utilized the pooled serum standards, 
consisting of 16 samples, 12 of which were distinct from the original cohort 1 (Fig. 3B). RNA-seq data from two pooled 
serum control experiments under standard conditions were merged and analyzed for case versus control differential 
expression (Datafile 2) and GSEA, which identified hypoxia as the most enriched pathway (adjusted p-value < 0.05, Fig. 
S4). We further investigated the hypoxia response in the LC-iCAP by analyzing the pooled serum standards using an 
alternative bronchial epithelial cell line as indicator cells. We identified 61 genes that were significantly differentially 
expressed in both LC-iCAP RNA-seq experiments with 16HBE and Nuli1 indicator cells and found that the differential 
expression levels were correlated between the cell types (R 0.77, Fig. 4A, left). Next, STRING network analysis was done 
showing that the 47 coherently up-regulated genes had high network connectivity and enrichment of HIF1A/response to 
hypoxia and other processes (FDR < 0.001, Fig. 4A, right). To further elucidate the response mechanism, we compared 
levels of hypoxia-responsive transcription factors HIF1A and HIF2A between case and control classes in the LC-iCAP using 
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quantitative western blotting on both serum pools and individual samples. Significantly higher levels of both factors were 
observed in case sera compared to controls, an effect reduced by the addition of DMOG, a known HIF1A stabilizer (Fig. 
4B). Collectively, these results suggest that hypoxia signaling is a generalizable marker of lung cancer in the LC-iCAP, 
underscoring the involvement of HIF1A and HIF2A in the response observed in indicator cells. 
 
Stage 3: Model-based feature selection using LC-iCAP-RNA-seq data 
To constrain final models and prevent overfitting, a modeling-based approach was used to identify the optimal genes from 
LC-iCAP RNA-seq data to use as candidates for final model development in Stage 4 with targeted LC-iCAP NanoString 
Plexset data. To achieve this downselection of the features, we conducted a large-scale modeling study whereby 104 RF 
models were trained including all combinations of 13 feature reduction approaches and 8 sample filtering approaches. 
The models were ranked based on performance on a held-out validation set and candidate features were selected from 
the top 3 models (Fig. 5).  

Feature reduction approaches were based on case versus control differential expression either across all samples or within 
sample subsets. Sample filters were applied to exclude technical failures and to select subsets of samples based on patient 
lung function and smoking history, improving sample homogeneity. Meta-analysis of model performances revealed that 
all sample filters tested enhanced the number of differentially expressed genes (DEGs) and improved model performance. 
Additionally, feature reduction strategies that selected features from specific sample subsets, rather than the entire 
training set, produced the best-performing models (Fig. 5 top, Data file 3). 

The three top models are shown (Fig. 5 bottom), the best of which had an AUC of 0.78 (90% CI 0.63-0.93) on the held-out 
validation set with sensitivity and specificity of 100% and 60%, respectively. The list of 85 features for final model 
development in Stage 4 was composed of 66 features selected from each of the 3 top models and an additional 19 genes 
from the model developed in Stage 1 (Data file 3).  

This analysis used cohorts 1-2 from Stage 1 and samples from a new cohort 3. Differential expression analysis revealed 
that a cohort 3 batch had robust levels of DEGs (>200 DEGs with FDR <0.1) (Data file 2D), and significant upregulation of 
‘response to hypoxia’ GO molecular process in the case versus control condition (p-value < 0.001). With this discovery, 
there were a total of 3 sample sets in the study with this differential enrichment of the hypoxic response. 

Stage 4: Generation of LC-iCAP-Nanostring Plexset data and final model development  
This Stage involved generating LC-iCAP Nanostring Plexset data for the 85 candidate features from Stage 3 across cohorts 
1-3 and using the data for final LC-iCAP model development and blind testing. Switching from RNA-seq to Nanostring 
Plexset, a high-throughput platform capable of analyzing the expression of 96 genes across 96 samples per batch, was 
done to minimize analytical biases in feature selection and to initiate the development of a high-throughput assay 
configuration suitable for clinical deployment.  

First, LC-iCAP Nanostring Plexset data were generated for cohorts 1-3 (Fig. 2A, Data file 4). Data were merged, normalized 
and filtered to exclude low-quality data and samples resulting in 97 samples remaining for modeling (Fig. 6). This included 
a filter to remove samples with storage exceeding 10 years supported by two meta-analyses of patient LC-iCAP data, which 
demonstrated a significant effect of storage time on the LC-iCAP readout (Fig. S8). 

The 97 samples were used as a training set for model development. Selection of parameters and hyperparameters and 
estimation of model performances was done with nested cross-validation, an approach that has been demonstrated to 
generate unbiased performance estimates with small sample sizes40. The parameters tested included the sample filters 
optimized in Stage 3 and inclusion of patient smoking status (current or former) as a covariate feature in the model. 

To test a selection of fully parameterized models, a new set of 80-samples from Vanderbilt University (cohort 5) was added 
to the study for blind testing of (Figs. 2 and 6). All samples of the blind set had pretest risk of malignancy of at least 5% 
calculated using the Mayo Clinic model and the patient and sample attributes matched those of the other cohorts except, 
all were from current or former smokers, and all were of high serum quality with storage times between 1-4 years. The 
sample source was the same as for the training set samples, but the samples for blind testing had temporal independence 
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from the others, with a collection window that was 9 years later and LC-iCAP processing that was 1 year later, adding more 
rigor to the validation than concurrent collection and processing.45 Sample classes were blinded, and researchers were 
provided only with smoking status and nodule sizes of the patients (for optional inclusion of nodule size in the LC-iCAP 
model to test for orthogonality to CT data). 

Before selecting models for blind testing, we first demonstrated assay reproducibility with the Plexset readout by 
hierarchical clustering using the standard control data (Fig. S7). This analysis revealed the effects of a Plexset calibration 
issue between the training and test set described in the Methods section. The method to overcome the miscalibration 
could not be optimized prior to blind testing because only the calibration batch containing the blind samples was affected; 
therefore, 4 different normalization approaches were developed (described in Methods and Fig. S9) and top models were 
tested on the blind set iteratively with different combinations of normalization approaches.  

9 models were tested in sequence on the blind set, the last two of which had significant performance with AUCs of 0.64 
ad 0.63 (M3 and M4 in Fig. 7). Both significant models used the same combination of 3 approaches to overcome the 
Plexset miscalibration including using the RF algorithm, nSolver batch correction and the Plexset stability filter together. 
Case versus control differential expression was compared between the training and test sets and there was significant 
correlation for not only M3 and M4 genes, with R of 0.80 and 0.73, respectively, but for genes excluded due to Plexset 
miscalibration suggesting presence of a large number of predictive genes on the Plexset gene panel (Fig. 8). No genes had 
significant differential expression in both sample sets suggests that the model performance is influenced by multiple 
features, each contributing small effect sizes. 

To explore the potential clinical utility of the LC-iCAP, a prototype clinical version of the assay was developed after blind 
testing by integrating the LC-iCAP model M4 with the Mayo Clinic model4 using an approach similar to that used for the 
Nodify XL2 test offered by Biodesix10 as described in Figure S10. Performance of this ‘iCAP integrated classifier’ was 
compared to that of the Mayo Clinic model by generating ROC curves for each model and comparing maximum specificities 
at cut points with clinical utility as a rule-out test (corresponding to NPV ³ 95% using an estimated cancer prevalence of 
25% in a community pulmonary practice15,16) (Fig 9). The performance of the iCAP integrated classifier was significantly 
better than that of the Mayo Clinic model suggesting clinical utility of the LC-iCAP (McNemar p-value12 0.037). A second 
integrated classifier was developed using LC-iCAP M3, which had a similar performance and significant improvement over 
the Mayo Clinic model (Fig. 9). Because the models were compared at ROC curve points with specific performance metrics 
(rather than absolute probability estimates), model calibration was not required and when implemented had no effect on 
the results (Fig. S11). Significant improvement was not observed using the training set samples for either model, which 
could be due to longer sample storage times of the training versus test sets, or variability due to low sample sizes. The 
parameters of the integrated classifier were selected to maximize clinical utility on the blind samples. Thus, while this 
study validated the performance of the LC-iCAP model, the constants of the iCAP integrated classifier have not yet been 
validated. 

Discussion  
Blood biomarkers are needed for the early detection of diseases to improve outcomes, but their very low abundance and 
high levels of noise present significant technical challenges. We are developing the iCAP, a biosensor assay for blood-based 
diagnostics to overcome this issue by capitalizing on the cells’ evolved ability to detect weak signals in noisy environments. 
The assay works by using cultured cells as biosensors to detect disease-related molecules in blood and analyzing the gene 
expression response using machine learning tools to develop disease classifiers. This approach enables using established 
tools for global gene expression analysis from cultured cells to simplify model development and deployment and avoids 
inherent noise in gene expression arising from genetic variation between patients46. Here, we initiated the development 
of the LC-iCAP, a blood test for patients with IPNs identified by CT scans to improve malignancy risk assessment and help 
those with benign nodules avoid invasive biopsies while directing further diagnostic efforts towards those with lung 
cancer.  

Cell-based approaches have brought many benefits to drug discovery that can be applied to blood-based diagnostics using 
the iCAP.47–49 Here, the consolidation of disease signals in blood into a cell-based case versus control differential expression 
readout enabled us to apply statistical enrichment analysis to identify a hypoxia response in the lung cancer-specific 
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readout, and biochemical analyses to implicate transcription factors HIF1A and HIF2A  in mediating the response (Fig. 4). 
This finding aligns with hypoxia as a well-documented characteristic of lung cancer and other malignancies,43,50,51 and it 
suggests that the LC-iCAP readout reflects blood analytes associated with the tumor status. 

The cell-based approach also enabled us to develop standardized biological and chemical controls with quantitative 
multicomponent readouts that we used to optimize assay parameters, perform reproducibility studies and detect and 
control for sources of unwanted variation. We found that the LC-iCAP consistently demonstrated reproducible disease 
versus normal differential expression across various conditions and that noise in the assay was primarily from patient 
heterogeneity and pre-analytical sources. We specifically identified sample storage time and patient lung function as 
sources of noise, supported by studies demonstrating that sample storage time alters the abundance of blood 
components,52,53 and smoking history impacts lung cellular biochemistry.11,54,55 We used these data to select model 
parameters, aiming to reduce overfitting by employing a data-driven approach rather than relying solely on performance-
based parameterization. 

We successfully validated two LC-iCAP models through blind testing, based on the expression of 17 or 36 gene features 
and patient smoking status, achieving AUCs of 0.63 (95% CI: 0.50–0.75) and 0.64 (95% CI: 0.51–0.76) for the respective 
models (Fig. 7). Although training and test samples were from Vanderbilt University, the test set samples were temporally 
independent from the training set samples in collection and processing, enhancing the rigor of the validation process 
compared to an internal validation approach where one dataset is randomly split into a training and test set.45  

Several different feature selection approaches were explored during model development, and both validated models used 
approaches that measured differential expression within subsets of samples rather than the entire training set (Fig. 5). 
Additionally, while 85% and 77% of gene features with detection above background for models 3 and 4, exhibited 
consistent differential expression between the training and test sets, none demonstrated significant differential 
expression in both sets (Fig. 8). These two findings underscore the significant patient-to-patient heterogeneity of early-
stage biomarkers and the contribution of numerous features, each with small effect sizes, on model performance. This is 
consistent with the patient heterogeneity we observed in the LC-iCAP readout and highlights the importance of developing 
multivariate models for cancer detection. 

After blind testing we assess potential clinical utility of the LC-iCAP by integrating it with the Mayo clinic model using a 
method previously developed for deploying the Nodify XL2 test by Biodesix10 (Figs. 9 and S10). The ‘iCAP integrated 
classifier’ performance was compared to that of the Mayo model at specific cut points yielding ³ 95% NPV using a 25% 
prevalence in the intended use population.15,16 This threshold was selected to maximize clinical utility as a rule-out test to 
discriminate nodules that have a 5% risk of cancer that can be diverted to surveillance from those with higher risk that 
require further testing. At this threshold, the iCAP integrated classifier had 67% specificity and 90% sensitivity and 
significantly better performance than the Mayo model suggesting clinical utility (Fig. 9).  
 
In a clinical setting where a rule-out test is used to guide patient care, specificity at the cut point indicates the percentage 
of patients with benign nodules who would be directed to surveillance, thus avoiding potentially invasive follow-up 
procedures. The specificity of the iCAP integrated classifier was 1.5-2X better than that reported for the two other CT-
integrated blood tests from Biodesix and Magarray at similar NPV thresholds, (67% versus 44% and 33%10,11, respectively). 
This suggests actionable results for a greater number of patients with benign nodules using the LC-iCAP. Sensitivity, which 
reflects the percentage of patients with malignant nodules who would be correctly directed to follow-up testing, was 90% 
for the iCAP integrated classifier. Although this is lower than that of the other tests (97% and 94%), the iCAP integrated 
classifier would have a 95% NPV in the intended use population, attributable to its higher specificity at the cut point, thus 
not substantially increasing harm.  
 
While the data are promising, this is study has limitations. Our data suggests that our use of archived samples with variable 
storage times up to 10 years had a negative effect on model development and performance (Fig. S8). In addition, due to 
a technical issue necessitating concurrent batch correction and model testing, nine models were tested on the blind test 
set. Finally, although temporal validation is rigorous, external validation is required for testing generalizability of the model 
to new collection sites. We plan to conduct a multi-site prospective study with a larger sample size to further improve the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.04.24316585doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.04.24316585


performance and robustness of the model, followed by a clinical utility study as recommended in the American Thoracic 
Society policy statement.8 

Because of its broad search space, multicomponent readout and cost-effective scalability, the iCAP could have utility as a 
next-generation platform for cancer screening including multi-cancer early detection (MCED). This could involve either 
using an array of indicator cells or tuning the LC-iCAP to detect multiple cancer types. Supporting this, HIF1A in the LC-
iCAP readout has central roles in general tumor biology, including response to inflammation, adaptation to hypoxia, and 
stimulation of growth of certain cancers. 50,51 Notably, hypoxic tumors are more likely to metastasize and are less likely to 
respond to treatment51 and to our knowledge, blood biomarkers of tumor hypoxia have not yet been identified. Future 
studies include exploring use of fluorescent reporters and single cell analysis to further simplify and amplify the LC-iCAP 
readout, as well as scaling all analytical steps to 96-well configurations using tools already in use for diagnostics such as 
QuantiGene Plex. 

To achieve the Cancer Moonshot initiative's goal of accurate early detection with minimal overdiagnosis and missed cases, 
relying on only one test is unlikely to yield optimal clinical utility. Multimodal approaches, which combine multiple 
orthogonal tests each with independent performance, can outperform individual tests in isolation.9,12 The iCAP is a non-
conventional approach that is complementary to other more traditional tests and thus well-suited for combinatorial 
diagnostics. Through collaborative efforts, just as the power of combining treatments has revolutionized therapeutics, the 
integration of diverse diagnostic modalities holds the promise of transforming diagnostics as well.  
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Figure 1. A, The iCAP for blood-based diagnostics. 
Standardized cells are exposed to serum from 
patients. Gene expression readout of cells is used to 
develop machine learning-based models to predict 
disease. B, Stages of LC-iCAP development. Sources 
of unwanted variation from patient biological 
diversity and serum quality were detected and 
mitigated in stages 3-4. HTP, high throughput.

A

B
Stage 1 Establish LC-iCAP proof of concept

Stage 2 Optimize assay parameters and 
test analytical reproducibility 

Stage 3 Optimize model parameters
 and select model features

Stage 4 Transition to HTP readout
Train and blind test final model
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Figure 2. A, Summary of sample characteristics and cohorts used for LC-iCAP development. *IPNs were 
classed as malignant or benign after CT scan by either diagnostic biopsy or resection or by 2 or more 
years of serial imaging. **Cohort 5 subjects were current and former smokers by design. Cohort 4 is not 
shown as it was replaced with cohort 5 due to low sample quality (see Methods). B, Modeling data 
partitions for 3 stages. IPN, indeterminate pulmonary nodule; CT, low-dose computed tomography. 
Patents have no other known cancer at the time of CT scan. All samples shown were from 
Vanderbilt University.

Description of samples Class*

Sample count per cohort

cohort 
1

cohort 
2

cohort 
3

cohort 
5**

Serum from patients with 
non-calcified IPNs 

identified by  CT scan 
between 5-30 mm in 

diameter (95% > 7 mm)

Case: patients 
with malignant 

nodules
6 53 50 40

Control: patients 
with benign 

nodules
6 50 50 40

subtotal 12 103 100 80

total 295

A

B Stage 1 Stage 3 Stage 4

Training set: for learning while tuning model 
parameters & hyperparameters

cohort 1
12 samples

cohorts 1-3
109 samples

cohorts 1-3
97 samples

Validation set: a held-out set for estimating 
model performances while training

cohort 2
103 samples

cohorts 1-2
28 samples none

Test set: for unbiased estimation of 
performance of the final fully-specified models none none cohort 5

79 samples
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Figure 3. Proof of concept of LC-iCAP. A, ROC curve showing performance of a pilot LC-iCAP model trained 
on a 12-samples training set (cohort 1) and tested on 103-sample validation set (cohort 2). The model is 
based on 25 gene expression features (right). B, Hierarchical clustering of cohorts 1 and 2 based on LC-
iCAP gene expression shows grouping of samples by class. Gene expression values are log counts that 
have been normalized to the mean expression of the benign samples within the same experimental batch. 
The 20 genes used for clustering were the top 20 differentially expressed genes in LC-iCAP data of cohort 
1 based on median absolute deviation. Dendograms show gene clusters (left) and two distinct sample 
clusters (top). Only 112 of 115 samples are shown as 3 outliers were removed. Samples used to make 
serum pools (biological standards) and  the 12 samples in cohort 1 are marked. 
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p = 0.021p = 0.012 p < 0.001

Figure 4. The LC-iCAP response to case versus control serum is enriched for HIF1A-mediated hypoxia signaling. A. Left, 
comparison of case versus control differential expression in LC-iCAP RNAseq data between two different bronchial epithelial 
indicator cell lines (16HBE and NuLi-1) using technical replicates of pooled serum controls. The 61 genes with differential 
expression in both cell types are shown (FDR < 0.1). Right, STRING network analysis of the upregulated genes show 
significantly enriched connectivity (p-value <1E-16) and enrichment for HIF1A/response to hypoxia (red/pink), glycolysis 
(green), and IL-17 signaling/inflammation (orange/yellow) (FDR < 0.001). Edge thickness represent strength of interactions 
and unconnected nodes are listed at the left. B. Results of western blot analysis showing upregulation of HIF1A and HIF2A 
transcription factors in the LC-iCAP in response to case versus control serum. Left and middle, box plots showing levels of 
HIF1A or HIF2A normalized to actin across 4 replicates of pooled serum controls (M pool and B pool) and 28 different 
individual serum samples  including 14 of each class (malignant and benign). Individual samples included the 12 samples used 
to make the pools. Positive controls were one or two replicates each of DMOG or Mg132 versus DMSO or no stimulus. Right, 
one replicate of each serum pool was analyzed in the LC-iCAP with increasing concentrations of DMOG showing that DMOG 
dampens case versus control differential expression for both factors. Western blot images are in Figure S5.
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Figure 5. Stage 3 model-based feature selection using LC-iCAP RNAseq 
data for final model development in stage 4. 104 model configurations 
were trained and tested. % significant models is the percent of models 
having at least one seed with significant performance in validation. 66 
features from multiple seeds of the three top models were use for 
stage 4. DEG, differentially expressed gene; LOOCV, leave one out 
cross validation; GSEA, gene set enrichment analysis.

109-sample training set and 28-sample validation set from cohorts 1-3

104 RF MODEL CONFIGURATIONS: Trained 20 seeds for each 
using 50 x LOOCV and tested on the validation set

13 FEATURE FILTERS OF 3 TYPES: 
◼   DEGs across all batches 
◼   DEGs within individual batches 
◼   Leading edge genes from GSEA 
      of individual batches

8 SAMPLE FILTERS: Combinacons
of 3 opconal omissions: 
◼  Pacents with low lung funccon 
◼  Samples from failed RNAseq batch
◼ Pacents who have never smoked
◼  No filter

Model +  
sample filter

Gene 
feature 

type

Train / 
validation 

sample 
number

Train / 
validation 

AUC 
(90% CI)

% significant 
models (with 

down 
sampling)**

M3-1
◼◼

◼ 14* / 26 0.81 / 0.81 
(0.66-0.95)

45% 
(25%)

M3-2
◼◼◼

◼ 70 / 25 0.65 / 0.71 
(0.54-0.89)

90% 
(60%)

M3-3
◼◼

◼ 80 / 27 0.86 / 0.78 
(0.63-0.93)

100%
 (70%)

*training set only included cohort 3 samples.**modeling was 
repeated with down sampling to balance classes within each 
experimental batch for training. 

3 TOP MODELS SELECTED

66 features used for final model development in stage 4

% significant 
models

35%
29%
27%
15%

0%
27%
27%
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Training set: 
215 samples
Cohorts 1-3

109 cases, 106 controls

97 samples from VU used for training final 
models

50 cases, 47 controls

53 excluded due to 
storage cme >10 years*

10 excluded due to 
inadequate sample 

volume*

27 excluded due to 
sample hemolysis

44 excluded  due to 
technical failure*

28 excluded due to 
pacent smoking status*

Figure 6. Retrospective sample flow diagram for final LC-iCAP models in stage 4. Left, The 
training set is made up of 3 cohorts. Right, a new cohort was acquired after completion 
of data collection for blind validation. The new samples were collected ~10 years after 
training samples. Sample numbers are not cumulative, as a sample may belong to 
multiple exclusion groups. *Samples omitted from final classifier training were used for 
LC-iCAP development and/or feature selection. All samples are from Vanderbilt 
University. 

Test set: 
80 samples

Cohort 5
40 cases and 40 controls

79 samples from VU used for testing final 
models

40 cases, 39 controls

1 excluded due to 
administracve 

error
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Table 1. Participant demographics

Characteristic N benign, N = 47 malignant, N=50 p-value N benign, N = 39 malignant, N= 40 p-value
Age, Mean (SD) 97 63 (9) 64 (8) 0.501 79 64 (8) 65 (7) 0.721

sex, n (%) 97 0.592 79 0.242

     Female 38 19 (40) 19 (38) 28 12 16
     Male 59 28 (60) 31 (62) 51 27 24
smoking status, n (%) 97 0.022 79 0.082

     current 43 25 (53) 18 (36) 35 20 15
     former 54 22 (47) 32 (64) 44 19 25
pack years 97 53 (28) 54 (34) 0.901 79 60 (35) 62 (28) 0.741
nodule size, Mean (SD) 97 12.24 (5.97) 17.82 (4.35) <0.0011 79 12.07 (5.33) 17.87 (6.53) <0.0011

storage years, Mean (SD) 97 8.10 (1.59) 6.49 (2.18) <0.0011 79 3.44 (0.72) 3.65 (0.62) 0.16
1 Welch Two Sample t-test 2 Person's Chi-squared test

Train, N=97 Test, N=79
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Figure 7. ROC curves of M3 and M4 on the training and blind test sets. AUC 95% CI is 
shown in brackets. LC-iCAP integrated classifiers were developed using the cut points 
shown on the blind test ROC (green circle) (0.49 for M3 and 0.45 for M4). 
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Figure 8. Heatmap of LC-iCAP Plexset data showing case versus control differential expression 
for genes of M3 and M4 and genes not used in either model. Significant differential expression is 
indicated with asterisks (Mann Whitney U test p-values <0.05). There was significant 
correlation between training and test sets across genes in models M3 and M4 and excluded 
genes (Pearson correlations and p-values are shown). Only genes detected above background 
are shown. These data suggest that the LC-iCAP is informed by multiple features, each with 
small effect sizes.
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Figure 9. The iCAP-integrated classifiers outperforms the Mayo Clinic model on the test set. ROC curves for 
the Mayo Clinic model and the iCAP-integrated classifier (which combines LC-iCAP with the Mayo Clinic model 
as defined in Fig. 10) are shown for each LC-iCAP classifier M3 and M4. The region of the graphs corresponding 
to 95% NPV or greater was determined with an estimated 25% prevalence in the expected clinical population 
(shaded in gray). The model performances were compared at cut points that maximize specificity and have 
>=95% NPV, which were selected to yield clinical utility as rule-out tests (marked with colored nodes). Both of 
the integrated classifiers had significantly higher accuracies compared to the Mayo model (liberal one-tailed 
McNemar’s test p-value = 0.037 and 0.006 for M4 and M3 integrated classifier, respectively). At the cut points, 
the models had similar NPVs (94.7% for M3 integrated, 95.2% for M4 integrated and 96.1% for the Mayo 
model), corresponding to a 4-5% cancer risk for negative results. However, the integrated classifiers had better 
specificities (74.4% for M3 integrated, 66.7% for M4 integrated, and 41.0% for the Mayo model). AUC, area 
under the receiver operating characteristic (ROC) curve; CI, confidence interval; NPV, negative predictive value.

PreCyte confidential 07/26/2024

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.04.24316585doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.04.24316585

