**Emergence of a Novel Reassortant Clade 2.3.2.1c Avian

1 Influenza A/H5N1 Virus Associated with Human Cases in**
 2 Cambodia
 1 Jurre Y. Siegers¹, Ruopeng Xie^{2,3+}, Alexander M.P. Byrne⁴⁺, Kimberly M. Edwards^{2,3} **Influenza A/H5N1 Virus Associated with Human Cases in**
Cambodia
Jurre Y. Siegers^{1*}, Ruopeng Xie^{2,3*}, Alexander M.P. Byrne^{4*}, Kimberly M. Edwards^{2,3}, Shu Hu^{2,3},
Sokhoun Yann¹, Sarath Sin¹, Songha Tok¹, Ki

Cambodia

Jurre Y. Siegers^{1*}, Ruopeng Xie^{2,3*}, Alexander M.P. Byrne

Sokhoun Yann¹, Sarath Sin¹, Songha Tok¹, Kimlay Chea¹,

Seangmai Keo¹, Leakhena Pum¹, Veasna Duong¹, Heidi A

Andre Spiegel⁴, Ruth Jurre Y. Siegers^{1*}, Ruopeng Xie^{2,3*}, Alexander M.P. Byrne^{4*}, Kimberly M. Edwards^{2,3}, Shu Hu^{2,3} Jurre Y. Siegers', Ruopeng Xie^{2,3}, Alexander M.P. Byrne⁴, Kimberly M. Edwards^{2,3}, Shu Hu^{2,3},

Sokhoun Yann¹, Sarath Sin¹, Songha Tok¹, Kimlay Chea¹, Sreyviseth Horm¹, Chenthearath Rith¹,

Seangmai Keo Sokhoun Yann¹, Sarath Sin¹, Songha Tok¹, Kimlay Chea¹, Sreyviseth Horm¹, Chenthearath Rith¹ Sokhoun Yann¹, Sarath Sin¹, Songha Tok¹, Kimlay Chea¹, Sreyviseth Horm¹, Chenthearath Rith¹,

Seangmai Keo¹, Leakhena Pum¹, Veasna Duong¹, Heidi Auerswald¹, Yisuong Phou¹, Sonita Kol¹,

Andre Spiege Seangmai Keo¹, Leakhena Pum¹, Veasna Duong¹, Heidi Auerswald¹, Yisuong Phou¹, Sonita Kol¹ Seangmai Keo', Leakhena Pum', Veasna Duong', Heidi Auerswald', Yisuong Phou', Sonita Kol',

Andre Spiegel⁴, Ruth Harvey⁵, Sothyra Tum⁶, San Sorn⁶, Bunnary Seng⁶, Yi Sengdoeurn⁷, Chau

Darapheak⁸, Chin Savuth Andre Spiegel 4 , Ruth Harvey 5 , Sothyra Tum 6 , San Sorn 6 , Bunnary Seng 6 , Yi Sengdoeurn 7 Andre Spiegel⁴, Ruth Harvey⁹, Sothyra Tum⁶, San Sorn⁶, Bunnary Seng⁶, Yi Sengdoeurn', Chau

19 Darapheak⁸, Chin Savuth⁸, Makara Hak⁹, Vanra leng¹⁰, Sarika Patel¹⁰, Han Di¹¹, Charles Todd

19 Davis¹¹ Darapheak⁸, Chin Savuth⁸, Makara Hak⁹, Vanra leng¹⁰, Sarika Patel¹⁰, Han Di¹¹ Darapheak^o, Chin Savuth^o, Makara Hak^y, Vanra leng^{''}, Sarika Patel^{'''}, Han Di^{''}, Charles Todd
Davis¹¹, Alyssa Finlay¹², Borann Sar¹², Peter Thielen¹³, Filip F. Claes¹⁴, Nicola S. Lewis⁵, Ly Sovan
Vij Davis¹¹, Alyssa Finlay¹², Borann Sar¹², Peter Thielen¹³, Filip F. Claes¹⁴, Nicola S. Lewis⁵, Ly Sovann⁷ 9 , Vijaykrishna Dhanasekaran^{2,3#}, Erik A. Karlsson^{1#} -- 11 12 13 14 15 16 $\begin{array}{ccc} 12 & & ^{1} \ 13 & & ^{2} \ 14 & & ^{3} \ 15 & & ^{4} \ 16 & & ^{5} \ 17 & & ^{6} \ \end{array}$ Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia

² School of Public Health, LKS Faculty of Medicine, The University of Hc

³ HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University

⁴ Dir ² School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. ² School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

³ HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, C

⁴ Direction ³ HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. ³ HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

⁴ Direction, Institut Pasteur du Cambodge, Phnom Penh, Cambodia

⁵ Worldwide Influenza Centre, The Francis Cri 4 Direction, Institut Pasteur du Cambodge, Phnom Penh, Cambodia $\begin{array}{ccc} 16 & & ^{5}\ 17 & & ^{6}\ 18 & & ^{7}\ 19 & & ^{8}\ 20 & & ^{9}\ 21 & & ^{1} \end{array}$ ⁹ Worldwide Influenza Centre, The Francis Crick Institute, London, UK.

⁶ National Animal Health and Production Research Institute, Phnom Per

⁷ Communicable Disease Control Department, Ministry of Health, Phnor

⁸ ⁶ National Animal Health and Production Research Institute, Phnom Penh, Cambodia. ⁹ National Animal Health and Production Research Institute, Phnom Penh, Cambodia.

⁷ Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia.

⁸ National Institute of Public Health, Ministry ⁷ Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia. The ^c Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia.

⁸ National Institute of Public Health, Ministry of Health, Phnom Penh, Cambodia

⁹ Food and Agriculture Organization of the Un ⁸ National Institute of Public Health, Ministry of Health, Phnom Penh, Cambodia ⁸ National Institute of Public Health, Ministry of Health, Phnom Penh, Cambodia

⁹ Food and Agriculture Organization of the United Nations (FAO) Country Office,

¹⁰ World Health Organization Country Office, Phnom Pen 9 ⁹ Food and Agriculture Organization of the United Nations (FAO) Country Office, Phnom Penh, Cambodia.

¹⁰ World Health Organization Country Office, Phnom Penh

¹¹ United States Centers for Disease Control and Prevent ¹⁰ World Health Organization Country Office, Phnom Penh ¹⁰ World Health Organization Country Office, Phnom Penh

22 ¹¹ United States Centers for Disease Control and Preventio

¹² United States Centers for Disease Control and Preventio

¹² Johns Hopkins University Applie 11 ¹² United States Centers for Disease Control and Prevention, Atlanta, GA, USA

¹² United States Centers for Disease Control and Prevention Country Office, Ph

¹² Johns Hopkins University Applied Physics Laboratory, L 12 ¹² United States Centers for Disease Control and Prevention Country Office, Phnom Penh, Cambodia

24 ¹² Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

¹³ FAO Emergency Centre for Transboundary ¹² Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA ¹² Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
25 ¹³ FAO Emergency Centre for Transboundary Animal Diseases, Regional C
26 *** These authors contributed equally**
28 *** Address for Correspondence** ¹³ FAO Emergency Centre for Transboundary Animal Diseases, Regional Office for Asia and the Pacific, Bangkok, Thailand ¹² FAO Emergency Centre for Transboundary Animal Diseases, Regional Office for Asia and the Pacific, Bangkok, Thailand
26 *These authors contributed equally
28 *Address for Correspondence: For correspondence regarding av - 27
28
29
30
31 ^{*}These authors contributed equally
28 ***Address for Correspondence**: F
30 Southeast Asia, please contact Dr.
31 to influenza ecology and evolution, 1
32 -- 29
29
30
31
32
33 **# Address for Correspondence**: For correspondence regarding avian influenza in Cambodia and

30 Southeast Asia, please contact Dr. Erik Karlsson at ekarlsson@pasteur-kh.org. For inquiries related

31 to influenza ecology an Southeast Asia, please contact Dr. Erik Karlsson at ekarlsson@pasteur-kh.org. For inquiries related
11 to influenza ecology and evolution, please contact Dr. Vijaykrishna Dhanasekaran at veej@hku.hk.
132
134 **Keywords:** av 31 to influenza ecology and evolution, please contact Dr. Vijaykrishna Dhanasekaran at veej@hku.hk.
32
33
Keywords: avian influenza, H5N1, Cambodia, Southeast Asia, One Health, genomic surveillance
35
37 33
34
35
36
37
38 34
34
35
36
37
38
39 34 **Keywords:** avian influenza, H5N1, Cambodia, Southeast Asia, One Health, genomic surveillance
35
36
37
38
40 36
37
38
39
40
41 37
38
39
40
41
42 38
39
40
41
42
43 --
39
40
42
43 40
41
42
43 --
41
42
43 42
43 42

43
1 43

44 I. Abstract
45 After nearly a decade v
46 resurgence with 16 case
47 2.3.2.1c viruses. Fourteer After nearly a decade without reported human A/H5N1 infections, Cambodia faced a sudden
resurgence with 16 cases between February 2023 and August 2024, all caused by A/H5 clade
2.3.2.1c viruses. Fourteen cases involved a n 2.3.2.1c viruses. Fourteen cases involved a novel reassortant A/H5N1 virus with gene segments from
both clade 2.3.2.1c and clade 2.3.4.4b viruses. The emergence of this novel genotype underscores
the persistent and ongoing 2.3.2.1c viruses. Fourteen cases involved a novel reassortant A/H5N1 virus with gene segments from
both clade 2.3.2.1c and clade 2.3.4.4b viruses. The emergence of this novel genotype underscores
the persistent and ongoing both clade 2.3.2.1c and clade 2.3.4.4b viruses. The emergence of this novel genotype underscores
the persistent and ongoing threat of avian influenza in Southeast Asia. This study details the timeline
and genomic epidemiol the persistent and ongoing threat of avian influenza in Southeast Asia. This study details the timeline
and genomic epidemiology of these infections and related poultry outbreaks in Cambodia.
51
II. Introduction 50 and genomic epidemiology of these infections and related poultry outbreaks in Cambodia.
51
52 **II. Introduction**

52
52
53
54 **II. Introduction**
53 Avian influenza viruses (AIVs),
54 have caused significant econor
55 (1). Monitoring AIV circulation Avian influenza viruses (AIVs), particularly highly pathogenic avian influenza (HPAI) A/H5N1 strains,

have caused significant economic losses in the poultry industry and pose a serious zoonotic threat

(1). Monitoring AIV have caused significant economic losses in the poultry industry and pose a serious zoonotic threat

(1). Monitoring AIV circulation and evolution in high-risk regions, such as the Greater Mekong

Subregion (GMS), is crucia (1). Monitoring AIV circulation and evolution in high-risk regions, such as the Greater Mekong

Subregion (GMS), is crucial due to the region's heavy reliance on agriculture, particularly backyard

poultry farming, which o Subregion (GMS), is crucial due to the region's heavy reliance on agriculture, particularly backyard
57 poultry farming, which often operates with minimal biosafety or biosecurity measures.
58 Cambodia, a lower middle-inco

57 poultry farming, which often operates with minimal biosafety or biosecurity measures.
58 Cambodia, a lower middle-income country in the GMS has a large socio-economic
50 agriculture and faces ongoing circulation of AIVs --
59
60
61
62 Cambodia, a lower middle-income country in the GMS has a large socio-economic dependence on
agriculture and faces ongoing circulation of AIVs in poultry. Longitudinal surveillance at key live bird
markets (LBMs) in Cambodi 60 agriculture and faces ongoing circulation of AIVs in poultry. Longitudinal surveillance at key live bird
61 markets (LBMs) in Cambodia has shown year-round co-circulation of AIVs of agricultural and zoonotic
62 concern markets (LBMs) in Cambodia has shown year-round co-circulation of AIVs of agricultural and zoonotic
62 concern including HPAI A/H5N1, low pathogenic avian influenza (LPAI) A/H9N2, and to a lesser
63 extent, A/H7 viruses¹⁻ 62 concern including HPAI A/H5N1, low pathogenic avian influenza (LPAI) A/H9N2, and to a lesser
extent, A/H7 viruses¹⁻⁴. In addition, there has been infrequent detection of wild-bird-associated LPAI
subtypes, including extent, A/H7 viruses¹⁻⁴ extent, A/H7 viruses¹⁻⁴. In addition, there has been infrequent detection of wild-bird-associated LPAI
subtypes, including A/H1, A/H2, A/H3, A/H4, A/H6, A/H10, A/H11, and even A/H14, the latter marking
the first detecti subtypes, including A/H1, A/H2, A/H3, A/H4, A/H6, A/H10, A/H11, and even A/H14, the latter marking
the first detection of this subtype in Asia⁵⁻⁷. Along with the high prevalence of AIV in poultry,
Cambodia has faced num the first detection of this subtype in Asia⁵⁻⁷. Along with the high prevalence of AIV in poultry,
66 Cambodia has faced numerous instances of zoonotic spillover between 2005 and 2014, resulting in
67 21 human cases of A Cambodia has faced numerous instances of zoonotic spillover between 2005 and 2014, resulting in

67 21 human cases of A/H5N1, with 19 deaths (case-fatality rate [CFR]: 90.5%) by the end of 2012. In

68 January 2013, a clad 21 human cases of A/H5N1, with 19 deaths (case-fatality rate [CFR]: 90.5%) by the end of 2012. In
68 January 2013, a clade 1.1.2 reassortant virus emerged in poultry in the GMS, containing the
69 hemagglutinin (HA) and ne January 2013, a clade 1.1.2 reassortant virus emerged in poultry in the GMS, containing the

hemagglutinin (HA) and neuraminidase (NA) genes from a clade 1.1.2 genotype Z virus and internal

genes from a clade 2.3.2.1a vi 69 hemagglutinin (HA) and neuraminidase (NA) genes from a clade 1.1.2 genotype Z virus and internal
60 genes from a clade 2.3.2.1a virus. Following the emergence of this novel reassortant, 26 new human
61 cases were repor The genes from a clade 2.3.2.1a virus. Following the emergence of this novel reassortant, 26 new human

cases were reported in 2013 alone, with 15 deaths (CFR: 57.9%)^{5.8}. The outbreak continued into the

first quarter o cases were reported in 2013 alone, with 15 deaths (CFR: 57.9%) 5,8 cases were reported in 2013 alone, with 15 deaths (CFR: 57.9%)^{3,8}. The outbreak continued into the first quarter of 2014, resulting in 8 confirmed cases and 4 deaths (CFR: 50%)⁹. This clade 1.1.2 first quarter of 2014 first quarter of 2014, resulting in 8 confirmed cases and 4 deaths (CFR: 50%)⁹ first quarter of 2014, resulting in 8 confirmed cases and 4 deaths (CFR: 50%)⁹. This clade 1.1.2
This clade 1.1.2
In the confirmed cases and 4 deaths (CFR: 50%)⁹. This clade 1.1.2

reassortant virus was replaced by clade 2.3.2.1c viruses in poultry by March 2014, with only one

clade 2.3.2.1c human infection occurring thereafter³. The reassortant 1.1.2 virus has not been

detected since. HPAI A/H5 clade 2.3.2.1c human infection occurring thereafter 3 clade 2.3.2.1c human infection occurring thereafter³. The reassortant 1.1.2 virus has not been
detected since. HPAI A/H5 clade 2.3.2.1c viruses have continued to circulate in the GMS since then¹⁰;
however, clade 2.3.4 detected since. HPAI A/H5 clade 2.3.2.1c viruses have continued to circulate in the GMS since then¹⁰ detected since. HPAI A/H5 clade 2.3.2.1c viruses have continued to circulate in the GMS since then¹⁰;
however, clade 2.3.4.4b viruses were first detected in Cambodian LBMs in 2021, co-circulating with
clade 2.3.2.1c viru however, clade 2.3.4.4b viruses were first detected in Cambodian LBMs in 2021, co-circulating with

clade 2.3.2.1c viruses¹¹.

78 After almost a decade without a human case, a cluster of A/H5N1 cases involving two relate clade $2.3.2.1c$ viruses¹¹.

%77 clade 2.3.2.1c viruses".
 78
 79 After almost a decade
 80 individuals was detected
 81 (1 death CER: 50%). Be 79
80
81
82 80 individuals was detected in February 2023 caused by the historically circulating clade 2.3.2.1c viruses
81 (1 death, CFR: 50%). Between October 2023 and end of August 2024, Cambodia reported 14 more
82 A/H5N1 cases (6 d 81 (1 death, CFR: 50%). Between October 2023 and end of August 2024, Cambodia reported 14 more
82 A/H5N1 cases (6 deaths, CFR: 42.8%). Critically, this recent surge in human A/H5N1 cases is linked
83 to the emergence of a 82 A/H5N1 cases (6 deaths, CFR: 42.8%). Critically, this recent surge in human A/H5N1 cases is linked
83 to the emergence of a novel reassortant genotype, which combines elements from multiple AIV
84 lineages. This study a A/H5N1 cases (6 deaths, CFR: 42.8%). Critically, this recent surge in human A/H5N1 cases is linked
to the emergence of a novel reassortant genotype, which combines elements from multiple AIV
lineages. This study aims to el to the emergence of a novel reassortant genotype, which combines elements from multiple AIV
84 lineages. This study aims to elucidate the timeline, transmission dynamics, and evolutionary patterns
85 of these A/H5N1 viruse lineages. This study aims to elucidate the timeline, transmission dynamics, and evolutionary patterns
of these A/H5N1 viruses across human and avian populations in Cambodia between February 2023
and August 2024. Here, we s of these A/H5N1 viruses across human and avian populations in Cambodia between February 2023
and August 2024. Here, we seek to trace viral origins, identify transmission pathways, and assess
potential for increased risks t and August 2024. Here, we seek to trace viral origins, identify transmission pathways, and assess

potential for increased risks to human health.

88
 III. Materials and Methods

87 potential for increased risks to human health.
88
89 MII. Materials and Methods
90 **Ethical approval**

89
90
91 **III. Materials and Methods**
90 **Ethical approval**
91 All H5 sequences and information (e.g. colle
92 obtained as part of human H5 case testing ar 90 **Ethical approval**
91 All H5 sequences a
92 obtained as part of h
93 included in this study All H5 sequences and information (e.g. collection date, location) included in this analysis were

92 obtained as part of human H5 case testing and One Health response as described below. All data

93 included in this study obtained as part of human H5 case testing and One Health response as described below. All data
included in this study is available in the public record. All patient samples were de-identified and no
other individual-specif 93 included in this study is available in the public record. All patient samples were de-identified and no
94 other individual-specific information was used in this study. Analyses in this study have been
95 approved by th other individual-specific information was used in this study. Analyses in this study have been
approved by the Cambodian National Ethics Committee for Health Research (#365NECHR/2024).
96
Sample collection 95 approved by the Cambodian National Ethics Committee for Health Research (#365NECHR/2024).
96
Sample collection
98 **Human case detection**

97
98
99 97 **Sample collection**
98 **Human case detection**
99 The Cambodian Influe
00 surveillance systems ar 98 **Human case detection**
99 The Cambodian Influe
00 surveillance systems are
01 are a public health activi 99 The Cambodian Influenza-like Illness (ILI) and Severe Acute Respiratory infections (SARI)

90 surveillance systems are part of the WHO Global Influenza Surveillance and Response System and

91 are a public health activi 100 surveillance systems are part of the WHO Global Influenza Surveillance and Response System and
101 are a public health activity managed by the Ministry of Health (MoH) and Cambodia's Communicable
101 are a public healt 101 are a public health activity managed by the Ministry of Health (MoH) and Cambodia's Communicable

Disease Control (CCDC) Department. This surveillance system has existed since 2006, with

increased capacity during the COVID-19 pandemic. Cases were also detected through event-based

surveillance and active case finding. increased capacity during the COVID-19 pandemic. Cases were also detected through event-based
104 surveillance and active case finding.
105 **Case investigation**
106 For each human case, a collaborative One Health investiga

104 surveillance and active case finding.
105 **Case investigation**
106 For each human case, a collaboration
107 National Animal Health and Product 105 **Case investigation**
106 **For each human cast**
107 **National Animal Head**
108 **provincial authorities** 106 For each human case, a collaborative One Health investigation was conducted by MoH-CCDC, the
107 National Animal Health and Production Research Institute (NAHPRI), Ministry of Environment, and
108 provincial authoritie 107 National Animal Health and Production Research Institute (NAHPRI), Ministry of Environment, and
108 provincial authorities, with assistance from the United States Centers for Disease Control and
109 Prevention (US CDC) 108 provincial authorities, with assistance from the United States Centers for Disease Control and
109 Prevention (US CDC), the World Health Organization (WHO), and the Food and Agriculture
110 Organization of the United N 109 Prevention (US CDC), the World Health Organization (WHO), and the Food and Agriculture
110 Organization of the United Nations (FAO).
111 **Animal sampling**
112 Animal sampling was conducted by NAHPRI under the direction

110 Organization of the United Nations (FAO).
111 **Animal sampling**
112 Animal sampling was conducted by NAHP
113 Health and Production (GDAHP), Camboo 111 **Animal sampling**
112 Animal sampling w
113 Health and Produc
114 along with provinc Animal sampling was conducted by NAHPRI under the direction of the General Directorate for Animal
113 Health and Production (GDAHP), Cambodian Ministry of Agriculture, Forestry and Fisheries (MAFF)
114 along with provincia Health and Production (GDAHP), Cambodian Ministry of Agriculture, Forestry and Fisheries (MAFF)
114 along with provincial officials as part of One Health investigations surrounding each human case. In
115 addition, Institu 114 along with provincial officials as part of One Health investigations surrounding each human case. In
115 addition, Institut Pasteur du Cambodge (IPC) and NAHPRI/GDAHP collaborate on active disease
116 surveillance acti addition, Institut Pasteur du Cambodge (IPC) and NAHPRI/GDAHP collaborate on active disease

116 surveillance activities focusing on LBMs¹¹, with assistance from the Food and Agriculture

117 Organization of the United N surveillance activities focusing on $LBMs¹¹$, with assistance from the Food and Agriculture surveillance activities focusing on LBMs¹¹, with assistance from the Food and Agriculture
117 Organization of the United Nations (FAO).
118 **RNA extraction and qRT-PCR**
119 Viral RNA was extracted from samples using the

117 Organization of the United Nations (FAO).
118 **RNA extraction and qRT-PCR**
119 Viral RNA was extracted from samples usin
120 according to the manufacturer's protocol. (**RNA extraction and qRT-PCR**
119 Viral RNA was extracted from samples
120 according to the manufacturer's protoc
121 was performed to screen for the mat Viral RNA was extracted from samples using the QIAamp Viral RNA Mini Kit (Qiagen, Maryland, USA)
120 according to the manufacturer's protocol. Quantitative real-time reverse transcription PCR (qRT-PCR)
121 was performed to 210 according to the manufacturer's protocol. Quantitative real-time reverse transcription PCR (qRT-PCR)

21 was performed to screen for the matrix (MP) gene of influenza A virus, as described previously^{6,7}.

22 Samples was performed to screen for the matrix (MP) gene of influenza A virus, as described previously^{6,7} was performed to screen for the matrix (MP) gene of influenza A virus, as described previously^{o.}'.
122 Samples with a cycle threshold (Ct) value <40 were deemed positive. Both original samples and
123 isolates were subt 122 Samples with a cycle threshold (Ct) value <40 were deemed positive. Both original samples and isolates were subtyped using influenza RT-PCR assays to test for H1, H3, H5, H7 and H9 HA genes and N1, N2, N6, N8 and N9 N isolates were subtyped using influenza RT-PCR assays to test for H1, H3, H5, H7 and H9 HA genes

124 and N1, N2, N6, N8 and N9 NA genes^{6,7}.

125 **Virus isolation** and N1, N2, N6, N8 and N9 NA genes 6,7 . and N1, N2, N6, N8 and N9 NA genes^{s,}'.
125
126 **Virus isolation**
127 Virus isolation was attempted for all g

125
126
127
128 **126 Virus isolation**

127 Virus isolation was

128 outbreak cluster¹².

129 allantoic fluid was h Virus isolation was attempted for all qRT-PCR positive human and poultry samples from each

128 outbreak cluster¹². Ten-day-old embryonated hens' eggs were inoculated via the allantoic route and

129 allantoic fluid was outbreak cluster¹² 128 outbreak cluster¹². Ten-day-old embryonated hens' eggs were inoculated via the allantoic route and
129 allantoic fluid was harvested three days post inoculation. For each sample, three blind passages were 129 allantoic fluid was harvested three days post inoculation. For each sample, three blind passages were

allantoic fluid was harvested three days post inoculation. For each sample, three blind passages were

intervalsed

130 performed. Additionally, virus isolation from human samples was performed using Madin-Darby

131 canine kidney (MDCK) cells stably transfected with human CMP-*N*-acetylneuraminate: β -galactoside

132 a-2,6-sialyltr canine kidney (MDCK) cells stably transfected with human CMP-*N*-acetylneuraminate:β-galactoside
132 a-2,6-sialyltransferase (SIAT1), which leads to overexpression of the α-2,6-linked sialic acid (α2,6-SA)
133 receptor¹³ α-2,6-sialyltransferase (SIAT1), which leads to overexpression of the α-2,6-linked sialic acid (α2,6-SA)
receptor¹³. The presence of influenza virus in the allantoic fluid and cell culture supernatant was
tested using q receptor¹³. The presence of influenza virus in the allantoic fluid and cell culture supernatant was
134 tested using qRT-PCR as described above.
135 **Sequencing** 134 tested using qRT-PCR as described above.
135
136 **Sequencing**
137 Whole viral genomes were amplified from pa

135
136
137
138 136 **Sequencing**
137 Whole viral general
138 a modified mult
139 The iiMS-PCR p Whole viral genomes were amplified from patient nasal swabs, poultry samples, and/or isolates using
138 a modified multi-segment RT-PCR method that includes integrated molecular indices (iiMS-PCR)¹⁴.
139 The iiMS-PCR pro a modified multi-segment RT-PCR method that includes integrated molecular indices (iiMS-PCR)¹⁴. a modified multi-segment RT-PCR method that includes integrated molecular indices (iiMS-PCR)¹⁴.
139 The iiMS-PCR products were then pooled, prepared for sequencing with the ligation sequencing kit
140 SQK-LSK114 (R10 che The iiMS-PCR products were then pooled, prepared for sequencing with the ligation sequencing kit

140 SQK-LSK114 (R10 chemistry, Oxford Nanopore Technologies (ONT), Oxford, UK) and sequenced on

141 the GridlON platform (O SQK-LSK114 (R10 chemistry, Oxford Nanopore Technologies (ONT), Oxford, UK) and sequenced on

141 the GridlON platform (ONT) using R10 flow cells as described previously¹⁵. Sequencing reads were

142 de-multiplexed, quali the GridION platform (ONT) using R10 flow cells as described previously¹⁵ the GridlON platform (ONT) using R10 flow cells as described previously¹⁵. Sequencing reads were
142 de-multiplexed, quality trimmed, and filtered using Porechop software
143 (https://github.com/rrwick/Porechop). Consens de-multiplexed, quality trimmed, and filtered using Porechop software
143 (https://github.com/rrwick/Porechop). Consensus sequences were generated using CDC's Iterative
144 Refinement Meta Assembler (IRMA) v1.1.4 using the (https://github.com/rrwick/Porechop). Consensus sequences were generated using CDC's Iterative
144 Refinement Meta Assembler (IRMA) v1.1.4 using the default "IRMA FLU-minion" settings¹⁶.
145 Consensus sequences were manu Refinement Meta Assembler (IRMA) v1.1.4 using the default "IRMA FLU-minion" settings¹⁶ Refinement Meta Assembler (IRMA) v1.1.4 using the default "IRMA FLU-minion" settings".
145 Consensus sequences were manually inspected for errors such as insert-deletion mutations (INDELs)
146 and mixed bases and corrected Consensus sequences were manually inspected for errors such as insert-deletion mutations (INDELs)

146 and mixed bases and corrected if required. A minimum coverage depth of 10x was set for all genes.

147 Genomic sequenci and mixed bases and corrected if required. A minimum coverage depth of 10x was set for all genes.
147 Genomic sequencing was completed for twelve of the fifteen reported human cases, with one HA
148 sequence (A/Cambodia/RL 147 Genomic sequencing was completed for twelve of the fifteen reported human cases, with one HA
148 sequence (A/Cambodia/RL240007/2024) being partial. This study generated a total of 83 gene
149 segments obtained from 12 148 sequence (A/Cambodia/RL240007/2024) being partial. This study generated a total of 83 gene
149 segments obtained from 12 human A/H5N1 and 329 segments from 51 avian A/H5N1 influenza A
150 viruses were deposited in GISA segments obtained from 12 human A/H5N1 and 329 segments from 51 avian A/H5N1 influenza A
150 viruses were deposited in GISAID. Accession numbers can be found in supplemental table 2.
151 **Phylogenetic analysis** viruses were deposited in GISAID. Accession numbers can be found in supplemental table 2.
151
Phylogenetic analysis
153 All available full-genome H5Nx influenza A virus sequences (N = 11.765), including the

151
152
153
154 **152 Phylogenetic analysis**

153 All available full-genome H₂

154 protein coding genes were of

155 The full genome sequences 153 All available full-genome H5Nx influenza A virus sequences (N = 11,765), including the internal
154 protein coding genes were obtained from GISAID EpiFlu¹⁷ (26) databases (accessed on 2024-03-21).
155 The full genom protein coding genes were obtained from GISAID $EpiFlu^{17}$ (26) databases (accessed on 2024-03-21). protein coding genes were obtained from GISAID EpiFlu¹⁷ (26) databases (accessed on 2024-03-21).
155 The full genome sequences were concatenated using SeqKit¹⁸ and aligned prior to the inference of
156 preliminary maxi The full genome sequences were concatenated using SeqKit¹⁸ The full genome sequences were concatenated using SeqKit¹⁶ and aligned prior to the inference of
156 preliminary maximum-likelihood (ML) phylogenetic trees with Augur¹⁹. This tree was then down-
157 sampled to maintain preliminary maximum-likelihood (ML) phylogenetic trees with Augur¹⁹. This tree was then downpreliminary maximum-likelihood (ML) phylogenetic trees with Augur¹⁹. This tree was then down-
157 sampled to maintain phylogenetic representatives using PARNAS²⁰. Sequences generated in this
158 study, along with publi sampled to maintain phylogenetic representatives using PARNAS²⁰ sampled to maintain phylogenetic representatives using PARNAS²⁰. Sequences generated in this
158 study, along with publicly available sequences from Asia since 2020-01-01, were added to this
158 158 study, along with publicly available sequences from Asia since 2020-01-01, were added to this

dataset to enhance regional representation and maximize phylogenetic diversity. Sequences
160 identified as duplicates (based on strain name), laboratory-derived, mixed subtypes, or with coverage
161 <90% of full length we 160 identified as duplicates (based on strain name), laboratory-derived, mixed subtypes, or with coverage

161 <90% of full length were excluded from further analysis. Each gene dataset was aligned with MAFFT

162 v.7.490 161 <90% of full length were excluded from further analysis. Each gene dataset was aligned with MAFFT
162 v.7.490²¹, and optimized manually. Large-scale ML phylogenetic trees were inferred with FastTree
163 v2²² using v.7.490²¹, and optimized manually. Large-scale ML phylogenetic trees were inferred with FastTree 162 v.7.490²¹, and optimized manually. Large-scale ML phylogenetic trees were inferred with FastTree

163 v2²² using the GTR nucleotide substitution model. Focused ML trees were generated in IQ-TREE

164 v.2.2.0²³ u $v2^{22}$ v^2 using the GTR nucleotide substitution model. Focused ML trees were generated in IQ-TREE

164 v.2.2.0²³ using the best-fit nucleotide substitution model (HKY⁻¹+⁻¹F⁻¹+⁻¹G4) chosen according to

165 Bayesian $v.2.2.0^{23}$ 164 v.2.2.0²³ using the best-fit nucleotide substitution model (HKY \exists + \exists F \exists + \exists G4) chosen according to
165 Bayesian Information Criterion. Trees were visualized and annotated using FigTree v.1.4.4
166 (http://tre 165 Bayesian Information Criterion. Trees were visualized and annotated using FigTree v.1.4.4

166 (http://tree.bio.ed.ac.uk/software/figtree/) and ggTree²⁴ in R (version 4.2.2).

167
 Reassortment analysis (http://tree.bio.ed.ac.uk/software/figtree/) and ggTree²⁴ in R (version 4.2.2).

166 (<u>http://tree.bio.ed.ac.uk/software/figtree/</u>) and ggTree²⁴ in R (version 4.2.2).
167
168 **Reassortment analysis**
169 To investigate reassortment events among major clades (2.3.2.1c, 2.3.4.4t 168
169
170 **Reassortment analysis**
169 To investigate reassortment of
170 1.1.2) and minor clades since
171 TREE v.2.1.4. We subsample 169 To investigate reassortment events among major clades (2.3.2.1c, 2.3.4.4b, 2.3.4.4x, 2.3.2.1a, 2.3.4,
170 1.1.2) and minor clades since 1996, we first constructed a ML tree for HA gene sequences using IQ-
171 TREE v.2. 1.1.2) and minor clades since 1996, we first constructed a ML tree for HA gene sequences using IQ-
171 TREE v.2.1.4. We subsampled 1,000 genomes, ensuring all Cambodian sequences were retained,
172 using the Phylogenetic D TREE v.2.1.4. We subsampled 1,000 genomes, ensuring all Cambodian sequences were retained,
172 using the Phylogenetic Diversity Analyzer tool v.1.0.3 (http://www.cibiv.at/software/pda).
173 Subsequently, we constructed ML using the Phylogenetic Diversity Analyzer tool v.1.0.3 (http://www.cibiv.at/software/pda).
173 Subsequently, we constructed ML trees for the remaining seven segments, including polymerase
174 basic 2 (PB2), polymerase basi Subsequently, we constructed ML trees for the remaining seven segments, including polymerase

174 basic 2 (PB2), polymerase basic 1 (PB1), polymerase acidic (PA), neuraminidase (NA), nucleoprotein

175 (NP), matrix (MP), a basic 2 (PB2), polymerase basic 1 (PB1), polymerase acidic (PA), neuraminidase (NA), nucleoprotein

175 (NP), matrix (MP), and non-structural (NS) gene segments of the 1,000 subsampled genomes. Baltic

176 v.0.1.5 (https:/ (NP), matrix (MP), and non-structural (NS) gene segments of the 1,000 subsampled genomes. Baltic
176 v.0.1.5 (https://github.com/evogytis/baltic) was used to visualize the incongruence between the
177 phylogenetic trees ac v.0.1.5 (https://github.com/evogytis/baltic) was used to visualize the incongruence between the
177 phylogenetic trees across the eight genes. The HA tree was rooted using clade 0, while the other
178 trees were rooted at 177 phylogenetic trees across the eight genes. The HA tree was rooted using clade 0, while the other
178 trees were rooted at the midpoint.
179 **Molecular marker analysis**

178 trees were rooted at the midpoint.
179
180 **Molecular marker analysis**
181 Molecular markers were anal

179
180
181
182 180 **Molecular marker analysis**
181 Molecular markers were analy
182 (https://github.com/flu-crew/flutile).
183 Molecular markers were analyzed using a pipeline described previously 25 181 Molecular markers were analyzed using a pipeline described previously²⁵ and Flutile
182 (https://github.com/flu-crew/flutile).
183
184 182 (<u>https://github.com/flu-crew/flutile</u>).
183
184
185

-
- 183
184
185

185
186 185

187 **IV. Results**
188 Direct poultry-to-huma
189 Viruses sequenced from
190 to A/H5N1 viruses from **Direct poultry-to-human transmission with no evidence of human-to-human spread**
189 Viruses sequenced from human cases in February 2023 in Prey Veng province were clo
190 to A/H5N1 viruses from poultry in Cambodian LBMs b Viruses sequenced from human cases in February 2023 in Prey Veng province were closely related
190 to A/H5N1 viruses from poultry in Cambodian LBMs between 2022 and 2023, particularly from Phnom
191 Penh and Kandal provinc to A/H5N1 viruses from poultry in Cambodian LBMs between 2022 and 2023, particularly from Phnom
191 Penh and Kandal provinces (Figure 1a-c). Similarly, viruses from human cases in October 2023 (Svay
192 Rieng and Prey Veng 191 Penh and Kandal provinces (Figure 1a-c). Similarly, viruses from human cases in October 2023 (Svay
192 Rieng and Prey Veng province), November 2023 (Kampot province), January 2024 (Siem Reap
193 province), February 202 Rieng and Prey Veng province), November 2023 (Kampot province), January 2024 (Siem Reap

193 province), February 2024 (Kratie province), and early July 2024 (Svay Rieng province) were

194 genetically similar to poultry vi province), February 2024 (Kratie province), and early July 2024 (Svay Rieng province) were
194 genetically similar to poultry viruses collected at their respective outbreak sites. Although the January
195 2024 Prey Veng hu 194 genetically similar to poultry viruses collected at their respective outbreak sites. Although the January

195 2024 Prey Veng human case lacked direct poultry-associated sequences, it was related to viruses

196 detect 2024 Prey Veng human case lacked direct poultry-associated sequences, it was related to viruses
196 detected from LBMs in Prey Veng and Kandal in January 2024. In February 2024, no viral sequences
197 could be obtained fro detected from LBMs in Prey Veng and Kandal in January 2024. In February 2024, no viral sequences

could be obtained from neither the Kampot human case nor poultry associated cases. In July 2024,

no human viruses could be could be obtained from neither the Kampot human case nor poultry associated cases. In July 2024,
198 no human viruses could be sequenced from the two Takeo province cases, although the two poultry-
199 associated viruses w 198 no human viruses could be sequenced from the two Takeo province cases, although the two poultry-
199 associated viruses were closely related to human and poultry viruses from the October 2023 Svay
199 Rieng and one duc associated viruses were closely related to human and poultry viruses from the October 2023 Svay

199 Rieng and one duck virus from the October 2023 Prey Veng outbreak. Investigations into the August

199 Prey Vengcase show Rieng and one duck virus from the October 2023 Prey Veng outbreak. Investigations into the August

201 2024 cases Prey Vengcase showed that this virus was related to human and poultry viruses from

202 October 2023 (Prey V 202 2024 cases Prey Vengcase showed that this virus was related to human and poultry viruses from
202 0ctober 2023 (Prey Veng and Svay Rieng) and July 2024 (Kampot). These findings consistently
203 suggest zoonotic transmi 202 October 2023 (Prey Veng and Svay Rieng) and July 2024 (Kampot). These findings consistently
203 suggest zoonotic transmission from poultry to humans, with no evidence of human-to-human
204 transmission (Figure 1c).
205 203 suggest zoonotic transmission from poultry to humans, with no evidence of human-to-human
204 transmission (Figure 1c).
205 **Genotype replacement by a novel reassortant clade 2.3.2.1c virus in late 2023** 204 transmission (Figure 1c).
205
206 **Genotype replacement l**

205
206
207
208 Genotype replacement by a novel reassortant clade 2.3.2.1c virus in late 2023
207 Phylogenetic analysis of the HA gene segment reveals that all A/H5 viruses seque
208 cases belong to clade 2.3.2.1c (Figure 1c). The virus r 207 Phylogenetic analysis of the HA gene segment reveals that all A/H5 viruses sequenced from human

208 cases belong to clade 2.3.2.1c (Figure 1c). The virus responsible for the initial cases in February 2023

209 was clo cases belong to clade 2.3.2.1c (Figure 1c). The virus responsible for the initial cases in February 2023
209 was closely related to clade 2.3.2.1c A/H5N1 viruses circulating in Cambodian poultry and wild birds
210 since 20 was closely related to clade 2.3.2.1c A/H5N1 viruses circulating in Cambodian poultry and wild birds
210 since 2013¹. These early viruses retained complete gene cassettes within clade 2.3.2.1c viruses
211 (Figure 2). How since $2013¹$. These early viruses retained complete gene cassettes within clade 2.3.2.1c viruses 210 since 2013'. These early viruses retained complete gene cassettes within clade 2.3.2.1c viruses
211 (Figure 2). However, starting in late 2023 (October), HA sequences from both humans and poultry in
212 Cambodia displa 211 (Figure 2). However, starting in late 2023 (October), HA sequences from both humans and poultry in
212 Cambodia displayed significant divergence from earlier Cambodia strains. These HA genes clustered
213 with two duck 212 Cambodia displayed significant divergence from earlier Cambodia strains. These HA genes clustered
213 with two duck samples from Vietnam during July and August 2023, and were derived from a
214 sublineage of clade 2.3. 213 with two duck samples from Vietnam during July and August 2023, and were derived from a
214 sublineage of clade 2.3.2.1.c continuously detected in Laos during October 2020 and May 2023. 214 sublineage of clade 2.3.2.1.c continuously detected in Laos during October 2020 and May 2023.

Sublineage of clade 2.3.2.1.c continuously detected in Laos during October 2020 and May 2023.

215 Together, this indicates an introduction of a sublineage of clade 2.3.2.1c viruses with a common
216 ancestor detected in poultry in Vietnam and Laos, but the exact introduction pathway cannot be
217 pinpointed due to

216 ancestor detected in poultry in Vietnam and Laos, but the exact introduction pathway cannot be
217 pinpointed due to gaps in available surveillance data..
218 Phylogenetic analyses of each of the gene segments revealed 217 pinpointed due to gaps in available surveillance data..
218 Phylogenetic analyses of each of the gene segment
219 detected from October 2023 onwards in both hum
220 resulting from reassortment. This reassortment combir Phylogenetic analyses of each of the gene segments revealed that A/H5N1 viruses in Cambodia,

219 detected from October 2023 onwards in both humans and poultry, represent a novel genotype

220 resulting from reassortment. detected from October 2023 onwards in both humans and poultry, represent a novel genotype

220 resulting from reassortment. This reassortment combines segments from clade 2.3.2.1c (HA, NP, and

221 NA) and clade 2.3.4.4b (resulting from reassortment. This reassortment combines segments from clade 2.3.2.1c (HA, NP, and
221 NA) and clade 2.3.4.4b (PB2, PB1, PA, MP, and NS) viruses (Figure 2). In Cambodia, this novel
222 2.3.2.1c genotype has 221 NA) and clade 2.3.4.4b (PB2, PB1, PA, MP, and NS) viruses (Figure 2). In Cambodia, this novel
222 2.3.2.1c genotype has completely replaced the endemic 2.3.2.1c genotype that has dominated in
223 poultry for the last d 222 2.3.2.1c genotype has completely replaced the endemic 2.3.2.1c genotype that has dominated in
223 poultry for the last decade.
224 **Molecular markers of risk in novel reassortant genotype Cambodian A/H5N1 viruses have**

223 poultry for the last decade.
224 **Molecular markers of risk
225 potential for increased markers**
226 Gene segments from the 0

Molecular markers of risk in novel reassortant genotype Cambodian A/H5N1 viruses have the

225 potential for increased mammalian adaptation

226 Gene segments from the Cambodian human A/H5N1 viruses were analyzed for adapt potential for increased mammalian adaptation
226 Gene segments from the Cambodian human A/F
227 affecting receptor binding affinity, HA fusion and
228 mammalian cells, and pathogenicity (Supplemen 226 Gene segments from the Cambodian human A/H5N1 viruses were analyzed for adaptive mutations

227 affecting receptor binding affinity, HA fusion and/or stability, polymerase activity, virus replication in

228 mammalian affecting receptor binding affinity, HA fusion and/or stability, polymerase activity, virus replication in

228 mammalian cells, and pathogenicity (Supplemental Table 1) ²⁶. All human A/H5N1 viruses isolated

229 since 2 mammalian cells, and pathogenicity (Supplemental Table 1)²⁶ mammalian cells, and pathogenicity (Supplemental Table 1)²⁶. All human A/H5N1 viruses isolated

229 since 2023 are classified asHPAI due to the presence of a multi-basic cleavage site in the HA gene²⁷.

230 Three diff since 2023 are classified asHPAI due to the presence of a multi-basic cleavage site in the HA gene²⁷ since 2023 are classified asHPAI due to the presence of a multi-basic cleavage site in the HA gene²⁷.
230 Three different cleavage sites were present: PQKERRKR_↓GLF in human cases in February 2023,
231 PQRERRKR_↓GLF in Three different cleavage sites were present: PQKERRKR↓GLF in human cases in February 2023,
231 PQRERRKR↓GLF in cases from October 2024 to January 2024 and from July 2024 onwards, and
232 KERRRKKR↓GLF, containing two addit

231 PQRERRKR↓GLF in cases from October 2024 to January 2024 and from July 2024 onwards, and
232 KERRRKKR↓GLF, containing two additional basic amino acids from cases in February 2024.
233 Among the minimal set of five subs XERRRKKR↓GLF, containing two additional basic amino acids from cases in February 2024.
233 Among the minimal set of five substitutions that confer airborne transmissibility in ferrets for the A/H5N1 virus strain A/Indones 233 Among the minimal set of five substitutions that confer airborne transmissibility in ferrets for the HPAI
234 A/H5N1 virus strain A/Indonesia/5/2005 (E627K in PB2; H99Y in PB1; H103Y, T156A, and either
235 Q222L or G22 234 A/H5N1 virus strain A/Indonesia/5/2005 (E627K in PB2; H99Y in PB1; H103Y, T156A, and either
235 Q222L or G224S in HA)^{28,29}, only HA 156A was consistently observed in all A/H5N1 viruses from
236 Cambodian human cases. Q222L or G224S in HA)^{28,29}, only HA 156A was consistently observed in all A/H5N1 viruses from 235 Q222L or G224S in HA)^{26,29}, only HA 156A was consistently observed in all A/H5N1 viruses from
236 Cambodian human cases. Notably, a subset of the novel genotype forms a monophyletic lineage in
237 the HA tree (arrow Cambodian human cases. Notably, a subset of the novel genotype forms a monophyletic lineage in

237 the HA tree (arrow in Fig 1c, bootstrap value 92), and contains PB2 E627K, a key molecular

238 determinant for host range 237 the HA tree (arrow in Fig 1c, bootstrap value 92), and contains PB2 E627K, a key molecular

238 determinant for host range, cross-species transmission and airborne transmission (PMID: 8445709

239 and 22723413)None of determinant for host range, cross-species transmission and airborne transmission (PMID: 8445709

239 and 22723413)None of the human viruses from Cambodia contained previously defined HA

240 substitutions (Q222L and G224S 239 and 22723413)None of the human viruses from Cambodia contained previously defined HA
240 substitutions (Q222L and G224S (H5 HA numbering) that switch receptor specificity from avian α 2,3-
241 SA to human α 2,6-SA 240 substitutions (Q222L and G224S (H5 HA numbering) that switch receptor specificity from avian α2,3-
241 SA to human α2,6-SA³⁰. The presence of PB2 E627K and HA T156A substitutions, along with the
242 potential for ot SA to human α 2,6-SA 30 241 SA to human α 2,6-SA³⁰. The presence of PB2 E627K and HA T156A substitutions, along with the
242 potential for other functionally similar mutations, underscores the need for close monitoring of these
243 A/H5N1 st 242 potential for other functionally similar mutations, underscores the need for close monitoring of these
243 A/H5N1 strains for signs of potential increased mammalian adaptation³¹. $A/H5N1$ strains for signs of potential increased mammalian adaptation³¹. A/H5N1 strains for signs of potential increased mammalian adaptation³¹.

A/H5N1 strains for signs of potential increased mammalian adaptation³¹.

²⁴⁵**Figure 1. Geographic location, timeline of events, and phylogenetic relationships of human A/H5N1 infections and** ²⁴⁶**poultry-associated clade 2.3.2.1c A/H5N1 viruses in Cambodia, February 2023 - July 2024**. **a) M**ap of human A/H5N1 247 cases. Circles indicate clinical outcome, with smaller circles for recovered individuals and larger circles for fatal cases, colored
248 by outbreak cluster. **b)** Timeline of A/H5N1 human cases. Colors represent outbre ²⁴⁸by outbreak cluster. **b)** Timeline of A/H5N1 human cases. Colors represent outbreak clusters; dotted circles indicate 249 epidemiologically linked cases; mortality symbols indicate fatal cases; chicken and duck silhouettes denote associated poultry
250 viruses; and major Cambodian festivals are labeled. c) Maximum likelihood phylogenetic 250 viruses; and major Cambodian festivals are labeled. **c)** Maximum likelihood phylogenetic tree of the A/H5 HA genes, with
251 human and poultry-associated A/H5N1 viruses colored by outbreak cluster. The color-coded righ 251 human and poultry-associated A/H5N1 viruses colored by outbreak cluster. The color-coded right y--axes represent the E/K
252 amino acid in the PB2 gene at position 627 (blue/orange), country of isolation (shades of gre 252 amino acid in the PB2 gene at position 627 (blue/orange), country of isolation (shades of green) and host (shades of red),
253 respectively. Bootstrap values >80% are indicated. Scale bar denotes nucleotide substitutio 253 respectively. Bootstrap values >80% are indicated. Scale bar denotes nucleotide substitutions per site. Tree is rooted to the
254 clade 2.3.2.1c vaccine strain, A/duck/Vietnam/NCVD-1584/2012. Names are provided as stra ²⁵⁴clade 2.3.2.1c vaccine strain, A/duck/Vietnam/NCVD-1584/2012. Names are provided as strain_name | collection_date.

256
257

²⁵⁷**Figure 2. Genotypic reassortment patterns of clade 2.3.2.1c A/H5N1 viruses causing human infections in Cambodia** ²⁵⁸**since February 2023.** Tanglegram of ML phylogenetic trees for each genomic segment. For each virus, links have been 259 displayed to connect phylogenetic positioning of individual viruses across all eight genomic segments. Phylogenetic links are
260 color coded based on relevant A/H5 clade numbering: clade 2.3.2.1c in orange, 2.3.2.1a i 260 color coded based on relevant A/H5 clade numbering: clade 2.3.2.1c in orange, 2.3.2.1a in dark blue, 2.3.4.4 in light blue,
261 2.3.4.4b in green, 2.3.4 in purple, 1.1.2 in brown, minor A/H5N1 clades in grey and recent 261 2.3.4.4b in green, 2.3.4 in purple, 1.1.2 in brown, minor A/H5N1 clades in grey and recent Cambodian human A/H5N1
262 sequences in bright red. sequences in bright red.

- 263
- 264

268

269

-
-
-
-
-
- 274
-
-

276 **V. Discussion**
277 Reassortment events leading
278 alter viral properties and poter
279 novel gene combinations have 277 Reassortment events leading to the exchange of gene segments between viruses can significantly

278 alter viral properties and potentially increase the risk for spillover and human infections³²⁻³⁵. AlVs with

279 no alter viral properties and potentially increase the risk for spillover and human infections³²⁻³⁵. AIVs with

novel gene combinations have been associated with increases in zoonotic human cases, such as with

A/H5N1 (Camb 279 novel gene combinations have been associated with increases in zoonotic human cases, such as with
280 A/H5N1 (Cambodia clade 1.1) A/H7N9³⁴, A/H3N8³³, and even human pandemics³². Clade 2.3.4.4b
281 A/H5N1, which h A/H5N1 (Cambodia clade 1.1) A/H7N9³⁴, A/H3N8³³, and even human pandemics³² 280 A/H5N1 (Cambodia clade 1.1) A/H7N9³⁴, A/H3N8³³, and even human pandemics³². Clade 2.3.4.4b
281 A/H5N1, which has spread globally since its emergence in 2020, has undergone further reassortment
282 during its diss

281 A/H5N1, which has spread globally since its emergence in 2020, has undergone further reassortment
282 during its dissemination.
283 The resurgence of zoonotic A/H5N1 cases in Cambodia underscores the complex dynamics o 282 during its dissemination.
283 The resurgence of zoon
284 evolution and potential fo
285 phases. The first phase, The resurgence of zoonotic A/H5N1 cases in Cambodia underscores the complex dynamics of AIV

284 evolution and potential for zoonotic transmission. Phylogenetic analysis identified two distinct spillover

285 phases. The f evolution and potential for zoonotic transmission. Phylogenetic analysis identified two distinct spillover

285 phases. The first phase, in February 2023, involved spillover of a clade 2.3.2.1c virus genotype, which

286 h phases. The first phase, in February 2023, involved spillover of a clade 2.3.2.1c virus genotype, which

286 had been dominant in Cambodian poultry since 2014³. The second phase, starting in October 2023, is

287 marked had been dominant in Cambodian poultry since $2014³$. The second phase, starting in October 2023, is had been dominant in Cambodian poultry since 2014³. The second phase, starting in October 2023, is

287 marked by a novel reassortant virus combining genes from clades 2.3.2.1c and 2.3.4.4b. The exact

288 origins of thi 287 marked by a novel reassortant virus combining genes from clades 2.3.2.1c and 2.3.4.4b. The exact
288 origins of this reassortment are unclear, but likely facilitated by high-density poultry farming, wild bird
289 migra origins of this reassortment are unclear, but likely facilitated by high-density poultry farming, wild bird
289 migration, and cross-border poultry trade in the region, highlighting the ongoing risk of zoonotic AIV
290 tra

migration, and cross-border poultry trade in the region, highlighting the ongoing risk of zoonotic AIV
290 transmission in Southeast Asia.
291 While the phenotypic contributions of newly introduced clade 2.3.4.4b internal 290 transmission in Southeast Asia.
291 While the phenotypic contribution
292 yet to be elucidated, the presence
293 E627K in the 2.3.4.4b-origin PB: While the phenotypic contributions of newly introduced clade 2.3.4.4b internal gene segments have

292 yet to be elucidated, the presence of amino acid mutations in both human and poultry viruses such as

293 E627K in the yet to be elucidated, the presence of amino acid mutations in both human and poultry viruses such as

293 E627K in the 2.3.4.4b-origin PB2 gene segment suggestsenhanced capacity for mammalian infection.

294 To better unde E627K in the 2.3.4.4b-origin PB2 gene segment suggestsenhanced capacity for mammalian infection.

294 To better understand the zoonotic risk that these viruses pose, further risk assessment *in silico*, ex

295 *vivo, in v* 294 To better understand the zoonotic risk that these viruses pose, further risk assessment *in silico*, *ex*
295 *vivo, in vivo,* and *in vitro* is critical. In addition, the detection of the PB2 627K mutation in poultry

vivo, in vivo, and in vitro is critical. In addition, the detection of the PB2 627K mutation in poultry is
296 also a concern, as it may become established in widespread circulation.
297 The success of the Cambodian One 296 also a concern, as it may become established in widespread circulation.
297 The success of the Cambodian One Health response to these recen
298 highlights the importance of coordinated efforts between human a
299 manag 198 highlights the importance of coordinated efforts between human and animal health sectors in
299 managing zoonotic threats. In addition, rapid genomic surveillance has been critical in understanding
300 the dynamics of 299 managing zoonotic threats. In addition, rapid genomic surveillance has been critical in understanding
200 the dynamics of virus spillover events and has provided clear evidence linking human cases to
201 infected poult 2099 the dynamics of virus spillover events and has provided clear evidence linking human cases to
2019 infected poultry from the same household. This integration of genomic data with field investigations
2029 allowed for 301 infected poultry from the same household. This integration of genomic data with field investigations
302 allowed for timely identification of transmission pathways and underscores the importance of 302 allowed for timely identification of transmission pathways and underscores the importance of 302 allowed for timely identification of transmission pathways and underscores the importance of

303 304 approach in Cambodia, where collaboration across disciplines and rapid data sharing have proven
305 essential for understanding, responding and controlling human AIV outbreaks in the country.
306 Given the success of C

305 essential for understanding, responding and controlling human AIV outbreaks in the country.
306 Given the success of Cambodian One Health response efforts being able to link cases to direct
307 contact with infected po 305 Given the success of Cambodian One Health response efforts being able to link cases
307 contact with infected poultry, public health strategies should prioritize reducing human e:
308 particularly in high-risk rural ar 306 Given the success of Cambodian One Health response efforts being able to link cases to direct
307 contact with infected poultry, public health strategies should prioritize reducing human exposure,
308 particularly in h 307 contact with infected poultry, public health strategies should prioritize reducing human exposure,
308 particularly in high-risk rural areas. Reinforcing public education on the risks associated with direct
309 contact 308 particularly in high-risk rural areas. Reinforcing public education on the risks associated with direct
309 contact with infected birds has proven effective during other AIV outbreaks, but significant challenges
310 re contact with infected birds has proven effective during other AIV outbreaks, but significant challenges
310 remain in achieving consistent behavioral changes. Most Cambodians in rural areas are still at high-
311 risk for 310 remain in achieving consistent behavioral changes. Most Cambodians in rural areas are still at high-
311 risk for potential exposure to AIV³⁶. In conjunction with human case investigations, community-based
312 educa risk for potential exposure to AIV 36 311 risk for potential exposure to AIV³⁶. In conjunction with human case investigations, community-based
312 education campaigns have been implemented in Cambodia, but their reach and effectiveness
313 vary^{37,38}. Only education campaigns have been implemented in Cambodia, but their reach and effectiveness
313 vary^{37,38}. Only 32% of survey participants reported receiving information about AIV from healthcare
314 providers, 10.6% from v vary^{37,38} 313 vary^{37,38}. Only 32% of survey participants reported receiving information about AIV from healthcare
314 providers, 10.6% from village health support groups, and 2% from village animal health workers
315 $(VAHW)^{37}$. providers, 10.6% from village health support groups, and 2% from village animal health workers
315 (VAHW)³⁷. Furthermore, only 49% of participants reported poultry illness and deaths to local
316 authorities, and 23% of $(VAHW)^{37}$ 315 $(VAHW)^{37}$. Furthermore, only 49% of participants reported poultry illness and deaths to local
316 authorities, and 23% of participants reported that they cook sick or dead poultry for consumption. This
317 is particu authorities, and 23% of participants reported that they cook sick or dead poultry for consumption. This
317 is particularly crucial given that 68.3% of participants raised chickens in their backyards and 10.2%
318 raised d is particularly crucial given that 68.3% of participants raised chickens in their backyards and 10.2%

raised ducks, generating a high level of potential exposure to infected birds³⁷. Further research is

necessary to id raised ducks, generating a high level of potential exposure to infected birds³⁷. Further research is raised ducks, generating a high level of potential exposure to infected birds³⁷. Further research is
319 necessary to identify, understand and overcome the barriers in risk perception that hinder
320 individuals from ado necessary to identify, understand and overcome the barriers in risk perception that hinder
320 individuals from adopting safer behaviors, and to more effectively tailor behavioral messages to
321 specific target audiences specific target audiences³⁹. Educational interventions on the necessity of early access to healthcare,
322 recognizing AIV infection as a life-threatening disease, and awareness of the risks associated with
323 handling specific target audiences³⁹. Educational interventions on the necessity of early access to healthcare,
1322 recognizing AIV infection as a life-threatening disease, and awareness of the risks associated with
1323 handlin recognizing AIV infection as a life-threatening disease, and awareness of the risks associated with
323 handling sick poultry have proven to be a powerful tool in increasing awareness and modifying health
324 behaviors^{40,} behaviors^{40,41}.

handling sick poultry have proven to be a powerful tool in increasing awareness and modifying health
324 behaviors^{40,41}.
325 Training and funding for VAHW and primary healthcare workers (PHW) are critical for early detec 324 behaviors^{40,41}.
325 Training and functional state
326 and outbreak
327 deaths and ex 326 and outbreak response⁴⁰⁻⁴⁴. Educational interventions can help VAHW and PHW identify poultry
327 deaths and exposure history, while also supporting event-based surveillance in both human and
328 animal sectors. Stren and outbreak response⁴⁰⁻⁴⁴. Educational interventions can help VAHW and PHW identify poultry
327 deaths and exposure history, while also supporting event-based surveillance in both human and
328 animal sectors. Strengthe deaths and exposure history, while also supporting event-based surveillance in both human and
328 animal sectors. Strengthening VAHW reporting and raising clinical suspicion among healthcare
329 providers will enhance earl 329 providers will enhance early detection and case management. Equipping healthcare workers to 329 providers will enhance early detection and case management. Equipping healthcare workers to

330

331 healthcare access and poultry-related risks are essential to improving preparedness^{40,41}.
332 This study is limited by potential biases in human sample collection due to potential underreporting of
333 cases from rur healthcare access and poultry-related risks are essential to improving preparedness^{40,41}.
332 This study is limited by potential biases in human sample collection due to potential und
333 cases from rural areas with limi This study is limited by potential biases in human sample collection due to potential underreporting of
333 cases from rural areas with limited healthcare access. Additionally, sustainable funding for active AIV
334 survei cases from rural areas with limited healthcare access. Additionally, sustainable funding for active AIV
334 surveillance is lacking across the GMS and broader Asia, resulting in inconsistent data collection and
335 limited surveillance is lacking across the GMS and broader Asia, resulting in inconsistent data collection and
335 limited genomic information available for in-depth analysis. Moreover, there is an urgent need to
336 develop a cla 335 limited genomic information available for in-depth analysis. Moreover, there is an urgent need to
336 develop a classification system that better reflects genotypes, as the conventional HA and NA
337 subtype nomenclatu develop a classification system that better reflects genotypes, as the conventional HA and NA
337 subtype nomenclature fails to capture the full complexity of reassortant AIV genomes and associated
338 evolutionary context

subtype nomenclature fails to capture the full complexity of reassortant AIV genomes and associated
338 evolutionary context.
339 In conclusion, these recurrent zoonotic infections caused by a novel reassortant A/H5N1 viru 338 evolutionary context.
339 In conclusion, these
340 Cambodia serve as a
341 recent focus on globa In conclusion, these recurrent zoonotic infections caused by a novel reassortant A/H5N1 viruses in
340 Cambodia serve as a reminder of the ever-present threat of AIV to global health security. Despite the
341 recent focus Cambodia serve as a reminder of the ever-present threat of AIV to global health security. Despite the
341 recent focus on global dissemination and expanded host range of clade 2.3.4.4b⁴⁵⁻⁴⁷, clade 2.3.2.1c
342 viruses re recent focus on global dissemination and expanded host range of clade 2.3.4.4b ⁴⁵⁻⁴⁷ recent focus on global dissemination and expanded host range of clade 2.3.4.4b⁴⁵⁻⁴⁷, clade 2.3.2.1c
342 viruses remain a significant concern, particularly in Asia, where the two clades co-circulate. A
343 coordinated, re viruses remain a significant concern, particularly in Asia, where the two clades co-circulate. A
343 coordinated, regional approach is essential for effectively monitoring the threat of AIV and ensuring
344 preparedness an coordinated, regional approach is essential for effectively monitoring the threat of AIV and ensuring
344 preparedness and response to emerging viral threats. Indeed, this study underscores the critical need
345 and effect preparedness and response to emerging viral threats. Indeed, this study underscores the critical need
345 and effectiveness of a unified, One Health approach to combat the evolving landscape of AIV. The
346 urgency of this 345 and effectiveness of a unified, One Health approach to combat the evolving landscape of AIV. The
346 urgency of this collaborative effort cannot be overstated as these viruses continue to adapt and
347 reassort, increa urgency of this collaborative effort cannot be overstated as these viruses continue to adapt and
347 reassort, increasing the risk of a strain evolving the capacity for efficient human-to-human
348 transmission. To stay ah reassort, increasing the risk of a strain evolving the capacity for efficient human-to-human
348 transmission. To stay ahead of this threat, we must prioritize sustainable funding for long-term
349 surveillance, enhance la transmission. To stay ahead of this threat, we must prioritize sustainable funding for long-term
surveillance, enhance laboratory capacity for rapid whole genome sequencing, and foster open, trust-
based information sharin surveillance, enhance laboratory capacity for rapid whole genome sequencing, and foster open, trust-

350 based information sharing across borders. Our collective preparedness today will determine our ability

351 to prote 350 based information sharing across borders. Our collective preparedness today will determine our ability
351 to protect global health tomorrow.
352 351 to protect global health tomorrow.
352
353

353
354 353

VI. Acknowledgments
356 The investigators thank everyone involved
357 They also thank everyone involved in
358 Cambodia including teams at the Nation The investigators thank everyone involved in the critical discussions and review of this manuscript.

357 They also thank everyone involved in influenza surveillance and response in the Kingdom of

358 Cambodia including t They also thank everyone involved in influenza surveillance and response in the Kingdom of
358 Cambodia including teams at the National Institute for Public Health, Cambodian Communicable
359 Disease Control Department, Mi Cambodia including teams at the National Institute for Public Health, Cambodian Communicable
359 Disease Control Department, Ministry of Health, National Animal Health and Production Institute,
360 General Directorate of A Disease Control Department, Ministry of Health, National Animal Health and Production Institute,
360 General Directorate of Animal Health and Production, Ministry of Agriculture, Forestry, and Fisheries,
361 World Health O 360 General Directorate of Animal Health and Production, Ministry of Agriculture, Forestry, and Fisheries,
361 World Health Organization, United States Centers for Disease Control and Prevention, provincial
362 health dire World Health Organization, United States Centers for Disease Control and Prevention, provincial
362 health directors, province rapid response teams, and the Virology Unit at Institut Pasteur du
363 Cambodge who contributed health directors, province rapid response teams, and the Virology Unit at Institut Pasteur du
363 Cambodge who contributed to this study. We gratefully acknowledge the authors from the originating
364 laboratories responsi Cambodge who contributed to this study. We gratefully acknowledge the authors from the originating
364 laboratories responsible for obtaining the specimens and the submitting laboratories where genetic
365 sequence data we 364 laboratories responsible for obtaining the specimens and the submitting laboratories where genetic
365 sequence data were generated and shared via the GISAID Initiative, on which this research is based
366 (full list o sequence data were generated and shared via the GISAID Initiative, on which this research is based

(full list of GISAID acknowledgments are available in supplemental material). We also thank all

1367 National Influenza C (full list of GISAID acknowledgments are available in supplemental material). We also thank all
367 National Influenza Centers and laboratories that have supplied influenza viruses to the WHO
368 Collaborating Centers for 367 National Influenza Centers and laboratories that have supplied influenza viruses to the WHO
368 Collaborating Centers for Reference and Research on Influenza for analysis. The text as published
369 does not necessarily 368 Collaborating Centers for Reference and Research on Influenza for analysis. The text as published
369 does not necessarily represent the official view of US-CDC, WHO, or FAO.
370 **VII. Funding Statement** 369 does not necessarily represent the official view of US-CDC, WHO, or FAO.
370
371 **VII. Funding Statement**

370
371
372
373 **VII. Funding Statement**
372 Avian influenza work in the Virology Uni
373 the Food and Agriculture Organization
374 (funded by USAID), the World Health Org Avian influenza work in the Virology Unit at Institut Pasteur du Cambodge was funded, in part, by
373 the Food and Agriculture Organization of the United Nations' Global Health Security Program
374 (funded by USAID), the W 374 (funded by USAID), the World Health Organization, and the Bill and Melinda Gates Foundation. H.A.
375 is supported, in part, by the German Centre for International Migration and Development. P.M.T was
376 supported by (funded by USAID), the World Health Organization, and the Bill and Melinda Gates Foundation. H.A.
375 is supported, in part, by the German Centre for International Migration and Development. P.M.T was
376 supported by John is supported, in part, by the German Centre for International Migration and Development. P.M.T was
376 supported by Johns Hopkins APL internal research and development. R.X., K.M.E., S.H. and V.D.
377 were funded in part b supported by Johns Hopkins APL internal research and development. R.X., K.M.E., S.H. and V.D.
377 were funded in part by the National Institute of Allergy and Infectious Diseases, National Institutes of
378 Health, United were funded in part by the National Institute of Allergy and Infectious Diseases, National Institutes of
378 Health, United States Department of Health and Human Services, under Contract No.
379 75N93021C00016. The funders Health, United States Department of Health and Human Services, under Contract No.
379 75N93021C00016. The funders had no role in study design, data collection and interpretation, or the
380 decision to submit the work for 379 75N93021C00016. The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.
381 380 decision to submit the work for publication.
381

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.11.04.24313747;](https://doi.org/10.1101/2024.11.04.24313747) this version posted November 5, 2024. The copyright holder for this preprint

VIII. Author Contributions
383 Conceptualization: J.Y.S., R.X., A.M.P.B., K.I
384 curation: J.Y.S., R.X., A.M.P.B., K.M.E., S.H.
385 H.A., Y.P., S. Kol, R.H., C.D., C.S., V.I., S.P.,

-
-
-
- Sand Conceptualization: J.Y.S., R.X., A.M.P.B., K.M.E., N.S.L., V. Dhanasekaran, and E.A.K. Data

384 curation: J.Y.S., R.X., A.M.P.B., K.M.E., S.H., S.Y., S. Sin, S. Tok, K.C., S.V.H., C.R., S. Keo,

385 H.A., Y.P., S. Ko curation: J.Y.S., R.X., A.M.P.B., K.M.E., S.H., S.Y., S. Sin, S. Tok, K.C., S.V.H., C.R., S. Keo, L.P., 385 H.A., Y.P., S. Kol, R.H., C.D., C.S., V.I., S.P., A.F., B. Sar, V. Dhanasekaran, and E.A.K. Formal
analysis: J.Y.S 1385 H.A., Y.P., S. Kol, R.H., C.D., C.S., V.I., S.P., A.F., B. Sar, V. Dhanasekaran, and E.A.K. Formal

386 analysis: J.Y.S., R.X., A.M.P.B., K.M.E., S.H., S.Y., S. Sin, S. Tok, K.C., S.V.H., C.R., S. Keo, L.F

387 H.A.,
- analysis: J.Y.S., R.X., A.M.P.B., K.M.E., S.H., S.Y., S. Sin, S. Tok, K.C., S.V.H., C.R., S. Keo, L.P., 387 H.A., Y.P., S. Kol, R.H., N.S.L., V. Dhanasekaran, and E.A.K. Funding acquisition: V. Duong, A.S., V.I., S.P., A.F
-
- V.I., S.P., A.F., B. Sar, F.F.C., N.S.L., V. Dhanasekaran, and E.A.K. Investigation: J.Y.S., R.X.,
389 A.M.P.B., K.M.E., S.H., S.Y., S. Sin, S. Tok, K.C., S.V.H., C.R., S. Keo, L.P., Y.P., S. Kol, R.H.,
390 Tum, S. Sorn, B
- H.A., Y.P., S. Kol, R.H., N.S.L., V. Dhanasekaran, and E.A.K. Funding acquisition: V. Duong, A.S.,
388 V.I., S.P., A.F., B. Sar, F.F.C., N.S.L., V. Dhanasekaran, and E.A.K. Investigation: J.Y.S., R.X.,
4.M.P.B., K.M.E., S. A.M.P.B., K.M.E., S.H., S.Y., S. Sin, S. Tok, K.C., S.V.H., C.R., S. Keo, L.P., Y.P., S. Kol, R.H., S.
390 Tum, S. Sorn, B. Seng, Y.S., C.D., C.S., M.H., V.I., S.P., H.D., T.D., A.F., B. Sar, P.T., F.F.C., N.S.
391 L.S., V
- Tum, S. Sorn, B. Seng, Y.S., C.D., C.S., M.H., V.I., S.P., H.D., T.D., A.F., B. Sar, P.T., F.F.C., N.S.L., V.
391 L.S., V. Dhanasekaran, and E.A.K. Methodology: J.Y.S., R.X., A.M.P.B., K.M.E., H.A., P.T., N.S.L., V.
392 Dh
-
- L.S., V. Dhanasekaran, and E.A.K. Methodology: J.Y.S., R.X., A.M.P.B., K.M.E., H.A., P.T., N.S.L., V.
392 Dhanasekaran, and E.A.K. Project administration: V. Duong, H.A., A.S., S. Tum, S. Sorn, B. Seng,
393 C.D., C.S., M.H
- Dhanasekaran, and E.A.K. Project administration: V. Duong, H.A., A.S., S. Tum, S. Sorn, B. Seng,

393 C.D., C.S., M.H., V.I., S.P., F.F.C., N.S.L., L.S., V. Dhanasekaran, and E.A.K. Resources: V. Duong

394 H.A., S. Tum, S
-
- C.D., C.S., M.H., V.I., S.P., F.F.C., N.S.L., L.S., V. Dhanasekaran, and E.A.K. Resources: V. Duong,

194 H.A., S. Tum, S. Sorn, B. Seng, C.D., C.S., M.H., V.I., S.P., H.D., T.D., A.F., B. Sar, P.T., F.F.C.,

195 N.S.L., L 194 H.A., S. Tum, S. Sorn, B. Seng, C.D., C.S., M.H., V.I., S.P., H.D., T.D., A.F., B. Sar, P.T., F.F.C.,

195 N.S.L., L.S., V. Dhanasekaran, and E.A.K. Software: P.T. and V. Dhanasekaran Supervision: V.

196 Duong, H.A., N.S.L., L.S., V. Dhanasekaran, and E.A.K. Software: P.T. and V. Dhanasekaran Supervision: V.
396 Duong, H.A., A.S., S. Tum, S. Sorn, B. Seng, Y.S., C.D., C.S., M.H., V.I., S.P., H.D., T.D., A.F., E.
397 Sar, F.F.C., N.S.L.
-
-
- Duong, H.A., A.S., S. Tum, S. Sorn, B. Seng, Y.S., C.D., C.S., M.H., V.I., S.P., H.D., T.D., A.F., B.
397 Sar, F.F.C., N.S.L., L.S., V. Dhanasekaran, and E.A.K. Validation: J.Y.S., R.X., A.M.P.B., K.M.E.,
398 S.Y., S.V.H., Sar, F.F.C., N.S.L., L.S., V. Dhanasekaran, and E.A.K. Validation: J.Y.S., R.X., A.M.P.B., K.M.E., S. S.V.H., V. Dhanasekaran, and E.A.K. Visualization: J.Y.S., R.X., A.M.P.B., K.M.E., V.
399 Dhanasekaran, and E.A.K. Writi S.Y., S.V.H., V. Dhanasekaran, and E.A.K. Visualization: J.Y.S., R.X., A.M.P.B., K.M.E., V.
399 Dhanasekaran, and E.A.K. Writing - original draft: J.Y.S., R.X., A.M.P.B., K.M.E., P.T., F.F.(
300 V. Dhanasekaran, and E.A.K.
-
- Dhanasekaran, and E.A.K. Writing original draft: J.Y.S., R.X., A.M.P.B., K.M.E., P.T., F.F.C., N.S.L.,

399 V. Dhanasekaran, and E.A.K. Writing review & editing: J.Y.S., R.X., A.M.P.B., K.M.E., S.H., S.Y., S.

301 Sin, 400 V. Dhanasekaran, and E.A.K. Writing - review & editing: J.Y.S., R.X., A.M.P.B., K.M.E., S.H., S.Y., S.
401 Sin, S. Tok, K.C., S.V.H., C.R., S. Keo, L.P., V. Duong, H.A., Y.P., S. Kol, A.S., R.H., S. Tum, S. Sorn
402 B. 401 Sin, S. Tok, K.C., S.V.H., C.R., S. Keo, L.P., V. Duong, H.A., Y.P., S. Kol, A.S., R.H., S. Tum, S. Sorn,
402 B. Seng, Y.S., C.D., C.S., M.H., V.I., S.P., H.D., T.D., A.F., B. Sar, P.T., F.F.C., N.S.L., L.S., V.
403 Dh
- 402 B. Seng, Y.S., C.D., C.S., M.H., V.I., S.P., H.D., T.D., A.F., B. Sar, P.T., F.F.C., N.S.L., L.S., V.
403 Dhanasekaran, and E.A.K.
404 **IX. Conflict Of Interest**
-

403 Dhanasekaran, and E.A.K.
404
405 **IX. Conflict O** 405
406
407 405 **IX. Conflict Of Interest**
406 The authors declare no conflicts of interest
407

406 The authors declare no conflicts of interest.
407

- **408 X. References**

409 1 Horwood, P. F. *et al.*

410 Poultry in Live

411 doi:10.3201/eid2402. 410 Poultry in Live Bird Markets, Cambodia. *Emerg Infect Dis* 24, 352-355,
411 doi:10.3201/eid2402.171360 (2018).
412 2 Suttie, A. *et al.* The evolution and genetic diversity of avian influenza A(H9N2) viruses in 410 Poultry in Live Bird Markets, Cambodia. Emerg infect Dis 24, 332-333,

411 doi:10.3201/eid2402.171360 (2018).

412 2 Suttie, A. *et al.* The evolution and genetic diversity of avian influenza A(H9N2) viruses in

413 C
- 412 2 Suttie, A. *et al.* The evolution and g
413 Cambodia, 2015 2016. *PLoS One* **14**,
414 3 Suttie, A. *et al.* Diversity of A(H5N1)
-
- 412 2 Sutte, A. et al. The evolution and genetic diversity of avian influenza A(H9N2) viruses in

413 Cambodia, 2015 2016. PLoS One 14, e0225428, doi:10.1371/journal.pone.0225428 (2019).

414 3 Suttie, A. *et al.* Divers 413 Cambodia, 2015 - 2016. PLOS One 14, e0225428, doi:10.1571/journal.pone.0225428 (2015).
414 3 Suttie, A. *et al.* Diversity of A(H5N1) clade 2.3.2.1c avian influenza viruses with evidence o
415 reassortment in Cambodia, 414 3 Suttie, A. et al. Diversity of A(H5N1) clade 2.3.2.1c avian influenza viruses with evidence of

415 reassortment in Cambodia, 2014-2016. *PLoS One* 14, e0226108,

416 doi:10.1371/journal.pone.0226108 (2019).

417 4 S
- 415 reassortment in cambodia, 2014-2016. 728 One 14, e0226108,
doi:10.1371/journal.pone.0226108 (2019).
417 4 Suttie, A. *et al.* Detection of Low Pathogenicity Influenza A(H7N3) Virus during Duck
418 Mortality Event, Camb 417 4 Suttie, A. *et al.* Detection of Low Pather
418 Mortality Event, Cambodia, 2017
419 doi:10.3201/eid2406.172099 (2018). 417 4 Suttie, A. et al. Detection of Low Pathogenicity innuelize A(H7N3) virus during Duck
418 Mortality Event, Cambodia, 2017. Emerg Infect Dis **24**, 1103-1107,
419 doi:10.3201/eid2406.172099 (2018).
420 5 Horm, S. V. *et*
- 419 Mortality Event, Cambodia, 2017. Emerg inject Dis 24, 1103-1107,
doi:10.3201/eid2406.172099 (2018).
420 5 Horm, S. V. *et al.* Intense circulation of A/H5N1 and other avian influenza viruses in
421 Cambodian live-bird 420 5 Horm, S. V. *et al.* Intense circulati
421 Cambodian live-bird markets with s
422 Emerg Microbes Infect 5, e70, doi:10. 420 5 Horm, S. V. et al. Intense circulation of A/H5N1 and other avian inheriza viruses in
421 Cambodian live-bird markets with serological evidence of sub-clinical human infections.
422 Emerg Microbes Infect 5, e70, doi:1 422 Emerg Microbes Infect 5, e70, doi:10.1038/emi.2016.69 (2016).
423 6 Siegers, J. Y. *et al.* Genetic and Antigenic Characterization of an Influenza A(H3N2) Outbreak
424 in Cambodia and the Greater Mekong Subregion durin
-
- Emerg Microbes Infect 5, e70, doi:10:1038/emi.2016.69 (2016).
423 6 Siegers, J. Y. *et al.* Genetic and Antigenic Characterization of an
424 in Cambodia and the Greater Mekong Subregion during the (
425 Virol **95**, e012672 423 6 Siegers, J. Y. et al. Genetic and Antigenic Characterization of an Influenza A(H3N2) Outbreak

in Cambodia and the Greater Mekong Subregion during the COVID-19 Pandemic, 2020. J

425 *Virol* 95, e0126721, doi:10.1128
- 424 In Cambodia and the Greater Mekong Subregion during the COVID-19 Pandemic, 2020. J
425 *Virol* 95, e0126721, doi:10.1128/JVI.01267-21 (2021).
426 7 Siegers, J. Y. *et al.* Detection and phylogenetic analysis of contemp Virol 95, e0126721, doi:10.1128/JVI.01267-21 (2021).

426 7 Siegers, J. Y. *et al.* Detection and phylogenetic analysis of contemporary H14N2 Avian

influenza A virus in domestic ducks in Southeast Asia (Cambodia). *Emerg* 426 7 Siegers, J. Y. et al. Detection and phylogenetic analysis of contemporary H14N2 Avian
1427 influenza A virus in domestic ducks in Southeast Asia (Cambodia). *Emerg Microbes Infect* 13,
1428 2297552, doi:10.1080/22221
-
- 428 2297552, doi:10.1080/22221751.2023.2297552 (2024).
429 8 Rith, S. *et al.* Identification of molecular markers associated with alteration of receptor-
430 binding specificity in a novel genotype of highly pathogenic av 429 8 Rith, S. *et al.* Identification of molecular markers assets
430 binding specificity in a novel genotype of highly pathog
431 detected in Cambodia in 2013. *J Virol* 88, 13897-13909, 429 8 Rith, S. et al. Identification of molecular markers associated with alteration of receptor-
430 binding specificity in a novel genotype of highly pathogenic avian influenza A(H5N1) viruses
431 detected in Cambodia in detected in Cambodia in 2013. J Virol 88, 13897-13909, doi:10.1128/jvi.01887-14 (2014). detected in Cambodia in 2013. J *Virol* 88, 13897-13909, doi:10.1128/jvi.01887-14 (2014).

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.11.04.24313747;](https://doi.org/10.1101/2024.11.04.24313747) this version posted November 5, 2024. The copyright holder for this preprint

-
- 432 9 Ly, S. et al. Seroprevalence and Transmission of Human Influenza A(H5N1) Virus before and
after Virus Reassortment, Cambodia, 2006-2014. Emerg Infect Dis 23, 300-303,
434 doi:10.3201/eid2302.161232 (2017).
435 10 Sut
- after Virus Reassortment, Cambodia, 2000-2014. Emerg Infect Dis 23, 300-303,
doi:10.3201/eid2302.161232 (2017).
435 10 Suttie, A. *et al.* Avian influenza in the Greater Mekong Subregion, 2003-2018. Infect Genet
Evol **74** 435 10 Suttie, A. *et al.* Avian influenza in th
436 Evol **74**, 103920, doi:10.1016/j.meegi
437 11 Edwards, K. M. *et al*. Detection of Cla
- 435 10 Suttle, A. et al. Avian initiatiza in the Greater Mekong Subregion, 2003-2018. Inject Genet
436 2001 74, 103920, doi:10.1016/j.meegid.2019.103920 (2019).
437 11 Edwards, K. M. *et al.* Detection of Clade 2.3.4.4b A 436 Evol 74, 103920, doi:10:1010/j.meegid.2019.103920 (2019).
437 11 Edwards, K. M. *et al.* Detection of Clade 2.3.4.4b Avian Influe
438 2021. *Emerg Infect Dis* 29, 170-174, doi:10.3201/eid2901.220
439 12 Brauer, R. & Ch
- 438 2021. Emerg Infect Dis 29, 170-174, doi:10.3201/eid2901.220934 (2023).
439 12 Brauer, R. & Chen, P. Influenza virus propagation in embryonated chicken eggs. J Vis Exp,
440 doi:10.3791/52421 (2015). 438 2021. Emerg Infect Dis 29, 170-174, doi:10.3201/eid2901.220934 (2029).
439 12 Brauer, R. & Chen, P. Influenza virus propagation in embryonated chicl
440 doi:10.3791/52421 (2015).
441 13 Matrosovich, M., Matrosovich, T.
- 8139 12 Brauer, R. & Chen, P. Influenza virus propagation in embryonated chicken eggs. J Vis Exp,

440 doi:10.3791/52421 (2015).

441 13 Matrosovich, M., Matrosovich, T., Carr, J., Roberts, N. A. & Klenk, H. D. Overexpress 441 13 Matrosovich, M., Matrosov
442 the alpha-2,6-sialyltransfe
443 neuraminidase inhibitors. 1442 the alpha-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to

1443 neuraminidase inhibitors. J Virol 77, 8418-8425, doi:10.1128/jvi.77.15.8418-8425.2003

1444 (2003). 1443 the alpha-2,6-sialyltransferase in MDC cells increases inhering increases increases increases influenza
144 (2003).
145 14 Thielen, P. *Influenza Whole Genome Sequencing with Integrated Indexing on Oxford* neuraminidase inhibitors. J Virol **77**, 8418-8425, doi:10.1128/jvi.77.15.8418-8425.2003
444 (2003).
445 14 Thielen, P. *Influenza Whole Genome Sequencing with Integrated Indexing on Oxford
446 Manopore Platforms, <https://*
- 445 14 Thielen,
446 *Nanopo*
447 15 Ratcliff,
- 1445 14 Thielen, P. Influenza Whole Genome Sequencing with Integrated Indexing on Oxford
1446 *Nanopore Platforms*, <https://dx.doi.org/10.17504/protocols.io.kxygxm7yzl8j/v1> (2022).
15 Ratcliff, J. D. *et al.* Improved Re A47 15 Ratcliff, J. D. *et al.* Improved Resolution of Highly Pathogenic Avian Influenza Via
448 Haemagglutinin Cleavage Site Using Oxford Nanopore R10 Sequencing Chemistry. *bioR*
449 2023.2009.2030.560331, doi:10.1101/20 448 Haemagglutinin Cleavage Site Using Oxford Nanopore R10 Sequencing Chemistry. *bioRxiv*,
2023.2009.2030.560331, doi:10.1101/2023.09.30.560331 (2023).
450 16 Shepard, S. S. *et al.* Erratum to: Viral deep sequencing need
- Haemaggiumm Cleavage Site Using Oxford Nanopore R10 Sequencing Chemistry. BioNxiv,
2023.2009.2030.560331, doi:10.1101/2023.09.30.560331 (2023).
450 16 Shepard, S. S. *et al.* Erratum to: Viral deep sequencing needs an adap 450 16 Shepard, S. S. *et al.* Erratum to: Viral deep sequencing needs an the iterative refinement meta-assembler. *BMC Genomics* 17, 801 3138-8 (2016). 450 16 Shepard, S. S. et al. Erratum to: Viral deep sequencing needs an adaptive approach: IRMA,
451 the iterative refinement meta-assembler. *BMC Genomics* 17, 801, doi:10.1186/s12864-016-
452 17 Khare, S. *et al.* GISAID
- the iterative refinement meta-assembler. *BMC Genomics* 17, 801, doi:10.1186/s12864-016-

3138-8 (2016).

Khare, S. *et al.* GISAID's Role in Pandemic Response. *China CDC Wkly* 3, 1049-1051,

doi:10.46234/ccdcw2021.255 (2 453 17 Khare, S. *et a*
454 doi:10.46234/c
455 18 Shen, W., Le, S.
- 453 17 Khare, S. *et al.* GISAID's Role in Pandemic Response. *China CDC Wkly* 3, 1049-1051,
doi:10.46234/ccdcw2021.255 (2021).
455 18 Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FA 455 18 Shen, W., Le, S., Li, Y. & Hu, F. SeqKit:
456 Manipulation. *PLOS ONE* 11, e016396. 1456 Manipulation. *PLOS ONE* 11, e0163962, doi:10.1371/journal.pone.0163962 (2016). 456 Manipulation. PLOS ONE 11, e0163962, doi:10.1371/journal.pone.0163962 (2016).

-
- 457 15 Huddleston, J. et al. Augur. a biomiormatics toolkit for phylogenetic analyses of human

pathogens. J Open Source Softw 6, doi:10.21105/joss.02906 (2021).

459 20 Markin, A. *et al.* PARNAS: Objectively Selecting th 458 pathogens. J Open Source Softw 0, doi:10.21105/joss.02500 (2021).
459 20 Markin, A. *et al.* PARNAS: Objectively Selecting the Most Rep
460 Phylogeny. *Syst Biol* 72, 1052-1063, doi:10.1093/sysbio/syad028 (20
461 21 Ka
- 20 Markin, A. *et al.* PARNAS: Objectively Selecting the Most Representative Taxa on a
460 Phylogeny. Syst Biol 72, 1052-1063, doi:10.1093/sysbio/syad028 (2023).
461 21 Katoh, K. & Standley, D. M. MAFFT Multiple Sequence A 460 Phylogeny. Syst Biol 72, 1052-1003, doi:10.1093/sysbio/syad028 (2023).
461 21 Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment S
462 Improvements in Performance and Usability. Molecular Biology and Ev
463 162 11 And 162
1662 11 Approvements in Performance and Usability. Molecular Biology and Evolution 30, 772-780,
164 22 Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-Likelihood
- 1462 Improvements in Performance and Osability. Molecular Biology and Evolution 30, 772-780,
doi:10.1093/molbev/mst010 (2013).
464 22 Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 Approximately Maximum-Likelihood
 464 22 Price, M. N., Dehal, P. S. & Arkin, P
465 Trees for Large Alignments. *PLOS ON*
466 23 Nguyen, L.-T., Schmidt, H. A., von Ha
- 1446 23 Trees for Large Alignments. *PLOS ONE* 5, e9490, doi:10.1371/journal.pone.0009490 (2010).
466 23 Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and Effective
467 Stochastic Algorithm 1466 23 Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and Effectiv
467 Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Molecular Biolog*
468 *and Evolution* 32, 268-274, 467 Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology
468 and Evolution 32, 268-274, doi:10.1093/molbev/msu300 (2014).
469 24 Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtr
- 467 Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology
and Evolution 32, 268-274, doi:10.1093/molbev/msu300 (2014).
469 24 Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: 469 and Evolution 32, 268-274, doi:10.1093/molbev/msu300 (2014).
469 24 Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an r p
470 annotation of phylogenetic trees with their covariates and other
471 Ecolog 470 annotation of phylogenetic trees with their covariates and other associated data. *Methods in*
471 *Ecology and Evolution* 8, 28-36, doi:https://doi.org/10.1111/2041-210X.12628 (2017).
472 25 Byrne, A. M. P. *et al.* I
- 470 annotation of phylogenetic trees with their covariates and other associated data. Methods in
471 Ecology and Evolution 8, 28-36, doi:https://doi.org/10.1111/2041-210X.12628 (2017).
472 25 Byrne, A. M. P. *et al.* Inves 471 Ecology and Evolution 8, 28-36, doi:https://doi.org/10.1111/2041-210X.12628 (2017).
472 Byrne, A. M. P. *et al.* Investigating the Genetic Diversity of H5 Avian Influenza Viruses
473 United Kingdom from 2020-2022. Micr 472 25 Byrne, A. M. F. et al. Investigating the Genetic Diversity of H5 Avian Influenza Viruses in the
473 United Kingdom from 2020-2022. Microbiol Spectr 11, e0477622,
474 doi:10.1128/spectrum.04776-22 (2023).
475 26 Sutt
- 473 United Kingdom from 2020-2022. Microbiol Spectr 11, e0477022,
doi:10.1128/spectrum.04776-22 (2023).
475 26 Suttie, A. *et al.* Inventory of molecular markers affecting biological characteristics of avian
476 influenza 475 26 Suttie, A. *et al.* Inventory of molecular
476 influenza A viruses. *Virus Genes* 55, 739-7
477 27 de Bruin, A. C. M. *et al.* Hemagglutin
- 475 26 Suttie, A. et al. Inventory of molecular markers affecting biological characteristics of avian

influenza A viruses. *Virus Genes* 55, 739-768, doi:10.1007/s11262-019-01700-z (2019).

477 27 de Bruin, A. C. M. *et a* influenza A viruses. *Virus Genes* 55, 739-768, doi:10.1007/s11262-019-01700-z (2019).

477 27 de Bruin, A. C. M. *et al.* Hemagglutinin Subtype Specificity and Mechanisms of Highly

478 Pathogenic Avian Influenza Virus Ge 477 27 de Bruin, A. C. M. et al. Hemaggiumin Subtype Specificity and Mechanisms of Highly
28 Pathogenic Avian Influenza Virus Genesis. *Viruses* 14, doi:10.3390/v14071566 (2022).
28 Herfst, S. *et al.* Airborne transmissio
- 478 Pathogenic Avian Influenza Virus Genesis. *Viruses 14*, doi:10.3330/v14071366 (2022).
479 28 Herfst, S. *et al.* Airborne transmission of influenza A/H5N1 virus between ferrets.
480 336, 1534-1541, doi:10.1126/science. 479 28 Herfst, S. et al. Anborne transmission of influenza A/H5N1 virus between ferrets. Science
336, 1534-1541, doi:10.1126/science.1213362 (2012).
- 480 336, 1534-1541, doi:10.1126/science.1213362 (2012).

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.11.04.24313747;](https://doi.org/10.1101/2024.11.04.24313747) this version posted November 5, 2024. The copyright holder for this preprint

482 airborne transmission of A/H5N1 virus. *Cell* 157, 329-339, doi:10.1016/j.cell.2014.02.040
483 (2014).
484 30 Matrosovich, M. N. *et al.* Avian Influenza A Viruses Differ from Human Viruses by

482 and an and an antission of A/H5N1 virus. Cent 157, 329-339, doi:10.1016/j.cell.2014.02.040
483 (2014).
484 30 Matrosovich, M. N. *et al.* Avian Influenza A Viruses Differ from Human Viruses by
485 Recognition of Sialyl 484 30 Matrose
485 Recogni
486 HA 484 30 Matrosovich, M. N. et al. Avian Influenza A Viruses Differ from Human Viruses by
A85 Recognition of Sialyloligosaccharides and Gangliosides and by a Higher Conservation of the
A86 HA Receptor-Binding Site. *Virology* 486 HA Receptor-Binding Site. *Virology* 233, 224-234,
487 doi:https://doi.org/10.1006/viro.1997.8580 (1997).
488 31 Russell, C. A. *et al.* The potential for respiratory droplet-transmissible A/H5N1 influenza virus

- 487 doi:https://doi.org/10.1006/viro.1997.8580 (1997).
488 31 Russell, C. A. *et al.* The potential for respiratory droplet-transmissible A/H5N1 influenza virus
489 to evolve in a mammalian host. *Science* 336, 1541-1547, 488 31 Russell, C. A. *et al*. The potential for respiratory drop
489 to evolve in a mammalian host. *Science* **336**, 1
490 (2012). 488 31 Russell, C. A. et al. The potential for respiratory droplet-transmissible A/H5N1 influenza virus
to evolve in a mammalian host. Science **336**, 1541-1547, doi:10.1126/science.1222526
491 32 Shu, L. P. *et al.* Geneti
- 489 to evolve in a mammalian host. Science 336, 1341-1347, doi:10.1126/science.1222326
491 32 Shu, L. P. et al. Genetic reassortment in pandemic and interpandemic influenza viruses.
492 European Journal of Epidemiology 12, 491 32 Shu, L.
492 *Europed*
493 33 Bao, P.
- 491 32 Shu, L. P. et al. Genetic reassortment in pandemic and interpandemic influenza viruses.
492 European Journal of Epidemiology 12, 63-70, doi:10.1007/BF00144430 (1996).
493 33 Bao, P. et al. Human infection with a rea 2432 European Journal of Epidemiology 12, 63-70, doi:10.1007/BF00144430 (1996).
493 Bao, P. et al. Human infection with a reassortment avian influenza A H.
494 epidemiological investigation study. Nature Communications 13, 493 33 Bao, P. et al. Human infection with a reassortment avian influenza A H3N8 virus. and
494 epidemiological investigation study. Nature Communications 13, 6817, doi:10.1038/s41467-
495 34 Gao, R. et al. Human infection

- epidemiological investigation study. *Nature Communications* 13, 6817, doi:10.1038/s41467-

022-34601-1 (2022).

496 34 Gao, R. *et al.* Human infection with a novel avian-origin influenza A (H7N9) virus. *N Engl J*
 Med 496 34 Gao, R. *et al.* Humar
497 *Med* 368, 1888-1897,
498 35 Horwood, P. F. *et*
- 497 Gao, R. et al. Human infection with a novel avian origin influenza A (H7N9) virus. N Engl 3
497 Med 368, 1888-1897, doi:10.1056/NEJMoa1304459 (2013).
498 35 Horwood, P. F. et al. Transmission experiments support clade-497 Med 368, 1888-1897, doi:10.1096/NEJMoa1304459 (2013).
498 35 Horwood, P. F. *et al.* Transmission experiments suppor
499 transmission and pathogenicity of Cambodian influenza A
1*nfect* 9, 1702-1711, doi:10.1080/222217 498 35 Horwood, P. F. et al. Transmission experiments support clade-lever differences in the
499 transmission and pathogenicity of Cambodian influenza A/H5N1 viruses. *Emerg Microbes*
500 *Infect* 9, 1702-1711, doi:10.1080
- 1999 transmission and pathogeneity of Cambodian influenza A/H5N1 viruses. *Emerg Microbes*
1990 transmission and pathogeneity of Cambodian influenza A/H5N1 viruses. *Emerg Microbes*
1991 501 36 Ly, S., Van Kerkhove, M. D., 500 *Infect 9, 1702-1711*, doi:10.1080/22221751.2020.1792353 (2020).
501 36 Ly, S., Van Kerkhove, M. D., Holl, D., Froehlich, Y. & Vong, S. Inte
502 and poultry, rural Cambodia. *Emerg Infect Dis* **13**, 130-132, doi
503 (2 502 and poultry, rural Cambodia. *Emerg Infect Dis* 13, 130-132, doi:10.3201/eid1301.061014
503 (2007).
504 37 Vang, D., Chau, D., Vutha, K. & Um, S. Knowledge, Attitudes, and Practices Related to Avian
- and poultry, rural cambodia. Emerg Inject Dis 13, 130-132, doi:10.3201, edisot.001014
503 (2007).
504 37 Vang, D., Chau, D., Vutha, K. & Um, S. Knowledge, Attitudes, and Practices Related to Avian
505 Influenza (H5N1) Afte 504 37 Vang, D
505 Influenz
506 2023.20 504 37 Vang, D., Chau, D., Vutha, K. & Um, S. Knowledge, Attitudes, and Practices Related to Avian 505 Influenza (H5N1) After the Outbreak in Rural, Cambodia. *median,*
506 2023.2009.2025.23296059, doi:10.1101/2023.09.25.23296059 (2023).

506 2023.2009.2025.23296059, doi:10.1101/2023.09.25.23296059 (2023).

- 507 38
- 508 508 control of avian influenza: lessons from behaviour change experiences in the Mekong
509 Region. *Glob Public Health* 3, 197-213, doi:10.1080/17441690801887620 (2008).
510 39 World Health Organization. *Addressing t* 509 Region. Glob Public Health 3, 197-213, doi:10.1080/17441690801887620 (2008).
510 39 World Health Organization. Addressing the low risk perception of avian flu in Cambodia,
511 <https://www.who.int/westernpacific/news-r
-
-
- 509 Region. 6099 Public Health 3, 197-213, doi:10.1080/17441690801887620 (2008).
510 89 World Health Organization. Addressing the low risk perception of avian flu in
511 shttps://www.who.int/westernpacific/news-room/featur
-
- 510 39 World Health Organization. Addressing the low risk perception of avian flu in Cambodia,
511 <https://www.who.int/westernpacific/news-room/feature-stories/item/addressing-the-low-
512 risk-perception-of-avian-flu-in-513 40 Manabe, T. *et al.* Impact of Educational Interven
514 Relating to Avian Influenza (H5N1) in a High-R
515 e23711, doi:10.1371/journal.pone.0023711 (2011
- 514 Relating to Avian Influenza (H5N1) in a High-Risk Population in Vietnam. PLOS ONE 6,
-
- 513 40 Manabe, T. et al. Impact of Educational Intervention Concerning Awareness and Behaviors
514 Relating to Avian Influenza (H5N1) in a High-Risk Population in Vietnam. PLOS ONE 6,
515 623711, doi:10.1371/journal.pone.0 615 Relating to Avian Influenza (H5N1) in a High-Risk Population in Vietnam. PLOS ONE 6,
515 e23711, doi:10.1371/journal.pone.0023711 (2011).
516 41 Manabe, T. *et al.* Knowledge, attitudes, practices and emotional reactio 516 41 Manabe, T. *et al.* Knowledge, attitudes, practices a
517 of avian influenza (H5N1) hit communities
518 doi:10.1371/journal.pone.0047560 (2012). 517 61 Manabe, T. et al. Knowledge, attitudes, practices and emotional reactions among residents
517 61 Manabe, T. et al. Knowledge, attitudes, practices and emotional reactions among residents
518 doi:10.1371/journal.pone
- 517 of avian influenza (H5N1) hit communities in Vietnam. PLoS One 7, e47560,
518 doi:10.1371/journal.pone.0047560 (2012).
519 42 Koh, G. C. *et al.* Avian influenza and South Jakarta primary healthcare workers: a controll 519 42 Koh, G. C. *et al.* Avian influenza and South
520 mixed-method study. *Tropical medicine*
521 doi:10.1111/j.1365-3156.2009.02297.x (200 519 42 Koh, G. C. et al. Avian influenza and South Jakarta primary healthcare workers: a controlled
520 mixed-method study. Tropical medicine & international health : TM & IH 14, 817-829,
521 doi:10.1111/j.1365-3156.2009.0
- mixed-method study. Tropical medicine & international health : TM & IH 14, 817-829,
doi:10.1111/j.1365-3156.2009.02297.x (2009).
Tzeng, H.-M. & Yin, C.-Y. Nurses' Fears and Professional Obligations Concerning Possible
Huma 522 43 Tzeng, H.-M. & Yin, C.-Y. Nurses' Fears and I
523 Human-to-Human Avian Flu. Nursing Ethics 13
524 (2006). Tzeng, H.-M. & Yin, C.-Y. Nurses' Fears and Professional Obligations Concerning Possible
523 Human-to-Human Avian Flu. *Nursing Ethics* 13, 455-470, doi:10.1191/0969733006nej893oa
524 (2006).
525 44 Kreslake, J. M. *et al*
- 11 Human-to-Human Avian Flu. Mussing Ethics 13, 433-470, doi:10.1191/09697330006nej8930d
524 (2006).
525 44 Kreslake, J. M. *et al.* The Intersection of Care Seeking and Clinical Capacity for Patients With
526 Highly Patho 524 (2006). 525 44 Kreslake, J. M. et al. The Intersection of care Seeking and clinical capacity for Patients With
526 Highly Pathogenic Avian Influenza A (H5N1) Virus in Indonesia: Knowledge and Treatment
527 Practices of the Public Figure Practices of the Public and Physicians. Disaster medicine and public health preparedness 10,
528 838-847, doi:10.1017/dmp.2016.81 (2016).
529 45 World Health Organization. *Genetic and antigenic characteristics of c*
- 528 B38-847, doi:10.1017/dmp.2016.81 (2016).
529 45 World Health Organization. *Genetic and antigenic characteristics of clade 2.3.4.4b A(H5N1)*
530 viruses identified in dairy cattle in the United States of America, 529 45 World Health Organization. *Genetic and an*
530 viruses identified in dairy cattle
531 <https://www.who.int/publications/m/item 525 45 World Health Organization. Genetic and antigent characteristics of clade 2.3.4.4b A(H5N1)
530 Viruses identified in dairy cattle in the United States of America,
531 <https://www.who.int/publications/m/item/genetic-531 viruses identified in dairy cattle in the Omed States of America,

531 shttps://www.who.int/publications/m/item/genetic-and-antigenic-characteristics-of-clade-

532 2.3.4.4b-a(h5n1)-viruses-identified-in-dairy-cattle-i

 $\frac{1}{2}$ 2.3.4.4.4.4b-a(h5n1)-viruses-identified-in-the-united-states-of-american-in-the-united-states-of-america

