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ABSTRACT 
 
Background: Longitudinal tracking of multiple sclerosis (MS) symptoms in an 
individual’s own environment may improve self-monitoring and clinical management for 
people with MS (pwMS).  
 
Objective: We present a machine learning approach that enables longitudinal monitoring 
of clinically relevant patient-reported symptoms for pwMS by harnessing passively 
collected data from sensors in smartphones and fitness trackers. 
 
Methods: We divide the collected data into discrete periods for each patient. For each 
prediction period, we first extract patient-level behavioral features from the current 
period (action features) and the previous period (context features). Then, we apply a 
machine learning (ML) approach based on Support Vector Machine with Radial Bias 
Function Kernel and AdaBoost to predict the presence of depressive symptoms (every 
two weeks) and high global MS symptom burden, severe fatigue, and poor sleep quality 
(every four weeks).  
 
Results: Between November 16, 2019, and January 24, 2021, 104 pwMS (84.6% women, 
93.3% non-Hispanic White, 44.0±11.8 years mean±SD age) from a clinic-based MS 
cohort completed 12-weeks of data collection, including a subset of 44 pwMS (88.6% 
women, 95.5% non-Hispanic White, 45.7±11.2 years) who completed 24-weeks of data 
collection. In total, we collected approximately 12,500 days of passive sensor and 
behavioral health data from the participants. Among the best-performing models with the 
least sensor data requirement, ML algorithm predicts depressive symptoms with an 
accuracy of 80.6% (35.5% improvement over baseline; F1-score: 0.76), high global MS 
symptom burden with an accuracy of 77.3% (51.3% improvement over baseline; F1-
score: 0.77), severe fatigue with an accuracy of 73.8% (45.0% improvement over 
baseline; F1-score: 0.74), and poor sleep quality with an accuracy of 72.0% (28.1% 
improvement over baseline; F1-score: 0.70). Further, sensor data were largely sufficient 
for predicting symptom severity, while the prediction of depressive symptoms benefited 
from minimal active patient input in the form of response to two brief questions on the 
day before the prediction point.   
 
Conclusions: Our digital phenotyping approach using passive sensors on smartphones 
and fitness trackers may help patients with real-world, continuous, self-monitoring of 
common symptoms in their own environment and assist clinicians with better triage of 
patient needs for timely interventions in MS (and potentially other chronic neurological 
disorders). 
 
 
Keywords: Digital phenotyping, mobile sensing, wearable, multiple sclerosis, disability, 
depression, fatigue, sleep, machine learning, ecological momentary assessments.  
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INTRODUCTION 
 
Multiple Sclerosis (MS) is a leading cause of chronic neurological disability, affecting 
around 2.8 million people worldwide and over 700,000 people in the United States while 
causing high health and socioeconomic burdens [1-3]. People with MS (pwMS) may 
experience a variety of neurological symptoms involving the cognitive, motor, sensory, 
vision, bowel or bladder domain as well as symptoms of depression, fatigue, and sleep 
disturbance in their daily lives [4]. Comprehensive MS care involves timely symptom 
management, but clinician’s awareness of symptoms often lags behind patient 
experience. Frequent symptom monitoring could improve clinical care and quality of life. 
However, active engagement with frequent longitudinal symptom monitoring is 
impractical for patients or clinicians.  Given the pervasiveness of MS-related symptoms, 
symptom monitoring in the patient’s own environment coupled with effective prediction 
of symptom severity could facilitate triage for timely clinical intervention and reduce the 
delay in symptom management before worsening.   
 
The digital phenotyping framework uses passively collected data from personal digital 
devices (e.g., smartphones, fitness trackers) to quantify human behavior moment-by-
moment in situ and predict individual health outcomes [5]. Previous works using 
passively sensed smartphone and wearable data to predict MS outcomes explored the 
feasibility of passive data collection and the preliminary association between sensed 
behaviors and standard rater-assessed clinical outcomes [6-14]. However, little is known 
regarding the clinical applicability of continuous longitudinal digital phenotyping to 
predict the severity of clinically relevant patient-reported symptoms in pwMS. Here, we 
propose a machine learning approach that harnesses continuously and passively collected 
data from patients’ digital devices to predict short-term future symptoms. Specifically, 
we prioritize common MS neurological symptoms as well as symptoms of depression, 
fatigue, and sleep disturbance that collectively worsen the quality of life.  
 
The primary study goal is to test the feasibility of low-cost, continuous, and longitudinal 
symptom tracking in a patient’s own environment with minimal active patient 
engagement. Secondarily, we examined whether machine learning model performance 
based on passively collected sensor data would improve when (1) using behavioral 
features from the previous period (context features) to help the models contextualize the 
patient's current behaviors in addition to behavioral features from the current period 
(action features), and (2) incorporating minimal active patient input via response to short 
surveys called Ecological Momentary Assessments (EMAs). These aspects of the study 
design in digital phenotyping of clinically relevant patient-reported symptoms 
differentiate from prior studies. Our approach may also inform the real-world application 
of long-term, continuous symptom tracking and real-world clinical prediction in chronic 
neurological conditions beyond MS.  
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METHODS 
 
Participants, Study Period, and Ethics Approval 
The study included adults 18 years or older with a neurologist-confirmed MS diagnosis 
who owned a smartphone (Android or iOS) and enrolled in the Prospective Investigation 
of Multiple Sclerosis in the Three Rivers Region (PROMOTE) study, a clinic-based MS 
natural history cohort at the University of Pittsburgh [15-21]. The institutional review 
boards of the University of Pittsburgh (STUDY19080007) and Carnegie Mellon 
University (STUDY2019-00000037) approved the study. All participants provided 
written informed consent. Between November 16, 2019, and January 24, 201, 104 
participants completed the data collection for a pre-defined period of 12 weeks, while 44 
(out of the 104) participants extended data collection for an additional 12 weeks to 
complete 24 weeks of data collection. None of the participants experienced acute relapse 
during the study period. To protect confidentiality, we removed identifiable information 
(e.g., names, contact information) from sensor and questionnaire data before analysis.  
 
Overview of the Digital Phenotyping Approach 
To briefly summarize the overall approach, we used passively and continuously collected 
data from participants’ own digital devices, including three smartphone sensors (calls, 
locations, screen usage) and three fitness tracker sensors (heart rate, sleep, steps), to 
predict short-term future patient-reported symptoms of MS-related global neurological 
symptom burden, depression, fatigue, and sleep quality. To assess the added predictive 
utility of Ecological Momentary Assessments (EMAs), which were brief surveys for 
“repeated sampling of subjects' current behaviors and experiences in real-time in subjects' 
natural environments” [22, 23], we administered EMAs three times per day through a 
mobile application asking two multi-choice questions that took less than 15 seconds on 
average to respond.  To capture the real-world fluctuation in symptom severity, we 
divided each participant’s collected data into discrete consecutive periods (e.g., 2 or 4 
weeks) for rolling predictions of patient-reported symptoms.  We used patient’s response 
to validated symptom questionnaires during the same period as the ground truth of 
symptom severity.  We computed features from the sensor and EMA data and classified 
features as action versus context based on the temporal relationship between features and 
patient-reported symptom severity at each period. Action features captured a person’s 
activity and behaviors during the period immediately preceding the next point of 
symptom severity prediction.  Context features captured a person’s activity and 
behaviors during the period immediately preceding the previous prediction point, i.e., the 
context of a participant’s action features. We then used (1) action features or (2) action 
and context features to predict the symptom severity.  

Sensor and EMA Data Collection 
At enrollment, the study team helped each participant install a custom-built mobile 
application on their smartphone. In parallel, the study team provided each participant a 
Fitbit Inspire HR device to wear. Participants kept the Fitbit after study completion. We 
asked participants to always carry their smartphones, wear fitness trackers, and keep their 
devices charged.   
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The mobile application based on the AWARE framework [24] provided the backend and 
network infrastructure for unobtrusively collecting call logs (e.g., incoming, outgoing, 
and missed calls), locations, and screen usage (i.e., when the screen status changed to on 
or off and locked or unlocked) of the smartphone sensors. The fitness tracker sensors 
captured heart rate, sleep status (e.g., asleep, awake, restless, or unknown), and the 
number of steps. Data from AWARE were deidentified and automatically transferred 
over WiFi to a study server at regular intervals. Data from the Fitbit were retrieved using 
the Fitbit Application Programming Interface at the end of each participant’s data 
collection.  
 
Calls and screen usage were event-based sensor streams, whereas location, heart rate, 
sleep, and steps were time series sensor streams. We sampled location coordinates at 1 
sample per 10 minutes and heart rate, sleep, and steps at 1 sample per minute. 
 
Throughout the study duration, the mobile application alerted and directed participants 
three times a day to complete a brief EMA survey within the application. EMA surveys 
took less than 15 seconds to complete on average.  The two recurring questions were: (1) 
“How depressed do you feel?” and (2) “How tired do you feel?”. Participants responded 
to each EMA question using a Likert scale from 0 to 4, with 0 indicating the least and 4 
indicating the most depressed/tired feeling. The EMA responses were transmitted to the 
study server.  

Questionnaire Deployment for Assessing Symptom Severity 
Participants completed online questionnaires using the secure, web-based Research 
Electronic Data Capture (REDCap) system [25, 26]. To assess the severity of clinically 
relevant symptoms, we used standardized patient-reported outcome questionnaires 
validated in pwMS.  To harmonize the periods across participants, all participants 
completed a baseline questionnaire assessing demographics and clinical profiles on the 
Saturday following enrollment. Beyond the baseline, participants completed additional 
questionnaires at regular intervals (e.g., every 2 or 4 weeks from the first Saturday) as 
appropriate for assessing each standard patient-reported symptom type throughout the 
data collection period.  

Depressive Symptom 
To measure the severity of depression symptoms, participants completed the Patient 
Health Questionnaire (PHQ-9) once every two weeks [27]. The PHQ-9 asked for 
symptoms in the preceding two weeks, whereas the other questionnaires in this study 
asked for symptoms in the preceding four weeks. PHQ-9 scores ranged from 0 to 3, with 
higher scores indicating more severe depressive symptoms. 

Global MS Neurological Symptom Burden 
To measure the severity of the global MS-related neurological symptom burden, 
participants completed the Multiple Sclerosis Rating Scale-Revised (MSRS-R) once 
every four weeks [28]. MSRS-R assessed eight neurological domains (i.e., walking, upper 
limb function, vision, speech, swallowing, cognition, sensory, bladder, and bowel 
function). Each domain could score from 0 to 4, with 0 indicating the absence of 
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symptoms and 4 indicating the greatest symptom severity. The total score (0 to 32) 
indicates the global MS-related neurological symptom burden. 

Fatigue 
To measure the severity of fatigue, participants completed the 5-item version of the 
Modified Fatigue Impact Scale (MFIS-5) once every four weeks [29]. MFIS-5 assessed 
the impact of fatigue on cognitive, physical, and psychosocial function. Each item in 
MFIS-5 could score from 0 (never) to 4 (almost always) on a five-point Likert scale, with 
higher scores indicating more severe fatigue. 

Sleep Quality 
To measure the severity of sleep disturbances, participants completed the Pittsburgh 
Sleep Quality Index (PSQI) once every four weeks [30]. The 19 items of PSQI generated 
7 component scores (each on a 0-3 scale) and one composite score (0 to 21), with higher 
scores indicating poorer sleep quality. 
 
Binary indicators of symptom severity likely have more practical real-world clinical 
utility in assisting patient self-monitoring and facilitating clinician triage for symptom 
intervention. For each symptom type, we dichotomized the score to the respective 
standardized questionnaire using specific thresholds to classify symptom severity. For 
global MS neurological symptom burden, we dichotomized MSRS-R scores as 	≥6.4 
(higher burden) versus <6.4 (lower burden). For depressive symptoms, we dichotomized 
PHQ-9 scores as ≥5 (presence of depressive symptoms) versus <5 (absence of depressive 
symptoms). For fatigue, we dichotomized MSIF-5 scores as ≥8 (greater fatigue) versus 
<8 (lower fatigue). For sleep quality, we dichotomized PSQI scores as ≥9 (poorer sleep 
quality) and <9 (better sleep quality). For depressive symptoms and sleep quality, the 
binary thresholds were based on previous consensus [27, 31]. For global MS neurological 
symptom burden and fatigue, we calculated the respective median scores in the entire 
dataset. We used the median scores as the thresholds, given the lack of consensus from 
the literature.  Thus, throughout the data collection, each participant has a consecutive 
series of binary symptom severity status (i.e., every two weeks for depressive symptoms 
and every four weeks for global MS symptom burden, fatigue and sleep quality). 

Sensor and EMA Data Processing and Machine Learning 
Briefly, the data processing and analysis pipeline required the following steps (Figure 1). 
First, we extracted features from sensor and EMA data to generate action and context 
features. Second, we improved data quality by handling missing features.  Finally, we 
implemented a machine learning pipeline to predict the severity of each patient-reported 
symptom on a rolling basis (i.e., every two weeks for depressive symptoms and every 
four weeks for global MS neurological symptom burden, fatigue and sleep quality) using 
action features or action + context features in the following iterations: (1) 1-sensor 
models, each containing features from one out of the six sensor types; (2) the best 
combination of the 1-sensor models; (3) the best combination of 1-sensor models plus 
EMA.  
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Figure 1. Data Processing and Analysis Pipeline. 
(A) The pipeline for predicting depressive symptoms (PHQ-9) every 2 weeks, and global MS 
neurological symptom burden (MSRS-R), fatigue (MFIS-5) and sleep quality (PSQI) every 4 
weeks, used passively collected sensor data from smartphones and fitness trackers as well as EMAs. 
We ran the pipeline for two types of EMA features (average and pre-survey EMAs) and two types 
of feature matrices (action and action + context). (B) For each sensor, every feature was extracted 
from 15 temporal slices over 2 or 4-week periods. First, raw data from the device sensor were 
preprocessed and filtered by time-of-the-day and days-of-the-week. Features were then extracted 
from the selected raw data. (C) For EMA, we used a similar approach (as for processing sensor 
data) to calculate the average EMA and pre-survey EMA. (D) Action features were features from 
the period immediately preceding the prediction point, whereas context features were from the 
period preceding the “action period”.  
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Feature Extraction and Engineering 
Overview: From the smartphone and fitness tracker sensors, we computed six types of 
features from different sensors (i.e., Calls, Heart Rate, Location, Screen, Sleep, and 
Steps), given their known potential to inform behaviors relevant to symptoms of 
depression [32-37], fatigue [10], poor sleep quality [38, 39] and crucial MS neurological 
symptoms such as decreased mobility [13]. The “Calls” features captured communication 
patterns.  The “Heart Rate” and “Steps” features captured the extent of physical activities. 
The “Location” features captured mobility patterns. The “Screen” features potentially 
captured the ability for concentration [40, 41] and the extent of sedentary behavior [42] 
with caveats for pwMS and people with other chronic neurological disorders who may 
experience impairment with upper limb or fine motor functions. The “Sleep” features 
captured sleep duration and patterns, from which we could infer sleep disturbance (e.g., 
insomnia or hypersomnia) [43]. The Supplementary Materials Section A.1 provided 
details of sensor feature extraction and engineering. For sensor features over time periods 
(e.g., every 2-week or 4-week period) (Figure 1B), we calculated the daily average value 
of each sensor feature. Given the diversity of behaviors with ephemeral and sustained 
changes in pwMS, it is crucial to initialize the model with a large feature set. While these 
features captured individual or overlapping behaviors, the feature selection stage of our 
machine learning pipeline removed redundant features.  
 
For EMA responses during the same time periods (e.g., every 2-week or 4-week period) 
(Figure 1C), we obtained two types of EMA features. The “Average EMA” was the daily 
average value of each EMA question response during a given period. The “Pre-survey 
EMA” represented the value of the last response to each EMA question on the day prior 
to the administration of the questionnaire for assessing the patient-reported symptom 
during each period.  
 
Temporal Slicing: The temporal slicing approach extracted sensor features from different 
time segments (Figure 1B and 1C). From prior research, temporal slicing better defined 
the relationship between a sensor feature and depression severity, for example [44, 45]. 
Here, we collected all available data during each specific epoch or time segment of the 
day (all day, night [00:00-06:00 hours], morning [06:00-12:00 hours], afternoon [12:00-
18:00 hours], evening [18:00-00:00 hours]) and on specific days of the week (all days of 
the week, weekdays only [Monday-Friday], weekends only [Saturday-Sunday]) to 
achieve 15 data streams or temporal slices. For sensor or EMA features in each of the 15 
temporal slices, we first computed daily features (of the temporal slice) and averaged 
daily features over either 2- or 4-week periods for prediction (i.e., every two weeks to 
predict depressive symptoms and every four weeks to predict global MS neurological 
symptom burden, fatigue, and sleep quality). We concatenated the features from 15 
temporal slices to derive the final feature matrix.  
 
Feature Matrix: After feature extraction, we created a feature matrix for each of the six 
sensors (calls, locations, screen usage, heart rate, sleep, steps) and each of the two EMA 
types (average and pre-survey EMA), containing features for the 15 temporal slices in 
consecutive 2 or 4-week periods during each participant’s study follow-up. The “action” 
feature matrix captured each participant’s actions during the current (2 or 4-week) 
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period, at the end of which period we predicted the patient-reported symptom severity as 
the outcome. For each participant, we concatenate features from the previous (2 or 4-
week) period, which captured the context for the current actions, with the “action” feature 
matrix to obtain the “action + context” feature matrix. Thus, to predict the outcome at the 
end of the ith period at time T = iP where P = 2 weeks or four weeks, the action feature 
matrix comprised features from time (i-1)P and time iP, whereas the action + context 
feature matrix comprised features from time (i-2)P and time iP (Figure 1D).  
 
 
Figure 2. Feature combinations from sensors and EMAs. 

 

	
	

Handling Missing Data 
Missing sensor data could occasionally occur due to several reasons. Supplementary 
Materials Section A.2 described the detailed approach for handling missing data. 

Machine Learning (ML) Pipeline Using Action and Context Behavioral Features 
We built machine learning models using Support Vector Machines (SVM) with Radial 
Bias Function (RBF) Kernels and validated our models using leave-5-participants-out 
cross-validation to mitigate over-fitting. As an overview, the pipeline involved six steps. 
First, in the Generating Feature Sets step, we created model configurations that enabled 
assessment of the utility of EMA features and contextual feature information. Second, we 
performed Training and Validating 1-Sensor and EMA-only Models step for each of the 
six sensor feature types (Calls, Heart Rate, Location, Screen, Sleep, and Steps) and either 
EMA feature type (average or pre-survey EMA features). Third, during	the Obtaining 
Predictions from Combinations of Sensors step, we combined detection probabilities 
from 1-sensor models to identify the best performing combined sensor model. Fourth, 
during Obtaining Predictions from Combinations of Sensors and EMA step, we combined 
detection probabilities from 1-sensor models and an EMA-only model to identify the best 
performing final model. Fifth, we performed the Classifying Different Outcomes step by 
running the pipeline for each outcome. Finally, we performed a comparison of ML 
models using Bootstrapping Predictions. 
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Generating Feature Sets: We generated features for the different model configurations to 
assess the utility of EMA features and contextual feature information. For EMA, we used 
(1) no EMA information, (2) only pre-survey EMA, or (3) average EMA values. For 
Context, we either used (1) only Action or (2) Action+Context. In total, there were six 
configurations based on these features.  
 
Training and Validating 1-Sensor and EMA-only Models: For each sensor and EMA 
feature matrix, we built a model of the selected features from the given sensor or EMA 
type to predict an outcome (Figure 2). We trained models using an SVM classifier with 
RBF Kernel (SVM-RBF). We used leave-5-participants-out cross-validation to choose 
the regularization parameter for SVM-RBF. The folds were split in a stratified manner, 
and classes were balanced in the SVM-RBF to ensure that positive and negative classes 
of the binary outcomes were adequately represented. We chose the model with the best 
F1-score for a given outcome, which provided the prediction probabilities for the 
outcome. The process for one outcome was independent of the other outcomes. 
 
Obtaining Predictions from Combinations of Sensors: We concatenated prediction 
probabilities from all six 1-sensor models into a single feature vector and entered as input 
into an ensemble classifier, i.e., AdaBoost with Decision Tree Classifier as a base 
estimator, which generated the final prediction for each outcome. For all outcomes, only 
the prediction probabilities of the positive label “1” were concatenated. The positive 
labels were the “presence of depressive symptoms” for depression, “high burden” for 
global MS neurological symptom burden, “severe fatigue” for fatigue, and “poor sleep 
quality” for sleep quality. We tuned the “n_estimators” (i.e., the maximum number of 
estimators at which boosting was terminated) parameter during leave-5-participants-out 
cross-validation to achieve the best-performing combined model. 
 
To analyze the contribution of each sensor combination, we implemented a feature 
ablation analysis by generating detection results for all possible combinations of 1-sensor 
models. For six 1-sensor models, there were 57 combinations of feature sets, as the total 
combinations = combinations with two sensors + ... + combinations with six sensors: 
∑ "!"# = 57!
"#$ . 

 
Obtaining Predictions from Combinations of Sensors and EMA-only Models: We 
concatenated prediction probabilities from all six 1-sensor models and one EMA-only 
model into a single feature vector and entered as input into an ensemble classifier using 
the same method for sensors (as described above) to train this combined classifier.  
 
To analyze the utility of each sensor and EMA combination, we implemented a feature 
ablation analysis by generating detection results for all possible combinations of 1-sensor 
models and the EMA model. For six 1-sensor models and one EMA model, there were 
120 combinations of feature sets, as the total combinations = combinations with two 
sensors or 1 sensor and EMA + ... + combinations with six sensors and/or EMA: 
∑ "%"# = 120%
"#$ . 
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Classifying Different Outcomes: We ran the following pipeline independently for each of 
the four patient-reported symptoms as the outcomes, first using action-only features and 
then using action + context features: 

1. Training and validating six 1-sensor models without EMA and 57 combined 
models. 

2. Training and validating six 1-sensor models plus average EMA and 120 combined 
models. 

3. Training and validating six 1-sensor models plus pre-survey EMA and 120 
combined models. 

 
Each patient had multiple “samples” (i.e., prediction periods) over the study duration. For 
each patient-reported symptom, we trained six final models based on whether the model 
included Action versus Action + Context features or whether the model contained no 
EMA, average EMA, or pre-survey EMA. Here, the “positive” label refers to the 
outcome of interest (e.g., presence of depressive symptoms, presence of high global MS 
neurological symptom burden, presence of severe fatigue, presence of poor sleep quality). 
For each final model of a given outcome, we reported the model performance of the best 
combination of sensors and/or EMA. We also reported the performance of baseline 
models (i.e., a simple majority classifier whereby every point was assigned to whichever 
was in the majority in the training set) as well as models containing all six sensors or all 
six sensors plus one EMA type.  
 
Comparing ML Models by Bootstrapping Predictions: For model performance metrics, 
we assessed accuracy and F1-score.  Accuracy is the percentage of samples for which the 
model correctly predicted the outcome label. F1-score measures the harmonic mean of 
precision and recall.  Precision is the positive predictive value, i.e., the number of true 
positive labels divided by the number of all positive labels (true positive + false positive).  
Recall is sensitivity, i.e., the number of true positive labels divided by the number of all 
samples that should have the positive labels (true positive + false negative).  For each 
patient-reported symptom, we compared the bootstrapped accuracy and F1 scores among 
the six final models in a pairwise manner (30 comparisons).  Specifically, we computed 
the 95% confidence intervals of differences in their bootstrapped accuracy and F1-score. 
We performed hierarchical bootstrapping by randomly sampling {participant ID, 
prediction week} with replacement over 10000 iterations. In each iteration, we took 
samples with the same {participant ID, prediction week} across the two models being 
compared and computed the difference in accuracy and difference in F1-score, 
respectively. After computing all iterations, we generated the 95% confidence intervals of 
the difference in accuracy and difference in F1-score (two-tailed alpha = 0.05). If one of 
the models in a pair is not statistically better than the other, we consider the model 
requiring the least amount of sensor and/or EMA data to be “better.”  
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RESULTS 
 
Patient Profile 
The study included 104 pwMS who completed at least 12-weeks of data collection 
between November 2019 and January 2021.  The subset of the participants who 
completed 24-weeks of data collection shared similar characteristics as the study cohort, 
which was largely representative of the larger clinic-based MS population (Table 1).  
 
Table 1. Patient Characteristics 
 

 12-week 
(n = 104) 

24-week 
(n = 44) p-value 

Age (years, mean ± SD) 44.0 ± 11.8 45.7 ± 11.2 0.42 
Sex (n, % of cohort)   0.61 

Female 88 (84.6) 39 (88.6) - 
Male 16 (17.3) 5 (11.4) - 

Race (n, % of cohort)   0.97 
White 97 (93.3) 42 (95.5) - 

Black/African American 7 (6.7) 2 (4.5) - 
Asian 0 (0.0) 0 (0.0) - 

Not reported 0 (0.0) 0 (0.0) - 
Ethnicity (n, % of cohort)   1.0 

Non-Hispanic  104 (100.0) 44 (100.0) - 
Hispanic  0 (0.0) 0 (0.0) - 

Not reported 0 (0.0) 0 (0.0) - 
Disease Duration (years, mean ± SD) 13.7 ± 10.1 15.0 ± 10.5 0.48 
Disease Subtype (n, % of cohort)   0.32 

RRMS and precursors (RIS, CIS) 100 (96.2) 44 (100.0) - 
PMS 4 (3.8) 0 (0.0) - 

DMT Efficacy (n, % of cohort)   0.39 
No DMT 27 (26.0) 11 (25.0) - 

Standard Efficacy 19 (18.3) 10 (22.7) - 
Higher Efficacy 58 (55.8) 23 (52.3) - 

PHQ-2 Score (mean ± SD)  0.79 ± 0.90 0.77 ± 0.91 0.90 
PHQ-9 Score* (mean± SD, 12wk 
n=49, 24wk n=20) 10.8 ± 4.2 11.2 ± 4.3 0.60 
MSRS-R Score (mean ± SD) 7.4 ± 5.4 7.9 ± 5.5 0.61 
MFIS Score (mean ± SD) 8.5 ± 4.7 8.6 ± 4.6 0.91 
PSQI Score (mean ± SD) 9.8 ± 4.0 10.2 ± 4.0 0.58 
	
* PHQ-9 was only deployed when the participants scored ≥1 on the PHQ-2. 
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Predicting Outcomes Using Action and Context Features from Sensor and EMAs 
 
Figure 3. Performance of the machine learning pipeline.  
We use the best sensor or sensor+EMA combinations for predicting the four patient-reported 
symptoms in pwMS: (A) depressive symptom, (B) global MS neurological symptom burden, (C) 
fatigue, and (D) sleep quality. “Action-Only & NoEMA” is the best model that combines 
predictions of 1-sensor models trained on action-only features. “Action+Context & NoEMA” is 
the best model that combines predictions of 1-sensor models trained on action and context 
features. “Action-Only & AvgEMA” is the best model that combines predictions of 1-sensor 
models and the average EMA model trained on action-only features. “Action+Context & 
AvgEMA” is the best model that combines predictions of 1-sensor models and the average EMA 
model trained on action and context features. “Action-Only & PresurveyEMA” is the best model 
that combines predictions of 1-sensor models and the pre-survey EMA model trained on action-
only features. “Action+Context & PresurveyEMA” is the best model that combines predictions of 
1-sensor models and the pre-survey EMA model trained on action and context features. We use 
bootstrapping to report average Accuracy (X 0.01) and F1-score and the corresponding 95% 
confidence intervals (alpha=0.05) for each of these models. 
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We report the accuracy and F1-score of the machine learning pipeline for predicting each 
type of patient-reported symptom using the best-performing sensor and/or EMA 
combinations (i.e., the set of sensors and/or average or pre-survey EMA) for models 
trained on Action-only features and Action + Context features (Figure 3).  Separately, we 
report the performance of individual 1-sensor, average EMA, and pre-survey EMA 
models (Supplementary Table S1) as well as models combining all 6 sensors, 6 sensors + 
average EMA, or 6 sensors + pre-survey EMA (Supplementary Table S2). Finally, we 
indicate the best combination of sensors and/or EMA, selected for each model type 
(Supplementary Table S3, corresponding to Figure 3).  

Depressive Symptom 
For predicting the presence of depressive symptoms (versus the absence of depressive 
symptoms) every 2 weeks, the baseline model (simple majority classifier) had an 
accuracy of 59.5%. The model containing all 6 sensors and no EMA had an accuracy of 
74.7% with action-only features (25.5% relative improvement over the baseline), and an 
accuracy of 72.2% with action + context features (21.3% relative improvement over the 
baseline) (Supplementary Table S2). The model containing the best combination of 
sensors and no EMA had an accuracy of 74.7% with action-only features (25.5% relative 
improvement over the baseline; Best combination: calls, heart rate, location, screen, 
sleep, and steps), and an accuracy of 74.7% with action + context features (25.5% relative 
improvement over the baseline; Best combination: calls, heart rate, location, screen, and 
sleep) (Figure 3).  The model containing the best combination of sensors and average 
EMA had an accuracy of 80.8% with action-only features (35.8% relative improvement 
over the baseline; Best combination: heart rate, sleep, steps, and average EMA), and an 
accuracy of 81.3% with action + context features (36.6% relative improvement over the 
baseline; Best combination: calls, heart rate, location, sleep, and average EMA). The 
model containing the best combination of sensors and pre-survey EMA had an accuracy 
of 80.6% with action-only features (35.5% relative improvement over the baseline; Best 
combination: heart rate, steps, and pre-survey EMA) and an accuracy of 81.4% with 
action + context features (36.8% relative improvement over the baseline; Best 
combination: heart rate, location, screen, and pre-survey EMA). 
 
When comparing the model performance in a pairwise manner (Figure 3), 
Action+Context & PresurveyEMA had the highest bootstrapped average Accuracy of 
81.4% and the highest average F1-score of 0.77. This model significantly outperformed 
both NoEMA models: Action-Only & NoEMA (absolute increase of 6.7% in accuracy 
and 0.09 in F1-score), Action+Context & NoEMA (absolute increase of 6.6% in accuracy 
and 0.1 in F1). Likewise, Action-Only & PresurveyEMA significantly outperformed both 
NoEMA models: Action-Only & NoEMA (absolute increase of 6.0% in accuracy and 
0.09 in F1-score), Action+Context & NoEMA (absolute increase of 6.1% in accuracy and 
0.09 in F1-score). Models with average EMA (Action-Only & AvgEMA, 
Action+Context & AvgEMA) also significantly outperformed both NoEMA models.  
However, there were no statistically significant differences between Action-Only & 
PresurveyEMA and Action+Context & PresurveyEMA or between any of the 
PresurveyEMA models and the AvgEMA models.  
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Thus, for predicting the presence of depressive symptoms every 2 weeks, the Action-
Only & PresurveyEMA model generated the best performance (accuracy: 80.6%; F1-
score: 0.76) while requiring the least amount of sensor (e.g., heart rate, steps) and EMA 
data (e.g., pre-survey EMA). Pre-survey EMA was the last EMA response on the day 
prior to survey completion to assess patient-reported depressive symptoms.  
 
Global MS Neurological Symptom Burden 
For predicting high global MS neurological symptom burden (vs. low burden) every 4 
weeks, the baseline model had an accuracy of 51.1%. The model containing all 6 sensors 
and no EMA had an accuracy of 70.7% with action-only features (38.4% relative 
improvement over the baseline), and an accuracy of 72.0% with action + context features 
(40.9% relative improvement over the baseline) (Supplementary Table S2). The model 
containing the best combination of sensors and no EMA had an accuracy of 77.3% with 
action-only features (51.3% relative improvement over the baseline; Best combination: 
heart rate, location, sleep, and steps), and an accuracy of 73.8% with action + context 
features (44.4% relative improvement over the baseline; Best combination: heart rate, 
location, and sleep) (Figure 3). The model containing the best combination of sensors and 
average EMA had an accuracy of 77.9% with action-only features (52.4% relative 
improvement over the baseline; Best combination: heart rate, location, sleep, steps, and 
average EMA), and an accuracy of 79.7% with action + context features (56.0% relative 
improvement over the baseline; Best combination: calls, heart rate, screen, sleep, and 
average EMA). The model containing the best combination of sensors and pre-survey 
EMA had an accuracy of 78.0% with action-only features (52.6% relative improvement 
over the baseline; Best combination: location, sleep, steps, and pre-survey EMA) and an 
accuracy of 75.1% with action + context features (47.0% relative improvement over the 
baseline; Best combination: heart rate, location, screen, sleep, and pre-survey EMA). 
 
When comparing the model performance in a pairwise manner (Figure 3), none was 
significantly better than the most parsimonious Action-Only & NoEMA model. Thus, for 
predicting high global MS symptom burden every 4 weeks, the Action-Only & NoEMA 
model generated the best performance (accuracy: 77.3%; F1-score: 0.77) while requiring 
the least amount of sensor data (i.e., heart rate, location, sleep, and steps; trained on 
action-only features) and importantly no EMA data (i.e., no active participant input).  
 
Fatigue 
For predicting severe fatigue (vs. mild fatigue) every 4 weeks, the baseline model had an 
accuracy of 50.9%. The model containing all 6 sensors and no EMA had an accuracy of 
60.4% with action-only features (18.7% relative improvement over the baseline), and an 
accuracy of 69.7% with action + context features (36.9% relative improvement over the 
baseline) (Supplementary Table S2). The model containing the best combination of 
sensors and no EMA had an accuracy of 67.6% with action-only features (32.8% relative 
improvement over the baseline; Best combination: calls, heart rate, screen, and steps), 
and 73.8% with action + context features (45.0% relative improvement over the baseline; 
Best combination: heart rate, screen, and steps) (Figure 3). The model containing the best 
combination of sensors and average EMA had an accuracy of 72.2% with action-only 
features (41.9% relative improvement over the baseline; Best combination: heart rate, 
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screen, steps, and average EMA), and an accuracy of 76.1% with action + context 
features (49.5% relative improvement over the baseline; Best combination: heart rate, 
screen, sleep, steps, and average EMA). The model containing the best combination of 
sensors and pre-survey EMA had an accuracy of 68.3% with action-only features (34.2% 
relative improvement over the baseline; Best combination: heart rate, screen, steps, and 
pre-survey EMA), and an accuracy of 77.1% with action + context features (51.5% 
relative improvement over the baseline; Best combination: calls, heart rate, screen, steps, 
and pre-survey EMA). 
 
When comparing the model performance in a pairwise manner (Figure 3), none was 
significantly better than Action+Context & NoEMA. Thus, for predicting severe fatigue 
every 4 weeks, the Action+Context & NoEMA model generated the best performance 
(accuracy: 73.8%; F1-score: 0.74) while requiring the least amount of sensor data (i.e., 
heart rate, screen, and steps; trained on action and context features) and importantly no 
EMA data (i.e., no active participant input).  
 
Sleep Quality 
For predicting poor sleep quality (vs. better sleep quality) every 4 weeks, the baseline 
model had an accuracy of 56.2%. The model containing all 6 sensors and no EMA had an 
accuracy of 58.2% with action-only features (3.6% relative improvement over the 
baseline), and an accuracy of 68.7% with action + context features (22.2% relative 
improvement over the baseline) (Supplementary Table S2). The model containing the 
best combination of sensors and no EMA had an accuracy of 72.0% with action-only 
features (28.1% relative improvement over the baseline; Best combination: heart rate, 
location, sleep, and steps), and an accuracy 69.5% with action + context features (23.7% 
relative improvement over the baseline; Best combination: calls, heart rate, sleep, and 
steps) (Figure 3). The model containing the best combination of sensors and average 
EMA had an accuracy of 74.4% with action-only features (32.4% relative improvement 
over the baseline; Best combination: heart rate, location, screen, sleep, and average 
EMA), and an accuracy of 72.7% with action + context features (29.4% relative 
improvement over the baseline. Best combination: heart rate, location, sleep, steps, and 
average EMA). The model containing the best combination of sensors and pre-survey 
EMA had an accuracy of 72.0% with action-only features (28.1% relative improvement 
over the baseline. Best combination: heart rate, location, sleep, and steps while Pre-
survey EMA was not selected), and an accuracy of 74.0% with action + context features 
(31.7% relative improvement over the baseline; Best combination: calls, heart rate, sleep, 
and pre-survey EMA). 
 
When comparing the model performance in a pairwise manner (Figure 3), none was 
significantly better than the most parsimonious Action-Only & NoEMA model. Thus, for 
predicting poor sleep quality every 4 weeks, the Action-Only & NoEMA model 
generated the best performance (accuracy: 72.0%; F1-score: 0.70) while requiring the 
least amount of sensor data (i.e., heart rate, location, sleep, and steps; trained on action-
only features) and importantly no EMA data (i.e., no active participant input).  
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DISCUSSION 
	
For the primary goal of this study that analyzed ~12,500 days of passively and 
continuously collected data from pwMS, we report the feasibility of a pragmatic and low-
cost digital phenotyping approach that enables longitudinal tracking of common MS-
related patient-reported symptoms in the patient’s own environment with minimal active 
patient engagement.  Our approach harnesses passively collected sensor and behavior 
data from smartphones and fitness trackers and deploys machine learning models that 
achieve the highest prediction performance based on the most parsimonious data 
collection requirement. The key study finding is that, over 12 weeks (and 24 weeks in a 
subset), the best performing models achieved potentially clinically actionable accuracy 
(as well as F1-score, which summarizes positive predictive value and sensitivity) for 
predicting the short-term presence of depressive symptoms (every 2 weeks), high global 
MS neurological symptom burden, severe fatigue, and poor sleep quality (every 4 weeks) 
in pwMS, all significantly outperforming the baseline models. The best models for all 
four patient-reported symptoms included heart rate and steps as informative sensors.   
 
For a secondary study goal, we report the marginal utility of behavioral features from the 
previous period (context features) in addition to behavioral features from the current 
period (action features) in helping the models contextualize an individual’s current 
behavior and in improving digital phenotyping of most common MS symptoms. For each 
patient-reported symptom, we performed pairwise comparisons of the six best models 
combining sensor or sensor plus EMA (comprising action-only versus action and context 
features, Figure 3) and operationally defined the “best” model as having the highest 
accuracy and F1-score while also requiring the least amount of sensor and/or EMA data.  
For predicting depressive symptoms, global MS neurological symptom burden, and sleep 
quality, the models containing action-only features were the “best” because the addition 
of context features did not improve the prediction of these patient-reported symptoms. In 
contrast, models containing action and context features improved the prediction of 
fatigue. Thus, behavioral features from longer periods that include context features (i.e., 
the previous and current period) may have utility in the longitudinal symptom tracking of 
a smaller subset of common MS symptoms such as fatigue.  
 
For another secondary study goal, we report the limited utility of incorporating minimal 
active patient input via EMA (i.e., multiple choice response to two brief survey 
questions) into machine learning models in improving digital phenotyping of most 
common MS symptoms. For three of the four patient-reported symptoms (i.e., global MS 
neurological symptom burden, fatigue, and sleep quality), the best models containing a 
combination of sensors plus average or pre-survey EMA did not significantly outperform 
the best models containing a combination of sensors without EMA. Thus, passively 
collected sensor data without any active patient engagement were sufficient to predict the 
severity of these patient-reported symptoms. For fatigue, this finding was particularly 
surprising given that one of the two administered EMA questions asked participants to 
rate the level of tired feeling.  One possible explanation was that the EMA question might 
be too simplistic or insensitive to capture the complexity and dynamics of fatigue impact 
on the physical, cognitive and psychological function in pwMS [46, 47], though it was 
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still unclear why a potentially relevant EMA did not improve the prediction for patient-
reported fatigue severity at all.  For depressive symptoms, the best models containing a 
combination of sensors plus average or pre-survey EMA significantly outperformed the 
best models containing a combination of sensors without EMA. While sensor data alone 
predicted depressive symptoms with reasonable accuracy (74.7%), the addition of pre-
survey EMA yielded an 8.8% absolute increase in accuracy. This result was unsurprising 
given that the other EMA question asked participants to rate the level of depressed 
feeling.  Notably, the best models containing pre-survey EMA were comparable to those 
containing average EMA, while pre-survey EMA (i.e., the last EMA on the day before 
the patient-reported symptom survey) required substantially less active engagement by 
participants than average EMA (i.e., three times daily). Overall, minimally active 
participant engagement may have some utility in the longitudinal symptom tracking of 
certain MS symptoms such as depressive symptoms. 
 
Broadly, several aspects of our study differentiated from prior works, all with the goal of 
bringing digital phenotyping closer to clinical practice for pwMS.  First, to demonstrate a 
basic feature of real-world applicability, our pragmatic study design leveraged each 
participant’s own digital device (e.g., smartphone) to mitigate missing sensor data 
capture. In contrast, the earliest studies required a study-specific smartphone separate 
from participant’s own and increased participant burden [48]. Second, our approach 
passively harnessed data from a combination of multiple sensors in both smartphones and 
fitness tracker. Prior studies predicting MS outcomes based on passively sensed behavior 
largely relied on either a smartphone or fitness tracker (but not both) or a single sensor 
type [6, 7, 11, 13].  Third, our machine learning pipeline prioritized the most 
parsimonious predictive models containing the least amount of sensor and/or EMA data 
(i.e., minimal or no active participant engagement) while still achieving clinically 
actionable accuracy and other prediction metrics. By comparison, most prior digital 
phenotyping efforts in MS prioritized performance without considering the amount of 
sensor data required for prediction and indeed often required active participant 
engagement, which would lead to lower adherence than passive sensing [9,48-55]. For 
instance, the study by Gashi et al. required participants to perform motor performance 
tests to classify fatigue levels in addition to passively sensed behavioral data [9]. Finally, 
our study outcomes as measured by validated survey instruments included a spectrum of 
common clinically relevant patient-reported symptoms that collectively reduce the 
quality of life in pwMS. On the other hand, standard clinical trial endpoints such as 
clinician-rated disability or functional testing scores [6, 8-9, 13-14, 56-64] as well as a 
single clinical outcome (at a time) [53, 65-68] in prior studies insufficiently captured the 
full real-world patient experience. 
  
The current study also built on one of our own prior studies, which used passively sensed 
behavior changes during a state-mandated stay-at-home period (as compared to the pre-
pandemic baseline) to predict depressive symptom, high global MS symptom burden, 
severe fatigue, and poor sleep quality in pwMS in a unique natural experiment in the 
setting of a global pandemic [19]. Specifically, we predicted the average value of patient-
reported outcomes for each patient only once during a period (i.e., the local COVID-19 
stay-at-home period), whereas the current study made repeated clinical predictions (over 
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consecutive 2 or 4-week periods) during 12 or 24-week study duration to emulate long-
term symptom tracking in the real world. As methodological novelties, the current study 
further investigated the added utility of context behavioral features (from the previous 
periods) and two types of EMAs in improving digital phenotyping in MS.  
 
Our digital phenotyping approach with minimal or no active patient input that reaches 
potentially clinically actionable prediction performance warrants additional investigations 
of its future clinical role in continuous tracking of patient-reported symptoms and in 
assisting comprehensive MS care in the real-world setting.  Timely management of these 
common patient-reported symptoms could reduce delays in symptom management and 
greatly improve the quality of life for pwMS. Of clinical relevance, patient-reported 
symptoms assessed in this study are based on well-validated survey instruments that 
correlate with and complement clinician-rated outcomes. Practically, one can envision 
deploying continuous digital phenotyping to enable not only patient self-monitoring 
between routine clinic appointments but also crucial clinical triage for timely 
interventions (e.g., medication initiation, counseling). Such approach may even be 
potentially useful in settings of limited healthcare access and resources though such 
clinical application would require dedicated testing. 
 
Our study has at least two limitations. First, the study participant size, while larger than 
most previous digital phenotyping studies in MS, was still relatively modest. We made 
predictions for over 700 samples for depressive symptoms (in 2-week periods) and over 
300 samples for global MS neurological symptom burden, fatigue and sleep quality (in 4-
week periods) across 104 participants with MS. Notably, our well-characterized cohort 
also contrasts with larger studies where the diagnosis and/or patient-reported outcomes 
could not be independently verified [10, 54].  Crucially, we mitigated model over-fitting 
using leave-5-participants-out-cross-validation such that the participants used for training 
and testing were different in each fold. The consistently robust model performance across 
all five folds and for all four common MS patient-reported symptoms were reassuring. 
Second, we recruited study participants from a single clinic-based cohort, representative 
of its local MS patient population. Future validation in external cohorts with more racial 
and ethnically diverse patient populations would improve the generalizability of the 
approach.   
 
In summary, our digital phenotyping approach using passively sensed data from their 
own smartphones and wearable fitness trackers could aid patients with real-world, 
continuous, self-monitoring of common symptoms in their native environment. It may 
also assist clinicians with better triage of patient needs for timely intervention in MS and 
potentially other chronic neurological disorders. 
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