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ABSTRACT  

 

INTRODUCTION  Distinguishing between molecular changes that precede dementia onset and those 

resulting from the disease is challenging with cross-sectional studies.  

METHODS  We studied blood DNA methylation (DNAm) differences and incident dementia in two 

large longitudinal cohorts: the Offspring cohort of the Framingham Heart Study (FHS) and the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) study. We analyzed blood DNAm samples from over 1,000 

cognitively unimpaired subjects.  

RESULTS  Meta-analysis identified 44 CpGs and 44 differentially methylated regions consistently 

associated with time to dementia in both cohorts. Our integrative analysis identified early processes in 

dementia, such as immune responses and metabolic dysfunction. Furthermore, we developed a Methylation-

based Risk Score, which successfully predicted future cognitive decline in an independent validation set, 

even after accounting for age, sex, APOE ε4, years of education, baseline diagnosis, and baseline MMSE 

score. 

DISCUSSION DNA methylation offers a promising source of biomarker for early detection of dementia.  
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BACKGROUND 

 

Alzheimer’s disease and related dementias (ADRD) are a major public health problem with a substantial 

economic burden1. ADRD currently affects 8.1 million to 10.8 Americans in the United States 2, and this 

number is projected to rise as the population ages. The escalating healthcare demands of ADRD underscore 

the critical need for effective prevention, early diagnosis, and management approaches. 

Given the difficulty in halting neurodegenerative processes once they begin, it is imperative to develop 

biomarkers that could identify individuals at high risk for developing AD while they are still cognitively 

unimpaired (CU). Such biomarkers can facilitate personalized medicine and the implementation of 

preventive lifestyle interventions, potentially delaying the onset of dementia. Recent studies showed that 

delaying the onset of dementia by only one year in the 70-74-year-old group could reduce prevalence by 

more than 10%3. 

DNA methylation (DNAm) is an epigenetic mechanism influenced by both genetics and environment. 

We and others have shown that DNAm is integrally involved in Alzheimer’s dementia (AD) 4-11. Moreover, 

several recent studies demonstrated DNAm differences could be detected in blood samples of AD 

subjects12-17. In particular, our recent analysis of two large clinical AD datasets (ADNI and AIBL) revealed 

a number of blood DNAm differences consistently associated with AD diagnosis in both cohorts7.  

To develop biomarkers that can assess individual risk for dementia, it’s important to distinguish 

between DNAm changes that precede dementia onset and those that result from the disease. To date, most 

studies of DNAm in dementia have used a cross-sectional design6,7, 16-18 with only a few using the 

longitudinal design. Encouragingly, two recent longitudinal studies detected DNAm changes in the blood 

several years before the onset of dementia symptoms 19-22. However, these studies were limited by their 

small sample sizes.  

Here we studied DNAm and incident dementia by meta-analyzing two large longitudinal datasets from 

the Framingham Heart Study (FHS) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) studies, 

with a total of more than 1000 samples from independent subjects, free of dementia or mild cognitive 

impairment (MCI) at blood sample collection. All samples included in this meta-analysis were measured 

using the same Infinium MethylationEPIC Beadchip platform, and each dataset was analyzed using a 

uniform analytical pipeline. We identified CpGs and differentially methylated regions (DMRs) consistently 

associated with incident dementia in both cohorts. Moreover, we also performed comparative analysis 

incorporating results from integrative analysis of DNAm in the blood with gene expression, genetic 

variants, and brain DNA methylation. These analyses, along with gene set enrichment analysis, highlighted 

DNAm differences associated with immune responses and metabolic dysfunction in dementia. In addition 
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to corroborating findings from previous studies using cross-sectional design, our analysis also nominated a 

number of novel DNAm differences, emphasizing the importance of using a longitudinal design to identify 

DNAm differences with a temporal relationship to the disease. Importantly, we developed a Methylation 

Risk Score (MRS) for dementia using the FHS dataset and successfully validated it through out-of-sample 

testing on the ADNI dataset, demonstrating DNAm is a plausible source of predictive biomarkers for 

dementia.    

 

METHODS 

 

Study datasets for meta-analysis  

 

The FHS is a community-based transgenerational study that investigates the development of cardiovascular 

disease in Framingham, Massachusetts23. In the FHS, the Offspring cohort included subjects from the 

second generation and their spouses. Blood samples were collected from the FHS Offspring cohort at Exam 

9 (denoted FHS9 hereafter) which took place between 2011 – 2014. We included samples from 907 self-

reported non-Hispanic White subjects who are free of dementia at Exam 9.  

In the FHS, participants undergo Mini–Mental State Examinations (MMSE) at each exam cycle, and 

they completed a 45-minute neuropsychological test every 5-6 years since 1999. If participants are flagged 

for possible cognitive impairment based on these assessments, they are invited for additional, annual 

neurological and neuropsychological evaluations. If two consecutive annual evaluations show 

improvement, participants return to the regular follow-up schedule 24. Details of dementia surveillance in 

the FHS were previously described in Satizabal et al. (2016) 24. A dementia review panel assesses all 

potential cases, and the diagnosis of dementia is based on DSM-IV (Diagnostic and Statistical Manual of 

Mental Disorders, fourth edition) criteria. DNA methylation data and dementia ascertainment were obtained 

from the dbGap database (accessions: phs000974.v5.p4 and pht010750.v2.p14). 

The ADNI is a longitudinal study designed to study the progression of AD 25. For our analysis, we 

selected the earliest visit with available DNAm data for each subject, and additionally required that they 

were cognitively normal at that time. This resulted in a dataset of 216 self-reported non-Hispanic White 

subjects 26. These subjects were followed approximately every 6 months, which provides valuable 

information on disease progression. DNA methylation data and the dementia status of the subjects were 

obtained from the ADNI study website (adni.loni.usc.edu).  

The endpoint of this study is dementia onset. The follow-up period was from the time of blood sample 

collection for DNA methylation measurement to the time of dementia onset. Follow-up was censored at the 

time of loss to follow-up, non-dementia death, or the final day of study follow-up.  
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Pre-processing of DNA methylation data  

 

DNA methylation samples from both FHS9 and ADNI were measured using the same Illumina 

HumanMethylation EPIC v1 bead chips. Supplementary Table 1 shows the number of CpGs and samples 

at each quality control (QC) step. The FHS9 and ADNI datasets were pre-processed separately. For each 

dataset, the QC of probes involved several steps. First, we selected probes with a detection P-value < 0.01 

in 90% or more of the samples. A small P-value indicates a significant difference between the signals in the 

probes and the background noise. Next, we selected probes that start with "cg", and using the function 

rmSNPandCH from the DMRcate R package, we removed probes that are located on X and Y 

chromosomes, are cross-reactive 27, or located close to single nucleotide polymorphism (SNPs) (i.e., an 

SNP with minor allele frequency (MAF) ≥ 0.01 was present in the last five base pairs of the probe). 

For QC of the samples, we first removed samples with bisulfite conversion rate lower than 85%, as 

well as samples for which the DNAm predicted sex status differed from the recorded sex status. The sex 

prediction was performed using the getSex function from the minfi R package. In addition, we performed 

principal component analysis (PCA) using the 50,000 most variable CpGs to identify outliers. Samples 

outside the range of ±3 standard deviations from the mean of PC1 and PC2 were excluded.  

The quality-controlled data was next normalized using the dasen method, as implemented in the 

wateRmelon R package 28. Immune cell type proportions (B lymphocytes, natural killer cells, CD4+ T cells, 

CD8+ T cells, monocytes, neutrophils, and eosinophils) were estimated using the EpiDISH R package 29. 

As in previous blood-based DNAm studies 6,7,30, granulocyte proportions were computed as the sum of 

neutrophils and eosinophils proportions since both neutrophils and eosinophils are classified as granular 

leukocytes. To correct batch effects from methylation plates, we used the BEclear R package 31.  

Supplementary Figures 1-2 show that the first principal component (PC1) of methylation beta values 

was not significantly associated with covariates including follow-up duration, age, sex, education and 

smoking history of the subjects in ADNI and FHS9 datasets, with the exception that PC1 was significantly 

higher in males in the FHS9 dataset. All subsequent analyses were adjusted for sex along with other 

potential confounding factors. 

 

Association of DNA methylation at individual CpGs with dementia 

 

To evaluate the relationship between incident dementia and DNA methylation, we conducted Cox 

proportional regression analyses on both FHS and ADNI datasets separately, via the coxph function in the 

survival R package. For the FHS dataset, we used the model: Surv (follow-up time, status) ~ 
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methylation.beta + age + sex + immune cell-type proportions (B, NK, CD4T, Mono, Gran) where status 

indicates whether incident dementia occurred (1 = event occurred, 0 = censored) (Model 1). For the ADNI 

dataset, given the smaller sample size, we only included the first two principal components (PCs) of the 

immune cell-type proportions, which explained 90.0% variances in estimated immune cell-type 

proportions. Specifically, we fitted the model Surv (follow-up time, status) ~ methylation.beta + age + sex + 

PC1 + PC2.  

 

Inflation assessment and correction  

 

Genomic inflation factors (lambda values) were estimated using both the conventional approach 32 and the 

bacon method 33, which was proposed specifically for EWAS. For the FHS and ADNI datasets, the estimated 

bias was -0.009 and 0.041, respectively. For the estimated inflation, the lambda values (λ) using the 

conventional approach were 1.424 and 1.005, while the lambda values based on the bacon approach 

(λ.bacon) were 1.176 and 0.986 for the FHS and ADNI datasets, respectively (Supplementary Table 2).    

 We next applied genomic correction using the bacon method33, as implemented in the bacon R package, 

to obtain bacon-corrected effect sizes, standard errors, and P-values for each dataset. After bacon correction, 

the estimated bias were 4.78×10-4 and -6.18×10-4, and the estimated inflation factors were λ = 1.03 and 

1.029, and λ.bacon = 1.01 and 1.00 for the FHS and ADNI datasets, respectively.   

 

Meta-analysis 

 

To meta-analyze individual CpG results across both the FHS9 and ADNI datasets, we used the inverse-

variance weighted fixed-effects model, implemented in the meta R package. As demonstrated by Rice et al. 

(2018), the fixed effects model can be interpreted as a weighted average of study-specific effects, regardless 

of whether the true study-specific effects are heterogeneous 34. The methylation beta values were rescaled 

into z-scores so that the estimated hazard ratios correspond to an increase in dementia risk associated with 

a one standard deviation increase in beta values. To correct for multiple comparisons, we computed the 

false discovery rate (FDR). We considered CpGs with an FDR less than 5% in meta-analysis of the FHS9 

and ADNI datasets, with a consistent direction of change in estimated effect sizes, and a nominal P-value 

less than 0.05 in both datasets as statistically significant. 

 

Differentially methylated regions analysis 
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For region-based meta-analysis, we used the comb-p method 35. Briefly, comb-p takes single CpG P-values 

and locations of the CpG sites to scan the genome for regions enriched with a series of adjacent low P-

values. In our analysis, we used P-values from the meta-analysis of the FHS9 and ADNI datasets as input 

for comb-p. We used parameter settings with --seed 0.05 and --dist 750 (a P-value of 0.05 is required to start 

a region and extend the region if another P-value was within 750 base pairs), which were shown to have 

optimal statistical properties in our previous comprehensive assessment of the comb-p software36. As comb-

p uses the Sidak method to account for multiple comparisons, we selected DMRs with Sidak P-values less 

than 0.05. To help reduce false positives, we imposed two additional criteria in our final selection of DMRs: 

(1) the DMR also has a nominal P-value < 1×10-5; (2) all the CpGs within the DMR have a consistent 

direction of change in estimated effect sizes in the meta-analysis. 

 

Functional annotation of significant methylation associations 

 

The significant methylation at individual CpGs and DMRs were annotated using both the Illumina (UCSC) 

gene annotation and Genomic Regions Enrichment of Annotations Tool (GREAT) software 37 which 

associates genomic regions with target genes. To assess the overlap between our significant CpGs and 

DMRs (CpG or DMR location +/-250bp) with enhancers, we used enhancer gene maps generated from 131 

human cell types and tissues described in Nasser et al. (2021) 38. Specifically, we selected enhancer-gene 

pairs with “positive” predictions from the ABC model, which included only expressed target genes, did not 

include promoter elements, and had an ABC score higher than 0.015. In addition, we also required that the 

enhancer-gene pairs be identified in cell lines relevant to this study. 

 

Pathway analysis 

 

To identify biological pathways enriched with significant DNA methylation differences, we used the 

methylRRA function in the methylGSA R package 39, which used  P-values from the meta-analysis of FHS9 

and ADNI datasets as input. Briefly, methylGSA first computes a gene-wise 𝜌𝜌 value by aggregating P-

values from multiple CpGs mapped to each gene. Next, the different number of CpGs on each gene is 

adjusted by Bonferroni correction. Finally, a Gene Set Enrichment Analysis 40 (in pre-rank analysis mode) 

is performed to identify pathways enriched with significant CpGs. We analyzed pathways in the KEGG and 

REACTOME databases. Pathways with FDR less than 0.05 were considered to be statistically significant.  

 

Integrative analyses with gene expression, genetic variants, and brain-to-blood correlations 
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To evaluate the effect of DNA methylation on the expression of nearby genes, we overlapped our dementia-

associated CpGs, including both significant individual CpGs and those located within DMRs, with eQTm 

analysis results in Supplementary Tables 2 and 3 of Yao et al. (2021)41.  

For correlation and overlap with genetic susceptibility loci, We searched for mQTLs in the blood using 

the GoDMC database17. To select significant blood mQTLs in GoDMC, we used the same criteria as the 

original study 42, that is, considering a cis P-value smaller than 10-8 and a trans P-value smaller than 10-14 

as significant. The genome-wide summary statistics for genetic variants associated with dementia described 

in Bellenguez et al. (2022) 43 were obtained from the European Bioinformatics Institute GWAS Catalog 

under accession no. GCST90027158. Colocalization analysis was performed using the coloc R package.  

 To assess the correlation of dementia-associated CpGs and DMRs methylation levels in blood and brain 

samples, we used the London dataset, which consisted of 69 samples with matched PFC and blood samples 
44.  We assessed the association of brain and blood methylation levels at dementia-associated CpGs using 

both an unadjusted correlation analysis with methylation beta values (𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), and an adjusted correlation 

analysis using methylation residuals (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), in which we removed the effect of estimated neuron 

proportions in brain samples (or estimated immune cell-type proportions in blood samples), array, age at 

death for brain samples (or age at blood draw for blood samples), and sex from DNA methylation M-values.  

 

Sensitivity analysis  

 

In the first sensitivity analysis, we evaluated if dementia risk factors would likely confound the DNA 

methylation to dementia associations we observed. To this end, we first performed regression analysis to 

assess the association between dementia-associated CpGs (both significant individual CpGs and those 

located in DMRs) and dementia risk factors collected by the Framingham study, including diabetes, blood 

pressure, years of education, obesity, and smoking. Specifically, for each risk factor and each CpG, we fitted 

the model methylation.m.value ~ risk factor + age + sex + cell type proportions (B, NK, CD4T, Mono, Gran). 

A risk factor is considered significantly associated with a CpG if its P-value is less than 0.05 in the above 

model (i.e., a significant risk factor for a CpG).  

Next, the confounding effects of these significant risk factors for the dementia-associated CpGs were 

evaluated by fitting the Cox proportional regression model that expanded Model 1 above by additionally 

including the significant risk factor: Surv(incident dementia, follow-up time) ~ methylation.beta + risk factor 

+ age + sex + immune cell-type proportions (B, NK, CD4T, Mono, Gran). 

In the second sensitivity analysis, to evaluate the impact of family structure in the discovery of 

significant CpGs, we computed the intraclass correlation coefficient (ICC) for dementia-associated CpGs, 
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by fitting a random effects model methylation m-value ~ random (family) to the FHS data for each CpG. 

The ICC was then estimated by 𝜎𝜎𝑢𝑢2

𝜎𝜎𝑢𝑢2+𝜎𝜎𝑒𝑒2
 where 𝜎𝜎𝑢𝑢2 is estimated variance component for family random effects, 

and 𝜎𝜎𝑒𝑒2 is the residual error. This analysis was implemented using the lmer function in the lme4 R package.  

We also compared the results of Model 1 with a model that accounts for family relationships in the Cox 

regression model using a kinship matrix. To this end, we first computed the kinship matrix using the R 

package kinship2 based on the pedigree information in the dbGap dataset (accession: pht000183.v13.p14). 

Next, for each dementia-associated CpGs, we fitted a mixed-effects Cox regression model with a random 

intercept, adjusting for the same covariates as in Model 1 above in the analysis of the FHS9 dataset. The 

variance-covariance matrix is determined using twice the value of the kinship matrix 45. The mixed-effects 

Cox models were implemented using the coxme R package. 

The coMethDMR46 software was used to evaluate the robustness of genomic regions defined by the 44 

DMRs identified by comb-p for their association with time to incident dementia. First, coMethDMR 

selected co-methylated sub-regions within for each region. We then summarized methylation beta values 

within these co-methylated sub-regions using medians and tested them against time to incident dementia. 

In the same way as in single CpG analyses, we adjusted for potential confounding factors, including age, 

sex, and blood cell-type composition. The dataset specific P-values for each genomic region were then 

combined across FHS9 and ADNI datasets using an inverse-variance weighted fixed effects meta-analysis 

model. DMRs with an FDR of less than 5% were considered significant.  

In the last sensitivity analysis, to identify cases with dementia or MCI due to AD in the ADNI dataset, 

we use the variables DXMDUE and DXDUE in the DXSUM table. Similarly, we used the variable 

AD_STATUS in the FHS9 dataset to identify AD cases.   

 

Validation using independent datasets 

 

To compare our results with previous findings, we searched dementia-associated CpGs (both significant 

individual CpGs and those located in DMRs) using the CpG Query tool in the MIAMI-AD database47. For 

input on phenotype, we selected “AD Biomarker”, “AD Neuropathology”, “Dementia Clinical Diagnosis”.  

 
Out-of-sample validation of Methylation Risk Score 
 
First, we selected CpGs that achieved P-value < 10-5 using the model Surv (follow-up time, status) ~ 

methylation.beta + age + sex + immune cell-type proportions (B, NK, CD4T, Mono, Gran) where status 

indicates whether incident dementia occurred (1 = event occurred, 0 = censored) in the FHS9 dataset. To 

estimate CpG weights, we applied ridge regression using the glmnet R package on the FHS9 dataset. The 
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model parameters λ was optimized via five-fold cross validation based on Harrell C index. After tunning 

the model, the final model was fitted with λ = lambda.1se, i.e., the value of λ that gives the most regularized 

model such that the cross-validated C index is within one standard error of the maximum.  

Next, we performed an out-of-sample validation using the ADNI dataset. For each subject at baseline, 

the MRS was computed by summing the methylation M-values for the 151 CpGs weighted by coefficients 

estimated from the ridge regression model described above. We then performed Cox regression analyses on 

the ADNI dataset to evaluate the association between baseline MRS and disease progression. This analysis 

was performed using the coxph function in the survival R package. Disease progression was defined as the 

conversion from CN to MCI or dementia, and from MCI to dementia. The model was adjusted for multiple 

covariates: Surv (Conversion event, follow-up time) ~ MRS + age + sex + APOE ε4 status + years of 

education + baseline diagnosis + baseline MMSE score. Furthermore, we stratified the samples into four 

groups based on quartiles of their baseline MRS scores and visualized the conversion probabilities for the 

subjects in the first and last quartiles, after adjusting for covariate variables age, sex, APOE ε4 status, years 

of education, baseline diagnosis, and baseline MMSE score. The adjusted Kaplan-Meier curves were 

graphed using the ggadjustedcurves function from the survminer R package.  

 

Data and Code Availability  

 

The genome-wide summary statistics have been deposited to the MIAMI-AD (DNA Methylation in Aging 

and Methylation in AD) database (https://miami-ad.org/). The scripts for the analyses performed in this 

study are available at https://github.com/TransBioInfoLab/blood-dnam-and-incident-dementia  

 

RESULTS  

 

Study cohorts  

 

Our meta-analysis included a total of 1123 DNAm samples (measured using Illumina EPIC arrays, 

generated from blood samples of 907 Offspring cohort participants (496 females, 411 males) in the 

Framingham Heart Study (FHS) and 216 participants (108 females, 108 males) in the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) study (Table 1), who were free of dementia or MCI diagnosis at blood 

sample collection.  

In the FHS, the mean ages of the subjects at blood collection during Exam 9 was 72.03 ± 8.18 years.  

The subjects in FHS9 were followed up to 7.72 years after Exam 9, with an average follow-up of 4.98 ± 

2.33 years, and 42 subjects developed dementia during this period. In particular, for those who did not 
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develop dementia by the end of the observation period in 2018, the average follow-up duration was 5.07 ± 

2.31 years (Table 1, Supplementary Figure 3).  

In the ADNI, the mean age of the participants at the time of sample collection was 76.73 ± 6.62 years. 

These subjects were followed for up to 11.11 years, with an average follow-up of 5.97 ± 3.00 years, and 18 

subjects developed dementia during this period. For those who did not develop dementia by the end of the 

observation period, the average follow-up duration was 5.92 ± 3.03 years (Table 1, Supplementary Figure 

4). The percentages of non-smokers in FHS9 and ADNI were 39.40% and 57.41%, respectively. Subjects 

in both cohorts are highly educated, with an average of 14.38 years of education in FHS9 and 16.36 years 

in ADNI.  

 

Blood DNAm differences at individual CpGs and DMRs are significantly associated with incident 

dementia  

 

After adjusting for age, sex, and immune cell type proportions, and correcting batch effects and genomic 

inflation (Methods), we identified 44 CpGs with a consistent direction of change in both FHS9 and ADNI 

datasets, a nominal P-value less than 0.05 in both datasets and an FDR < 0.05 in inverse-variance fixed-

effects meta-analysis of the FHS9 and ADNI datasets (Figure 1, Supplementary Table 3, Supplementary 

Figure 5). These results remain robust in models that additionally included dementia risk factors and 

accounted for family structure in the FHS (see details below). For these 44 significant CpGs, the hazard 

ratios associated with one standard deviation change in methylation beta values ranged from 0.456 to 3.948 

in the FHS9 cohort, 0.343 to 2.577 in the ADNI cohort, and 0.428 to 3.063 in the meta-analysis. About half 

of the significant CpGs (21 CpGs) showed hypermethylation associated with an increased risk of dementia. 

Around half of these CpGs (20 CpGs) are located in CpG islands or shores. Additionally, 19 CpGs (43.18%) 

are in promoter regions within 2 kb of the TSS, which is significantly higher than the overall proportion of 

CpGs in promoter regions (27.65%) (P-value = 0.0276; Supplementary Figure 6). 

 Using meta-analysis P-values for individual CpGs as input, comb-p35 software identified 44 

differentially methylated regions (DMRs), which had a nominal P-value < 1×10-5, Sidak adjusted P-value 

< 0.05, and all the CpGs within the DMR have a consistent direction of change in estimated effect sizes in 

the meta-analysis (Supplementary Table 4). The number of CpGs in these DMRs ranged from 3 to 12. 

Among these DMRs, the majority showed hypermethylation associated with increased risk of dementia (35 

DMRs), are located in CpG islands or shore (23 DMRs), or the promoter region (31 DMRs). Interestingly, 

among the significant individual CpGs and DMRs, 10 CpGs and 15 DMRs were also located in enhancer 

regions (Supplementary Table 3,4), which are regulatory DNA sequences that transcription factors bind to 

activate gene expression38,48 
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Pathway analysis revealed DNA methylation differences associated with risk of dementia are 

enriched in biological pathways involved in immune responses and metabolic processes 

 

To better understand biological pathways enriched with significant DNA methylation differences, we next 

performed pathway analysis using the methylGSA software39. At 5% false discovery rate (FDR), we 

identified 28 KEGG pathways and 26 Reactome pathways (Figure 2, Supplementary Table 5). Notably, a 

number of these significant pathways highlighted the central role of neuroinflammation processes in 

dementia, such as B cell receptor signaling, Chemokine Signaling, Leukocyte Transendothelial Migration, 

Interleukin-1 Signaling, and Toll-like Receptor Cascades pathways. In addition, several other significant 

pathways are involved in metabolic processes, including glucose and lipid metabolism, dysfunction of 

which are major risk factors for dementia 49,50. These significant pathways included Glycolysis / 

Gluconeogenesis, Insulin signaling, and Steroid biosynthesis.  

 

Correlation of significant DNAm with expression of nearby genes and brain DNA methylation levels  

 

To better understand the functional role of the significant DMRs and CpGs, we performed several 

comparative analyses. We first overlapped our significant DNAm differences with previously established 

DNAm to RNA associations (i.e., eQTm) which was identified using matched DNA methylation and gene 

expression data from the Framingham study 41. Among the 44 significant individual CpGs and those within 

the 44 DMRs, we found 13 and 15 CpGs significantly correlated with target gene expression in cis (i.e., 

within 500k bp of the CpG) or trans, respectively (Supplementary Table 6). Notably, all the CpGs with cis 

associations are negatively correlated with their target gene expressions. Among them, 6 CpGs in the 

promoter regions of the KIF16B gene are significantly associated with its gene expression.  

As dementia is a brain disorder, we also sought to prioritize methylation differences with a consistent 

direction of change in both blood and brain. To this end, we computed Spearman rank correlations between 

DNA methylation levels in the brain and blood using the London dataset9, which included matched DNA 

methylation samples measured on postmortem brain and pre-mortem blood samples of 69 subjects 44. We 

performed both an adjusted correlation analysis based on methylation residuals (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) which removed 

covariate effects (see details in Methods) and an unadjusted correlation analysis based on methylation beta 

values (𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏). Among the significant individual CpGs and CpGs mapped within the DMRs, only 8 CpGs 

showed significant brain-to-blood associations in both adjusted and unadjusted analyses (𝐹𝐹𝐹𝐹𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 < 0.05,

𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 0.05) (Supplementary Table 7). All of these CpGs were located in DMRs, and 6 out 8 CpGs 

showed significant positive brain-to-blood correlations. Notably, the three CpGs with the most significant 
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brain-to-blood correlations (𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏: 0.821 to 0.851;  𝐹𝐹𝐹𝐹𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 3.52×10-16 to 6.02×10-19) are located on the 

ZNF696 gene, which encodes a zinc finger protein involved in transcriptional regulation (Supplementary 

Figure 7).  

 

Correlation and overlap with genetic risk loci  

 

We identified methylation quantitative trait loci (mQTLs) by comparing our dementia-associated CpGs 

with blood mQTLs from the GoDMC database42. Among the 44 significant CpGs (Supplementary Table 3) 

and the 233 CpGs located in significant DMRs (Supplementary Table 4), 96 CpGs had 20974 mQTLs in 

cis and 12 CpGs had 1464 mQTLs in trans in the blood (Supplementary Table 8).  

Next, we evaluated if the mQTLs overlapped with genetic risk loci implicated in dementia, by 

comparing them with the genetic variants nominated in a recent ADRD meta-analysis 43. We found that 

while no mQTLs overlapped with the genome-wide significant loci, 272 SNPs overlapped with genetic 

variants reaching a suggestive genome-wide significance threshold at P < 10-5 (Supplementary Table 9).  

Given the observed overlap between the mQTLs and ADRD genetic risk loci, we next sought to 

determine whether the association signals at these loci (variant to CpG methylation levels and variant to 

clinical ADRD status) were due to a single shared causal variant or distinct causal variants close to each 

other. To this end, we performed a co-localization analysis using the method described by Giambartolomei 

et al. (2014)51. The results of this co-localization analysis strongly suggested52  (i.e. PP3+PP4 > 0.90, PP4 

> 0.8 and PP4/PP3 > 5) that 9 genomic regions included a single causal variant common to both phenotypes 

(i.e.  ADRD status and CpG methylation levels). These causal variants are located in the IL34, CCR5AS 

genes and the HLA intergenic regions (Supplementary Table 10).  

 

Sensitivity analyses 

 

A growing body of recent research suggests that various lifestyle factors, such as smoking, may contribute 

to dementia 53,54. Meanwhile, recent studies also reported that DNA methylation is influenced by these 

lifestyle risk factors 55-60. We investigated whether any of the significant CpGs were also associated with 

dementia risk factors collected by the Framingham study, including APOE, diabetes, hypertension, years of 

education, BMI, and smoking. We found that among the 271 dementia-associated CpGs (44 significant 

individual CpGs, 233 CpGs located in significant DMRs, and 6 overlapping CpGs), 43 CpGs are associated 

with number of APOE4 alleles, 28 CpGs are associated with smoking status, and 6 CpGs are associated 

with years of education. Moreover, 13, 18, and 7 CpGs are associated with BMI, diabetes, and hypertension 

status, respectively (Supplementary Table 11).    
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To evaluate the confounding effects of these risk factors, we re-analyzed the FHS9 dataset and 

performed a sensitivity analysis of the dementia-associated CpGs, by additionally adjusting for the 

significant risk factors they were associated with in the Cox regression model. Supplementary Table 12 

shows the estimated hazard ratios (HRs) for all dementia-associated CpGs based on the original model and 

expanded model are very similar. Moreover, the P-values for the significant individual CpGs ranged from 

1.20×10-7 to 4.02×10-3 in the original model and ranged from 2.20×10-7 to 0.0135 in the expanded model, 

indicating these CpGs are associated with dementia independent of the covariate factors. Given the 

importance of smoking as a confounding factor for DNAm studies, we also repeated the meta-analysis by 

additionally including smoking history as a covariate variable. Supplementary Table 13 shows that all 44 

dementia-associated CpGs from Supplementary Table 3 remained highly significant, with meta-analysis P-

values ranging from 1.79 ×10-8 to 2.15 ×10-5, corroborating the above results.   

 A second sensitivity analysis was performed to evaluate the impact of family structure in the FHS9 

dataset on our analysis results. To this end, we estimated the intraclass correlation coefficient (ICC) for the 

dementia-associated CpGs, by comparing between-family variance to the total variance, which is the sum 

of between-family variance and within-family variance. Our results showed that for the 271 dementia-

associated CpGs, the ICC values ranged from 0 to 0.149 (Supplementary Table 14), indicating minimal 

intraclass correlation in DNA methylation at these CpGs due to family structure.  

 In addition, we also performed an additional analysis using mixed-effects Cox models that accounted 

for family relationships with a kinship matrix computed from pedigree information. Notably, the P-values 

for the 44 dementia-associated individual CpGs ranged from 2.29×10-9 to 6.02×10-3 in the original model, 

and from 7.51×10-8 to 6.02×10-3 in the mixed effects Cox model. Supplementary Table 15 shows the hazard 

ratios and P-values from the mixed effects Cox model are very similar to those from the original Cox model, 

indicating that our results are robust to family structure in the FHS9 dataset.  

 In a third sensitivity analysis, we excluded CN subjects with strong biomarker evidence for AD, but 

short follow-up durations. These individuals are at a higher risk of progressing to dementia but may have 

incomplete data due to the limited follow-up period, which could introduce bias into the analysis. The FHS9 

dataset includes plasma total tau measurements, while the ADNI dataset provides CSF pTau181 levels. 

Given the lack of consensus on specific cutoff values for AD biomarkers, we excluded subjects with tau 

biomarker levels in the highest quartile and follow-up times in the lowest quartile (i.e., ≤ 3 years). 

Supplementary Table 16 shows that the meta-analysis P-values for all 44 CpGs remained highly significant, 

ranging from 4.41×10-8 to 1.14×10-5, after excluding these high-risk subjects. 

 To evaluate the robustness of our DMR analysis results, we performed an additional DMR analysis on 

the genomic regions defined by the 44 significant DMRs listed in Supplementary Table 4, using an 

alternative approach, the coMethDMR software 46. Specifically, within each of these 44 genomic regions, 
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we first identified co-methylated and differentially methylated regions associated with incident dementia, 

adjusting for age, sex, and blood cell-type composition for each dataset separately. We then combined the 

dataset-specific P-values for each genomic region using an inverse-variance fixed effects meta-analysis 

model. Our findings indicated that, among the 44 significant DMRs identified by comb-p, the majority (36 

DMRs, 81.8%) were significantly associated with incident dementia using coMethDMR at a 5% FDR 

(Supplementary Table 17). Additionally, all 36 corroborated DMRs showed the same direction of effect in 

the coMethDMR method as in the comb-p method. 

 

Validation of dementia-associated CpGs in independent datasets   

 

To validate our findings, we compared our dementia-associated CpGs and DMRs with those identified in 

previous studies using our recently developed MIAMI-AD database47. Our comparison revealed that 17 of 

the 44 significant individual CpGs (38.6%) overlapped with significant findings in previous research, with 

consistent direction of change (Supplementary Table 18). Among them, results for 9 CpGs were from 

independent cohorts other than FHS and ADNI. These 9 CpGs are located in the promoter regions of the 

SLCO3A1, MUT, WDR75 genes and intergenic regions. Similarly, among the 227 CpGs located in DMRs, 

65 CpGs were supported by previous research, also showing the same direction of effect. Among them, 51 

CpGs located in 18 DMRs, reached nominal significance with the expected direction of change in external 

cohorts other than ADNI and FHS. These 18 DMRs were located on in the promoter regions of the ACY3, 

ARMC5, CCR5, GET4, GLRX, IRAX4, KIF16B, LRRC59, C6orf25, MMACHC, HES5, PCTP, VAV1, 

ZMAT2, ZNF696 genes, and intergenic regions.   

 

Out-of-sample validation demonstrated the Methylation Risk Scores predicted dementia progression  

 

To evaluate the feasibility of using dementia-associated DNAm for predicting disease progression, we 

developed an MRS score based on significant individual CpGs from the FHS9 dataset and assessed its 

ability to predict dementia progression in the ADNI dataset.  

First, using the FHS9 dataset, we fitted a ridge regression model with time to dementia as the outcome 

and methylation M-values of 151 CpGs that achieved P-value < 10-5 in FHS9 dataset (using the model 

described above in Methods under “Association of DNA methylation at individual CpGs with dementia”) 

as predictors. Ridge regression reduces model variance by imposing a penalty on the size of the coefficients, 

leading to more stable and generalizable predictions. The estimated coefficients (i.e., weights) from ridge 

regression for the 151 CpGs ranged from -0.894 to 0.997, with positive weights assigned to 105 CpGs and 

negative weights to 46 CpGs (Supplementary Table 19). Notably, for all 151 CpGs, the directions of these 
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weights were consistent with the estimated effect sizes from univariate Cox regression models that included 

each CpG individually. Moreover, the weights from ridge regression were significantly correlated with the 

estimated effect sizes from the univariate Cox regression models (Spearman correlation = 0.653, P-value < 

2.2 ×10-16), supporting the robustness of the directionality of DNAm at these CpGs.  

We next performed an out-of-sample validation of the MRS, a weighted sum of methylation M-values 

of the 151 CpGs, using an external dataset from the ADNI study, which included 538 subjects with available 

DNAm data and follow-up visit information (Supplementary Table 20). For each subject, we analyzed the 

earliest available (baseline) DNAm sample and additionally required the subjects to be CN or MCI at that 

time. These subjects were followed for an average of 5.39 ± 2.94 years, with follow-up durations ranging 

from 0.44 to 11.71 years. By their last visit, 64 (30.0%) CN subjects had progressed to MCI or Dementia, 

while 131 (40.3%) of the MCI subjects had progressed to dementia. Notably, the majority of these subjects 

(182 out of 195 subjects, 93.3%) who progressed to MCI or dementia did so due to AD.  

For each of these 538 subjects, we computed MRS scores using DNAm data from their baseline visit 

and evaluated their association with disease progression (i.e., CN to MCI/dementia, MCI to dementia) using 

the Cox regression model. The MRS was computed by summing the methylation M-values of the 151 CpGs 

weighted by their coefficients estimated from FHS9 using ridge regression model. Table 4 shows that after 

adjusting for age, sex, APOE ε4 status, years of education, baseline diagnosis, and baseline MMSE score, 

the MRS was significantly associated with progression to the next disease stage (estimate =  0.142, P-value 

= 0.041). Figure 3 shows survival probabilities over time for subjects in the highest and lowest MRS 

quartiles. Notably, while survival probability decreases in both groups, the group with low MRS  

consistently shows a higher survival probability, indicating lower risk of dementia progression. Similarly, 

when the analysis was limited to dementia due to AD using the same model, the MRS remained significant 

(estimate = 0.165, P-value = 0.0206) (Supplementary Table 21) and the survival probabilities showed 

similar trends (Supplementary Figure 8).  

 

DISCUSSION  

 

We performed a comprehensive analysis of more than 1000 blood samples to identify DNA methylation 

associated with incident dementia in two longitudinal studies. After correcting for multiple comparisons, 

we identified 44 CpGs and 44 DMRs significantly associated with dementia risk (Supplementary Tables 3-

4). Comparing these significant DNAm differences with findings from previous cross-sectional studies, we 

found that approximately 40% of the significant CpGs and 30% of the DMRs overlapped with previous 

results. While differences in sample characteristics, the specific arrays used, and the statistical models 

applied may contribute to this discrepancy, it also suggests that some DNAm differences observed in cross-
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sectional studies could be due to reverse causation of the disease. The novel DNAm differences discovered 

in this study highlighted the importance of using a longitudinal design to identify DNAm changes with a 

temporal relationship to the disease. 

Importantly, a number of our findings pointed to early processes in dementia, where DNA methylation 

could serve as biomarkers and potential therapeutic targets can be developed. For example, our results 

confirmed the central role of neuroinflammation in dementia61-63, including immune responses to dementia 

pathology such as amyloid beta, which may be deposited in the brain decades before the onset of clinical 

symptoms 64. Our most significant CpG is located on the ICOSLG gene associated with T-cell activation 65-

67. Additionally, two of the top 10 most significant DMRs are located on the IRAK4 and ACY3 genes, which 

are associated with microglia activation 68,69. Our pathway analysis also pointed to immune responses to 

dementia pathology, highlighting pathways such as B cell receptor signaling, Chemokine Signaling, 

Leukocyte Transendothelial Migration, Interleukin-1 Signaling, and Toll-like Receptor Cascades. It has 

been proposed that reducing neuroinflammation may be a promising strategy for delaying the onset and 

progression of neurodegenerative diseases 70,71. 

Our results also underscore the role of metabolic dysfunction as an early event in dementia, well before 

significant amyloid-beta protein accumulation72,73, which is consistent with late-onset diabetes being an 

established risk factor for dementia 74. Our most significant DNAm included CpGs and DMRs located on 

the MUT, GET4, and NUDT19 genes which are crucial for mitochondrial function and energy metabolism. 

The most significant DMR is located in the PCTP gene involved in lipid metabolism, which is increasingly 

recognized for its important role in Alzheimer’s dementia75. Our pathway analysis also highlighted a 

number of metabolic processes, including glycolysis/gluconeogenesis, insulin signaling, and steroid 

biosynthesis. Impairments in these pathways lead to energy deficits, oxidative stress, synaptic dysfunction, 

and inflammation, which are early hallmarks of neurodegeneration. Encouragingly, recent research suggests 

that targeting mitochondria may offer promising therapeutic targets for the treatment and prevention of 

dementia 76. In model organisms, the removal of defective mitochondria diminishes insoluble Aβ1-42 and 

reverses memory impairment77, and treatment with anti-diabetes drugs reduces protein aggregation and 

reverses Aβ-induced metabolic defects 78. Moreover, insulin treatment improved cognitive function in 

subjects with mild cognitive impairment 79.    

To better understand the genetic influences on dementia-associated DNAm, we leveraged the GoDMC 

database, which includes blood mQTLs computed from 32,851 independent subjects42. Consistent with 

previous observations that genetic influences on DNAm in the blood are widespread 80, we found that about 

40% (99 out of 271 CpGs) of our dementia-associated CpGs are associated with mQTLs. This is similar to 

findings by Min et al. (2021), who estimated that genetic variants influence about 45% of DNAm sites on 

the Illumina array42. To prioritize potential regulatory variants causally involved in dementia, we performed 
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a co-localization analysis of association signals from two independent studies: the mQTLs of dementia-

associated DNAm identified in this study and genetic risk loci implicated in a recent ADRD GWAS 43. The 

co-localization analysis revealed that a subset of CpGs are influenced by mQTLs (i.e., SNPs) linked to 

ADRD risk. The significant co-localization signals at these loci provided strong support that ADRD and 

CpG methylation are associated with the same causal genetic variant. These nominated causal genetic 

variants are located on the IL34, CCR5AS genes and the HLA intergenic region, all of which are involved 

in neuroinflammatory responses relevant to dementia.  Future studies using multi-omics data, including 

genetic variants, DNAm, and dementia outcomes, are needed to thoroughly investigate and confirm whether 

the genetic associations with AD at these loci are mediated by methylation modifications at nearby CpG 

sites. Alternatively, these DNAm differences might simply be peripheral markers of indirect systemic 

effects reflecting the underlying AD-related pathology. Given that the primary pathology of AD occurs in 

brain tissue, future studies of mQTLs and co-localization in both brain and blood samples, especially cell-

type-specific studies, will provide additional insights into the genetic regulatory mechanisms by which the 

dementia-associated loci may influence DNAm to affect disease risk. 

Compared to gene expression and proteins, methylated DNA is relatively stable and can be easily 

detected, thus serving as an excellent source of biomarkers81. Recently, a number of blood-based AD 

biomarkers, such as the high-performing plasma pTau217, have been developed and shown to be 

significantly associated with the future development of AD dementia in subjects with MCI 82. However, 

autopsy studies have observed a discordance between neuropathological burden and cognitive performance 
83. These studies have revealed that among CN subjects, about a quarter exhibit amyloid abnormalities in 

the brain that meet the neuropathological criteria for AD84,85. Similarly, current pathology biomarkers do 

not completely predict subsequent cognitive impairment in asymptomatic individuals. For example, in a 

recent study by Ossenkoppele et al. (2022), among CN subjects identified with both amyloid and tau 

pathology (A+T+), as measured by amyloid-PET and tau-PET, which indicates a high likelihood of 

progression to MCI or AD, a substantial proportion (~36%, 40 out of 111) remained CN after an average of 

42 months of follow-up 86. 

Cognitive resilience (CR) refers to the adaptability of an individual to brain changes due to disease, 

injury, or normal aging 87,88. Higher CR has been associated with a lower risk of progression to clinical AD 

and a slower rate of cognitive decline89. Lifestyle factors such as engaging in physical activity and following 

the MIND diet, which have been shown to be associated with DNA methylation, play important roles in 

promoting CR and delaying cognitive decline 90-93. Therefore, DNA methylation holds great promise as a 

complementary biomarker to existing pathology biomarkers, facilitating a more precise determination of 

dementia risk. 
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The strengths of this study include the longitudinal design of the FHS and ADNI studies, which allowed 

us to identify DNAm associated with incident dementia. In both studies, dementia status was adjudicated 

by a team of experts based on comprehensive data, including clinical assessments, cognitive testing, and 

biomarkers. The DNAm samples in both ADNI and FHS9 studies were measured using Illumina EPIC 

arrays, which provide improved coverage of regulatory elements 94 and were recently shown to generate 

more reliable DNA methylation levels than the older 450k arrays 95. To reduce concerns of false positives, 

we adjusted for potential confounding effects such as age, sex, estimated major immune cell-type 

proportions in the blood, and corrected for batch effects in our meta-analysis. We also performed inflation 

correction using the bacon method 33, specifically designed for epigenome-wide association studies. We 

also used stringent criteria to select our significant CpGs and DMRs. For significant individual CpGs, we 

required consistent directional effects and nominal significance in both cohorts. For DMRs, we required all 

CpGs within the DMR to have consistent directional effects. Moreover, we evaluated the sensitivity of our 

results to major risk factors of dementia, some of which also correlated with DNA methylation. We found 

that all of our 44 dementia-associated CpGs remained significant, indicating their association with dementia 

is independent of the risk factors. We also estimated intraclass correlation coefficients and performed 

additional analyses accounting for family relationships in FHS9 using a kinship matrix. The results of this 

analysis showed our findings are robust to family structure in the FHS9 dataset. Finally, and importantly, 

we showed that the Methylation Risk Score developed using the Framingham study dataset is significantly 

associated with progression to MCI or dementia in the ADNI dataset, even after accounting for age, sex, 

APOE ε4, years of education, baseline diagnosis, and baseline MMSE score. Recently, Koetsier et al. (2024) 

also developed a DNAm-based risk score that successfully predicted future cognitive impairment in 

independent AD and Parkinson’s disease datasets, by leveraging DNAm associated with 14 modifiable and 

non-modifiable dementia risk factors 96. Our study, which identified DNAm directly associated with 

incident dementia, and the study by Koetsier et al., which discovered DNAm associated with dementia risk 

factors, provided complementary approaches for discovering risk variants for dementia. Together, the 

results of our study and theirs demonstrate that DNAm is a plausible predictive biomarker that precedes 

dementia onset.  

This study has several limitations. First, we analyzed bulk blood DNA methylation samples that contain 

a mixture of cell types. To reduce confounding effects due to cellular diversity, we included estimated cell-

type proportions as covariates in all our analyses. Future studies using single-cell technology could provide 

more detailed insights into the specific cell types affected by the dementia-associated DNA methylation 

differences identified here. However, single-cell methylomic technologies currently face significant 

practical challenges. These methods typically involve high costs, complex data processing, and require 

substantial technical expertise, which can limit their scalability, especially for large, complex disease 
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cohorts like those studied in ADRD research. Moreover, the heterogeneity inherent in ADRD complicates 

the application of single-cell approaches, as large sample sizes across diverse cell populations are needed 

to capture meaningful biological variability.  

Second, an interesting observation is the distribution of hypermethylated CpGs and DMRs, where 

approximately half (21 out of 44) of the FDR-significant CpGs were hypermethylated, compared to three-

quarters (35 out of 44) of the identified DMRs. This discrepancy may reflect potential biases inherent in 

array-based technology, which includes a higher density of probes within promoter regions, areas where 

DMRs are more likely to be detected. Such biases could have contributed to the observed higher proportion 

of hypermethylated DMRs. The use of sequencing-based technologies in future studies would help to 

overcome these biases by offering more comprehensive and unbiased coverage of the methylome. 

 Third, to help increase sample size, we used a broad definition of dementia to identify DNAm 

signatures, which might have diluted association signals due to the heterogeneity among various dementia 

subtypes. However, the majority of dementia events in our study were attributed to AD. In the FHS9 dataset, 

32 of 42 (76.2 %) dementia events were due to AD, and in the ADNI dataset, 15 of 18 (83.3 %) dementia 

events were due to AD. When we repeated the meta-analysis of FHS9 and ADNI datasets using the same 

models but replacing time to incident dementia with time to AD dementia, the results were very similar. In 

particular, the meta-analysis P-value for all 44 CpGs in Supplementary Table 3 remained highly significant, 

ranging from 5.26 ×10-8 to 6.85×10-3 (Supplementary Table 22). Moreover, the MRS score developed using 

the FHS9 dataset, with time to dementia as the outcome variable, validated well in the ADNI dataset, and 

was significantly associated with progression to MCI or dementia due to AD, even after adjusting for 

covariate variables (Supplementary Table 21, Supplementary Figure 8).  

Also, due to the lack of data, we analyzed only DNA methylation samples from non-Hispanic white 

subjects, and the subjects in both cohorts were highly educated. Future studies that investigate DNA 

methylation in large, multi-ethnic cohorts with diverse backgrounds are needed. Finally, while both ADNI 

and FHS have dementia surveillance programs, the insidious onset of dementia might lead to 

underreporting, with some subjects reaching dementia status before their recorded onset date. These cases 

could dilute the association signals between DNA methylation and incident dementia in our study, making 

our meta-analysis results conservative. It has been estimated that a substantial proportion of dementia cases 

may be undiagnosed or not reported 2. Therefore, a sensitive and objective biomarker, such as DNA 

methylation that can be easily quantified, is urgently needed to help improve surveillance of incident 

dementia. 

 In summary, we identified numerous DNA methylation differences consistently associated with 

incident dementia in a meta-analysis of two longitudinal cohorts, comprising over 1,000 blood samples. 

Our comparative analysis, which incorporated results from integrative analysis of blood DNA methylation 
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with gene expression, genetic variants, and brain DNA methylation data, and pathway enrichment analysis 

highlights the central role of neuroinflammation and early processes such as metabolic dysfunction in 

dementia. Importantly, our out-of-sample validation demonstrated that methylation risk scores based on 

dementia-associated DNAm predicted future cognitive decline in an independent dataset, even after 

accounting for covariate variables, supporting blood DNAm as a potential objective biomarker for 

identifying individuals at higher risk for dementia. Future studies that validate our findings in larger and 

more diverse community-based cohorts are warranted. 
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Table 1: Characteristics of subjects included in the meta-analysis of the Framingham Heart Study Exam 9 
(FHS9) and ADNI cohorts. Dementia subjects are defined as those who developed dementia during the 
follow-up period; control subjects are those who did not develop dementia during the observation period or 
were lost to follow-up. 
 

 
 
Table 2 Top 10 most significant CpGs associated with incident dementia in the meta-analysis of blood 
samples in ADNI and Framingham Exam 9 (FHS9) datasets.  Inverse-variance weighted fixed-effects meta-
analysis models were used to combine cohort-specific results from Cox regression models that included 
covariate variables age, sex, and immune cell-type proportions. Hazard ratios (HR) describe changes in risk 
of dementia associated with a one standard deviation increase in methylation beta values after adjusting for 
covariate variables. We corrected batch effects using the BEclear R package, and corrected genomic 
inflation using the bacon R pakcage. Direction indicates hypermethylation (+) or hypomethylation (-) of 
the CpG associated with increased risk of dementia in FHS9 and ADNI datasets. In GREAT annotation, the 
numbers in parentheses indicate the distance from the TSS. 
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Table 3 Top 10 most significant differentially methylated regions (DMRs) associated with incident 
dementia. Direction indicates directions of CpGs within each DMR in the meta-analysis of FHS9 and ADNI 
datasets, with hypermethylation (+) or hypomethylation (-) associated with increased risk of dementia. In 
GREAT annotation, the numbers in parentheses indicate the distance from the TSS. 
 

 
 
Table 4 Results from Cox regression model evaluating the association between Methylation Risk Score 
(MRS) and disease progression (CN to MCI/dementia, MCI to dementia) in 538 subjects, adjusted for age, 
sex, APOE ε4 status, baseline diagnosis, MMSE, and education using ADNI dataset. Significant association 
was observed for MRS (estimate = 0.142, P-value = 0.0413), indicating higher MRS increases risk. 
 

 
 
Abbreviations: MRS, Methylation Risk Score; HR, hazard ratio; CI, confidence interval; CN, cognitively 
normal; MCI, Mild Cognitive Impairment; MMSE, Mini-Mental State Examination 
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Figure 1 Manhattan plot of significant DNA methylation differences associated with dementia in meta-analysis of FHS9 (FHS 
at exam 9) and ADNI datasets. The X-axis indicates chromosome number. The Y-axis shows –log10(P-value) of meta-analysis, with 
red line indicating a 5% False Discovery Rate (FDR). The genes with promoter regions containing the top 10 most significant CpGs 
are highlighted. The red dots correspond to the 44 CpGs with a consistent direction of change in both FHS9 and ADNI datasets, a 
nominal P-value less than 0.05 in both datasets, and an FDR < 0.05 in meta-analysis of the FHS9 and ADNI datasets. 
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Figure 2 Significant KEGG (A) and Reactome (B) pathways enriched with dementia-associated CpGs at false discovery 
rate (FDR) less than 0.05.
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Figure 3 Adjusted Kaplan-Meier curves for dementia progression (CN to MCI/dementia, or MCI to dementia) among subjects in the 
highest and lowest quartiles of baseline MRS scores in the ADNI cohort. The survival probability decreases in both groups over time. 
Moreover, the group in the lowest MRS quartile consistently shows a higher survival probability, indicating a lower risk for dementia 
progression. These results are adjusted for age, sex, APOE ε4, years of education, baseline diagnosis, and baseline MMSE score. 
Abbreviations CN, cognitively normal; MCI, mild cognitive impairment; MRS, Methylation Risk Score
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