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ABSTRACT

Background: As healthcare moves from a one-size-fits-all approach towards precision care,

individual risk prediction is an important step in disease prevention and early detection.

Biobank-linked healthcare systems can generate knowledge about genomic risk and test the

impact of implementing that knowledge in care. Risk-stratified prostate cancer screening is one

clinical application that might benefit from such an approach.

Methods:We developed a clinical translation pipeline for genomics-informed prostate cancer

screening in a national healthcare system. We used data from 585,418 male participants of the

Veterans Affairs (VA) Million Veteran Program (MVP), among whom 101,920 self-identify as

Black/African-American, to develop and validate the Prostate CAncer integrated Risk Evaluation

(P-CARE) model, a prostate cancer risk prediction model based on a polygenic score, family

history, and genetic principal components. The model was externally validated in data from

18,457 PRACTICAL Consortium participants. A novel blended genome-exome (BGE) platform

was used to develop a clinical laboratory assay for both the P-CARE model and rare variants in

prostate cancer-associated genes, including additional validation in 74,331 samples from the All

of Us Research Program.

Results: In overall and ancestry-stratified analyses, the polygenic score of 601 variants was

associated with any, metastatic, and fatal prostate cancer in MVP and PRACTICAL. Values of

the P-CARE model at ≥80th percentile in the multiancestry cohort overall were associated with

hazard ratios (HR) of 2.75 (95% CI 2.66-2.84), 2.78 (95% CI 2.54-2.99), and 2.59 (95% CI

2.22-2.97) for any, metastatic, and fatal prostate cancer in MVP, respectively, compared to the

median. When high- and low-risk groups were defined as P-CARE HR>1.5 and HR<0.75 for

metastatic prostate cancer, the 220,062 (37.6%) high-risk vs.146,826 (25.1%) low-risk

participants in MVP had a 47.9% vs. 14.1%, 9.3% vs. 2.0%, and 3.6% vs. 0.8% cumulative

cause-specific incidence of any, metastatic, and fatal prostate cancer by age 90, respectively.
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The clinical assay and reports are now being implemented in a clinical trial of precision prostate

cancer screening in the VA healthcare system (Clinicaltrials.gov NCT05926102).

Conclusions: A model consisting of a polygenic score, family history, and genetic principal

components describes a clinically important gradient of prostate cancer risk in a diverse patient

population and demonstrates the potential of learning health systems to implement and evaluate

precision health care approaches.
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INTRODUCTION

Preventive healthcare is moving from a one-size-fits-all approach to more personalized,

risk-adapted strategies. Individual risk prediction is an important step for developing tailored

strategies for disease prevention and early detection. Risk prediction models can now

incorporate larger and more complex arrays of clinical, genetic, environmental, and other risk

factors from more diverse populations.1 Genomics specifically is increasingly demonstrating its

potential to inform risk stratification for several diseases.2–5 However, much of this potential

clinical utility for disease prevention remains theoretical, absent prospective intervention studies

demonstrating improved patient outcomes.

Healthcare systems linked to genomic biobanks thus have the opportunity both to generate

knowledge about the clinical validity of genomic risk prediction and to demonstrate the clinical

utility of implementing that knowledge in care.6 These genomics-enabled learning healthcare

systems can leverage knowledge-generating infrastructure to determine whether genomics and

other novel risk predictors improve the effectiveness of disease screening and prevention within

the healthcare system. The result is not only improved care for patients within that system but

also potentially generalizable knowledge for patients in other settings.

Prostate cancer screening is one clinical context where a genomics-enabled learning healthcare

system approach might be particularly beneficial. Prostate cancer is one of the most heritable

cancers, and recent genomic discoveries have characterized the rare and common genetic

variation underlying much of this heritability.7,8 At the same time, clinical guidelines differ on

which patient populations are most likely to experience net benefit from prostate cancer

screening, including Black men or those with a family history of the disease.9–11 Universal

screening with prostate-specific antigen (PSA) reduces prostate cancer mortality but can also

overdiagnose indolent disease and lead to unnecessary procedures and treatments.12–15 The
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result is significant variation in prostate cancer screening practices.16,17 Clinical consensus is 

even less developed on whether genotype should play a role in prostate cancer risk 

stratification, despite the discovery of robust associations between risk and both single rare 

variants and polygenic scores.8

Given this context, genomics-enabled learning health systems can lead the development of 

genomics-tailored approaches to prostate cancer screening and then evaluate the effectiveness 

of those approaches in clinical care. This evidence generation is an important step towards the 

development of clinical guidelines. Here, we describe the development, validation, and clinical 

implementation of a novel genomics-informed prostate cancer risk model, developed to enable 

a randomized clinical trial of precision prostate cancer screening in a large national healthcare 

system (Clinicaltrials.gov NCT05926102).

METHODS

Study overview

Figure 1 illustrates our discovery-to-implementation approach. As described in detail below, we 

used data from a large biobank linked to a national healthcare system to update a prior prostate 

cancer polygenic score.18 We then developed and cross-validated a prostate cancer prediction 

model based on the combination of that score and family prostate cancer history, now termed 

the Prostate CAncer integrated Risk Evaluation (P-CARE) model. We further validated the

P-CARE model in four external prostate cancer cohort datasets prior to the development and

validation of a clinical blended genome-exome (BGE) assay both for the P-CARE model and 

also for rare prostate cancer-associated monogenic variants. This assay is now being 

implemented in a randomized clinical trial of genomics-informed prostate cancer screening in a 

new cohort of patients from the national healthcare system in which the P-CARE model was first 

developed [the Prostate Cancer, Genetic Risk, and Equitable Screening Study (ProGRESS),
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ClinicalTrials.gov ID NCT05926102]. The VA Central IRB approved this study (IRBNet 1735869 

and 1735136).

Participants and phenotype definitions

Genotype and phenotype data were analyzed from the following cohorts, described 

previously.19–21 and summarized in Supplemental Tables 1 and 2.

Million Veteran Program

Data from the Million Veteran Program (MVP) were used to update a previous prediction 

model18 to develop the new P-CARE model. MVP is a mega-biobank linked to the national 

Veterans Health Administration healthcare system of the US Department of Veterans Affairs

(VA).19 Participants provide biospecimens, consent to research access to their VA health 

records, and complete surveys about family health history, health behaviors, military and 

environmental exposures, and other health-related factors. For the present analyses, we used 

data from 585,418 male MVP participants to develop and cross-validate the P-CARE model. All 

study participants provided blood samples for DNA extraction and genotyping using a custom 

Affymetrix Axiom biobank array containing 723,305 variants, enriched for low-frequency variants 

in African and Hispanic populations. Details on genotyping quality control and imputation have 

been described previously.22 Family history was defined as the presence or absence of one or 

more first-degree relatives with prostate cancer, as reported on the MVP survey. As described 

previously,18,23 prostate cancer diagnosis, age at diagnosis, and date of last follow-up were 

retrieved from the VA Corporate Data Warehouse based on International Classification of 

Diseases (ICD) diagnosis codes and VA Central Cancer Registry data. Age at diagnosis of 

metastasis (nodal and/or distant, regardless of whether metastases were detected at diagnosis 

or at recurrence) was determined via a validated natural language processing tool developed in 

the VA system.18,24 Cause and date of death were obtained from the National Death Index. Fatal
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prostate cancer was defined by ICD9 code 185 or ICD10 code C61 as underlying cause of

death.

PRACTICAL Consortium

Data from 4 external cohorts from the Prostate Cancer Association Group to Investigate Cancer

Associated Alterations in the Genome (PRACTICAL) Consortium were used to externally

validate the P-CARE model. Data from 18,457 men previously genotyped via OncoArray or

iCOGs arrays25,26 were split into four datasets described in prior studies evaluating polygenic

scores: 1) men of African ancestry (n=6,253); 2) men of Asian ancestry (n=2,320); 3) the Cohort

of Swedish Men (COSM) population-based cohort with long-term outcomes (n=3,415); and 4)

the population-based Prostate Testing for Cancer and Treatment (ProtecT) screening trial

(n=6,411).20 Family history was defined as the presence or absence of a first-degree relative

with a prostate cancer diagnosis. Clinically significant prostate cancer was defined previously as

any case with Gleason score ≥7, PSA ≥10 ng/mL, T3-T4 stage, nodal metastases, or distant

metastases.20 The COSM dataset additionally had age at prostate cancer death,27 and the

ProtecT dataset had prostate biopsy results for both cases and controls with screening PSA ≥3

ng/mL.28,29

Candidate variants and training for polygenic score

We considered variants previously identified from the following sources for potential inclusion in

an updated polygenic score for the P-CARE model: 290 variants from a prior score, 613 variants

identified as prostate cancer susceptibility loci in a multi-ancestry genome-wide association

studies, 23 variants identified as susceptibility loci for benign elevation of prostate-specific

antigen (PSA) or benign prostatic hypertrophy (BPH), 9 variants identified as prostate cancer

susceptibility loci in men of African ancestry in a genome-wide meta-analysis, and 128 variants

identified as susceptibility loci for prostate cancer in a genome-wide multi-ancestry

meta-analysis.20,30–33 A machine-learning, least absolute shrinkage and selection operator
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(LASSO)-regularized Cox proportional hazards model approach was used in the MVP dataset to

select the final variants for the polygenic score and estimate weights, using the R (v.4.4)

“glmnet” package (v.4.1.8), as described previously.34–36 To develop the polygenic score, age at

any prostate cancer diagnosis in MVP was the time to event, as this gives the most statistical

power; controls were censored at age of last follow-up. First, we identified pairs of variants with

highly correlated genotype (defined as r2 > 0.95) and used univariable Cox models to exclude

the variant from each pair with weakest univariable association. Next, all remaining candidate

variants were evaluated for inclusion in the new polygenic score using a Cox model with

genotype allele counts of candidate variants and the first five FastPop principal components as

predictor variables. Genetic principal components were estimated using 2,309 ancestry

informative markers from FastPop.37 Loadings for the first 5 principal components were

estimated in the 1000 Genomes Phase 3 dataset.38 The final form of the LASSO model was

estimated using the lambda value that minimized the mean cross-validated error.39

We then used Cox proportional hazards models to evaluate the association of the new

polygenic score with age at diagnosis of prostate cancer, age at diagnosis of nodal and/or

distant metastatic prostate cancer, and age at prostate cancer death within the MVP dataset

overall and in analyses stratified by continental population ancestry group, as described

previously.18,40 Similarly, Cox models were used to evaluate the association between the new

score and age at diagnosis of any prostate cancer, clinically significant prostate cancer, and

fatal prostate cancer (in the COSM dataset) in the PRACTICAL cohort, as previously

described.18

P-CARE model development and validation
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The resulting polygenic score was then carried forward for use in the development of an

integrated clinical prediction model within MVP. We developed a Cox model for age at prostate

cancer diagnosis as a function of the polygenic score, modeled as a continuous variable; family

history of prostate cancer, modeled as a binary variable indicating presence or absence of at

least one first-degree relative with prostate cancer; and population structure, modeled using the

first two genetic principal components (PCs). Prior analyses showed that the first two PCs are

sufficient to capture genetic variation for prostate cancer risk stratification compared to 5-10

PCs.41 Individuals not meeting the endpoint of interest were censored at last follow-up.

The resulting P-CARE model was then validated internally within the MVP dataset and

externally within the 4 PRACTICAL datasets. Where available, we evaluated the association of

the P-CARE model with age of diagnosis of any prostate cancer, clinically significant prostate

cancer, metastatic prostate cancer, and fatal prostate cancer. As in our prior work,20,27,34,41–46 we

estimated effect sizes using hazard ratios (HRs) and 10 iterations of 10-fold cross validation,

calculated to make the following comparisons: HR80/20, men in the highest 20% versus lowest

20%; HR95/50, men in the highest 5% versus those with median values; and HR20/50, men in the

lowest 20% vs those with median values. Within the MVP dataset, we generated cumulative

incidence curves for each prostate cancer endpoint by P-CARE percentile groups, as previously

described.34,44 We additionally generated cumulative incidence curves by P-CARE risk

categories defined by risk of metastatic disease, given its morbidity and mortality and to counter

the criticism that current prostate cancer screening approaches over-detect indolent

disease.12–15 The high risk category was defined as an overall P-CARE HR>1.5 for metastatic

prostate cancer and the low risk category was defined as HR<0.75 (consistent with routine

clinical prediction tools for other diseases, such as breast cancer, diabetes, and cardiovascular

disease47–49); all other risk values were considered average risk. Because ProtecT

systematically collected prostate biopsies, this dataset offered the opportunity to correlate PSA
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values with likelihood of clinically significant prostate cancer. Within the ProtecT dataset, we

calculated the positive predictive value (PPV) of a PSA value ≥3 ng/mL for clinically significant

prostate cancer on biopsy among participants in the top 5th (PPV95) and top 20th P-CARE

percentile (PPV80).20,29

Clinical laboratory assay development and validation

The P-CARE model was then carried forward to develop a clinical laboratory assay (Broad

Clinical Labs, Burlington, MA, USA) to enable precision prostate cancer screening informed by

both the model and relevant rare variants, given their importance in prostate cancer risk.

Blended genome exome assay

We constructed the assay on a novel, cost-efficient blended genome exome (BGE) platform,

which combines 2-3x whole genome sequencing (WGS) with 60-90x exome sequencing in a

single sequenced sample and has achieved >99% concordance with 30x genome sequencing

data for both exome and genome short variants.50 Short variant calling was performed over the

high coverage exome target regions using the Illumina DRAGEN Bio-IT platform version 4.2.7.

Genotypes and dosage information over the whole genome were obtained from sequencing

data through GLIMPSE2 imputation51 using the gnomAD HGDP and 1000 Genomes callset.52

Copy number variation was detected over the exome target regions using GATK-gCNV.53

Analytic and clinical laboratory validation of polygenic score and P-CARE model

The analytic validity of the BGE platform for the polygenic score was assessed by comparing 60

clinical samples with previously-identified variants; reference samples from Coriell Institute for

Medical Research with curated reference variant data sets maintained by the National Institute

of Standards and Technology; and samples with known SNVs, indels, and CNVs from a

combination of previous in-production clinical samples, previous eMERGE studies, previous

CAP proficiency testing samples, Coriell samples, and the Coriell Ancestral Panel. For each of

these samples, representing 6 genetic ancestry groups (Admixed American, African,
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Non-Finnish European, East Asian, South-East Asian, Ashkenazi), we generated both BGE and

WGS data and calculated the PHS and genetic principal components. Additional evidence of

clinical validity for both the polygenic score and the P-CARE model was obtained using 74,331

samples from the All of Us (AoU) Research Program with short-read WGS data and male sex

assigned at birth, excluding samples flagged for failing QC criteria, for being related, or for lack

of available electronic health record data. Polygenic score and genetic principal components

were calculated from the WGS genotypes provided by AoU. Individuals were classified as cases

and controls based on the presence or absence of “Malignant tumor of prostate” entries in the

AoU electronic health record data. P-CARE values were calculated for each AoU participant

using polygenic score, the first two genetic principal components, first-degree family history of

prostate cancer, and the MVP-derived coefficients. To determine the association between

P-CARE and prostate cancer case status in AoU, we calculated odds ratios for an individual to

be diagnosed with prostate cancer in the low and high P-CARE categories, relative to the

average category, using logistic regression models controlling for age.

Rare variant selection, validation, and interpretation

We identified known prostate cancer-associated genes for which the National Comprehensive

Cancer Network has issued clinical management recommendations.54–56 This gene list informed

the filtering for an in silico gene panel for rare variant analysis. The ability of the BGE to identify

pathogenic or likely pathogenic variants in these genes was evaluated by assessing the overall

technical performance of 12 genes related to hereditary prostate cancer risk (BRCA1, BRCA2,

ATM, PALB2, CHEK2, HOXB13, MLH1, MSH2, MSH6, PMS2, TP53, and EPCAM) and

identification of known variants from previous clinical testing (SNVs, small InDels, CNVs) within

these genes in 18 clinical samples. Technical performance of these genes was assessed by

determining the percentage of undercovered bases within a panel gene. A base is considered

covered if it satisfies the following: coverage >20X, base quality >20, and mapping quality >20.

This coverage analysis was performed with two sample fraction thresholds: ≥80% and ≥20%.
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We determined the sensitivity for the detection of rare monogenic variants if the variant of 

interest was identified in the variant call file and would meet quality and prioritization metrics to 

be flagged for manual review by our tertiary analysis platform. Additionally, inter and intra run 

precision was assessed by running samples in triplicate across different runs and within the 

same run, respectively. We developed a workflow to classify, review, and prioritize variants in a 

tertiary analysis platform (Fabric Genomics, Oakland, CA, USA) prior to in-house clinical 

interpretation and reporting of pathogenic and likely pathogenic variants by a team of

board-certified geneticists.

Clinical report development

After clinical laboratory validation of the P-CARE and rare variant pipelines, we developed a 

laboratory report package suitable for the clinical implementation of these results, consistent in 

format and content with other clinical genetic test reports and with our prior work.4,5,57 As 

described in the Results, the report package consisted of separate laboratory reports for the 

P-CARE and rare variant results and a summary report synthesizing the result types and 

providing prostate cancer screening recommendations for the patient and provider.

RESULTS

Association of polygenic score with prostate cancer outcomes

The final model included 601 of the 707 unique candidate variants evaluated (Supplemental 

File 1). The resulting polygenic hazard score (PHS601) was associated with age at diagnosis of 

prostate cancer, metastatic prostate cancer, and prostate cancer death in MVP (Table 1). 

Among the overall MVP cohort, the HR per standard deviation increase in PHS601 for prostate 

cancer, metastatic prostate cancer, and prostate cancer death were 2.02 (95% CI 1.97-2.07), 

2.07 (95% CI 1.95-2.17), and 1.96 (95% CI 1.75-2.18), respectively. The associations between 

PHS601 and prostate cancer outcomes were similar in each ancestry-stratified analysis with >100
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events in MVP and within each ancestry-specific PRACTICAL dataset (Table 1). Among the 

American and East Asian subgroups in MVP, which had small case numbers, associations with 

metastatic and fatal prostate cancer were not statistically significant but had consistent 

directions of effect.

Association of P-CARE with prostate cancer outcomes

Similarly, the P-CARE score that integrated PHS601, genetic ancestry, and family history 

described a strong gradient of risk for any, clinically significant, metastatic, and fatal prostate 

cancer across MVP and PRACTICAL datasets (Table 2). Among the overall MVP cohort, the HR 

per standard deviation increase in P-CARE for prostate cancer, metastatic prostate cancer, and 

prostate cancer death were 2.04 (95% CI 1.99-2.08), 2.05 (95% CI 1.93-2.16), and 1.95

(95% CI 1.76-2.15), respectively. Across the MVP and PRACTICAL datasets, compared to men 

with median P-CARE values, men in the lowest P-CARE quintile had HR 0.39-0.45 for the 4 

prostate cancer outcomes (HR20/50), while men in the highest P-CARE quintile had HR 2.75-4.03 

(HR80/50, Table 2). The direction and magnitude of association between P-CARE and the prostate 

cancer outcomes were similar in analyses of subgroups defined by genetic ancestry

(Supplemental Table 5) and, alternatively, by self-reported race and ethnicity (Supplemental 

Table 6), in each subgroup with adequate case counts. Within the ProtecT dataset, the PPV of a 

PSA value ≥3 ng/mL for clinically significant prostate cancer was 0.13 (95% CI 0.12-0.14) in the 

overall dataset and 0.19 (95% CI 0.16-0.21) and 0.23 (0.17-0.28) in the subsets in the top 20%

and top 5% of P-CARE values, respectively (Figure 3).

P-CARE risk categories defined by thresholds of HR 0.75 and HR 1.5 for metastatic prostate 

cancer are shown in Table 3. Overall, the model categorized 25.1%, 37.3%, and 37.6% of MVP 

participants as low-, average-, and high-risk, respectively. The model categorized 68.7% of 

participants with positive family history as high-risk and only 5.6% as low-risk. Among
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participants self-reporting Black or African-American race, only 2.8% were categorized as 

low risk. Figure 2 shows cumulative prostate cancer incidence curves in MVP both by P-

CARE percentile groups and by P-CARE risk category. As shown in Table 4, by age 80, men 

in the high-risk P-CARE group had a cumulative risk of any, metastatic, and fatal prostate 

cancer of 37.4%, 4.4%, and 0.8%, respectively.

Clinical laboratory assay validation

Compared to WGS data, scores derived from the BGE platform achieved a Pearson correlation

of r > 0.998 for PHS601 and r > 0.999 for both principal components. For the 12 genes related to

hereditary prostate cancer risk, 11 out of the 12 genes met thresholds for coverage and

callability. The one gene that did not pass technical assessment was PMS2, which is well known

as a challenging gene due to a highly homologous pseudogene. Within the PMS2 gene, exon

13, 14 and exons 13, 14, 15 were undercovered for sample fractions of 0.80 and 0.20,

respectively. Of the 18 samples assessed for monogenic rare variants 18/18 variants of interest

were identified in the variant call file (7/7 SNVs, 5/5 InDels and 6/6 CNVs). However, copy

number variant calls that fall below certain quality thresholds will be filtered out in the

interpretation process. These thresholds are defined as: QUAL ≥ 50 for duplications, QUAL ≥

100 for heterozygous deletions, and QUAL ≥ 400 for homozygous deletions. Three out of the six

copy number variant calls were of low quality and would not have been clinically reported. This

finding is consistent with assay limitations for small copy number variants of less than three

exons in size showing reduced sensitivity as reported in the technical validation. Precision for

variant of interest detection was seen at 100% for intra and inter run concordance.

Within the AoU dataset, the PHS601was associated with prostate cancer with an odds ratio per

standard deviation of 1.91 (95% CI: 1.85-1.98). In the same dataset, for the full P-CARE model

(PHS601plus genetic principal components and family history) we found an odds ratio of 2.41
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(95% CI: 2.25-2.60) for individuals in the high-risk category to be diagnosed with prostate

cancer, compared to individuals classified as average risk. Similarly, individuals in the low-risk

category show an odds ratio of 0.48 (95% CI: 0.44-0.54), compared to individuals classified as

average risk. Notably, this strong association holds across different ancestries. (Supplemental

Figure 1)

Clinical P-CARE and monogenic reports

An example of the resulting laboratory report package is shown in Supplemental File 2. The

cover page summarizes the results of both the monogenic and P-CARE analyses and provides

an overall risk category for the individual based on these results. An individual with a pathogenic

or likely pathogenic variant in one of the 12 prostate cancer-associated genes is categorized as

high-risk, regardless of P-CARE results. Individuals without such a variant are categorized as

low-, average-, or high-risk according to their P-CARE result, with thresholds at HR=0.75 and

HR=1.5, as described in the Methods. The cover page also links these risk categories to tailored

prostate cancer screening recommendations for the individual. After this cover page summary,

separate P-CARE and rare variant reports provide further detail about these individual result

types, including information about P-CARE model development and validation, technical

descriptions of the analyses performed, relevant gene and disease information, and literature

references. These reports are now being used in the national ProGRESS randomized clinical

trial, in which 5,000 prostate cancer screen-eligible VA patients are randomly assigned to usual

care versus precision screening recommendations informed by P-CARE and rare variants.

DISCUSSION

We used genomic, clinical, and survey data from a large national biobank to develop a

genomics-informed prostate cancer prediction model consisting of family history, genetic

principal components, and an updated polygenic score of 601 prostate trait-associated loci.
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Patients in the lowest and highest 20% of values under this model have 0.4-fold and 2.7-fold

risk of prostate cancer, respectively, compared to those with median values; replication in

external multiancestry cohorts confirmed these associations. Men at highest risk of developing

advanced prostate cancer are most likely to benefit from screening; the P-CARE model is

associated with risk of all, clinically significant, metastatic, and fatal prostate cancer. When low

and high risk were defined as HR<0.75 and HR>1.5, respectively, for metastatic prostate

cancer, the cumulative incidence of metastatic prostate cancer by age 80 in the biobank was

0.8% in the low-risk group and 4.4% in the high-risk group. We then developed and validated a

clinical assay on a cost-efficient BGE platform for both the prediction model and rare pathogenic

variants in known prostate cancer genes. This assay and associated clinical reports are now

enabling a clinical trial of precision prostate cancer screening among patients receiving care

from the national healthcare system from which the biobank data were derived. This approach

illustrates the power of genomics-enabled learning health systems to generate translatable

discoveries for implementation in preventive healthcare.

We designed the P-CARE model and ongoing prostate cancer screening trial to examine how

the routine collection and interpretation of genomic data in preventive care might improve upon

existing screening practices in a large integrated health system. Prostate cancer is highly

prevalent, but despite randomized controlled trial evidence that screening with PSA testing can

reduce prostate cancer mortality,14,58 guidelines vary by organization and country11 on how to

balance the benefits of screening (early detection and treatment, resulting in lower incidence of

advanced and lethal disease) and its potential risks (overdiagnosis of apparently indolent

disease and morbidity from unnecessary procedures and treatments). As a result, screening

practices are highly variable.16,17,59–62 Better models are needed to distinguish men most likely to

benefit from screening from those for whom its risks might outweigh its benefits. A learning

health system approach is ideal to improve prostate cancer screening for a few reasons. First,
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risk prediction models that inform the net benefit of cancer screening depend in large part on

model calibration within a population; relative and absolute risk estimates derived from a

healthcare system-linked biobank are thus particularly informative for patients receiving care in

that system. In particular, age is a critical factor not only in the risk of advanced prostate cancer

but also for the competing health risks that might make prostate cancer early detection less

important;63 our time-to-event analysis and age-specific cumulative incidence curves account for

age and allow physicians to balance these with age-related competing risks for a given

individual to guide age-based screening decisions. Second, the effect sizes of polygenic scores

themselves, including for prostate cancer, can vary between biobanks.64,65 Third, the net benefit

of prostate cancer screening in a population is highly dependent on the downstream diagnostic

and therapeutic management of elevated PSA values and abnormal prostate biopsy results;66,67

nesting the evaluation of a new screening paradigm within its target healthcare delivery system

helps ensure that system-specific clinical practice patterns are included.

Our approach also seeks to address controversies in prostate cancer screening that are

intimately intertwined with health disparities. In the United States, Black men are more likely to

be both diagnosed with and die from prostate cancer.68 Possible causal factors include genetic,

environmental, and social determinants of health, including systemic racism and access to

screening and other healthcare.69–71 Black men are highlighted in prostate cancer guidelines as

a group whose high risk merits earlier screening.9,10 This recommendation is appropriate to

address racial disparities in prostate cancer outcomes. However, at the same time, the use of

race in medical decision-making can inappropriately ascribe to biology effects that arise from a

complex social construct confounded by myriad social determinants of health; it also ignores the

complex multiracial and multiancestry backgrounds of individuals in modern healthcare system

populations. We thus set out to develop a prostate cancer risk prediction model that did not

include discrete race or genetic ancestry categories, favoring instead principal components as a
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continuous measure of genetic variation. At the same time, we confirmed that the resulting

model performed well across categories of socially defined populations (race and ethnicity

groups in MVP and external cohorts). Initial genome studies predominantly included individuals

with European ancestry, but more recent work has improved genetic discovery and risk

stratification in more diverse populations, including African ancestry.20,30,32,41,43,46 The P-CARE

model extends this work, confirming that most Black men, but not all, have high risk. While the

model does not fully disentangle the confounded associations between genetic ancestry and

social determinants of prostate cancer risk, it represents an advance towards a more equitable,

tailored approach to risk stratification and screening that does not treat race as a biological

construct.

Family history of prostate cancer and certain rare genetic variants are also known prostate

cancer risk factors, independent of ancestry and polygenic score.20,41,43,46 We designed the

P-CARE model to build upon, not replace, these clinical risk factors, similar to breast cancer

screening models.72,73 Rare variants in several genes, including BRCA2 and MSH2, are known

to increase prostate cancer risk and thus have separate screening guidelines for carriers.54

Carrier status of these variants is presently unknown for the vast majority of prostate cancer

screen-eligible patients and yet might play a more prominent role in preventive care in a future

when genomic testing is more commonplace. Despite aggregate analyses suggesting that

polygenic scores can modify the effects of these rare variants,74–76 we determined that these

modified associations are not yet robust enough for individual variant-level clinical reporting and

should not supersede NCCN guidelines for the clinical management of rare variants. We

therefore chose a genomic analysis platform that could detect and interpret these important rare

variants and will report them according to established clinical guidelines to participants. By

combining high-coverage exome and low-coverage whole genome sequencing data, the novel

BGE technology provides a cost-effective, scalable and accurate platform for implementing the

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.03.24316516doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.03.24316516


P-CARE model in clinical care. In the ProGRESS trial (ClinicalTrials.gov ID NCT05926102)

participants and their healthcare providers are now receiving clinical reports with P-CARE

results and the results of rare variant analysis, enabling an evaluation of a precision screening

approach on prostate cancer in the U.S. Veterans Health Administration.

Our work has some limitations. Despite the strengths of our learning healthcare system

approach described above, this system-specific model may not generalize to other settings with

different population risks and screening practices. Model replication in the diverse PRACTICAL

and All of Us datasets mitigates this concern, but other healthcare systems should examine

model calibration in their own data before implementation. In addition, while the inclusion of

family history, polygenic score, genetic principal components, and rare variants improves upon

existing clinical prostate cancer screening approaches, the P-CARE model cannot disentangle

the effects of genetic predisposition from environmental exposures and other social

determinants that shape prostate cancer risk. Ongoing and future work should examine how to

model and include other important risk factors in a clinically implementable risk stratification

tool.68 Finally, BGE has many benefits including genome level variant information for PRS as

well as an exome backbone for monogenic reporting, but there are limitations that come with an

exome based approach that a purpose built capture panel may overcome, including lower

sensitivity around complex regions of genes like PMS2 and reduced sensitivity of small copy

number variants below 3 exons in size.

In summary, a healthcare system-linked biobank has enabled the development, replication, and

clinical laboratory validation of an updated prostate cancer risk model, now implemented in a

clinical trial of precision prostate cancer screening. This approach exemplifies the power of

genomics-enabled learning health systems to accelerate the discovery and translation of

precision technologies to improve population health outcomes.

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.03.24316516doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.03.24316516


REFERENCES

1. Khan SS, Matsushita K, Sang Y, et al. Development and Validation of the American Heart
Association’s PREVENT Equations. Circulation. 2024;149(6):430-449.
doi:10.1161/CIRCULATIONAHA.123.067626

2. Huntley C, Torr B, Sud A, et al. Utility of polygenic risk scores in UK cancer screening: a
modelling analysis. Lancet Oncol. Published online May 2023:S1470204523001560.
doi:10.1016/S1470-2045(23)00156-0

3. Barkas F, Sener YZ, Golforoush PA, et al. Advancements in risk stratification and
management strategies in primary cardiovascular prevention. Atherosclerosis.
2024;395:117579. doi:10.1016/j.atherosclerosis.2024.117579

4. Hao L, Kraft P, Berriz GF, et al. Development of a clinical polygenic risk score assay and
reporting workflow. Nat Med. 2022;28(5):1006-1013. doi:10.1038/s41591-022-01767-6

5. Lennon NJ, Kottyan LC, Kachulis C, et al. Selection, optimization and validation of ten
chronic disease polygenic risk scores for clinical implementation in diverse US populations.
Nat Med. Published online February 19, 2024:1-8. doi:10.1038/s41591-024-02796-z

6. Genomics-Enabled Learning Health Care Systems: Gathering and Using Genomic
Information to Improve Patient Care and Research: Workshop Summary. National
Academies Press; 2015. doi:10.17226/21707

7. Mucci LA, Hjelmborg JB, Harris JR, et al. Familial Risk and Heritability of Cancer Among
Twins in Nordic Countries. JAMA. 2016;315(1):68-76. doi:10.1001/jama.2015.17703

8. Hall R, Bancroft E, Pashayan N, Kote-Jarai Z, Eeles RA. Genetics of prostate cancer: a
review of latest evidence. J Med Genet. 2024;61(10):915-926.
doi:10.1136/jmg-2024-109845

9. Grossman DC, Curry SJ, Owens DK, et al. Screening for Prostate Cancer: US Preventive
Services Task Force Recommendation Statement. JAMA. 2018;319(18):1901-1913.
doi:10.1001/jama.2018.3710

10. Garraway IP, Carlsson SV, Nyame YA, et al. Prostate Cancer Foundation Screening
Guidelines for Black Men in the United States. NEJM Evid. 2024;3(5):EVIDoa2300289.
doi:10.1056/EVIDoa2300289

11. Jackson SD, de la Rue MR, Greenslade TP, et al. Screening asymptomatic men for prostate
cancer: A comparison of international guidelines on prostate-specific antigen testing. J Med
Screen. 2022;29(4):268-271. doi:10.1177/09691413221119238

12. Loeb S, Bjurlin MA, Nicholson J, et al. Overdiagnosis and overtreatment of prostate cancer.
Eur Urol. 2014;65(6):1046-1055. doi:10.1016/j.eururo.2013.12.062

13. Ilic D, Djulbegovic M, Jung JH, et al. Prostate cancer screening with prostate-specific
antigen (PSA) test: a systematic review and meta-analysis. BMJ. 2018;362:k3519.
doi:10.1136/bmj.k3519

14. Hugosson J, Roobol MJ, Månsson M, et al. A 16-yr Follow-up of the European Randomized
study of Screening for Prostate Cancer. Eur Urol. 2019;76(1):43-51.
doi:10.1016/j.eururo.2019.02.009

15. Paschen U, Sturtz S, Fleer D, Lampert U, Skoetz N, Dahm P. Assessment of
prostate-specific antigen screening: an evidence-based report by the German Institute for
Quality and Efficiency in Health Care. BJU Int. 2022;129(3):280-289. doi:10.1111/bju.15444

16. Stone BV, Labban M, Beatrici E, et al. The Association of County-level Prostate-specific
Antigen Screening with Metastatic Prostate Cancer and Prostate Cancer Mortality. Eur Urol
Oncol. 2024;7(3):563-569. doi:10.1016/j.euo.2023.11.020

17. Iyer HS, Stone BV, Roscoe C, et al. Access to Prostate-Specific Antigen Testing and
Mortality Among Men With Prostate Cancer. JAMA Netw Open. 2024;7(6):e2414582.
doi:10.1001/jamanetworkopen.2024.14582

18. Pagadala MS, Lynch J, Karunamuni R, et al. Polygenic risk of any, metastatic, and fatal

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.03.24316516doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.03.24316516


prostate cancer in the Million Veteran Program. J Natl Cancer Inst. 2023;115(2):190-199.
doi:10.1093/jnci/djac199

19. Gaziano JM, Concato J, Brophy M, et al. Million Veteran Program: A mega-biobank to study
genetic influences on health and disease. J Clin Epidemiol. 2016;70:214-223.
doi:https://doi.org/10.1016/j.jclinepi.2015.09.016

20. Huynh-Le MP, Karunamuni R, Fan CC, et al. Prostate cancer risk stratification improvement
across multiple ancestries with new polygenic hazard score. Prostate Cancer Prostatic Dis.
Published online February 12, 2022:1-7. doi:10.1038/s41391-022-00497-7

21. Bick AG, Metcalf GA, Mayo KR, et al. Genomic data in the All of Us Research Program.
Nature. 2024;627(8003):340-346. doi:10.1038/s41586-023-06957-x

22. Hunter-Zinck H, Shi Y, Li M, et al. Genotyping Array Design and Data Quality Control in the
Million Veteran Program. Am J Hum Genet. 2020;106(4):535-548.
doi:10.1016/j.ajhg.2020.03.004

23. Pagadala MS, Lui AJ, Zhong AY, et al. Agent orange exposure and prostate cancer risk in
the million veteran program. Acta Oncol Stockh Swed. 2024;63:373-378.
doi:10.2340/1651-226X.2024.25053

24. Alba PR, Gao A, Lee KM, et al. Ascertainment of Veterans With Metastatic Prostate Cancer
in Electronic Health Records: Demonstrating the Case for Natural Language Processing.
JCO Clin Cancer Inform. 2021;(5):1005-1014. doi:10.1200/CCI.21.00030

25. Amos CI, Dennis J, Wang Z, et al. The OncoArray Consortium: A Network for Understanding
the Genetic Architecture of Common Cancers. Cancer Epidemiol Biomark Prev Publ Am
Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2017;26(1):126-135.
doi:10.1158/1055-9965.EPI-16-0106

26. Eeles RA, Olama AAA, Benlloch S, et al. Identification of 23 new prostate cancer
susceptibility loci using the iCOGS custom genotyping array. Nat Genet.
2013;45(4):385-391, 391e1-2. doi:10.1038/ng.2560

27. Huynh-Le MP, Karunamuni R, Fan CC, et al. Common genetic and clinical risk factors:
association with fatal prostate cancer in the Cohort of Swedish Men. Prostate Cancer
Prostatic Dis. 2021;24(3):845-851. doi:10.1038/s41391-021-00341-4

28. Discacciati A, Orsini N, Andersson SO, et al. Coffee consumption and risk of localized,
advanced and fatal prostate cancer: a population-based prospective study. Ann Oncol.
2013;24(7):1912-1918. doi:https://doi.org/10.1093/annonc/mdt105

29. Hamdy FC, Donovan JL, Lane JA, et al. Fifteen-Year Outcomes after Monitoring, Surgery, or
Radiotherapy for Prostate Cancer. N Engl J Med. 2023;388(17):1547-1558.
doi:10.1056/NEJMoa2214122

30. Wang A, Shen J, Rodriguez AA, et al. Characterizing prostate cancer risk through
multi-ancestry genome-wide discovery of 187 novel risk variants. Nat Genet.
2023;55(12):2065-2074. doi: 10.1038/s41588-023-01534-4

31. Gudmundsson J, Sigurdsson JK, Stefansdottir L, et al. Genome-wide associations for
benign prostatic hyperplasia reveal a genetic correlation with serum levels of PSA. Nat
Commun. 2018;9(1):4568. doi:10.1038/s41467-018-06920-9

32. Kachuri L, Hoffmann TJ, Jiang Y, et al. Genetically adjusted PSA levels for prostate cancer
screening. Nat Med. 2023;29(6):1412-1423. doi:10.1038/s41591-023-02277-9

33. Chen F, Madduri RK, Rodriguez AA, et al. Evidence of Novel Susceptibility Variants for
Prostate Cancer and a Multiancestry Polygenic Risk Score Associated with Aggressive
Disease in Men of African Ancestry. Eur Urol. 2023;84(1):13-21.
doi:10.1016/j.eururo.2023.01.022

34. Karunamuni RA, Huynh-Le MP, Fan CC, et al. Additional SNPs improve risk stratification of
a polygenic hazard score for prostate cancer. Prostate Cancer Prostatic Dis.
2021;24(2):532-541. doi:10.1038/s41391-020-00311-2

35. Tibshirani R. Regression Shrinkage and Selection via the Lasso. J R Stat Soc Ser B

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.03.24316516doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.03.24316516


Methodol. 1996;58(1):267-288.
36. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med.

1997;16(4):385-395.
doi:10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3

37. Li Y, Byun J, Cai G, et al. FastPop: a rapid principal component derived method to infer
intercontinental ancestry using genetic data. BMC Bioinformatics. 2016;17:122.
doi:10.1186/s12859-016-0965-1

38. Auton A, Abecasis GR, Altshuler DM, et al. A global reference for human genetic variation.
Nature. 2015;526(7571):68-74. doi:10.1038/nature15393

39. Friedman JH, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via
Coordinate Descent. J Stat Softw. 2010;33:1-22. doi:10.18637/jss.v033.i01

40. Wendt FR, Pathak GA, Vahey J, et al. Modeling the longitudinal changes of ancestry
diversity in the Million Veteran Program. Hum Genomics. 2023;17(1):46.
doi:10.1186/s40246-023-00487-3

41. Huynh-Le MP, Fan CC, Karunamuni R, et al. Polygenic hazard score is associated with
prostate cancer in multi-ethnic populations. Nat Commun. 2021;12(1):1236.
doi:10.1038/s41467-021-21287-0

42. Seibert TM, Fan CC, Wang Y, et al. Polygenic hazard score to guide screening for
aggressive prostate cancer: development and validation in large scale cohorts. BMJ.
2018;360:j5757. doi:10.1136/bmj.j5757

43. Pagadala MS, Lynch J, Karunamuni R, et al. Polygenic risk of any, metastatic, and fatal
prostate cancer in the Million Veteran Program. J Natl Cancer Inst. Published online October
28, 2022:djac199. doi:10.1093/jnci/djac199

44. Huynh-Le MP, Fan CC, Karunamuni R, et al. A Genetic Risk Score to Personalize Prostate
Cancer Screening, Applied to Population Data. Cancer Epidemiol Biomark Prev Publ Am
Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2020;29(9):1731-1738.
doi:10.1158/1055-9965.EPI-19-1527

45. Karunamuni RA, Huynh-Le MP, Fan CC, et al. African-specific improvement of a polygenic
hazard score for age at diagnosis of prostate cancer. Int J Cancer. 2021;148(1):99-105.
doi:https://doi.org/10.1002/ijc.33282

46. Karunamuni RA, Huynh-Le MP, Fan CC, et al. Performance of African-ancestry-specific
polygenic hazard score varies according to local ancestry in 8q24. Prostate Cancer Prostatic
Dis. 2022;25(2):229-237. doi:10.1038/s41391-021-00403-7

47. Wang TJ, Larson MG, Levy D, et al. Plasma natriuretic peptide levels and the risk of
cardiovascular events and death. N Engl J Med. 2004;350(7):655-663.
doi:10.1056/NEJMoa031994

48. Yeh HC, Duncan BB, Schmidt MI, Wang NY, Brancati FL. Smoking, smoking cessation, and
risk for type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2010;152(1):10-17.
doi:10.7326/0003-4819-152-1-201001050-00005

49. Brentnall AR, Cuzick J, Buist DSM, Bowles EJA. Long-term Accuracy of Breast Cancer Risk
Assessment Combining Classic Risk Factors and Breast Density. JAMA Oncol.
2018;4(9):e180174. doi:10.1001/jamaoncol.2018.0174

50. DeFelice M, Grimsby JL, Howrigan D, et al. Blended Genome Exome (BGE) as a Cost
Efficient Alternative to Deep Whole Genomes or Arrays. Published online April 9,
2024:2024.04.03.587209. doi:10.1101/2024.04.03.587209

51. Rubinacci S, Hofmeister RJ, Sousa da Mota B, Delaneau O. Imputation of low-coverage
sequencing data from 150,119 UK Biobank genomes. Nat Genet. 2023;55(7):1088-1090.
doi:10.1038/s41588-023-01438-3

52. Tiao G, Goodrich J. gnomAD v3.1 New Content, Methods, Annotations, and Data
Availability. August 14, 2023. Accessed September 18, 2024.
https://gnomad.broadinstitute.org/news/2020-10-gnomad-v3-1-new-content-methods-annota

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.03.24316516doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.03.24316516


tions-and-data-availability/#the-gnomad-hgdp-and-1000-genomes-callset
53. Babadi M, Fu JM, Lee SK, et al. GATK-gCNV enables the discovery of rare copy number

variants from exome sequencing data. Nat Genet. 2023;55(9):1589-1597.
doi:10.1038/s41588-023-01449-0

54. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Prostate Cancer Early
Detection Version 2.2024.
https://www.nccn.org/professionals/physician_gls/pdf/prostate_detection.pdf

55. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Genetic/Familial
High-Risk Assessment: Colorectal Version 2.2023.
https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf

56. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Genetic/Familial
High-Risk Assessment: Breast, Ovarian, and Pancreatic Version 3.2024.

57. Farmer GD, Gray H, Chandratillake G, Raymond FL, Freeman ALJ. Recommendations for
designing genetic test reports to be understood by patients and non-specialists. Eur J Hum
Genet EJHG. 2020;28(7):885-895. doi:10.1038/s41431-020-0579-y

58. Martin RM, Turner EL, Young GJ, et al. Prostate-Specific Antigen Screening and 15-Year
Prostate Cancer Mortality: A Secondary Analysis of the CAP Randomized Clinical Trial.
JAMA. Published online April 6, 2024. doi:10.1001/jama.2024.4011

59. Moses KA, Sprenkle PC, Bahler C, et al. NCCN Guidelines® Insights: Prostate Cancer Early
Detection, Version 1.2023: Featured Updates to the NCCN Guidelines. J Natl Compr Canc
Netw. 2023;21(3):236-246. doi:10.6004/jnccn.2023.0014

60. Wei JT, Barocas D, Carlsson S, et al. Early Detection of Prostate Cancer: AUA/SUO
Guideline Part I: Prostate Cancer Screening. J Urol. 2023;210(1):46-53.
doi:10.1097/ju.0000000000003491

61. Parker C, Castro E, Fizazi K, et al. Prostate cancer: ESMO Clinical Practice Guidelines for
diagnosis, treatment and follow-up. Ann Oncol. 2020;31(9):1119-1134.
doi:10.1016/j.annonc.2020.06.011

62. Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines
on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with
Curative Intent. Eur Urol. 2021;79(2):243-262. doi:10.1016/j.eururo.2020.09.042

63. Huynh-Le MP, Myklebust TÅ, Feng CH, et al. Age dependence of modern clinical risk
groups for localized prostate cancer-A population-based study. Cancer.
2020;126(8):1691-1699. doi:10.1002/cncr.32702

64. Hou K, Xu Z, Ding Y, et al. Calibrated prediction intervals for polygenic scores across
diverse contexts. Nat Genet. Published online June 17, 2024:1-11.
doi:10.1038/s41588-024-01792-w

65. Moreno-Grau S, Vernekar M, Lopez-Pineda A, et al. Polygenic risk score portability for
common diseases across genetically diverse populations. Hum Genomics. 2024;18(1):93.
doi:10.1186/s40246-024-00664-y

66. Roth JA, Gulati R, Gore JL, Cooperberg MR, Etzioni R. Economic Analysis of
Prostate-Specific Antigen Screening and Selective Treatment Strategies. JAMA Oncol.
2016;2(7):890-898. doi:10.1001/jamaoncol.2015.6275

67. Shoag JE, Nyame YA, Gulati R, Etzioni R, Hu JC. Reconsidering the Trade-offs of Prostate
Cancer Screening. N Engl J Med. 2020;382(25):2465-2468. doi:10.1056/NEJMsb2000250

68. Bergengren O, Pekala KR, Matsoukas K, et al. 2022 Update on Prostate Cancer
Epidemiology and Risk Factors-A Systematic Review. Eur Urol. 2023;84(2):191-206.
doi:10.1016/j.eururo.2023.04.021

69. Das H, Rodriguez R. Health Care Disparities in Urologic Oncology: A Systematic Review.
Urology. 2020;136:9-18. doi:10.1016/j.urology.2019.09.058

70. Riviere P, Luterstein E, Kumar A, et al. Survival of African American and non-Hispanic white
men with prostate cancer in an equal-access health care system. Cancer.

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.03.24316516doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.03.24316516


2020;126(8):1683-1690. doi:10.1002/cncr.32666
71. Dess RT, Hartman HE, Mahal BA, et al. Association of Black Race With Prostate

Cancer-Specific and Other-Cause Mortality. JAMA Oncol. 2019;5(7):975-983.
doi:10.1001/jamaoncol.2019.0826

72. Mavaddat N, Ficorella L, Carver T, et al. Incorporating Alternative Polygenic Risk Scores into
the BOADICEA Breast Cancer Risk Prediction Model. Cancer Epidemiol Biomark Prev Publ
Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2023;32(3):422-427.
doi:10.1158/1055-9965.EPI-22-0756

73. Yang X, Eriksson M, Czene K, et al. Prospective validation of the BOADICEA multifactorial
breast cancer risk prediction model in a large prospective cohort study. J Med Genet.
2022;59(12):1196-1205. doi:10.1136/jmg-2022-108806

74. Darst BF, Sheng X, Eeles RA, Kote-Jarai Z, Conti DV, Haiman CA. Combined Effect of a
Polygenic Risk Score and Rare Genetic Variants on Prostate Cancer Risk. Eur Urol.
2021;80(2):134-138. doi:10.1016/j.eururo.2021.04.013

75. Hughley RW, Matejcic M, Song Z, et al. Polygenic Risk Score Modifies Prostate Cancer Risk
of Pathogenic Variants in Men of African Ancestry. Cancer Res Commun. Published online
November 28, 2023. doi:10.1158/2767-9764.CRC-23-0022

76. Kang JH, Lee Y, Kim DJ, Kim JW, Cheon MJ, Lee BC. Polygenic risk and rare variant gene
clustering enhance cancer risk stratification for breast and prostate cancers. Commun Biol.
2024;7(1):1289. doi:10.1038/s42003-024-06995-9

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.03.24316516doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.03.24316516


TABLES

Table 1: Association of polygenic score with prostate cancer outcomes in MVP and 
PRACTICAL cohorts

Table 2: Association of P-CARE model with prostate cancer outcomes in MVP and 
PRACTICAL cohorts.

Table 3: Characteristics of P-CARE risk categories among 585,418 MVP participants.

Table 4: Prostate cancer cause-specific cumulative incidence in MVP by P-CARE 
category

FIGURES

Figure 1: Translating prostate cancer genomic risk discovery to clinical trial 
implementation.

Figure 2: Prostate cancer cause-specific cumulative incidence in MVP by P-CARE strata.

Figure 3: Positive predictive value of PSA in ProtecT by P-CARE values.
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Clinical endpoint N HR (95% CI)
HRSD HR80/20 HR20/50 HR80/50 HR95/50

MVP development and validation
Any prostate cancer
All 585,418 2.02 (1.97 - 2.07) 6.27 (5.85 - 6.72) 0.43 (0.41 - 0.45) 2.72 (2.62 - 2.82) 4.06 (3.86 - 4.29)
African 105,014 1.94 (1.84 - 2.06) 5.81 (5.06 - 6.79) 0.48 (0.45 - 0.52) 2.81 (2.59 - 3.08) 3.74 (3.37 - 4.23)
European 420,722 2.04 (1.97 - 2.11) 5.74 (5.26 - 6.20) 0.43 (0.41 - 0.45) 2.46 (2.35 - 2.55) 3.78 (3.54 - 4.03)
American 50,590 2.03 (1.83 - 2.26) 5.55 (4.24 - 7.07) 0.44 (0.39 - 0.50) 2.44 (2.13 - 2.79) 3.72 (3.06 - 4.52)
East Asian 9,092 2.10 (1.59 - 2.81) 5.81 (2.90 - 10.65) 0.44 (0.32 - 0.60) 2.41 (1.72 - 3.36) 3.83 (2.31 - 6.04)

Metastatic prostate cancer
All 585,418 2.07 (1.95 - 2.17) 6.69 (5.70 - 7.62) 0.42 (0.40 - 0.45) 2.81 (2.58 - 3.01) 4.27 (3.78 - 4.71)
African 105,014 1.90 (1.65 - 2.19) 5.60 (3.81 - 7.84) 0.50 (0.43 - 0.58) 2.73 (2.18 - 3.39) 3.62 (2.70 - 4.77)
European 420,722 1.96 (1.80 - 2.19) 5.20 (4.19 - 6.83) 0.45 (0.39 - 0.50) 2.33 (2.08 - 2.68) 3.50 (2.97 - 4.29)
American 50,590 2.07 (1.42 - 2.64) 6.02 (2.33 - 10.47) 0.44 (0.32 - 0.67) 2.51 (1.55 - 3.40) 3.92 (1.91 - 6.08)
East Asian 9,092 3.11 (0.59 - 8.64) 63.26 (0.31 - 154.75) 0.51 (0.08 - 1.77) 4.19 (0.56 - 12.63) 16.90 (0.40 - 44.15)

Fatal prostate cancer
All 585,418 1.96 (1.75 - 2.18) 5.81 (4.31 - 7.65) 0.45 (0.40 - 0.51) 2.60 (2.22 - 3.03) 3.82 (3.06 - 4.72)
African 105,014 1.62 (1.16 - 2.12) 3.81 (1.49 - 7.26) 0.61 (0.44 - 0.85) 2.15 (1.27 - 3.22) 2.68 (1.35 - 4.45)
European 420,722 1.92 (1.60 - 2.20) 4.99 (3.18 - 6.86) 0.47 (0.39 - 0.57) 2.27 (1.81 - 2.69) 3.39 (2.41 - 4.32)
American 50,590 2.22 (0.98 - 4.25) 8.45 (0.95 - 32.23) 0.48 (0.19 - 1.03) 2.78 (0.97 - 6.14) 4.81 (0.96 - 14.32)
East Asian 9,092 7.97E56 (0.93 -

9.39E40)
1.56E34 (0.88 -

5.4E109)
3.27E112 (6.85E-47

- 1.07)
1.28E70 (0.93 -

1.82E56)
3.04E108 (0.90 -

7.71E83)
PRACTICAL replication
Any prostate cancer
COSM 3,415 2.27 (2.11 - 2.46) 9.18 (6.66 - 12.93) 0.36 (0.31 - 0.42) 3.34 (2.97 - 3.98) 5.35 (4.26 - 6.92)
ProtecT 6,411 1.87 (1.78 - 2.01) 5.67 (4.75 - 6.73) 0.44 (0.40 - 0.48) 2.78 (2.47- 3.05) 3.78 (3.31 - 4.29)
African 6,253 1.84 (1.72 - 1.98) 8.55 (6.64 - 11.08) 0.41 (0.36 - 0.46) 3.47 (2.93 - 3.99) 4.49 (3.71 - 5.37)
Asian 2,320 2.15 (1.92 - 2.38) 8.80 (6.73 - 11.09) 0.35 (0.30 - 0.39) 3.02 (2.63 - 3.39) 5.26 (4.24 - 6.48)

Clinically significant prostate cancer
COSM 3,415 2.30 (2.09 - 2.53) 9.35 (7.32 - 12.20) 0.36 (0.31 - 0.41) 2.81 (2.58 - 3.01) 4.27 (3.78 - 4.71)
ProtecT 6,411 2.02 (1.88 - 2.21) 7.02 (5.65 - 8.42) 0.40 (0.36 - 0.44) 2.73 (2.18 - 3.39) 4.45 (3.76 - 5.11)
African 6,253 1.85 (1.69 - 2.02) 8.61 (6.50 - 11.61) 0.41 (0.35 - 0.47) 2.51 (1.55 - 3.40) 3.92 (1.91 - 6.08)
Asian 2,320 2.11 (1.90 - 2.39) 7.88 (5.94 - 10.68) 0.36 (0.32 - 0.42) 2.85 (2.44 - 3.32) 4.83 (3.84 - 6.09)

Fatal prostate cancer
COSM 3,415 1.91 (1.65 - 2.28) 5.88 (3.51 - 9.19) 0.45 (0.36 - 0.56) 2.58 (1.97 - 3.32) 3.82 (2.59 - 5.35)

Table 1: Association of polygenic score with prostate cancer outcomes in MVP and PRACTICAL cohorts. Association of PHS601 with any,
metastatic, and fatal prostate cancer in MVP (total and genetic ancestry-stratified groups) and with any, clinically significant, and fatal prostate
cancer in four PRACTICAL consortium datasets. Abbreviations: CI, confidence interval; COSM, Cohort of Swedish Men; HR, hazard ratio; MVP,
Million Veteran Program; PHS, polygenic hazard score; PRACTICAL, Prostate Cancer Association Group to Investigate Cancer Associated
Alterations in the Genome; ProtecT, Prostate Testing for Cancer and Treatment.
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Clinical endpoint N HR (95% CI)
HRSD HR80/20 HR20/50 HR80/50 HR95/50

Any prostate cancer
MVP 585,418 2.04 (1.99 - 2.08) 6.33 (5.95 - 6.71) 0.43 (0.42 - 0.45) 2.75 (2.66 - 2.84) 4.09 (3.89 - 4.29)
COSM 3,415 2.33 (2.14 - 2.58) 9.40 (6.88 - 13.20) 0.37 (0.31 - 0.42) 3.43 (2.91 - 4.08) 5.45 (4.31 - 7.00)
ProtecT 6,411 1.87 (1.77 - 2.01) 5.53 (4.60 - 6.66) 0.45 (0.41 - 0.49) 2.48 (2.27 - 2.73) 3.71 (3.23 - 4.23)
African 6,253 2.00 (1.86 - 2.16) 9.68 (7.55 - 12.49) 0.40 (0.36 - 0.46) 3.88 (3.35 - 4.42) 5.16 (4.35 - 6.03)
Asian 2,320 2.17 (1.95 - 2.42) 8.74 (6.60 - 11.28) 0.35 (0.30 - 0.40) 3.06 (2.65 - 3.46) 5.23 (4.09 - 6.47)

Clinically significant prostate cancer
COSM 3,415 2.34 (2.12 - 2.55) 9.39 (7.25 - 12.27) 0.37 (0.32 - 0.42) 3.43 (2.98 - 3.99) 5.47 (4.47 - 6.76)
ProtecT 6,411 2.01 (1.87 - 2.18) 6.81 (5.42 - 8.20) 0.40 (0.36 - 0.44) 2.77 (2.48 - 3.04) 4.35 (3.71 - 4.12)
African 6,253 2.04 (1.86 - 2.23) 10.30 (7.66 - 13.47) 0.39 (0.36 - 0.44) 4.03 (3.39 - 4.86) 5.41 (4.38 - 6.77)
Asian 2,320 2.11 (1.91 - 2.35) 7.60 (5.70 - 10.15) 0.38 (0.33 - 0.43) 2.84 (2.42 - 3.31) 4.68 (3.71 - 5.73)

Metastatic prostate cancer
MVP 585,418 2.05 (1.93 - 2.16) 6.50 (5.51 - 7.38) 0.43 (0.40 - 0.46) 2.78 (2.54 - 2.99) 4.17 (3.68 - 4.59)

Fatal prostate cancer
MVP 585,418 1.95 (1.76 - 2.15) 5.71 (4.33 - 7.30) 0.45 (0.41 - 0.52) 2.59 (2.22 - 2.97) 3.77 (3.05 - 4.57)
COSM 3,415 1.95 (1.66 - 2.37) 5.95 (3.61 - 9.29) 0.46 (0.37 - 0.56) 2.65 (2.03 - 3.41) 3.87 (2.69 - 5.49)

Table 2: Association of P-CARE model with prostate cancer outcomes in MVP and PRACTICAL cohorts. Association of
P-CARE model with any prostate cancer, clinically significant prostate cancer, metastatic prostate cancer, and fatal prostate cancer in
MVP and four PRACTICAL consortium datasets. As described, P-CARE model consists of PHS601, first-degree family history of
prostate cancer, and genetic principal components. Abbreviations: CI, confidence interval; COSM, Cohort of Swedish Men; HR,
hazard ratio; MVP, Million Veteran Program; P-CARE, Prostate CA Risk and Evaluation; PRACTICAL, Prostate Cancer Association
Group to Investigate Cancer Associated Alterations in the Genome; ProtecT, Prostate Testing for Cancer and Treatment.
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P-CARE risk category, N (%)
N Low risk (HR<0.75) Average risk (HR 0.75-1.5) High risk (HR>1.5)

Total 585,418 146,826 (25.08) 218,530 (37.33) 220,062 (37.59)
Positive family history 28,358 1,595 (5.62) 7,270 (25.63) 19,493 (68.73)
Genetic ancestry groups
African 105,014 2,607 (2.48) 19,314 (18.39) 83,093 (79.12)
European 420,722 128,096 (30.44) 173,774 (41.30) 118,852 (28.24)
American 50,590 12,842 (25.38) 21,518 (42.53) 16,230 (32.08)
East Asian 9,092 3,281 (36.08) 3,924 (43.15) 1,887 (20.75)

Self-reported race/ethnicity groups
American Indian or Alaska Native 5507 1,346 (24.44) 2,236 (40.60) 1,925 (34.95)
Asian 6210 2,403 (38.69) 2,684 (43.22) 1,123 (18.08)
Black or African American 101,920 2,812 (2.75) 18,986 (18.62) 80,122 (78.61)
Hispanic White 26,037 6,871 (26.38) 11,067 (42.50) 8,099 (31.10)
Native Hawaiian or Pacific Islander 3042 755 (24.81) 1,259 (41.38) 1,028 (33.79)
Non-Hispanic White 418,387 126,633 (30.26) 172,661 (41.26) 119,093 (28.46)
Other 8077 1,938 (23.99) 3,303 (40.89) 2,836 (35.11)
Unknown 16,238 4,068 (25.05) 6,334 (39.00) 5,836 (35.94)

Table 3: Characteristics of P-CARE risk categories among 585,418 MVP participants. MVP, Million Veteran Program; P-CARE,
Prostate CA Risk and Evaluation.
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Clinical endpoint Cumulative incidence (%)
Low risk (HR<0.75) Average risk (HR 0.75-1.5) High risk (HR>1.5)

Prostate cancer
By age 70 4.02 8.38 21.22
By age 80 9.17 17.68 37.43
By age 90 14.11 25.29 47.87

Metastatic prostate cancer
By age 70 0.18 0.46 1.41
By age 80 0.77 1.64 4.38
By age 90 1.96 4.29 9.34

Fatal prostate cancer
By age 70 0.02 0.06 0.21
By age 80 0.13 0.34 0.82
By age 90 0.81 1.58 3.61

Table 4: Prostate cancer cause-specific cumulative incidence in MVP by P-CARE
category. Abbreviations: HR, hazard ratio; MVP, Million Veteran Program; P-CARE, Prostate
CA Risk and Evaluation.
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Figure 1: Translating prostate cancer genomic risk discovery to clinical trial implementation. 1) A
prostate cancer polygenic score (PHS601) is trained in the Million Veteran Program (MVP) biobank of the
Veterans Health Administration (VA) using known prostate cancer and other prostate trait-associated loc
The Prostate CAncer Risk and Evaluation (P-CARE) model is developed in MVP from PHS601, genetic p
components, and prostate cancer family history. 3) Both PHS601 and P-CARE are replicated in external 
multiancestry datasets from the Prostate Cancer Association Group to Investigate Cancer Associated 
Alterations in the Genome (PRACTICAL) consortium. 4) A blended genome-exome (BGE) platform is va
for the P-CARE model, including imputation, analytic validation of PHS601 against whole genome sequen
(WGS) and clinical laboratory validation of P-CARE in All of Us Research Program data. 5) BGE platform
validated for gene panel annotation, filtering, and analysis of rare variants in guideline-informed prostate
cancer-associated genes. 6) Clinical P-CARE and rare variant reports with summary recommendations a
developed. 7) Clinical laboratory analysis and reporting pipeline is implemented in a pragmatic clinical tr
precision prostate cancer screening across the VA. 
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Figure 2: Prostate cancer cause-specific cumulative incidence in MVP by P-CARE strata. Cause specific
cumulative incidence within MVP for (A) prostate cancer, (B) metastatic prostate cancer, and (C) fatal prostate
cancer. The left column shows incidence for each endpoint by P-CARE percentile group: 0-20th, 30-70th,
80-100th, and 95-100th. The right column shows incidence for each endpoint by P-CARE risk category: high,
average, and low risk. Abbreviations: MVP, Million Veteran Program; P-CARE, Prostate CA Risk and
Evaluation.
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Figure 3. Positive predictive value of PSA in ProtecT by P-CARE values. Illustrated are
PPV (95% CI) for a PSA value ≥3 ng/mL for clinically significant prostate cancer among three
groups of men in the ProtecT study: all men (regardless of P-CARE value), men in the top 20%
of P-CARE values (P-CARE80), and men in the top 5% of P-CARE values (P-CARE95).
Abbreviations: CI, confidence interval; P-CARE, Prostate CA Risk and Evaluation; PPV, positive
predictive value; ProtecT, Prostate Testing for Cancer and Treatment; PSA, prostate-specific
antigen.
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