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Abstract / Summary paragraph
Neuropsychiatric and neurodegenerative disorders exhibit cell-type-specific characteristics1–8,

yet most transcriptome-wide association studies have been constrained by the use of homogenate
brain tissue9–11, limiting their resolution and power. Here, we present a single-nucleus
transcriptome-wide association study (snTWAS) leveraging single-nucleus RNA sequencing of over 6
million nuclei from the dorsolateral prefrontal cortex of 1,494 donors across three
ancestries—European, African, and Admixed American. We constructed ancestry-specific
single-nucleus-derived transcriptomic imputation models (snTIMs) including up to 27 non-overlapping
cellular populations, enhancing the resolution of genetically regulated gene expression (GReX) in the
brain and uncovering novel gene-trait associations across 12 neuropsychiatric and
neurodegenerative traits. Our snTWAS framework revealed cell-type-specific dysregulation of GReX,
identifying over 4,000 novel gene-trait associations not detected by bulk tissue approaches. By
applying these snTIMs to the Million Veteran Program, we validated major findings and explored the
pleiotropy of cell-type-specific GReX, revealing cross-ancestry concordance and fine-mapping causal
genes. This approach enhances the discovery of biologically relevant pathways and gene targets,
highlighting the importance of cell-type resolution and ancestry-specific models in understanding the
genetic architecture of complex brain disorders.

Main
The genetic architecture of neuropsychiatric and neurodegenerative disorders (NPD/NDDs) is

complex, with a significant portion of their heritability attributed to common genetic variants within
non-coding regions of the genome. Genome-wide association studies (GWAS) have successfully
associated numerous variants with NPDs and NDDs, yet pinpointing causal genes and understanding
the underlying biological mechanisms remains challenging. Transcriptome-wide association studies
(TWAS) have emerged as a powerful approach to bridge this gap by integrating GWAS data with
predictive models of genetically regulated gene expression (GReX), thereby linking genetic variants
to gene expression changes that may drive disease risk12–14. Traditional TWAS efforts, however, have
predominantly utilized bulk tissue RNA sequencing7,15–17, which masks the cell-type-specificity of gene
expression and genetic regulation1–3,5–7,18–21. Given the heterogeneous cellular composition of the
human brain and its high level of transcriptional diversity encompassing both cells with distinct
embryologic origins and transcriptionally similar but functionally distinct subtypes of neurons22, such
an approach is suboptimal for studying NPDs and NDDs, where risk variants often exhibit
cell-type-specific effects. Recent evidence underscores the importance of cell-type-specific
investigations, as different cell-types in the brain contribute uniquely to the pathogenesis of disorders
such as schizophrenia (SCZ)1–6, Alzheimer’s disease (AD)7,8, and major depressive disorder
(MDD)23,24.

The PsychAD Consortium (Supplementary Notes “PsychAD dataset”)22,25 generated a
population-level single-nucleus RNA sequencing (snRNA-seq) dataset comprising over 6 million
nuclei isolated from the dorsolateral prefrontal cortex (DLPFC) of 1,494 individual donors. Using this
data, we constructed single-nucleus-derived transcriptomic imputation models (snTIMs) for 32 (27
non-overlapping) cellular populations, enabling us to capture GReX with unprecedented resolution.
These snTIMs were then leveraged to perform TWAS for 12 NPD and NDDs, revealing novel
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gene-trait associations (GTAs) that are specific to individual cell-types. In addition to identifying novel
associations, we validated our findings through a large-scale phenome-wide association study
(PheWAS) in approximately 600,000 individuals from the Million Veteran Program (MVP). This
validation not only confirmed the robustness of our results but also highlighted the pleiotropic effects
of cell-type-specific GReX across various neurological, mental health, and sensory organ disorders.
Importantly, our ancestry-specific models enabled cross-ancestry comparisons, uncovering shared
genetic architectures and enhancing the fine-mapping of causal genes.

Brain snTIMs capture brain GReX with cell-type specificity across ancestries
We developed an analytical framework to interrogate brain cell-type-specific GReX

contributions in NPD and NDDs (Extended Data Fig. 1). By utilizing genotype and snRNA-seq data
from the PsychAD Consortium22,25, we trained 94 snTIMs across 3 levels of cell-type hierarchy
including 32 cellular populations in the DLPFC (Extended Data Fig. 2; Table S1). At the highest level
of resolution, we obtained 27 non-overlapping cellular populations (4 classes and 23 subclasses). We
were able to reliably (R2

Cross Validation (CV) ≥ 0.01, pCV ≤ 0.05, 10-fold model training cross-validation)
impute 20,189 (59.9%), 18,742 (55.6%) and 13,923 (41.3%) of the 33,688 assayed genes within the
PsychAD dataset22,25 (Extended Data Fig. 3A; Tables S2-7) in individuals of European (EUR; n = 920),
African (AFR; n = 321) and Admixed American (AMR; n = 118) ancestry, respectively.

EUR PsychAD snTIMs confidently predict more genes than a similarly sized (n = 924) EUR
homogenate transcriptomic imputation model (TIM) for the same brain region (DLPFC26 EpiXcan9

TIM27, hereafter referred to as “Bulk”) across “snBulk” (all cells pooled together), “Class” and
“Subclass” (best gene model trained at the class and subclass level, respectively) (Fig. 1A).
Specifically, snTIMs were able to impute expression for 11,266 genes which were not imputed in Bulk,
and outperformed the bulk model in more than 67% of common imputable genes (6,023/8,923)
(sign-test p-value = 1.98 × 10-2,683). In summary, snTIMs can identify more genes across the R2

CV

spectrum than Bulk at both the snBulk level and across individual cell-type-specific snTIMs (Fig. 1B).
Conversely, 1,364 genes are only imputable in Bulk and not in snTIMs. These discrepancies can be
partially explained by differences in sequencing technology and the detection of extranuclear RNA in
bulk homogenate, as indicated by the capture of different species of long non-coding RNAs
(lncRNAs) which are known to have preferential subcellular localizations28. Uniquely identified
transcripts of both Bulk and snTIMs were enriched for lncRNAs (Fisher’s exact test, odds ratio (OR) =
1.38 and 5.74, p-value = 4.68 × 10-5 and 2.80 × 10-496, respectively). Within EUR snTIMs, increasing
cellular resolution to the class and subclass levels allows for the imputation of 4,465 genes not
imputable in snBulk, whereas class and subclass levels can impute approximately the same number
of genes (17,261 and 16,518, respectively), despite the higher resolution of the latter (Table S8).

We explored the major factors associated with EUR snTIMs and found that the number of
individual donors and median nuclei per cellular population per individual explain 65.7% of variance in
the number of imputable genes (Extended Data Fig. 3B; Table S9). Previously, we found that sample
size was the main driver for unique GTA discovery in tissue homogenates9. However, in single-cell
experiments, when sequencing depth is not a limiting factor, snTIM performance also heavily
depends on the number of cells being profiled. Consequently, there is a fine balance between
increasing resolution and retaining information when using standard snRNA-seq approaches.
Specifically, using a pseudobulk approach reduces measurement noise, while increasing statistical
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power from sparse single cell measurements29–32. Thus, for low abundance transcripts, imputation
performance improves when we pool more cells together; for example, imputable genes by EUR
snBulk that were not predictable via finer cell-type resolution (n = 1,970) were less abundant (48
mean counts per individual versus 2,495; Kruskal-Wallis p-value = 1.87 × 10-422).

Finally, we compared the EUR, AFR and AMR snTIMs. Unsurprisingly, given the differences in
the donor sample size, the number of imputable genes (Extended Data Fig. 3A; Tables S2-7) and
gene expression variation explained by cis genetic variants (R2

CV) were higher in EUR, followed by
AFR and AMR (Fig. 1C; Table S8). Despite differences in power, AFR and AMR snTIMs reliably
imputed an additional 2,378 and 1,558 genes, respectively, that were not imputable in EUR (Table
S10-15). For all shared gene-cell-type models, we observed strong R2

CV correlation across ancestries
(EUR-AMR: r = 0.60, p = 2.32 × 10-2,598; EUR-AFR: r = 0.56, p = 1.26 × 10-5,011; AFR-AMR: r = 0.51, p
= 7.86 × 10-1,456 Spearman’s correlation analysis; Supplementary Fig. 1) that is consistent across
cell-types (Fig. 1D; Supplementary Fig. 2A), suggesting that the extent to which expression for a
given gene is under genetic regulation is similar across ancestries. Our analysis may underestimate
the magnitude of the correlation due to power insufficiency; notably, we observed approximately half
the number of shared gene-cell-type models in ancestry comparisons that included the least powered
AMR models (Jaccard index is 0.19 and 0.22 for EUR-AMR and AFR-AMR, respectively) when
contrasted against the EUR-AFR comparison (Jaccard index = 0.41) (Supplementary Fig. 1).
Moreover, there are fewer shared gene models at the subclass level (Supplementary Fig. 2B) despite
demonstrating similar correlation (Supplementary Fig. 2A), most notably for the AFR and AMR
snTIMs (Table S16).

Brain snTWAS increases power for both known and novel gene-trait
association discovery.

To understand transcriptional dysregulation associated with NPD and NDDs, we used matched
ancestry EUR snTIMs to perform summary-level snTWAS (S-snTWAS) on a set of 12 EUR GWAS
summary statistics (Table S17 and Data S1). For each trait, we found the greatest number of FDR33

significantly associated genes in the subclass level (4,953 unique genes across all 12 traits), followed
by Class (4,183) and snBulk (2,472), demonstrating that increased cell-type resolution contributes
more significant GTAs (Fig. 2A; Supplementary Fig. 3). More genes were identified in Subclass
despite the greater number of unique imputable genes for Class (Fig. 1A), suggesting the greater
importance of finer resolution versus the number of imputable genes. Unsurprisingly, across NPD and
NDDs, we found a similar number of associated genes in snBulk (2,472) and Bulk (2,287).

To validate our S-snTWAS findings, we utilized two different cohorts. First, we compared our
microglia subclass (Subclass-MG; n = 904) snTIM with a EUR TIM created using bulk RNA-seq data
from microglia isolated by fluorescence activated cell sorting7,34,35 (FACS-MG; n = 271). Even though
gene expression data for these largely independent models (22 donors in common) was obtained
using different methods, AD (selected for its association with microglia7,8) S-TWAS applied to both
TIMs exhibited a very strong correlation (Pearson’s r = 0.84, p = 2.25×10-263; Extended Data Fig. 4A).
Second, we compared our snTIMs with external snTIMs24. We matched cell-types between cohorts at
the class level (Table S18), and performed correlation analysis of the respective S-snTWAS using
MDD GWAS summary statistics36. Despite the utilization of different cohorts (PsychAD vs. ROSMAP),
TIM creation methods (PrediXcan vs. FUSION37) and sample sizes (920 vs. 424), we observed strong
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correlation (Pearson’s r = 0.764, p = 1.43×10-3,308) between both sets of snTIMs (Extended Data Fig.
4B). Furthermore, for commonly identified associations, we observed a 24% increase in power9

utilizing PsychAD snTIMs.
To determine the extent to which the higher number of GTAs identified by using

cell-type-specific TWAS are clinically relevant, we performed gene set enrichment analysis (GSEA)
for genes known to be associated with CNS-related neurological and behavioral/psychiatric
symptoms as indicated by the Online Mendelian Inheritance in Man (OMIM) database38. Bulk and
snBulk analyses revealed significant enrichment for genes linked to 5, and 4 of the 12 NPDs and
NDDs analyzed, respectively, while Class and Subclass captured 11 and all 12, respectively (Fig. 2B;
Table S19), further demonstrating the superior performance of cell-type-specific snTWAS.

Since our prior analysis suggests a functional role for the new GTAs, we next investigated the
propensity for different cellular resolutions to identify “novel” vs. “known” GTAs. We classified
significant genes as “novel” if the GTA was not identified by Bulk S-TWAS (Table S20) or MAGMA
gene-based analysis (Table S21)39,40. Across all considered traits and snTIMs, we found that 49.4% of
our significant GTAs are novel (4,274/8,656; Table S22 and S23). In addition, subclass level snTIMs
are more likely to identify novel vs. known GTAs (Fig. 2C; significant enrichment in 6/12 traits;
Fisher’s exact test; Table S24) than snBulk. The highest novel GTA enrichment was observed at the
Subclass-EN L2-3-IT, Class-OPC and Subclass-Adaptive cellular populations, and among traits for
ADHD, Anorexia, Migraines, and Parkinson’s disease (PD) (Supplementary Fig. 4; Table S22). A
higher ratio for novel gene identification at single cell resolution suggests that GTAs may be “masked”
in bulk analyses, especially those that are differentially regulated among cell-types.

Due to causal eQTL sharing or linkage disequilibrium (LD) between eQTLs41, TWASs
frequently identify multiple GTAs per locus14,42. Thus, to identify putatively causal GTAs per cell-type,
we performed probabilistic fine-mapping with FOCUS42 and retained, on average, 64.7% of the GTAs
(Fig. 2D; Table S25 and S26). With individual-cell-type FOCUS analysis, one gene was fine-mapped
(posterior inclusion probability (PIP) ≥ 0.5) in most loci (Supplementary Fig. 5A). At the aggregate
level, we observed that the genes/loci ratio increased in the class and subclass levels, suggesting
that differential fine-mapping of genes across cellular populations within the same locus warrants
further investigation. We note that performing multi-cell-type vs. individual-cell-type fine-mapping
among class snTIMs showed, on average, a similar but lower increase in fine-mapped genes per
locus (5.15%) (p = 5.60 × 10-5; Kruskal-Wallis test) when compared to the class aggregate (40.27%)
(p = 1.53 × 10-8; Kruskal-Wallis test) (Supplementary Fig. 5B; Table S27). Expectedly, multi-cell-type
vs. individual-cell-type fine-mapping better prioritized genes in known, trait-relevant, cell populations.

Summary level TWAS identifies cell-type specific disease signatures
To formally estimate the degree of cell-type specificity of GTAs within each trait, we utilized

multivariate adaptive shrinkage (mash43) to obtain posterior probabilities of cell-type-specific GTAs.
Across all considered traits, we found 18.4% (1,029/5,604) of GTAs have cell-type specific effects
(Table S28). Of those, we found 36.2% were present in a single cell-type (Fig. 3A). At the class level,
the most cell-type-specific GTAs were found in the Immune class across various traits (Fig. 3B;
Extended Data Fig. 5A; Supplementary Fig. 6; Table S29). Among the top hits, we also note high
cell-type specificity for CACNA1C in Class-IN in SCZ44 (Extended Data Fig. 5A; Supplementary Fig.
6; Table S29).
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Approximation of S-TWAS GTA effect sizes with existing methods37,45 hinders our ability to
assess the cell-type heterogeneity across GTAs independent of power considerations. To overcome
this limitation, we imputed GReX across the EUR population of the Million Veteran Program (MVP)
and performed individual-level snTWAS (I-snTWAS) analysis. Subsequently, the I-snTWAS was used
to obtain NPD/NDD-specific heterogeneity scores for each gene-trait combination across all
imputable cell-types as proxied by the I2 value46 (ranging from 0% to 100% for minimal to very high
heterogeneity, respectively; Table S30). In AD, our top gene, BIN1, had one of the largest observed
I2

cell-type (77.36%; Fig. 3C; Table S30; Supplementary Fig. 7) due to the variation of its effect sizes
across cell-types (Supplementary Fig. 8), largely driven by cell-type specific single-nucleus
expression quantitative trait loci (sn-eQTL; Extended Data Fig. 5B). Conversely, other genes,
including CLU, exhibited consistent effect sizes (CLU-AD I2

cell-type = 0%; 11 imputable cell-types; Fig.
3C).

We next used an LD-aware competitive pathway enrichment method47 to determine relevant
biological pathways perturbed in our S-snTWAS analyses and to characterize their cell-type
specificity. Overall, increasing cellular resolution in TWAS leads to the identification of more perturbed
pathways (Fig. 3D; Data S2; Supplementary Fig. 9). This is particularly important for traits such as AD
and alcohol use disorder (AUD), where snTWAS analysis for microglia and inhibitory neuronal cellular
populations, respectively, leads to relevant biological insights. For example, in AD, one of the top
implicated pathways, primarily driven by dysregulation in BIN1 and APOE, was Tau Protein Binding
(GO:0048156) in Class-Immune (FDR33 = 3.76 × 10-62) and Subclass-MG (FDR = 5.92 × 10-66)
(Extended Data Fig. 5C). Interestingly, shared AD pathways across cell-types were driven by different
genes; the Positive Regulation of Neuron Death category (GO:1901216) was primarily driven by
PICALM, APOE and CASP2 in Class-Immune (FDR = 2.07 × 10-37), whereas CLU was an additional
driver for other cellular populations (Classes: Astro, and Oligo; Subclasses: IN ADARB2). Similarly,
the Regulation of APP Catabolic Process (GO:1902991), was driven by PICALM, APOE, and SORL1
in Class-Immune (FDR = 2.53 × 10-43) and Subclass-MG (FDR = 1.80 × 10-41), and additionally driven
by ABCA7 in Class-Oligo (FDR = 3.35 × 10-9) and Subclass-IN PVALB (FDR = 1.03 × 10-3). Likewise,
in SCZ, a trait demonstrating broad genetically driven biological pathway dysregulation across many
cellular populations (Fig. 3B), one of the strongest hits, driven primarily by CACNA1C and GPM6A,
was Divalent Inorganic Cation Transmembrane Transporter Activity (GO:0072509). Interestingly, this
was implicated only in Subclass-IN ADARB2 (Extended Data Fig. 5D; FDR = 6.38 × 10-13), providing a
putative cellular context for a known clinical biomarker of SCZ48. Of note, most of the aforementioned
genes were also fine-mapped in the relevant cell-types (Table S31).

Cell-type specificity enhances cross-disorder investigations
Given the high comorbidity49,50 and genetic correlation51 among NPDs and NDDs, we aimed to

characterize the cell-type-specificity of shared biology across traits. In every pairwise trait
combination, we queried the overlap of all gene-cell-type combinations (Fisher’s exact test), and
found FDR33-significant enrichment in ~68% (45/66) of trait combinations (Fig. 4A; Table S32). To
address potential inflation resulting from gene representation in multiple cell-types, we note
comparable findings when looking at shared significant genes regardless of cell-type (Supplementary
Fig. 10A; Table S33). Genes shared among strongly genetically correlated disorders tend to have
increasing concordance of effects with decreasing p-value thresholds (Supplementary Fig. 10B;
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Supplementary Fig. 11), and demonstrate strong correlation in a progressive thresholding correlation
analysis (PTCA; see Methods; Supplementary Fig. 10C). Utilizing the same approach on our pathway
analysis summary statistics, we similarly observed shared biology between NPDs and NDDs at the
pathway level. Across all tested traits, ~21% (14/66) of trait combinations demonstrated
FDR-significant sharing enrichment of significant pathway-cell-type combinations (Fig. 4A; Table S34)
with similar results when considering pathways identified in any cell-type (Supplementary Fig. 10A;
Table S35). Similarly, concordance evaluation (Supplementary Fig. 10B) and PTCA (Supplementary
Fig. 10C) support, on average, shared direction of pathway dysregulation.

Identifying cross-disorder shared biological pathways is greatly enhanced by performing
cell-type-specific analyses (Fig. 4B; Table S36). For example, cross-disorder comparisons of AD with
PD and multiple sclerosis (MS), show the highest number of shared pathways in Class-Immune and
Subclass-MG (Fig. 4B). Other examples where shared biology is better uncovered at single cell
resolution are the bipolar disorder (BD)-SCZ and SCZ-MDD comparisons, where Subclass-IN
ADARB2 and Class-IN uncover the highest number of shared pathways, respectively (Fig. 4B; Table
S36). Thus, increased cellular resolution aids in the identification of shared biological pathways
across NPDs and NDDs that cannot be detected in snBulk (Fig. 4B) despite evidence for high global
(e.g. for SCZ-BD-MDD51) or local (e.g. for AD-PD52) genetic correlation.

Ancestry-specific snTWAS uncovers shared biology and aids in
fine-mapping of risk genes

Previous work highlighted the poor portability of TIMs across ancestries as a main limitation of
multi-ancestry TWAS studies53,54. Towards a large-scale cross-ancestry exploration of GReX
dysregulation in NPDs and NDDs, we bypassed such limitations by performing I-snTWAS in MVP
with matched ancestry individuals and snTIMs for 9 NPDs and NDDs (reduced number of traits
compared to S-snTWAS due to sample size considerations). Importantly, our PTCA analysis showed
strong correlation among top ranked GTAs across ancestries that was comparable to the
within-ancestry comparison of S-snTWAS and I-snTWAS in EUR (Fig. 5A; Table S17). Similarly, we
showed high concordance between EUR and AFR I-snTWAS-derived pathway analysis (Fig. 5B). In
spite of the lower effective sample size in MVP compared to GWAS studies (Table S17), we were
able to find significant GTAs across ancestries (Supplementary Fig. 12; Data S3). However, we opted
to limit our in-depth I-snTWAS analysis to EUR and AFR since the MVP had a comparatively small (n
= 61,073; 9.28% of total) and heterogeneous55 AMR subpopulation which, despite showing good
concordance for targeted replication13, was less suitable for large-scale GReX scans.

The high concordance visualized in PTCA analysis (Fig. 5A) highlighted the broad
conservation of GReX dysregulation across NPDs and NDDs; however, only 25% (5/20) of the
significant GTAs identified in the AFR I-snTWAS were also significant in the EUR I-snTWAS (even
after considering all cell-types). Given that replication power was limited for many of our traits in
I-snTWAS, we formally assessed the potential benefits of a multi-ancestral approach by comparing
ancestry-specific against bi-ancestral TWAS fine-mapping. Despite a similar proportion of significant
I-snTWAS associations, bi-ancestral fine-mapping captured a greater proportion of AFR fine-mapped
associations (Fig. 5C and Fig. 5D). Furthermore, we showed that these proportions were consistent
when looking at GTAs rather than trait-cell-type-gene combinations (Supplementary Fig. 13A and
Supplementary Fig. 13B), and that the distribution of bi-ancestral fine-mapping PIPs resembled both
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EUR and AFR within their respective significant associations (Supplementary Fig. 13C). We then
explored potential benefits of utilizing bi-ancestral (EUR and AFR; MA-FOCUS) gene prioritization for
LD blocks with multiple GTAs in alcohol use disorder (AUD) - the phenotype with the highest number
of GTAs in our I-snTWAS (Supplementary Fig. 14). Notably, one of our top fine-mapped associations
in AFR, ATP23, resided in an LD block with ARHGEF25. ARHGEF25 was the only EUR AUD GTA in
this LD block, but utilizing MA-FOCUS shows that ATP23 (significant in AFR only) was fine-mapped
across ancestries (Fig. 5E; Supplementary Fig. 14; Table S37). Taken together, multi-ancestry
snTWAS fine-mapping aided in both cell-type specific gene discovery and gene target prioritization.

NPD/NDD-associated GReX has pleiotropic effects
To explore the pleiotropic effects of cell-type-specific GReX, we performed GReX-PheWAS in

MVP on the top 1,101 significant snTWAS genes with all snTIMs (snGReX-PheWAS; Data S4).
Towards validating our approach, we observed strong phenome-wide conservation of GReX
dysregulation across all ancestries as evidenced by the PTCA (Fig. 6A) and association effect size
sign concordance (Supplementary Fig. 15) analyses; a finding that replicates and extends our
targeted I-snTWAS cross-ancestry analysis. We then limited the scope of our phenome scan to
neurological, mental and behavioral, and sensory organ disorders (“focused”) within EUR ancestry to
explore pleiotropic effects.

In the I-snTWAS section (Fig. 3C), we demonstrated for a given trait (AD) the variability across
genes of effect size heterogeneity among cell-types (I2cell-type); here, we present a multi-cell-type
GReX-PheWAS to illustrate how the I2cell-type for a given gene (CELF1) can vary across phenotypes
(Fig. 6B; Table S38 for all significant associations within genes selected for PheWAS). CELF1, which
has no significant GTAs in snBulk, has a wide range of I2cell-type values across the relevant phenome
where the GTAs are driven by different cellular populations (Fig. 6B; sn-eQTL support in
Supplementary Fig. 16). For a gene like CELF1, the observed complexity and diversity in
snGReX-PheWAS associations underscores our current underappreciation of the pleiotropic effects
of genetic variants on gene expression dysregulation across traits in a cell-type-specific manner.
Overall, we identify significant heterogeneity among cell-types in PheWAS associations in 57% of
genes (579/1,012 EUR PheWAS genes imputable in more than 1 cell-type). Thus, performing
snGReX-PheWAS can help us understand the pleiotropic effects of trait-associated GReX
dysregulation with cell-type-specificity. For example, performing a focused EUR snGReX-PheWAS for
the top 20 AUD GTAs (from the S-snTWAS analysis) (Fig. 6C; Supplementary Fig. 17) validates the
associations with “Alcoholism” and uncovers relevant pleiotropy consistent with our shared pathway
analysis. Specifically, we identify strong correlation with AD (r = 0.88, p = 4.44 × 10-7) and PD (r =
0.75, p = 1.24 × 10-4) that span most of the top genes and their respective cell-types. Regarding
associations with established AUD comorbidities and complications, we observe strong positive
correlation with alcoholic liver damage (r = 0.91, p = 1.72 × 10-8), negative correlation with disorders
where alcohol is reported for self-medicating, including essential tremor (r = -0.50, p = 2.34 × 10-2),
post-traumatic stress disorder (PTSD) (r = -0.67, p = 1.30 × 10-3) and major depressive disorder (r =
-0.74, p = 1.65 × 10-4) (Fig. 6C).
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Discussion
Prior to the widespread adoption of snRNA-seq approaches, several low-throughput studies

investigated genetically regulated gene expression in specific cellular populations of the human
brain7,15–17. Recently, snRNA-seq24,56 has enabled a more systematic characterization of cell-type
specific gene expression in the brain; however these studies have been somewhat limited in scale for
EUR (19256 and 42424 donors) and did not model GReX in other ancestries. Here, we present a
large-scale brain TWAS that leveraged snTIMs for EUR (n = 920), AFR (n = 321) and AMR (n = 118)
ancestries in 12 NPDs and NDDs as well as across the phenome in the MVP cohort (nEUR=1,428
phecodes; nAFR=1,057; nAMR=725)

Across all snTIMs, we were able to both greatly expand the GReX repertoire by imputing
11,266 genes not captured in a similarly sized homogenate TIM (Bulk) from the same region
(DLPFC)13, and outperform the Bulk TIM in imputation accuracy. Next, in our S-snTWAS for 12 NPDs
and NDDs, we established that higher snTIM cellular resolution leads to the discovery of more GTAs
with a higher likelihood of them being novel and clinically relevant. Compared to the only published
snTWAS in MDD24, we noted a 24% power increase among commonly identified gene-cell-type
combinations. Our thorough investigation into cell-type-specificity with both probabilistic (based on
mash in S-snTWAS) and frequentist (I2 in MVP I-snTWAS to overcome limitations in accurate effect
size estimation in S-PrediXcan45 and TWAS/FUSION37) approaches revealed that the most unique
signal among brain cell-types in NPDs and NDDs stems from the Class-immune, which is
unsurprising given their distinct erythromyeloid origin57. In addition, disease-relevant pathways were
preferentially, and in some cases uniquely, captured in biologically relevant cell-types.

Beyond single-trait analyses, snTWAS also aids in uncovering cell-type-specific cross-disorder
biology. Specifically, among 12 NPDs and NDDs, we observed increased likelihood of shared GTAs
and pathway dysregulation in 68% and 21% of trait pairwise comparisons, respectively, and
uncovered biology that would otherwise go undetected in homogenate TWAS. For example, despite
identifying no common pathways in snBulk TWAS, AD and PD shared 49 pathways in microglia; a
finding supported by local genetic correlation analysis52 and their common heritability enrichment for
microglia7,58. Finally, in our snGReX-PheWAS, we were able to validate the S-snTWAS findings,
explore the variability of GReX cell-type heterogeneity across traits, and uncover cell-type specific
associations with genetically correlated traits, comorbid conditions and trait-associated complications.

For cross ancestry analyses, snTIM performance metrics for EUR, AFR and AMR expectedly
reflected their respective training sample sizes. Despite their lower power, AFR and AMR snTIMs
captured an additional 2,379 and 1,558 genes that cannot be reliably imputed by EUR snTIMs.
Interestingly, on average, the level at which a gene’s expression is under genetic regulation is
consistent across ancestries and cell-types. Similarly, between ancestries, we report strong
correlation and concordance among the top ranked GTAs for both snTWAS and GReX-PheWAS. In
addition, non-EUR snTWAS uncover ancestry-specific GTAs and aid in the multi-ancestry
fine-mapping of GTAs. Most of the literature focuses on the poor portability of EUR TIMs for imputing
GReX for other ancestries53,54. However, here we demonstrate that ancestry-matched experimental
designs are very effective for cross-ancestry NPD/NDD studies even with limited sample sizes,
paralleling prior diverse ancestry blood monocyte TWASs59–61.

Overall, our study builds on existing literature to highlight the importance of cell-type specificity
for identifying genetically driven actionable gene expression changes for translational applications.
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Compared with bulk approaches, there seems to be no downside at the gene level in transitioning to
snRNA-seq beyond cost and instances where capturing extranuclear RNA might prove desirable.
However, for optimal model performance, in addition to the number of donors, future experimental
designs should also consider optimizing the number of nuclei captured per specimen. In addition,
standard snRNA-seq approaches do not estimate isoform abundance which can capture more
heritability than genes62. Inclusion of isoform information would further improve resolution and, in so
doing, increase our understanding of the cell-type specific nature of disease.

In conclusion, our study demonstrates that incorporating cell-type resolution and ancestry
specificity into TWAS frameworks substantially enhances gene discovery and provides deeper
insights into the biological underpinnings of neuropsychiatric and neurodegenerative disorders. By
moving beyond bulk tissue analyses, we pave the way for more targeted therapeutic interventions
that consider the intricate cellular landscape of the human brain.

Methods

Training of snTIMs

PsychAD Cohort
Molecular profiling efforts of the PsychAD consortium include snRNA-seq from more than 6

million nuclei from the DLPFC of 1,494 unique donors25. As previously described in the Capstone
paper22, we utilize Quadratic Discriminant Analysis (QDA) using the 1000 Genomes Project63,64

reference to divide the full cohort into five discrete superpopulations based on ancestry: European
(EUR), African (AFR), Ad-Mixed American (AMR), East Asian (EAS), and South Asian (SAS). QDA
identifies 1,359 genotyped individuals (920 EUR, 321 AFR and 118 AMR)22 who underwent
snRNA-seq-based gene expression profiling; data from the remaining individuals (EAS and SAS)
were not considered for TIM building in our analyses due to lack of sufficient power. Furthermore,
PsychAD is composed of 3 “subcohorts” (MSSM, HBCC, RADC), of which RADC is predominantly
AFR (Table S39). We utilized snRNA-seq data from all eight cell-type classes, and 23 subclasses
(excluding 4 subclasses that are identical to classes, and Subclass-EN NF, which had too few cells
and individuals for snTIM training). Finally, we note that we utilized release 2.5 of PsychAD.

Genotype and gene expression quality control for TIM training
Generation of an ancestry-specific common variant reference list. The merged PsychAD

genotype dataset consisting of PsychAD-MSSM SNP array, CommonMind SNP array, Rush
Alzheimer’s Disease Center (RADC) WGS, ADSP WGS samples was prepared as described
previously25. Towards harmonizing SNP utilization across the training (merged PsychAD genotype
dataset) and target cohorts (GWAS for S-TWAS and TOPMED-imputed SNP arrays for MVP), we
constructed ancestry-specific common variant reference panels. First, we queried all variants in the
TOPMED-imputed65–68 Million Veteran Program’s (MVP)65 genotype release 4 and retained
non-ambiguous biallelic SNPs with rsID annotation included in MVP individuals that passed the
following filters (see below for variant-level and sample-level quality control (QC)): population-specific
minor allele frequency (MAF) greater than or equal to 0.01, population-specific genotype missingness
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less than or equal to 0.05, and TOPMED imputation R2 greater than or equal to 0.6. The resulting
ancestry-specific SNPs were retained if they also had a matched superpopulation-specific MAF
greater than or equal to 0.01 in 1000 Genomes64,63. The resulting ancestry-specific common variant
reference list comprises approximately 4.5, 7.5 and 5.1 million SNPs in EUR, AFR and AMR,
respectively.

Variant level filtering in the training cohort (PsychAD). Variant-level filtering on the
genotypes used for the TIM training requires that all the following variant inclusion criteria were met:
SNPs exist in the ancestry-specific SNP list described above, MAF ≥ 0.01, based on ancestry-specific
information from NCBI Allele Frequency Aggregator (ALFA)69 (EUR: SAMN10492695; AFR:
SAMN10492698; AMR: SAMN10492700), or an in-cohort MAF ≥ 0.01 when ALFA information was
not available or the variant does not pass the ALFA filter, in-sample minor allele count (MAC) of 5 or
greater, and a Hardy-Weinberg equilibrium p-value of 10-6 or greater, and do not fall within areas of
high linkage disequilibrium (LD), such as the Major Histocompatibility Complex (Table S40). Finally,
missing information for SNP predictors in existing TIMs were replaced with double the in-sample MAF
(representing the in-sample average genotype), rounded to the nearest integer.

Gene expression QC. First, we limited genes to those within our expression annotation,
Ensembl 10470,71. Second, for each “subcohort” within psychAD (see “PsychAD Cohort”), we
independently scaled gene expression, performed PEER72 to identify and adjust for hidden factors
driving gene expression differences, and quantile normalized the resulting residualized gene
expression. We utilized fastQTL73 to determine the number of PEER factors (ranging from 5 to 50)
that yield optimal genetic signal by identifying the point at which the number of significant eQTLs
(FDR33-adjusted p-value ≤ 0.05) is closest to 95% of the maximum number of significant eQTLs found
across any assessed number of PEER factors. Finally, we combined residualized gene expression
across the 3 “subcohorts”, and repeated scaling, PEER factor optimization, and quantile
normalization of the combined cohort to reduce the impact of the batch effect (Supplementary Fig.
18).

Training of cell-type specific PrediXcan models. We used PrediXcan74 to create
per-cell-type TIMs in each of three populations (EUR, AFR, and AMR) using the QCed genotypes and
gene expression. Imputable genes are considered passing cross-validation R2 (R2

CV) ≥ 0.01, pCV ≤
0.05 and SNPs in model > 0. R2

CV and pCV values are prediction performance R2 and prediction
performance p-value from the “PredictDB” software75. To compare gene imputation models across
individual TIMs or ancestries, we utilize R2

CV, a proxy of variance in gene expression explained by
genetic variants serving as predictors.

We performed linear regression to assess the extent to which major snTIM metadata
predictors (sample size and median number of nuclei contributing to the pseudobulk expression from
every individual) influence snTIM performance (proxied by number of confidently imputed genes). We
report the adjusted R2 as a measure of the variation explained in snTIM performance for each
predictor; adjusted R2 was estimated by the stats package76,77.

We compared snTIMs against a DLPFC26 EpiXcan9 TIM27 (referred to as “Bulk”). We compared
whether genes were more strongly imputed in psychAD snTIMs or Bulk using a sign test. To more
accurately calculate the sign test p-value, we utilized Ramanujan’s factorial approximation78.
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Abundance analysis of imputable genes
We hypothesized that genes uniquely identified by snBulk versus other snTIMs were lower in

abundance. To investigate this, we subsetted imputable genes into those uniquely identified by
snBulk (904) and those identified by at least one other snTIM (19,285). We calculated the mean
number of transcripts for every gene amongst all EUR individuals with available expression data for
the gene. To establish the statistical significance of the difference in mean transcript count, we used
the Kruskal-Wallis test.

Summary-level TWAS using summary statistics
We selected 12 well-powered NPD/NDDs GWAS summary statistics79–90 (Table S17) for our

summary-level TWAS (S-TWAS) analysis. We utilized MungeSumstats91 to standardize GWAS format
and update rsID annotations, and, where possible, we use as sample size. To𝑛

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒
=  2

1
𝑐𝑎𝑠𝑒𝑠 + 1

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠

ensure maximum utilization of TIM SNPs, we imputed missing variants in GWAS summary statistics
based on established methods92 (Supplementary Fig. 19). Ancestry-specific imputation LD panels
were built on the 1000 Genomes Project with plink93 and the following parameters: --ld-window-kb
1000000 --ld-window 1000 --maf 0.01 --ld-window-r2 0. We employed run_imputez92,94 using a
maxWindowSize of 200. To validate imputed GWAS summary statistics, we randomly sampled 1,000
SNPs per chromosome common to the GWAS and LD reference panel, and correlated real and
imputed z-scores (Supplementary Fig. 19). Only SNPs with a GWAS imputation r2 ≥ 0.7 were
retained. Finally, we performed summary-level TWAS (S-TWAS) for our TIMs (Data S1) using
S-PrediXcan45. Significant gene-cell-type combinations were determined using the FDR33-adjusted
p-value cutoff of 0.05. FDR was calculated across all gene-cell-type combinations for each trait.

We validated S-snTWAS associations using two external data sets, FACS-MG and

Zeng-202424. We utilized the average increase of the statistic, as described previously9, toχ2

determine the increase in power by using psychAD snTIMs over the data described in Zeng-2024.

Individual-level TWAS and GReX-PheWAS in MVP

Million Veteran Program Genotype Quality Control
The MVP’s data core team handles genotyping, SNP imputation, and initial quality control of

genotypes. For this study, we utilized the MVP Release 4, which includes genotypes from 662,681
individuals. DNA was extracted from whole blood and genotyping was performed with the MVP 1.0
custom Axiom Array65. The MVP data core called genotypes using APT version 2.11.3 and MVP 1.0
array library r6. Genotyping was validated using three plates of 1000 Genome samples. Rigorous
genotype quality control such as plate normalization was used to improve the accuracy of genotype
calling. Genotype imputation was performed using the TOPMED66 reference and ancestral principal
components were generated using EIGENSOFT v.695,96. We then performed sample- and variant-level
QC on genotypes. Our QC pipeline is based on previously established methods for other genetic
analyses and optimized for maximizing input information for GReX estimation97. We grouped samples
by ancestry based on HARE98 (a method that integrates and harmonizes self-identified ancestry and
genetic ancestry) into three ancestries (438,582 EUR; 112,346 AFR; 48,726 AMR). Using only
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autosomal variants, we filtered variants for MAF (≥ 0.01), Hardy-Weinberg equilibrium p-value
(1×10-6), and removed high disequilibrium regions. We then filtered for excess heterozygosity (≤ 4
standard deviations from the mean), ambiguous sex (using both plink’s check-sex option, as well as
sex chromosome aneuploidies assignments derived from plate intensity measurements), and
relatedness (KING filter = 0.0884)93,99. Finally, we limited variants to biallelic SNPs for individual
imputation of GReX.

MVP phenotypes
Phenotypes from ICD-9/10 codes were transformed into phecodes using Phecode Map

v.1.2100,101. Moreover, individuals with at least 2 phecodes for a given trait were considered a case,
whereas individuals with fewer than 2 phecodes were considered a control for both I-snTWAS and
GReX-PheWAS analyses. For the I-snTWAS analysis only traits with at least 2% case prevalence in
EUR, AFR and AMR were utilized for power considerations (Table S17), and AD was mapped to the
phecode for “Delirium dementia and amnestic disorders”, 290, due to the way AD is routinely coded in
the VA medical system102. For the GReX-PheWAS analysis, traits with at least 500 cases and 500
controls were considered.

GReX imputation
We estimated GReX in the MVP on an individual-level using TIM-derived SNP predictor

weights. Missing genotypes were replaced with double the in-sample MAF (representing the
in-sample average genotype), rounded to the nearest integer.

I-snTWAS association analysis
Logistic regression analysis was performed while adjusting for sex, age, and top ten ancestry

principal components. Due to the comparatively lower power of the MVP (vs. GWAS), multiple test
correction with FDR33 (≤ 0.05) was performed within each snTIM rather than across relevant snTIMs.
For comparison of I-snTWAS with S-snTWAS we also utilized GWAS summary statistics for Anxiety103

and PTSD88 (Table S17; Fig. 4C).

Gene selection for GReX-PheWAS.
Due to computational resource limitations, PheWAS analysis was performed on top ranked

genes from the S-snTWAS and I-snTWAS. Genes were selected via bonferroni-corrected p-value (≤
0.05; bonferroni-correction applied across all cell-types for S-snTWAS analysis and within each
cell-type for I-snTWAS analysis, for power considerations). S-snTWAS genes were considered across
all cell-types in EUR. I-snTWAS genes were considered across all cell-types and ancestries. This
resulted in a total of 13,456 PheWASs(approximately 5.39% of all imputable gene-cell-type
combinations; Table S8) across 1,101 unique genes.

GReX-PheWAS association analysis.
As in I-snTWAS, logistic regression analysis was performed while adjusting for sex, age, and

top ten ancestral principal components. Associations with FDR33-corrected two-sided p-value ≤ 0.05
were considered significant.
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Enrichment for clinically relevant genes
To validate GTAs of the S-TWAS we performed gene set enrichment analysis (GSEA) for

genes with entries in the “neurologicCentralNervousSystem” and
“neurologicBehavioralPsychiatricManifestations” columns of the Clinical Synopsis tables of the Online
Mendelian Inheritance in Man (OMIM) database38. For our analysis, we only considered gene-specific
OMIM entries and not entries corresponding to large loci (e.g. regions spanning multiple genes),
resulting in a final set of 1,949 genes. Query TWAS genes (nominal p-value ≤ 0.01; only
protein-coding genes) were tested for enrichment against this gene set using a one-sided Fisher’s
exact test followed by Benjamin-Hochberg FDR33 multiple testing correction.

Enrichment of Novel Genes
We qualified a gene-trait association as “novel” if the association was not present in Bulk

DLPFC S-TWAS (FDR33-adjusted p-value < 0.05; see above) or MAGMA analysis (FDR-adjusted
p-value < 0.05) performed using the MAGMA40 SNP2GENE function on the FUMA web portal39,40.
GWASs were prepared as above and then lifted over to GRCh37 using liftover within
MungeSumstats91,104 as required by FUMA91,104. FUMA default parameters were used, except for the
following: “genetype” was set to “all”; MHC region was custom defined to “28477797-33448354” (to
match the definition used in other analyses, accounting for genome build differences); window was
set to 50kb (up- and down-stream). The union ( ) of FDR-significant S-TWAS and MAGMA hits was∪
used to define our “known” list of gene-trait associations. Significant GTAs from the S-snTWAS not
within this list were defined as “novel”. To test whether novel gene-trait associations were enriched in
snTIMs, we separated significant gene-trait associations into 2 categories: significant in snBulk, and
significant only in snTWAS (either class or subclass level; FDR-significant across all cellular
populations). We used Fisher’s exact test to obtain odds ratios and bonferroni-corrected p-values for
the enrichment of novel gene-trait associations in cell-type specific TIMs.

TWAS Pathway Enrichment Analysis
We used JEPEGMIX2-P47 to perform LD-aware competitive pathway enrichment analysis. For

this analysis we used GRCh37-aligned GWAS summary statistics (prepared as above in “Enrichment
of Novel Genes”), snTIMs converted into JEPEGMIX2-P compatible annotation files. Additionally, we
incorporated biological pathways from Gene Ontology (Gene Ontology 2015), accessed through
MSigDB 5.1. JEPEGMIX2-P is designed to perform pathway enrichment analysis while accounting for
LD structures among genetic variants. For this study, the software was enhanced to conduct
competitive analyses using the CAMERA105 gene set test procedure, allowing for a more refined
understanding of gene-pathway associations; the publicly available binary executable file was
updated to include this enhancement. The derived p-values were FDR33-corrected among all
pathways across all population-specific TIMs, and an 0.05 FDR threshold was used to determine
significance. To obtain more conservative estimates of the number of significant pathways per
cell-type while maintaining specificity, we removed all significant pathways that were “parents” of
other significant pathways (referred as pathway pruning in the main text).
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mash Analysis
We implemented multivariate adaptive shrinkage (mash43) using the mashr package in R. Due

to differences in the imputability of genes across snTIMs at the subclass level, GReX matrices are
sparse; thus, we limited analysis to class-level snTIMs. Moreover, we excluded EUR Classes “Endo”
and “Mural”, which confidently impute a much smaller number of genes in comparison to other
class-level snTIMs. Then, we performed mash on z-scores set as effect size and standard errors set
to 1; we didn’t use the reported association effect sizes due to limitations in accurate effect size
estimation in S-PrediXcan45 and other TWAS methods45. We filled missing values (where we do not
have a model for a given gene in a given cell-type), with a z-score of 0 and an arbitrarily high
standard error (1 × 1010). We ran mash using data-driven covariances as recommended by the mashr
authors. The mash analysis was used to obtain the probabilities of an effect (GTA) existing in a given
cell-type (e.g. Extended Data Fig. 5D) and to assess cell-type-specificity in S-snTWAS (Fig. 3A and
Fig. 3B). For the latter, we first limited the analysis to all S-snTWAS-significant GTAs within the 6
cell-types utilized in the mash analysis above, and further restricted GTAs to the ones having at least
1 but less than 6 (all) cell-types with a significant association (local false sign rate ≥ 0.95; due to
bayesian statistics, not all S-snTWAS significant GTAs are necessarily significant in mash results).

GTA Heterogeneity Analysis
I-snTWAS and GReX-PheWAS heterogeneity statistics were calculated for gene-trait

association effect sizes in R using the metafor package106. Heterogeneity46 I2 across cell-types
(I2

cell-type) was calculated for genes imputable in at least two cell-type TIMs.

Targeted sn-eQTL Analysis
To validate heterogeneity found in the same gene in different cell-types, we calculated

sn-eQTLs among the SNPs chosen in TIMs. We created a SNP superset of SNPs utilized in each
gene-cell-type imputation model, converted genotypes to dosage format, and performed linear
regression of SNP dosage against residualized gene expression (see “Gene expression QC”).

TWAS fine-mapping
To address potential horizontal pleiotropic effects and account for LD among SNPs utilized in

snTIMs, we utilized the fine-mapping of causal gene sets (FOCUS)42. FOCUS models the marginal
TWAS z-scores as a multivariate Gaussian distribution given the estimated eQTL effect size and the
SNP correlation and utilizes a Bayesian approach to calculate the marginal posterior inclusion
probability (PIP) for each gene, indicating its likelihood of being causal in a specific TWAS risk region.
Due to internal GWAS imputation in FOCUS, we utilized post-munging GWAS summary statistics
from our pipeline prior to missing SNP imputation. PrediXcan-based snTIMs were converted to
FOCUS-compatible format after retaining only imputable genes. FOCUS was applied both individually
to each snTIM to assess effects within each cell-type, and jointly (multi-cell-type) for further
prioritization. Unless otherwise specified, we considered TWAS-significant associations with PIP ≥ 0.5
to be fine-mapped.
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We evaluated whether fine-mapped genes increase in class and subclass aggregates by
assessing the total number of unique fine-mapped genes and loci in each snTIM versus the
respective aggregate. Because our primary analyses utilize FOCUS applied to individual snTIMs, we
repeated the analysis using multi-cell-type fine-mapping. We also applied the Kruskal-Wallis test to
compare genes per loci in aggregates versus individual snTIMs.

To perform bi-ancestral fine-mapping for EUR and AFR I-snTWAS in MVP, we employed
multi-ancestry FOCUS (MA-FOCUS107). We utilized TOPMED66-imputed genotypes in MVP so no
additional imputation was needed for SNP predictors in the snTIMs, individual-level SNP missingness
was handled as above. To visualize the top AFR fine-mapped associations and their concordance
with EUR fine-mapped associations and MA-FOCUS, we plotted the scaled I-snTWAS z-scores within
each cell-type and ancestry (for meta-analysis, we performed inverse variance weighted
meta-analysis using I-snTWAS effect size and standard error and scaled the resulting z-score). We
restricted the analysis to class-level snTIMs and prioritized the top ten associations by ranking each
gene by the maximum scaled AFR I-snTWAS z-score × AFR fine-mapping PIP across all considered
cell-types.

Genetic Correlation Analysis
We performed bivariate heritability analysis using LD Score Regression108,109 to assess the

genetic correlation between the aforementioned 12 NPD/NDDs GWAS summary statistics. The
datasets were munged to match the HapMap3 SNP allelic information and the LD weights were
pre-calculated on the 1000 Genomes European dataset110.

snGReX-PheWAS Clustering
To explore the pleiotropic effects on multiple phenotypes of top snTWAS GTAs, we performed

clustering of snGReX-PheWAS results. For every snTWAS, we extracted the top 20 significant genes
in association with the target phecode (Table S17). We extracted only the top associated
gene-cell-type combination for each gene to prevent clustering due to homogeneity among
gene-cell-type combinations driven by the same gene. We then extracted the top 20 phecodes
associated with these gene-cell-type combinations in either brain categories (mental disorder,
neurological, sense organs), or all categories. Ward’s hierarchical agglomerative clustering111 was
performed on the association z-scores with an implementation that preserves Ward's criterion112

(ward.D2 method in R).

Progressive Thresholding Correlation Analysis
To assess and visualize the concordance of z-scores between two datasets (e.g. TWAS or

summary statistics from competitive pathway enrichment analysis) at increasing significance
thresholds, we performed the following analysis which we term “progressive thresholding correlation
analysis” (PTCA). First, we scaled z-scores among all values in each dataset (using R’s base scale
function, to normalize the values with a mean of 0 and a standard deviation of 1). Next, we matched
identifiers (e.g. trait-cell-type-gene or trait-cell-type-pathway) between the two datasets and restricted
the final dataset to elements common to both datasets. Then, we performed a fixed-effect inverse
variance weighted meta-analysis using the dataset’s z-scores (standard error is assumed to be 1),

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.04.24316495doi: medRxiv preprint 

https://paperpile.com/c/J2FpN1/4a5W
https://paperpile.com/c/J2FpN1/VHD2s
https://paperpile.com/c/J2FpN1/HGaw+gRXJ
https://paperpile.com/c/J2FpN1/fyJq
https://paperpile.com/c/J2FpN1/ezmq
https://paperpile.com/c/J2FpN1/zigp
https://doi.org/10.1101/2024.11.04.24316495
http://creativecommons.org/licenses/by-nc-nd/4.0/


and sorted the table based on the meta-analysis p-value (increasing order). Finally, we measured the
correlation between ordered and scaled z-scores in a step-wise restrictive manner (assuming step
size = 10 and the dataset consists of 1,000 common elements, we assessed the correlation between
the top 1,000 elements, followed by the top 990 elements, etc.).

Data availability
All results are included either in the main text or provided in Supplementary Tables or Data.

Code availability
This project utilized publicly available code as described in the Reporting Summary.
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Main Figures

Fig. 1
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Fig. 1 | snTIM performance across cell-types and ancestries. A, Gene imputability across
different cell-type resolutions. Bar lengths represent the number of reliably imputable genes. For each
category, genes are split into three groups: uniquely captured genes (unique genes), best predicted
genes (best gene R2

CV: SNP predictors explain a higher percentage of the gene expression variance
in this category), shared genes (imputable genes that are better captured in other categories). “Bulk”
only assesses imputable genes among the 33,688 assayed genes in the psychAD dataset. “Class”
and “Subclass” utilize the best gene model (max R2

CV) among all participating snTIMs for that level.
(*) Bulk is compared against the aggregate of all snTIMs (snBulk, class and subclass aggregates);
snTIMs are compared against the other snTIM categories. B, Distribution of R2

CV among EUR
snTIMs. Maximum PsychAD refers to the distribution of the maximum R2

CV per gene across all EUR
snTIMs (snBulk, Class and Subclass). C, Power comparison of snTIMs across ancestries.
Quantile-quantile plot of the observed against expected performance (R2

CV) for every class-level
model across 3 genetic ancestries. EUR: European; AFR: African; AMR: Admixed-American. D,
Heatmap of cross-ancestry Spearman’s correlation coefficients (ρ) of R2

CV at the class level. For each
cell-type, Spearman correlation is assessed among all shared genes in the ancestry comparison pair.
Full correlation statistics are described in Table S16.
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Fig. 2

Fig. 2 | Discovery power of summary-level snTWAS in EUR. A, Heatmap of S-TWAS significant
gene-trait associations by cell-type hierarchy level. The number within each cell represents the
number of significant gene-trait associations (GTAs; FDR33 for multiple testing correction) within each
category. Color denotes the Jaccard index ( ) of the significant genes identified at the specific|𝑥 ∩ 𝑎𝑙𝑙|

|𝑥 ∪ 𝑎𝑙𝑙|

cell-type category (x) against the union of all significant trait-associated genes across all categories
(Bulk, snBulk, Class and Subclass). B, Enrichment for clinically relevant genes comprising genes
known to be associated with CNS-related neurological and behavioral/psychiatric symptoms (see
Methods) across different cellular resolution levels. C, Enrichment for novel to known gene
identification. Forest plot demonstrating preferential identification of “novel” vs. known GTAs in Class
and Subclass versus snBulk. Novel genes are considered the genes that are not identified in Bulk
TWAS and MAGMA analyses. D, Heatmap of S-snTWAS gene fine-mapping. The numbers at the top
and bottom of each cell indicate the count of fine-mapped genes and loci after FDR multiple testing
correction, respectively. Color indicates the number of genes per locus. Fine-mapping was performed
with FOCUS for each cell-type. Asterisks indicate significance (* FDR ≤ 0.05, ** FDR ≤ 0.01, *** FDR
≤ 0.001).
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Fig. 3

Fig. 3 | Cell-type specificity in snTWAS. A, Multivariate adaptive shrinkage (mash) was applied to
the S-snTWAS results to jointly test GReX effects at the class level for all traits. Relative frequency
stacked bar charts visualize the percentage of genes with significant post-mash GTAs in 1, 2, 3, 4
and 5 cell-types (left panel) and their respective breakdown to GTAs either significant (orange) or not
(blue) in snBulk S-snTWAS. Endo and Mural classes were excluded from the mash analysis due to
high sparsity in comparison to other class-level snTIMs (IN, EN, Oligo, OPC, Astro, Immune). Only
S-snTWAS GTAs that were MASH significant (local false sign rate ≥ 0.95) in at least 1 out of 6
cell-types and not MASH significant in all 6 cell-types are visualized. B, Relative frequency stacked
bar charts to visualize the breakdown of post-mash cell-type-specific GTAs (GTA only found in 1
cell-type) from (A). C, Gene association effect size heterogeneity (I2) across cell-types for AD.
Significance denotes the presence of different effects of individual cell-types in the analysis
(Cochran’s Q test). Only genes with a significant GTA are visualized. Color corresponds to cell-type
(Extended Data Fig. 2). D, LD-aware snTWAS competitive pathway enrichment. The number in each
cell represents the number of FDR33-significant (corrected across all snTIMs) pathways after
hierarchical pruning (see Methods). Color represents the proportion of all significant pathways
identified in each cellular population for each trait.
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Fig. 4

Fig. 4 | snTWAS uncovers shared genetic effects on gene expression dysregulation across
disorders. A, Heatmap of cross-disorder significant association sharing for genes. The number and
color in each cell describe the number of shared significant gene-cell-type combinations (lower-left
triangle) or genes regardless of cell-type (upper-right triangle) between each pair of disorders. Size of
the square indicates Fisher's exact test odds ratio. Fisher’s exact test p-values were FDR33-corrected,
and significant values are annotated by asterisks. B, Cross-disorder pathway sharing. All trait pairs
(y-axis) with shared pathways are visualized in this heatmap across all snTIMs (x-axis). The number
and color in each cell indicate the number of pathways significant (FDR ≤ 0.05) in both traits after
hierarchical pruning (see Methods), and the size of the square denotes the strength of enrichment for
pathway sharing between the two traits within the cell-type (Fisher’s exact test).
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Fig. 5
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Fig. 5 | Cross-Ancestry snTWAS identifies similar GTAs across ancestries. A, Cross-Ancestry
PTCA. Line represents mean correlation between the two comparison groups among the 9 traits
considered in I-snTWAS analysis. Shaded area represents the 95% confidence interval. Red and blue
dashed horizontal lines denote a 0.75 and 0.25 Pearson’s correlation coefficient (r), respectively.
“S(EUR)-I(EUR)” corresponds to the comparison of EUR S-snTWAS against EUR I-snTWAS. EUR,
AFR and AMR correspond to their respective I-snTWAS. B, Cross-ancestry I-snTWAS pathway-level
progressive thresholding correlation analysis (PTCA). Each line graph tracks the cross-disorder
association z-score Pearson’s correlation for progressively higher ranked pathway-cell-type
combinations. Red and blue dashed horizontal lines denote a 0.75 and 0.25 Pearson’s correlation
coefficient (r), respectively. C, Overlap of TWAS and fine-mapping in single ancestry and
multi-ancestry fine-mapping across the 9 I-snTWAS traits. Annotated numbers in the barplot indicate
the total number of associations in each category (i.e. there are 1,159 fine-mapped
trait-gene-cell-type combinations in EUR and 4,159 I-snTWAS significant
trait-gene-cell-type-combinations). Y-axis indicates the population in which analysis was performed.
“MA” indicates the MA-FOCUS bi-ancestral analysis and the union of EUR and AFR I-snTWAS
significant trait-gene-cell-type combinations for fine-mapping and TWAS, respectively. D, Overlap of
fine-mapped trait-gene-cell-type combinations (FOCUS for EUR and AFR; MA-FOCUS for
bi-ancestral EUR and AFR). E, Bi-ancestral (EUR and AFR) fine-mapping of AUD. The top 10
AUD-associated genes in the AFR I-snTWAS analysis are visualized across class level snTIMs.
Z-scores are scaled across all genes within each population.
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Fig. 6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.04.24316495doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.04.24316495
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 6 | snGReX-PheWAS. A, Conservation of cross-ancestry correlation of GReX-PheWAS
associations among top trait-gene-cell-type combinations. PheWAS was performed for all genes
found to have a significant (Bonferroni-adjusted p-value ≤ 0.05) association in the I-snTWAS analysis
spanning all snTIMs and ancestries (EUR, AFR and AMR). For each pairwise ancestry combination,
phecodes were ranked by inverse variance weighted meta-analysis utilizing z-scores normalized in
each ancestry to adjust for power differences across ancestries; only phecodes with at least 500
cases and 500 controls were considered. The resulting snGReX-PheWAS was then leveraged for
three PTCA analyses corresponding to each ancestry pairwise combination among their shared
gene-cell-type combinations (n = 1,757, 880 and 681 in EUR-AFR, EUR-AMR, and AFR-AMR,
respectively). Consequently, the pairwise Pearson’s correlation coefficient is visualized among
decreasing numbers of top phecodes (PTCA). Shaded region around each line represents the 95%
confidence interval. Red dashed horizontal line denotes a Pearson’s r of 0.75 and 0.25, respectively.
B, CELF1 cell-type-specific effect size heterogeneity across phecodes. Each phecode is represented
by the cell-type with the lowest association p value indicated by its correspondent color (Extended
Data Fig. 2). To determine significance of effect size heterogeneity (Cochran’s Q), we only consider
cell-types with significant associations (FDR33 < 0.05). Horizontal dashed line corresponds to the
-log10(p) value of the weakest significant (FDR< 0.05) association. C, Clustering of top relevant
PheWAS associations in AUD. PheWAS results are visualized for the top 20 gene-cell-type
combinations identified in the AUD S-snTWAS; each gene is represented by the cell-type with the
lowest association p value. In addition to replicating the association with AUD (mapped to the
“alcoholism” phecode), the top 20 phecodes among relevant phecode categories (including
neurological, mental health and sensory organ disorders) ranked by association p value are
visualized. Ward’s hierarchical agglomerative clustering was performed with Ward’s criterion
preservation.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.11.04.24316495doi: medRxiv preprint 

https://paperpile.com/c/J2FpN1/BHuj
https://doi.org/10.1101/2024.11.04.24316495
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Figures

Extended Data Fig. 1

Extended Data Fig. 1 | Graphical Abstract. A diagram depicting the overall study design.
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Extended Data Fig. 2

Extended Data Fig. 2 | PsychAD Cell-type hierarchy chart. A hierarchy chart of the cell-types
considered in this study. Cell-types are split into 3 levels depending on level of resolution. (*)
Class-OPC, Astro, Endo, and Oligo are not further subdivided at the subclass level and are included
both in the class and subclass aggregate analyses.   Cell-type abbreviations are expanded in Table S1.
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Extended Data Fig. 3

Extended Data Fig. 3 | Multi-ancestry snTIM training. A, Gene imputability among snTIMs. The
“Not Imputable” category comprises gene models with R2

CV < 0.01 or pCV > 0.05. The remaining
categories correspond to imputable genes with progressively greater gene expression variance
explained (R2

CV) by SNPs in the model. The model for each gene with the greatest R2
CV amongst all

gene models (in snBulk, Class, and Subclass level snTIMs) is visualized. B, Major predictors of
number of imputable genes for snTIMs. X-axis corresponds to the number of donors (“Sample Size”);
Y-axis corresponds to the number of imputable genes; Z-axis is median number of nuclei contributing
to the pseudobulk expression from every individual (“Median Nuclei per Sample”). The plane
corresponds to the multiple linear regression model: N of Imputable Genes = 4.53 × “Sample Size” +
2.49 × “Median Nuclei per Sample” + 164.49; p = 2.63 × 10-22; adjusted R2 = 0.657; “Sample Size”
and “Median Nuclei per Sample” predictors are significant (Table S9).
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Extended Data Fig. 4

Extended Data Fig. 4 | S-snTWAS validation. A, AD TWAS z-score comparison between FACS-MG
and PsychAD Subclass-MG. Genes imputable in both TIMs are marked as points, and genes
imputable in only one dataset are marked as diamonds. We observe a Pearson’s correlation
coefficient of 0.84 (p = 2.25×10-263). B, Major depressive disorder (MDD) TWAS comparison between
Zeng-2024 snTIMs and PsychAD snTIMs. Genes imputable in both TIMs are marked as points, and
genes imputable in only one dataset are marked as diamonds. We observe a Pearson’s correlation
coefficient of 0.757 (p=6.84×10-3,217) and a jaccard similarity index of 0.325.
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Extended Data Fig. 5
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Extended Data Fig. 5 | Cell-type specific genes, SNPs and pathways in snTWAS. A, A heatmap
depicting the combinatorial probability that an effect exists in cell-type A and not in cell-type B at the

class level. Only results with a in at least one comparison were retained for𝑃(𝐶𝑒𝑙𝑙
𝐴

∩ 𝐶𝑒𝑙𝑙
𝐵
𝐶) ≥ 0. 6

visualization comprising 16 gene-trait combinations. Cell-type probabilities are estimated with mash.
Cells are colored gray when the analysis is not applicable. B, sn-eQTLs for BIN1 across 2 cell-types.
Cell-types were chosen based on the differing association of cell-type specific BIN1 GReX with AD.
Labeled points indicate SNPs in which there is a significant (FDR33 ≤ 0.05; threshold for significance
is indicated by horizontal dashed lines) effect in one cell-type but not the other. No SNPs contained
significant effects in opposite directions for the two cell-types. Plotted SNPs were selected using a
superset of SNP predictors in both BIN1 snTIMs. Upward arrow indicates positive effect size and
downward arrow indicates negative effect size. The vertical dotted line divides the LD blocks (utilizing
EUR LD blocks as previously described)113. C & D, Top 10 pathways enriched in AD and SCZ.
Enriched pathways for AD (C) and SCZ (D) were prioritized by camera p-value. For visualization
purposes, hierarchical pruning was performed to retain distinct pathway signals (see Methods), and
only up to 2 significant pathways were contributed from each cell-type to increase cell-type-specific
representation.
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