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Abstract. Due to the intricate etiology of neurological disorders, finding interpretable associations
between multi-omics features can be challenging using standard approaches. We propose COMICAL,
a contrastive learning approach leveraging multi-omics data to generate associations between genetic
markers and brain imaging-derived phenotypes. COMICAL jointly learns omic representations utilizing
transformer-based encoders with custom tokenizers. Our modality-agnostic approach uniquely identi-
fies many-to-many associations via self-supervised learning schemes and cross-modal attention encoders.
COMICAL discovered several significant associations between genetic markers and imaging-derived phe-
notypes for a variety of neurological disorders in the UK Biobank as well as predicting across diseases
and unseen clinical outcomes from the learned representations. Source code of COMICAL along with
pre-trained weights, enabling transfer learning is available at https://github.com/IBM/comical.
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1 Introduction
Complex diseases such as neurological disorders are usually the result of the combined effect of multiple
genes, commonly known as the polygenic effect, and multiple phenotypes or traits. These interactions are
often induced by their symptoms or diagnosis. To obtain a holistic view of the disease, understand its origins,
its mechanisms, causes, and consequences, it is necessary to study other modalities of data from omics studies
such as genomics, proteomics, transcriptomics, radiomics, etc. An important challenge is to parse the multi-
omics data and find interpretable associations between them for accelerating discovery of therapeutics. Most
studies that try to find associations between different omics with respect to a disease outcome tend to
integrate data across multiple omics layers. One such approach involves co-mapping, where variables from
two omic profiles are integrated and associated independently using regression-based methods [12]. Popular
methods such as genome-wide association studies (GWAS), or quantitative expression trait loci (eQTL),
are ways of associating genomics with other omics and understanding the impact of genetic variants on
a target phenotype [4]. Some sophisticated machine learning methods have been proposed to predict and
analyze neurological disorders [18,20,32], with limited methods in exploring multi-omics approaches and AI
foundation models.

Recent advances in large language models or foundation models have shown that they can accurately
predict the effects of missense variants [5, 8, 17], gene expression [2], and proteins [30]. These approaches
performed representation learning on a specific omics data such as genomics, transcriptomics, proteomics,
etc. and used these representations to understand genetic mechanisms impacting the phenotype. However,
none of these approaches utilized recent advances in multimodal foundation models, such as vision language
models, which propose a unified architecture of learning representations of image and text data [15] to
integrate and associate multi-omics data. A previous study performed contrastive learning using self attention
to classify multi-omics data using incomplete data but did not provide associations between multi-omics data
and neither performed cross-disorder prediction [33]. Here, we propose COMICAL (contrastive multi-omics
association learning), an adaptation of multimodal transformer CLIP (Contrastive Language-Image Pre-
training) [21] to multi-omics analysis where it integrates two omics profiles to learn their representations and
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associate them. The training objective connects representations of one omics profile with the other and tries
to discover “appropriate” vectors that capture one from the other using a contrastive loss function.

We evaluate COMICAL to find genotype-phenotype relationships in complex neurological diseases using
genomic single nucleotide polymorphisms (SNPs) and radiomics or image-derived phenotypes (IDPs) from
UK Biobank (UKB). COMICAL finds many-to-many associations between genetic variants associated with
diseases such as Alzheimer’s Disease (AD), Attention-deficit/hyperactivity disorder (ADHD), Bipolar Dis-
order (BD), Cerebrovascular Disease (CBVD), Unipolar Depression (UD), Mood Disorder (MD), Multiple
Sclerosis (MS), Parkinson’s Disease (PD), stroke, and Schizophrenia (SZ). COMICAL learns paired represen-
tations of IDPs and single nucleotide polymorphisms (SNPs) for these diseases using contrastive learning
after tokenizing and encoding them using a scheme similar to CLIP [21]. COMICAL was able to accurately find
the IDP and SNP pairs up to 100%, validated using an independent ENIGMA summary statistics. COMICAL
also performs cross-disorder prediction and computes a novel multi-omics risk score computed from the joint
learned representation of SNPs and IDPs. We show that COMICAL’s risk score is associated with polygenic
risk scores from UKB.

Another key challenge in multi-omics analyses is the availability of annotated multi-omics data across
modalities for complex diseases due to several privacy and technical reasons. Here, we make the pre-trained
multimodal model weights available for SNP-IDP pairs, which can be used for fine-tuning tasks with inde-
pendent data genomic and radiomics data. The many-to-many multi-omics associations produced as a result
of this work along with the pre-trained models allow for accelerated discovery of multi-omics relationships
through fine-tuning on genomic datasets and large biobanks.

Fig. 1: COMICAL inherits the framework of CLIP, tokenizes and encodes SNPs and IDPs using a transformer
with self-attention masks and predicts the correct multi-omics pairings using a contrastive loss. In the
evaluation phase, the learned encoder is used in a zero-shot linear classifier to predict the pairs.

2 Materials and Methods
2.1 Pretraining

CLIP [21] has shown to be an effective pre-training and learning strategy for image and text pairs, with effi-
cient zero-shot transfer learning. COMICAL inherits the CLIP framework and pre-processes SNPs and IDPs,
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creating SNP-IDP pairs mediated by complex diseases listed above, and encodes them using transformer
encoders as used in GPT-2 [22,31]. From UKB [26], we obtain 40,426 samples with both SNPs and 154 IDPs
of T1 structural brain MRI after quality control. We obtained 5,603 variants from the GWAS catalog [25]
associated with the eight neurological diseases discussed above. After creating the pairs using top 1% SNPs
in GWAS catalog (33 SNPs), we obtained 15,442,732 pairs as our pre-trained data. We split this into 70%,
20%, 10% scheme for training, validation, and test sets. For the IDP and SNP encoder, we use a 2-layer,
64-wide model with 4 attention heads and dimensions of 32 nodes in the feed-forward layers, with a learning
rate of 1 × 10−5. The overview of COMICAL is shown in Figure 1 and the training and evaluation steps are
outlined in Algorithm 1.

Algorithm 1 COMICAL

Require: m pre-trained pairs of SNPs and IDPs.
Ensure: m′ learned pairs (m′ << m).
1: Set training, validation, and test splits from m pairs with 70/20/10%.
2: Tokenize SNPs and IDPs.
3: Assign learnable embeddings to each token.
4: Learn embeddings through single-mode attention-based encoders.
5: Calculate cosine similarity between encoded data.
6: Compute loss between predicted item and ground truth based on cross-modality pairs.
7: Select best performing epoch and model weights using validation set and use it for testing.
8: Evaluate on test set by computing accuracy of learned pairs.

Fig. 2: Pair-making process of COMICAL between SNPs and IDPs mediated by neurological diseases.

2.2 Multi-omics pairs

Pair-making is an essential step for COMICAL as this sets the ground truth for the model-predicted associa-
tions. Positive pairs between IDPs and SNPs were defined to perform contrastive training mediated by a set
of eight diseases (AD, ADHD, BD, CBVD, MD, MS, PD, UD) as a proxy to establish the link between IDP
and SNP. The key assumption behind pair making is that a relationship exists between an IDP and a SNP
if both are related to the same disease. However, this is not always true, or it could be a weak relationship.
Therefore, if the model consistently predicts two of them to be associated, then we can infer that there is,

3

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.02.24316653doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.02.24316653
http://creativecommons.org/licenses/by-nd/4.0/


in fact, a strong relationship between them. This association learning is guided by the SNP and IDP values
from all the samples.

Three main steps are taken to achieve this.

(1) For each disease, create a set of SNPs which are associated with them from the GWAS catalog.
(2) Perform a phenome-wide association study (PheWAS) using the PheWAS package in R [7], to map IDPs

to diseases using covariates of age, sex, smoking status, height, BMI, and top ten genetic principal
components (PCs). Create a set of one-to-one mapping between IDPs and diseases.

(3) Expand the data so that each patient’s data becomes a record of SNPs and IDPs.
(4) For each disease create data dictionaries relating for each IDP the SNPs that are associated with the

same disease. Hence, making the pairs.

The pair-making process is outlined in Figure 2

2.3 Tokenization

(a)

(b)

Fig. 3: (a) Tokenization of IDPs using piecewise linear encoding (b) Tokenization of SNPs.

Imaging derived phenotypes As IDPs are more closely related to tabular data than sequence data, we
took an alternative approach to IDP tokenization using piecewise linear encodings, which are known to work
well for numerical features in attention-based encoders [10]. Each IDP is first binarized and embeddings are
computed from each sample based on their value relative to the rest. An n-dimensional (n samples) vector
is built in which all the values are ones before the bin, where the value belongs, and all the following values
are zeros (Figure 3a).

Genetic markers The SNPs are tokenized for learning higher dimensional embeddings that can capture
semantic relationship between them. We encoded the SNPs using the following process:
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(1) We created a dictionary (vocabulary of tokens) of all mutation types including heterozygous, homozygous,
substitutions, insertions, and deletions, which is captured in the SNP mapping in Figure 3b.

(2) For each patient, we recoded their mutation status into one of the tokens from the dictionary.
(3) For each SNP, we gather the tokens for all the patients into a vector of tokens and use it to learn

embeddings.

2.4 Model parameters
We train the model using CLIP architecture as shown in Algorithm 1. We extract feature representations
of each modality using the SNP and IDP encoders respectively, as discussed above, for each batch of the
data. We obtain Sf ∈ Rb×ds and If ∈ Rb×di where there are b pairs in each batch and ds, di are sizes of the
tokenized embeddings. We normalize the embeddings after learning joint multimodal embeddings using the
projection weight matrices Ws ∈ Rds×de and Wi ∈ Rdi×de

Se = Sf Ws

∥Sf Ws∥2
, Ie = If Wi

∥If Wi∥2

We then computed the cosine similarities between Se and Ie. Thereafter, we computed a symmetric loss
function by computing using two cross-entropy losses, one for each modality and averaging them. The
ground truth is established as the index of predictions of the model, i.e. it is expected that the model will
predict the corresponding IDP position given a SNP position. We used the Adam optimizer with learning
rate warm up and weight decay modifiers.. Hyperparameter tuning was used to further improve the pair
learning capabilities from COMICAL. The library Ray Tune was used to perform efficient hyperparameter
tuning. The best hyperparameters can be found in Table 1. We observed similar hyperparameters across
thresholds of SNPs with the major differences being in the training hyperparameters, namely learning rate,
warm up steps and weight decay.

Top 0.5% SNPs Top 2% SNPs
Batch size 4096 4096

Model dimensions 64 64
Number of Transformer layers 2 2

Attention heads per layer 4 4
Feed-forward dimensions 64 64

Learning rate 0.0033 0.0001
Warmup steps 236 343
Weight decay 0.0015 0.0183

Table 1: Best hyperparameters obtained through Ray Tune for the top 0.5% and top 2% SNPs.

2.5 Data
We used the UKB dataset [26] to obtain 154 IDPs derived from the T1 structural brain MRIs spanning 47,420
samples. Of these samples, we performed genomic quality control such as removing samples with missing
data (more than 10%), high variance of heterozygosity rate, closely related individuals, etc. to finally obtain
40,426 samples of European ancestry. We performed principal component analysis (PCA) from the genomic
data of pruned markers using TeraPCA [6] to obtain forty PCs for using as covariates in downstream tasks in
the model. We then selected 5,632 variants previously associated with the eight neurological diseases from the
GWAS catalog and checked for missingness in SNPs, low minor allele frequency (< 0.05), Hardy-Weinberg
equilibrium (p < 1 × 10−16), etc. to finally obtain 5,603 variants for the pre-training phase. We selected
ten neurological diseases across the 40,426 samples and used eight of them in the pair-making process. The
number of cases for each neurological disease is given in Table 2.
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Disease AD ADHD ASD BD CBVD MD MS PD Stroke SZ UD

Count 12 17 7 127 489 10 141 85 489 55 4107

Percent 0.0003 0.0004 0.0002 0.0031 0.0127 0.0003 0.0034 0.00021 0.0121 0.0014 0.1016
Table 2: Number of cases for each neurological diseases and their respective percentage in the dataset of
40,426 samples.

2.6 Post processing

To compute p-values, we captured frequencies per batch of correct SNP-IDP pairs that COMICAL identified
during evaluation of the test set. After collating all the frequencies per pair, we performed a one-way χ2 test.
Due to substantial differences in frequencies among important pairs and less important pairs, we corrected
the χ2 values by dividing by the number of observations and then computed adjusted p-values. The SNP-IDP
pairs, frequencies and p-values are included in the Supplementary Table 1.

2.7 Prediction tasks

We sought to use COMICAL learned transformer embeddings for both the modalities of SNPs and IDPs and
predict clinical outcomes as well as compute risk score estimates.

Clinical outcomes We simply concatenated the transformer encoded embeddings from COMICAL and
used it as an input to predict clinical outcome. In this case, we used these embeddings to predict eleven out-
comes: eight neurological diseases we considered in the pair-making process; two additional unseen outcomes
(stroke and schizophrenia), and another meta-disease outcome which is a combination of all the diseases by
performing a logical AND operation on the indicator variables of the ten outcomes.

As specific encoded representations for SNPs and IDPs are learned using COMICAL, we concatenated
them as input to a neural network with a single hidden layer, and a final layer to output the logits. The SNP
and IDP encoders were frozen, leading to a lightweight training of just the classifier network. We used age,
sex, and the top forty PCs as covariates in this analysis. The framework of outcome prediction is shown in
Figure 4. We use a cross entropy loss between the true disease status and the predicted outcome.

Fig. 4: Overview of outcome prediction mechanism in COMICAL. We concatenate the encodings from both
modalities to predict clinical outcome.
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Risk scores We performed risk scoring for 5 diseases of interest, namely AD, BD, MS, PD, SZ. Using
the concatenated embeddings from the SNPs and IDPs from COMICAL we built multi-omics representations
for each individual in the dataset. Then using a neural network with a single hidden layer, we trained the
model to regress the enhanced PRS (ePRS) set available from the UK Biobank [28] for the 5 diseases. We
used 10% of the top SNPs from GWAS catalog to train COMICAL and used 1280 samples for training,
320 for validation and 4992 testing. The training set was defined as samples with a diagnosis of a disorder
and an equal amount of healthy controls. The test set was comprised of the remaining healthy control
samples; thus ensuring completely unseen data for evaluation. Mean squared error (MSE) was used as loss
to be minimized, and R2 was used as the goodness-of-fit metric. The risk scoring process is outlined in
Algorithm 2. We evaluated the performance of the COMICAL risk score by fitting a least square regression
with the ePRS using statsmodels [23] and included covariates of age, sex, smoking status, BMI, height,
and the top forty PCs.

Algorithm 2 COMICAL: risk score estimation
Require: SNP matrix S ∈ Rm×n; IDP matrix I ∈ Rm×p

Ensure: ŷ ∈ Rm, a risk score estimate per sample
1: Learned SNP-IDP pairs, P ∈ Rm×n×p from Algorithm 1
2: Encode S and I using COMICAL transformer encoders and obtain embeddings, fS(Si) and fI(Ii)
3: Concatenate to form Ei ∈ R(n+p)×d, where d is the embedding dimensions for both modalities
4: Apply MLP head to compute ŷi = MLP(concat(fS(Si), fI(Ii)))

3 Results

3.1 Learning pairs in UK Biobank

In our experiments utilizing data from the UK Biobank, our objective was to evaluate COMICAL’s perfor-
mance, focusing on its ability to learn associations. We varied the amount of data that COMICAL would
ingest and learn from only including a certain percentage of the top SNPs according to the strength of
association from the GWAS catalog. We created pairs using the process outlined above and processed them
using Algorithm 1. As an example, utilizing only the top 0.5 percent of SNPs resulted in the generation of
over 15 million pairs. After training the model, we evaluated how well COMICAL learned the SNP-IDP pairs
using the test set. COMICAL correctly identified the SNP-IDP pairs with 97.3% accurately on the test set
when trained using the top 0.5 percent SNPs. After hyperparameter tuning and training with the optimal
parameters (Table 1), we observed COMICAL was able to predict every SNP-IDP pair in the test set, with
a 100% accuracy. We also measured the execution time for each experiment using COMICAL including the
pair-making between IDPs and SNPs. As the number of associations increases, there is a substantial growth
in the quantity of SNP-IDP pairs which increases the amount of information for the model to learn from, and
this is duly reflected in the overall execution time. Training time was directly proportional to the number of
A100 GPUs that were used in training. For 5% top SNPs in the training set, COMICAL took approximately
85 minutes to train with 3 A100 GPUs. However, for a single GPU, it took 218 minutes.

3.2 Comparison with GWAS summary statistics

We compared the top associations with respect to p-values with GWAS summary statistics from ENIGMA
consortium, specifically, ENIGMA2 [13] and ENIGMA3 [11]. We found the SNP rs1516725, in the region
of DGKG, which is associated with obesity in GWAS catalog, being mapped to the volume of grey matter
in right ventral striatum (p < 10−26). This SNP was found to be associated with the mean volume of
hippocampus in ENIGMA2 summary statistics (p < 9 × 10−4). Right ventral striatum is involved in reward
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processing and motivation in the brain, whereas hippocampus deals with contextual memories, which can
include memories of reward and reinforcement. Hippocampus often works together with the ventral striatum
and both are related to obesity [3, 9]. The reward and motivation impulse in the brain is often linked with
affinity towards weight gain and increased obesity risk [9]. Another such association is rs266058 which is
associated with the volume of grey matter in left amygdala (p < 2 × 10−24) and strongly associated with
ADHD in GWAS catalog. It is known that ADHD patients tend to have smaller amygdala volumes compared
to healthy controls [27]. This SNP was associated with the isthmus cingulate cortex in ENIGMA3 summary
statistics (p < 2 × 10−4). A large brain imaging study of the cortex in ADHD called ENIGMA-ADHD [14]
suggested to study the network of orbitofrontal cortex, cingulate, and amygdala for understanding deficient
emotional self-regulation in ADHD patients [24]. COMICAL was able to find this subtle connection which
had not been found earlier in ADHD GWAS studies. Similar to this, COMICAL was able to find many other
connections such as rs993137, another SNP strongly associated with ADHD was paired with volume of
grey matter in left amygdala in COMICAL (p < 3 × 10−11) and mean volume of inferior temporal cortex
in ENIGMA2. The inferior temporal cortex is strongly associated with behavioral inhibition and hence
connected to ADHD [1]. The full results of the significant learned pairs from COMICAL and their mapping to
IDPs obtained from ENIGMA studies is shared in Supplementary Table 2. We observed that on an average,
across different GWAS catalog thresholds, 50% of significant SNPs obtained from COMICAL were found to
have associations in ENIGMA summary statistics (p < 5 × 10−4).

Fig. 5: Receiver operating characteristic curve plots for each one of the diseases using MLP plus COMICAL
encoders, captured by solid lines and baseline MLPs (denoted as disease ’-’ MLP), captured by dashed lines
for comparison.

3.3 Cross-disorder prediction

We used COMICAL to leverage the learned embeddings of the SNP-IDP pairs and used them to predict disease
outcome. The key knowledge of the SNP-IDP relationships encoded in the embeddings was beneficial to the
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predictive capabilities of the data. Using the SNP and IDP encoders from COMICAL we were able to train
a small multi-layer perceptron (MLP) to predict disease outcome states and compared it with a baseline of
using the original SNPs and IDPs without the encoding and evaluate it in the same MLP architecture. As
seen in Figure 5, using the COMICAL trained encoders with an MLP achieves very high performances when
compared to the baseline for ADHD, ASD, MD, and SZ. It is exciting to see the high performance of SZ
compared to the baseline, as SZ is an unseen disease for COMICAL. This shows the promising capabilities of
COMICAL to implicitly learn disease SNP-IDP relationships that can be used for unseen outcomes of interest.
Additionally, we see comparable performances on AD, BPD, UD, MS, Stroke and meta. Finally, we see a
lower performance on PD when compared to the baseline. The low performances of COMICAL and baselines
could be in part explained due to low number of cases in the dataset (Table 2), as UK Biobank is a disease
agnostic dataset. The relative performance with respect to the baseline was captured using net reclassification
index (NRI) as the difference between the area under the curve value obtained by COMICAL vs. the baseline
(Figure 6). Our current results, show the promising capabilities of COMICAL towards downstream tasks, as
a potential foundation model in the SNP-IDP domain.

Fig. 6: Net reclassification index (NRI) of AUC in COMICAL vs. the baseline across the eleven clinical
outcomes.

Similarly, COMICAL showed promising capabilities at predicting risk scoring for 5 different neurological
disorders. More importantly, it was able to be tuned on predicting for one disorder and then effectively
estimate risk scores on a different one, as shown in Table 3. The similar R2 across disorders suggest that as
there are several shared patterns across neurological conditions it is feasible to generalize across disorders.
Additionally, the results suggested that the target disorder is highly influential in the abilities from COMICAL
to perform accurate risk scoring. For example, SZ consistently achieves the highest R2, while also achieving
high AUCs as seen in Figure 5.

AD BD MS PD SZ
AD 0.696 0.687 0.666 0.698 0.709
BD 0.693 0.691 0.662 0.698 0.714
MS 0.693 0.689 0.664 0.698 0.713
PD 0.697 0.663 0.697 0.707 0.708
SZ 0.694 0.691 0.659 0.699 0.708

Table 3: R2 values for risk score prediction task are shown. When training COMICAL on the prediction task
of risk scoring for a given disease, COMICAL can then be used to predict the risk score on a different disease.
Disease used for training is show on the rows while the adapted disease is shown as columns. Significance at
p < 0.05
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4 Discussion

We have developed a multi-modal foundation model for neurological disorders with a contrastive learning
approach leveraging multi-omics data to generate many-to-many associations between genetic markers and
brain imaging phenotypes. Our approach discovered several associations between SNPs and IDPs that are
validated in the literature to have strong associations with neurological and psychiatric conditions. This
demonstrates the capacity of COMICAL to unravel intricate interactions within complex disorders which are
often missed by traditional association studies such as GWAS, eQTL, etc. COMICAL was able to find subtle
connections between SNPs and IDPs which were implicitly mentioned in previous studies [9, 14, 24], as well
as recover well known associations between them. In the cross-disorder prediction task, COMICAL either
performed upto 60% better than the baseline or performed almost as well, except the exception of PD. On
top of this, COMICAL was able to perform very well (73.6%) on predicting an unseen disease, SZ from the
learned pairs, highlighting the discriminative aspects of foundation models. Some of the disease outcomes had
very low representation in the dataset (Table 2), which might play a role in reduced performance, in some
cases. COMICAL showed very promising results when predicting risk scores for five neurological disorders for
which ePRS data was available. It was able to predict across disorders when trained only on one of them
(Table 3). This elucidates the path towards foundation model capabilities in multi-omics analysis. COMICAL
facilitates transfer learning across modalities as well as in unseen, held-out data with the pre-trained models.
COMICAL trained on UKB data can be used to predict disorders on neurological cohorts such as Alzheimer’s
Disease Neuroimaging Initiative [19], Parkinson’s Progression Markers Initiative [16], ENIGMA [29], etc. and
enable biomarker discovery.

Despite the novelty and innovation that our approach provides, it is not without limitations. One short-
coming is a result of the pair-making process. Depending on the modalities that are being analyzed, the
embedding space becomes incredibly large when generating possible pairs. This led to our design choice to
limit the model to learn using the top SNPs when evaluating on the UK Biobank data. We note that this
has resulted in sub-optimal performance in some cases and we expect to engineer architectural advances in
COMICAL to train it with even larger space of parameters while ingesting whole genome sequencing data.
Another direction for future research would be applying COMICAL to other large biobanks with neurolog-
ical diseases or perform pre-training on other complex diseases such as cancer, cardiovascular disease, etc.
This would further demonstrate the versatility COMICAL has and illustrate its significance to the domain
of multimodal foundation models. We also expect to improve the architecture of COMICAL by trying other
encoders and tokenizers which preserve domain information in multimodal foundation models. Although
we showcase COMICAL using genomic and imaging markers, we can extend its capabilities to learn associa-
tions between genomic markers and proteins, genes and methylation information, etc. and thus COMICAL is
domain agnostic.

5 Conclusion

Multi-omics data analysis is essential towards understanding complex diseases such as neurological disorders
with their high comorbidity. However, discovering the intricate relationships between genomic markers and
brain imaging phenotypes can be very challenging as there are large sets of underlying mechanisms. Com-
monly used methods such as GWAS are often single-marker association studies, not observing multi-way
or many-to-many associations. COMICAL, a foundation model tuned to identify associations of SNPs and
IDPs in large cohorts allows us to learn the complex many-to-many genotype-phenotype relationships and
use these towards downstream tasks. Our results show the strong capabilities from COMICAL to learn as-
sociations between SNPs and IDPs in a self-supervised manner using UK Biobank data, and its promising
capabilities towards disease outcome prediction and estimating a novel multi-modal, multi-omics risk score.
COMICAL enables transfer learning and accelerates discovery of therapeutic targets with the availability of
a pre-trained model.
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6 Code and Data availability

Data is available upon request from UK Biobank. Code is available in https://github.com/IBM/
comical.
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