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Abstract

Recent evidence indicates that Type 2 Diabetes Mellitus (T2DM) is a complex and highly heteroge-
neous disease involving various pathophysiological and genetic pathways, which presents clinicians
with challenges in disease management. While deep learning models have made significant progress
in helping practitioners manage T2DM treatments, several important limitations persist. In this
paper we propose DARE, a model based on the transformer encoder, designed for analyzing lon-
gitudinal heterogeneous diabetes data. The model can be easily fine-tuned for various clinical
prediction tasks, enabling a computational approach to assist clinicians in the management of
the disease. We trained DARE using data from over 200,000 diabetic subjects from the primary
healthcare SIDIAP database, which includes diagnosis and drug codes, along with various clin-
ical and analytical measurements. After an unsupervised pre-training phase, we fine-tuned the
model for predicting three specific clinical outcomes: i) occurrence of comorbidity, ii) achievement
of target glycaemic control (defined as glycated hemoglobin < 7%) and iii) changes in glucose-
lowering treatment. In cross-validation, the embedding vectors generated by DARE outperformed
those from baseline models (comorbidities prediction task AUC = 0.88, treatment prediction task
AUC = 0.91, HbA1c target prediction task AUC = 0.82). Our findings suggest that attention-
based encoders improve results with respect to different deep learning and classical baseline models
when used to predict different clinical relevant outcomes from T2DM longitudinal data.

Keywords: Deep Learning, Transformer, Type 2 Diabetes, Diabetes complications, Electronic
Health Records

1. Introduction

It is estimated that 529 million people worldwide have Type 2 Diabetes Mellitus (T2DM), and
current evidence suggests that this prevalence will exceed 1.3 billion by 2050[1]. Despite being a
highly heterogeneous disease with variable progression patterns and risks of comorbidities, T2DM
is primarily diagnosed and treated based on a single metabolite, namely glucose[2]. The usage
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of Machine Learning (ML) could reshape the paradigm of clinical care, enhance efficiency, and
lead to a greater emphasis on patient-centered approaches[3]. In particular, Deep Learning (DL)
techniques have been shown to get better results compared to traditional approaches for different
tasks and using different types of clinical data: from disease detection to sequential prediction
of clinical events; from data augmentation to concept embedding[4]. In the field of diabetes, DL
algorithms exhibit a diverse range of applications encompassing the diagnosis and prediction of
diabetes onset, glucose management, and the forecasting of diabetes-related comorbidities[5, 6],
such as diabetic retinopathy[7] or cardiovascular complications[8].

In this study we proposed DARE (Diabetic Attention with Relative position Representation
Encoder), an attention-based encoder for the analysis of T2DM evolution. DARE is a deep learning
framework that can be used to manage various sub-goals related to the management of the T2DM.
The contributions of this model are manifold: (1) we analyse sequences of multi-modal clinical
events, including diagnosis and drugs codes, but also different clinical and analytical continuous
variables without the need to categorize them; (2) we introduce in the input sequence a state
vector describing information about the subject that helps the model to better learn the sequence of
events; (3) we incorporate a Relative Position Representation (RPR) attention layer [9], in order to
better learn the irregularity of the data. We validated the model on three different diabetes-related
clinical tasks, namely: occurrence of diabetes-related comorbidities; changes in glucose-lowering
treatments; and glycated hemoglobin (HbA1c) target prediction. DARE’s performance surpassed
other deep learning and classical baseline models for all three outcomes.

2. Related Work

A major challenge in training deep learning (DL) models for specific tasks is the limited avail-
ability of labeled data for training and validation. For this reason, the concept of transfer learn-
ing, i.e. training a model on a generic domain to transfer this knowledge on a different, more
specific, one,[10] is gaining increased traction in DL research. Among architectures for transfer
learning, the models based on the Transformer architecture[11] are particularly effective, using
self-attention mechanisms to capture long-range dependencies and contextual relationships in se-
quential data. Specifically, the Bidirectional Encoder Representations from Transformers (BERT)
model, a Transformer encoder architecture, has achieved state-of-the-art results across a range of
Natural Language Processing (NLP) tasks by effectively modeling complex, lengthy sequences[12].

This capability has led to significant interest in adapting the Transformer encoder to other
domains outside NLP, including the clinical domain. For instance, few studies have applied
Transformer-based methods to electronic health record (EHR) data to predict disease occurrences.
Med-BERT, for example, was proposed to predict pancreatic cancer and heart failure in diabetes
patients, leveraging data from 600 U.S. hospitals to achieve AUC improvements of 1.62–6.14% over
baseline models[13]. Similarly, BEHRT was pre-trained on a large EHR dataset, demonstrating
superior predictive power for conditions like epilepsy, prostate malignancy, and depression, while
its extension, Hi-BEHRT, achieved even better performance for predicting heart failure, diabetes,
chronic kidney disease, and stroke[14, 15].

Despite the progress, to the best of our knowledge, there are no appications of Transformer-
based models specifically predicting complications in individuals with type 2 diabetes mellitus
(T2DM), while the application of other DL methods are limited: Dworzynski et al., for example,
used logistic ridge regression, random forest, and decision tree-gradient boosting on Danish Na-
tional Patient Register data outperforming logistic regression models with AUCs from 0.69 to 0.80
in the prediction of heart failure, myocardial infarction, stroke, other cardiovascular diseases, and
chronic kidney disease[16]. Similarly, Ravaut et al. employed decision tree-gradient boosting to
predict various adverse outcomes in T2DM patients, with an average test AUC of 0.77[17].

Also in the context of glucose-lowering treatment prediction, no studies have yet utilized Trans-
former encoders. However, Shang et al.’s G-BERT model, applied to a related task of medica-
tion recommendation, achieved promising results (AUC 0.66–0.69), highlighting the potential of
Transformer-based models for treatment prediction in T2DM[18]. Our study aims to build on this
potential, specifically exploring the use of Transformer encoders for predicting glucose-lowering
medication outcomes in T2DM.

For glycemic control prediction, Nagaraj et al.’s 2019 study developed a supervised machine
learning model to predict HbA1c response after insulin treatment in 1,188 T2DM patients, achiev-
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ing AUC values of 0.80 or greater. However, the study faced limitations related to patient charac-
teristics and control over confounding variables[19].

3. Material and Methods

3.1. Study design

Data from this study were extracted from the Information System for the Development of
Research in Primary Care (SIDIAP) database[20]. The SIDIAP database contains data from elec-
tronic health records (EHRs) collected from approximately 5.6 million patients registered from 287
Primary Care Centres (PCC) in Catalonia (Spain). It comprises data on patient demographics,
health problems, visits to healthcare professionals, clinical variables, prescriptions and dispensa-
tions of medication, and laboratory test results from routine health surveillance and health care.
This data covered five full calendar years, from 2013 to 2017.

This analysis included only subjects with a confirmed diagnosis of T2DM, defined by having at
least one International Classification of Diseases, Tenth Revision (ICD-10) code from groups E11
or E14 [21]. Additionally, we excluded subjects under 18 years old and those with any codes for
type 1, secondary, or gestational diabetes. Further details on data extraction and subject selection
criteria were published previously [22].

Upon inclusion in the study during the first year (2013), the following clinical and laboratory
variables related to diabetes were available: glycated hemoglobin (HbA1c), body mass index (BMI),
diastolic and systolic blood pressure (DBP and SBP), high-density lipoprotein (HDL), low-density
lipoprotein (LDL), total cholesterol, triglycerides (TG), creatinine, albumin to creatinine ratio
(ACR), Glomerular filtration rate (eGFR) estimated with CKD-EPI and MDRD methods, the
Framingham-REGICOR estimation score for the coronary risk [23], and the ankle-brachial Index
(ABI). Additionally, we collected data on Glucose-lowering medications: prescriptions belonging
to the A10 group of the Anatomical Therapeutic Chemical Classification System (ATC) [24], and
Diagnoses of the most common diabetes comorbidities: hypertension (HTN), cardiovascular disease
(CVD), neuropathy, retinopathy, and chronic kidney disease (CKD). Specific ICD-10 codes used
for these diagnoses are provided in Supplementary Material, Table S1.

3.2. Data Representation and Model Development

Figure 1: DARE basic architecture with prediction examples for the three outcomes. An embedding
(emb) layer generates the Egen, ED, ET , and Ei vectors as the sum of the value embedding, type embedding and
time embedding. These vectors feed the transformer encoder layer built with several attention layers with RPR.
The vectors generated by the encoder are used for pre-training task, namely masked-language modeling (MLM)
and Initial Status Prediction (ISP) tasks, and fine-tuning tasks. In this example DARE correctly predicts that
the subject is prescribed with an insulin-based treatment during the second year of follow-up. At the same time,
it correctly predicted no changes in the diagnosed comorbidities besides the diagnosis of neuropathy during the
observation period. For the predicted HbA1c targets, the model correctly predicts the target of the first follow-up
year, while the probability reduces for the following 3 years.
(Abbreviations: y.o.=years old, HTN=Hypertension, metf.=Metformin, SBP/DBP=Systolic/diastolic blood pressure,
BMI=Body mass index, NIAD=non-insulin diabetic drugs, Neurop.=Neuropathy, CVD=Cardiovascular diseases, Oph.
Comp.=Ophthalmological complications, CKD=Chronic kidney disease)
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DARE is an encoder model based on the Transformer encoder architecture, designed to analyze
sequences of clinical records beginning from an initial time point. For each subject, denoted as
pj , the model takes as input their initial status Pj(t0) (divided into three vectors Pj,gen, Pj,D(ti),
Pj,T (ti) representing general static information of the patient, diagnosis, and treatments) and a

sequence of routinely collected healthcare data (RCHCD) {eji}
Nj

E
i=1, which includes electronic health

record (EHR) data gathered as part of routine clinical operations. Each event in this sequence is
represented as a triplet, specifying the type (e.g., diagnosis, measured variable, new prescription),
the measured value (if applicable), and the time of the event.

DARE architecture is shown in Figure 1. The model operates with two subsequent layers: the
first layer is an embedding layer that transforms the original input data (event type, value, and
time) into fixed-size vectors. This embedding approach is similar to the one used in the HE-LSTM
model[25]. Here, each vector is the sum of the embeddings for the event type, value, and time;
the second layer is a modified transformer encoder that relates these vectors to each other through
attention mechanisms. To account for the varying time intervals between events in the sequence,
we incorporate a relative position representation into the self-attention mechanism, following the
approach of Shaw et al.[9]. This allows the model to consider the distance between events. Further
details on model implementation can be found in Supplementary Material.

This approach to input data provides two primary advantages: first, it enables the model to
effectively process both dynamic data, such as sequences of measured variables, and static data,
without requiring data imputation to fit them into a tabular format. Second, the use of an initial
status vector Pj(t0) restricts sequence length, which would otherwise grow excessively as time
progresses. For clarity, we will omit the patient index j in further notation.

3.3. Model Pre-Training

In NLP, pre-trained large language models provide a key advantage: their adaptability to
a range of tasks. This reduces both the time and data requirements for fine-tuning models on
specific tasks, often leading to improving in performance. Common unsupervised pre-training
tasks include Masked Language Modeling (MLM) and Next Sentence Prediction[26]. While MLM
has been successfully adapted for use with other models on EHR data, NSP is less applicable
to these data modalities. Therefore, to pre-train DARE, we used the traditional MLM task and
introduced a novel pre-training task, Initial Status Prediction (ISP), aimed at predicting a patient’s
initial diagnosis and medication usage.

For the MLM task, we proceeded as follows: we selected different measures with a probability
p = 0.15, then we masked their values with a mask token in 70% of the cases, added white noise
perturbation (ϵ ∼ N(0, 0.1)) in 15% of the cases, and left them as they were in the remaining
cases. For each sequence of EHRs, the model has been trained to predict the values of the selected
events.

For the ISP task, we masked the PD(t0) vectors with a probability p = 0.2, the PM (t0) vectors
with a probability p = 0.2, and both vectors with a probability of p = 0.1. Ultimately, the model
has been trained to predict the masked vectors.

We employed the Asynchronous Successive Halving Algorithm (ASHA)[27] to tune the hyper-
parameters of the model, aiming to minimize the combined loss of the two pre-training tasks.

3.4. Outcomes Definition and Model Fine-tuning

The goal of the self-supervised pre-training was to produce contextualized embedding vectors
for each data element in the sequence, allowing the model to capture the structural and temporal
dependencies inherent in EHR data without directly predicting a specific outcome. This pre-
trained model can then be adapted to a variety of predictive tasks by adding a task-specific head
and fine-tuning with limited labeled data, as the model has already learned general EHR patterns
and relationships. Practically, to evaluate the utility of DARE and its adaptability to various
clinically relevant tasks, we have chosen three prediction outcomes to be evaluated during the
follow-up period (from the inclusion date to end of study in 2017), namely:

• Occurrence of diabetes-related comorbidities; we aimed at predicting new comorbidities
within the subsequent 4 years.

• Changes in glucose-lowering treatment; our goal was to predict changes in the treatment.
Specifically, we were interested in determining whether the subjects started using non-insulin
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diabetic drugs (NIAD, defined as presence of ATC/DDD codes: A10B and subgroups) or
insulin (defined as presence of ATC/DDD codes: A10A and subgroups) in the following 4
years.

• Glycated hemoglobin (HbA1c) target prediction; we intended to predict whether subjects
achieved target HbA1c levels in each of the following 4 years. A subject was considered to
be within target during a year if their mean HbA1c level during that year was lower than
7%.[28]

For the three outcomes, we used a GRU based model to predict the longitudinal outputs from the
embeddings generated by DARE.

3.5. Statistical analysis and Model Validation

Patients’ characteristics were reported using mean and SD for the clinical and analytical vari-
ables, and percentages for categorical variables. Fine-tuned models were trained using binary
cross entropy loss and evaluated using the Area Under the receiver operating characteristic Curve
(AUC)evaluated at each year of follow-up. Model comparisons were performed with 10-fold cross-
validation. We employed the Welch Two Sample t-test with Bonferroni correction (α = 0.05)
to statistically pairwise compare the performance of DARE against the three baseline models: a
bidirectional GRU recurrent neural network, a random forest (RF) model and a logistic regres-
sion (LR). Moreover, to further validate the results, we fitted a linear model trying to study the
differences between the GRU and DARE performances. For each one of the outcomes the model
was:

AUC = β0 + β1x1 + β2x2 + β3(x1x2) (1)

where x1 is the size of the training set and x2 indicates if the results were obtained with the GRU
model.

All models were trained with PyTorch V1.12.1 [29] on two NVIDIA GeForce RTX 2080s. Sta-
tistical analysis used R (V3.6.3).

4. Results

Data of 232,885 people with T2DM from Catalunya (Spain) were extracted from the SIDIAP
database. After applying the selection criteria described in Material and Methods section, we
obtained 201,922 patients, 176,922 used for the pre-training phase and 25,000 for fine-tuning.
Data preparation for the study is summarized in the graph in Supplementary Material, Figure
S1, while baseline characteristics of study participants are reported in Supplementary Material,
Table S2. Evolution of the outcomes during the follow-up period are shown in Table 1 while
examples of the predicted outcomes together with the input sequence can be found in Figure 1 and
in Supplementary Material, Figure S2.

Table 1: Outcomes events during the four years of follow-up period. Total number of events and percentages
are reported.

2014 2015 2016 2017

New Comorbidities
Hypertension 19338(77.35) 20189(80.76) 20793(83.17) 20920(83.68)
Cardiovascular disease 4022(16.09) 4558(18.23) 5093(20.37) 5170(20.68)
Retinopathy 3741(14.96) 4189(16.76) 4561(18.24) 4830(19.32)
Chronic kidney disease 1096(4.38) 1289(5.16) 1467(5.87) 1526(6.10)

New Antidiabetic treatments
Insulin 9533(38.13) 10641(42.56) 11510(46.04) 11746(46.98)
Non-insulin 22059(88.24) 22012(88.05) 21915(87.66) 21570(86.28)

Glycated hemoglobin (HbA1c)
HbA1c,(%) mean (SD) 7.55(1.32) 7.57(1.31) 7.56(1.31) 7.51(1.27)
HbA1c < 7% 10435(41.74) 10168(40.67) 10177(40.71) 10404(41.62)
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4.1. Pre-training results

The hyper-parameter search yielded an optimal model configuration with three layers, eighteen
attention heads, and a hidden size of 360. Details of the hyperparameters space explored may be
found in the Supplementary Material, Table S3.

Evaluating embedding quality remains a challenging due to the lack of a universally accepted
metric [30]. In Figure 2(a)-(b), we projected the vector representation of some clinical events from
the training dataset onto a 2D space. Figure 2(a) shows a distinct stratification of the vectors

Figure 2: Visual inspection of the output space of DARE: each point represents embeddings of vectors
PD(t0), and PT (t0) for 5000 random patients, with colors indicating their diagnoses and drug groups.

into two separate areas which effectively distinguish patients with retinopathy from those without.
Additionally, we observe clusters among patients with other comorbidities; for instance, patients
with neuropathy tend to group together in the lower part of the plot while CVD are grouped in
the upper part.

Figure 2(b) also reveals distinct clusters for medication embeddings. Patients without anti-
diabetic medication prescriptions tend to cluster in the lower left area, near embeddings for Met-
formin (the first-line treatment for T2DM [31]) and the combination of Metformin and Sulfony-
lureas (a common first-line add-on therapy [32]). Conversely, the top-right corner groups patients
on insulin, typically used as a second- or third-line treatment for T2DM.

Additionally, in Supplementary Material, Figure S3, distinct trajectories of HbA1c evolution
are depicted. HbA1c measurements from subjects who successfully maintained their HbA1c at a
target of 7%, represented by square dots, are clustered in the upper and left portion of the plot.
Conversely, measurements from patients who did not achieve HbA1c target levels exhibit greater
dispersion. They move from the central region of the plot for measurements near the 7% target to
the lower-right corner for higher HbA1c levels.

Another interesting property that differentiates attention-based models from other DL archi-
tectures is the possibility to investigate the learning patterns through a visual investigation of the
self-attention weights. The attention patterns for three different heads in the first transformer
layer are shown for three different subjects in Figure 3. In the sequence of data of the first patient,
where attention connections for high creatinine value are highlighted, the different attention heads
exhibit complementary behaviors: the green head focuses on variables measured close to the event
(within a month), the blue head attends most strongly to variables measured before the event, and
the orange head prioritizes connections with the initial status vectors. Interestingly, the blue head
displays its strongest connections with other creatinine measurements and with measurements of
the eGFR.

In the second sequence, which illustrates attention connections related to a cardiovascular
disease diagnosis, the heads appear to be more influenced by the values of the events rather than
the timing of their occurrence. For example, the green head is predominantly activated by high
values of blood pressure and cholesterol, both of which are typically associated with cardiovascular
complications. In contrast, the blue head shows its strongest connections when these variables
have medium or low values. Lastly, the orange head exhibits strong connections with the status
vectors and the anti diabetic treatments.

In the final example, which illustrates attention connections for a new insulin prescription, the
blue head demonstrates the strongest connections with the initial status vectors. Interestingly,
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the orange and green heads show a distinct pattern. The orange head prioritizes most measured
variables, except for two. These two exceptions strongly activate the third head. Notably, the first
exception is high HbA1c, a marker of poor diabetes control [33]. The second is high triglycerides,
recently suggested as a target for diabetes management [33] and linked to insulin resistance [34].

Figure 3: (Attention connections for different inputs and attention heads: colors indicate different heads
while color intensity are proportional to attention weights.For high creatinine levels, while the green head focuses
on recent measurements, the blue one dispalys the strongest connections with other creatinine and eGFR measures.
In the cardiovascular example, heads emphasize event values, with the green head attending to high blood pressure
and cholesterol values. For insulin prescriptions, attention highlights key markers like HbA1c and triglycerides, both
critical for diabetes management. (Time from t0 (in days) are indicated. For variables we included a label indicating
if the measures was low(vvar < µ− 0.5σ), medium(med)(µ− 0.5σ ≤ vvar ≤ µ+ 0.5σ) or high(vvar > µ+ 0.5σ))

4.2. Fine-tuning results

Fine-tuning results for the DARE model and the baseline models are reported in Table 2 and 3
for results stratified by sex and patients’ age for the two top performing models (DARE and GRU
models). The estimated coefficients of the explanatory models are reported in table 4.

DARE’s embeddings consistently improved the performance of the prediction layers across all
three tasks. Notably, for predicting diabetes-related comorbidities and glucose-lowering treatments,
DARE achieved statistically significant improvement over the GRU model (second-best) in the 10-
fold cross-validation. This positive effect held true for most diagnosis and prediction years.

For predicting glucose-lowering treatments (shown in Supplementary Material, Figure S4(a)),
DARE’s performance was statistically better than other models regardless of training set size.
Interestingly, the performance gap between DARE and the GRU model (second-best) widened as
the training data size decreased. This suggests that the GRU model is more sensitive to limited
training data, as confirmed by the estimated regression coefficients β2 and β3. These coefficients
indicate that the GRU model has a lower overall AUC and is more susceptible to reductions in
AUC when the training data size shrinks.

DARE’s performance on predicting diabetes-related comorbidities showed a different trend
(Supplementary Material, Figure S4(b)). Its performance degraded faster for smaller training sets,
particularly when fewer than 10,000 patients were used for training. In contrast, the performance
for predicting HbA1c target levels (shown in Supplementary Material, Figure S4(c)) remained
relatively stable even with smaller training sets. The estimated regression coefficient β1 was not
statistically significant, indicating minimal influence of training set size on predictions for this task.
Conversely, the GRU model’s performance suffered significantly when fewer patients were available
for training, as confirmed by the estimated β3 coefficient.

5. Discussion and Conclusions

In this study, we introduced an encoder model based on the Transformer encoder architec-
ture(DARE) that leverages the transfer learning paradigm to enhance performances on various
clinically relevant outcomes in individuals with T2DM.
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Table 2: DARE performances in validation tasks with 10-folds cross validation. Mean ROC-AUC(std).
For each task, the ROC-AUC for each follow-up year is shown, along with the mean ROC-AUC for each predicted
comorbidity/drugs class and the overall mean for the entire task.(∗∗∗ for p < 0.001, ∗ for 0.01 < p < 0.05, . for
0.5 ≤ p < 0.1, Welch Two Sample t-test).

(a) Comorbidities prediction task

DARE GRU RF LR

Total 0.88(0.00)∗∗∗ 0.86(0.01) 0.63(0.01) 0.86(0.01)

HTN 0.96(0.00)∗∗∗ 0.94(0.01) 0.76(0.01) 0.94(0.00)
2014 0.97(0.00)∗∗∗ 0.95(0.01) 0.93(0.00) 0.96(0.00)
2015 0.95(0.00)∗∗∗ 0.94(0.01) 0.80(0.00) 0.94(0.00)
2016 0.94(0.00)∗∗∗ 0.92(0.01) 0.66(0.00) 0.92(0.00)
2017 0.94(0.01)∗∗∗ 0.92(0.01) 0.62(0.00) 0.92(0.00)

CVD 0.87(0.01). 0.86(0.02) 0.57(0.01) 0.85(0.01)
2014 0.92(0.01)∗ 0.90(0.01) 0.57(0.00) 0.91(0.01)
2015 0.88(0.01)∗ 0.86(0.02) 0.57(0.00) 0.87(0.01)
2016 0.84(0.02) 0.83(0.02) 0.57(0.00) 0.82(0.01)
2017 0.83(0.02) 0.82(0.02) 0.57(0.00) 0.80(0.01)

Neuropathy 0.79(0.01)∗ 0.78(0.01) 0.54(0.01) 0.77(0.01)
2014 0.84(0.01) 0.81(0.01) 0.53(0.00) 0.86(0.01)∗
2015 0.78(0.01) 0.77(0.01) 0.55(0.00) 0.79(0.02)
2016 0.74(0.01) 0.74(0.01) 0.56(0.00) 0.74(0.01)
2017 0.73(0.01) 0.73(0.01) 0.55(0.00) 0.72(0.01)

Retinopathy 0.91(0.00)∗∗∗ 0.89(0.01) 0.71(0.02) 0.86(0.01)
2014 0.95(0.01)∗∗∗ 0.92(0.01) 0.70(0.00) 0.92(0.01)
2015 0.92(0.01)∗∗∗ 0.89(0.01) 0.71(0.00) 0.88(0.00)
2016 0.89(0.01)∗∗∗ 0.87(0.01) 0.70(0.00) 0.84(0.01)
2017 0.88(0.01)∗∗∗ 0.86(0.01) 0.71(0.00) 0.82(0.01)

CKD 0.88(0.01)∗ 0.87(0.01) 0.51(0.00) 0.85(0.01)
2014 0.93(0.01)∗∗∗ 0.91(0.01) 0.50(0.00) 0.90(0.01)
2015 0.89(0.01)∗ 0.87(0.01) 0.50(0.00) 0.86(0.01)
2016 0.86(0.01) 0.85(0.01) 0.51(0.00) 0.83(0.01)
2017 0.85(0.02) 0.84(0.01) 0.51(0.00) 0.82(0.01)

(b) Antidiabetic treatments prediction task

DARE GRU RF LR

Total 0.91(0.00)∗∗∗ 0.90(0.00) 0.76(0.00) 0.79(0.00)

Insuline 0.95(0.00)∗ 0.94(0.00) 0.87(0.00) 0.87(0.01)
2014 0.97(0.00)∗ 0.96(0.00) 0.91(0.00) 0.91(0.00)
2015 0.95(0.00)∗ 0.94(0.00) 0.87(0.00) 0.87(0.00)
2016 0.94(0.00). 0.93(0.01) 0.86(0.01) 0.85(0.01)
2017 0.92(0.00)∗ 0.92(0.01) 0.84(0.01) 0.84(0.01)

NIAD 0.88(0.01)∗ 0.87(0.01) 0.64(0.01) 0.70(0.01)
2014 0.92(0.01)∗ 0.91(0.01) 0.74(0.01) 0.83(0.01)
2015 0.89(0.01)∗ 0.87(0.01) 0.66(0.01) 0.71(0.01)
2016 0.86(0.01). 0.85(0.01) 0.61(0.01) 0.65(0.01)
2017 0.84(0.01)∗ 0.82(0.01) 0.58(0.01) 0.62(0.01)

(c) HbA1c target prediction task

DARE GRU RF LR

Total 0.82(0.01) 0.82(0.01) 0.73(0.01) 0.73(0.01)

2014 0.88(0.01) 0.88(0.01) 0.79(0.01) 0.79(0.02)
2015 0.83(0.01) 0.83(0.01) 0.74(0.01) 0.74(0.01)
2016 0.80(0.01) 0.80(0.01) 0.71(0.01) 0.71(0.01)
2017 0.77(0.01) 0.78(0.01) 0.69(0.01) 0.69(0.01)

Table 3: Performances of the top two models stratified by sex and age.. Age stratified by quartiles, mean
ROC-AUC(std) (∗∗∗ for p < 0.001, ∗ for 0.01 < p < 0.05, . for 0.5 ≤ p < 0.1, Welch Two Sample t-test).

(a) DARE

Age<64 years Age<73 years Age<80 years Age>80 years

F M F M F M F M
N=2828 N=4492 N=3582 N=2914 N=1989 N=1246 N=3609 N=4340

HTN 0.95(0.01)∗ 0.94(0.01)∗∗∗ 0.97(0.01)∗ 0.96(0.01)∗ 0.97(0.02) 0.96(0.02) 0.96(0.01)∗ 0.95(0.01)∗

CVD 0.84(0.04) 0.87(0.02)∗ 0.85(0.03) 0.89(0.02) 0.84(0.04) 0.89(0.03) 0.84(0.04) 0.87(0.02)
Neuropathy 0.81(0.02)∗ 0.78(0.02) 0.77(0.03) 0.75(0.03) 0.79(0.04)∗ 0.77(0.06) 0.80(0.02) 0.79(0.03)
Retinopathy 0.91(0.02)∗∗∗ 0.91(0.01)∗∗∗ 0.91(0.02). 0.91(0.02) 0.93(0.02) 0.92(0.04) 0.92(0.02). 0.91(0.02)∗

CKD 0.89(0.07) 0.88(0.03) 0.88(0.04) 0.88(0.05) 0.86(0.08) 0.82(0.08) 0.90(0.04) 0.88(0.03)

Insuline 0.94(0.01) 0.94(0.01) 0.95(0.00) 0.95(0.01) 0.94(0.01). 0.94(0.01). 0.96(0.01) 0.95(0.01)
NIAD 0.85(0.03) 0.86(0.05) 0.87(0.02). 0.88(0.03) 0.85(0.03) 0.85(0.02) 0.88(0.03) 0.89(0.02).

HbA1c target 0.83(0.02) 0.81(0.01) 0.83(0.01) 0.82(0.02) 0.82(0.01) 0.81(0.03) 0.84(0.01) 0.82(0.01)

(b) GRU

Age<64 years Age<73 years Age<80 years Age>80 years

F M F M F M F M
N=2828 N=4492 N=3582 N=2914 N=1989 N=1246 N=3609 N=4340

HTN 0.93(0.01) 0.91(0.01) 0.96(0.01) 0.94(0.02) 0.96(0.02) 0.94(0.02) 0.95(0.01) 0.93(0.01)
CVD 0.82(0.05) 0.85(0.02) 0.84(0.02) 0.88(0.03) 0.82(0.06) 0.87(0.03) 0.83(0.04) 0.86(0.02)
Neuropathy 0.78(0.02) 0.77(0.03) 0.77(0.02) 0.75(0.03) 0.74(0.03) 0.75(0.06) 0.79(0.02) 0.78(0.02)
Retinopathy 0.87(0.02) 0.87(0.02) 0.89(0.03) 0.90(0.03) 0.91(0.02) 0.90(0.05) 0.90(0.03) 0.88(0.03)
CKD 0.87(0.08) 0.87(0.03) 0.86(0.07) 0.87(0.04) 0.81(0.12) 0.82(0.08) 0.88(0.03) 0.86(0.03)

Insuline 0.94(0.01) 0.93(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01) 0.93(0.01) 0.95(0.01) 0.95(0.01)
NIAD 0.83(0.04) 0.84(0.04) 0.86(0.02) 0.87(0.02) 0.84(0.03) 0.85(0.03) 0.86(0.02) 0.88(0.02)

HbA1c target 0.83(0.02) 0.81(0.01) 0.83(0.01) 0.82(0.02) 0.82(0.02) 0.81(0.02) 0.84(0.01) 0.82(0.01)

DARE’s architecture is designed to handle different data types. It can represent diagnosis
codes, medication prescriptions, and clinical/analytical measurements within a unified embedding
space. This approach is highly flexible and potentially applicable to a broad range of clinical data.
Each record in the EHR sequence is initially embedded as a triplet considering time, type, and
value of the record. This versatile concept can be applied to various clinical data formats. In
addition to the EHR sequence, DARE incorporates static data like sex, age at diagnosis, and a
summary of the patient’s health status at the beginning of the sequence. This strategy allows the
model to limit the sequence length, focusing on recent events while retaining information about
the patient’s medical history.

Visual analysis of the embedding vectors suggests that during the pre-training phase, the model
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Table 4: Estimated regression coefficients for the explanatory models of the three tasks. A negative
value for the β2 coefficient indicates an improvement with respect to the baseline model (GRU). A positive β3

coefficient indicates that the baseline model is more sensible to the training set size.

β0 β1 β2 β3

intersect N. pats. GRU GRU.N.pats.

Comorbidities 8.0e-1∗∗∗ 4.0e-6∗∗∗ 9.8e-3∗ -1.4e-6∗∗∗

Treatments 8.9e-1∗∗∗ 1.1e-6∗∗∗ -2.8e-2∗∗∗ 9.5e-7∗∗∗

Targets 8.1e-1∗∗∗ 7.8e-7. -8.9e-2∗∗∗ 4.7e-6∗∗∗

N. pats.: Number of Patients in train
∗∗∗ for p < 0.001, ∗ for 0.01 < p < 0.05, . for 0.5 ≤ p < 0.1

successfully learned the underlying structure of the ICD-10 and ATC-DDD ontologies. DARE
effectively mapped related codes together, grouping ICD-10 codes associated with the same co-
morbidities and ATC-DDD codes representing medications within the same pharmacological class.
Furthermore, the investigation of the attention patterns learned during the pre-training phase
shows that the model learned the relationship between different codes and variables measures.
Similar behaviors where observed also in other pre-trained models for EHRs, with attention pat-
terns showing strong connection between diseases and corresponding medications or even future
comorbidity [14, 13].

When applied to predicting changes in glucose-lowering treatments, DARE significantly out-
performed baseline methods. Notably, DARE delivered more consistent results compared to other
deep learning approaches, regardless of the number of patients included in the fine-tuning training
set. This suggests that DARE is less susceptible to variations in training data size.

The same behaviour was found for the prediction of HbA1c targets within four years after
the last event. In this scenario, the impact of the training set size on HbA1c target prediction
appears to be minimal (p>0.1). For the prediction of the most common diabetes comorbidities,
the DARE model struggled to maintain a stable performance as the training set size decreased.
We hypothesize that this is due to the imbalanced nature of the data: there are significantly more
patients without new diagnoses compared to those who receive new ones. As the training set
shrinks, DARE struggles to learn effectively from the sequence of EHR events. In contrast, the
GRU model appears to simply copy the diagnosis information from the initial patient status vector
PD(t0) instead of learning from the sequence. To investigate this hypothesis, we trained both
models on an extremely small dataset (2,500 patients) with the EHR sequences masked and only
the initial status data P (t0) included. The results suggrests to support our hypothesis: DARE’s
AUC score decreased from 0.78(0.01) to 0.74(0.02). This indicates that DARE relies on the event
sequence for accurate prediction. Conversely, the GRU model’s AUC score slightly increased
from 0.80(0.01) to 0.81(0.01). This suggests that the GRU model primarily memorizes the initial
diagnosis information (which might be sufficient for a small imbalanced dataset).

Despite the encouraging results shown in this work, there are various improvements that we aim
to develop in the future and other properties to investigate. While the pre-training dataset included
information for over 200,000 patients over 5 years, it remains limited compared to similar studies.
In future work, we aim to retrain the DARE model with even larger datasets to investigate how
the pre-training set size impacts fine-tuning performance. Even though this study focused on type
2 diabetes, the proposed approach has the potential to be applied to understanding the evolution
of various chronic diseases. We plan to include data for different chronic diseases in the dataset to
broaden the applicability of our approach.

In conclusion, this work introduces a novel deep learning encoder model based on the Trans-
former architecture that effectively analyzes Electronic Health Records (EHR) data. Unlike other
DL models, DARE can learn the complex relationships between different data modalities. To do
so, we introduced a new formalism for the representation of long sequences of clinical data, rep-
resenting recent RCHCD as events and condensing previous information into initial status vectors
P (t0). DARE demonstrates significant improvements in predicting different health outcomes, while
also reducing the requirement for large, labeled training datasets - a major hurdle for many deep
learning models. This characteristic allows DARE to be fine-tuned for diverse clinically relevant
tasks, potentially paving the way for the development of novel preventive healthcare strategies.

Data availability

DARE code is open source and available at https://github.com/enriminzo/DARE
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The data analysed in this study is subject to the following licenses/restrictions: restrictions
apply to the availability of some or all data generated or analysed during this study because they
were used under license. The corresponding authors will on request detail the restrictions and any
conditions under which access to some data may be provided.
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Appendix A. Model implementation details

Input representation

The model input consists of an initial status vector P (t0) ideally composed of three vectors
(Pgen,PD(t0), PT (t0)) representing general static information of the patient, diagnosis, and treat-
ments:

P (t0) = [sex, age, ..., d0(t0), ..., dnD
(ti),m0(t0), ...,mnT

(t0)] = [Pgen, PD(t0), PT (t0)]

and a series of clinical of routinely collected health-care data ei
NE
i=1 with ei = (TY PEi, V ALi, ti)

where:

• TY PEi indicates if the health-care data is a diagnosis (d), a prescription of a pharmacological
treatment (t), or an observation of one of the analytical or clinical variables (var).

• V ALi is the value of the event, that can be represented with 3 vectors:

– vd ∈ {0, 1}nD , the 1-H encoding of a new diagnosis.

– vt ∈ {0, 1}nM , the 1-H encoding of a new glucose-lowering prescription.

– vvar ∈ RnV , representing the measured variables. Note that to speed up training,
numerical data have been standardized before being used as input of the model.

• ti is the time of the event, expressed in days from t0.

Note that we used only sequences that had 5 or more data points in the same year, (one of
these being a measure of HbA1c).

Embedding layer

Inputs are mapped by an embedding layer in a series of vectors {Egen, ED, ET , E1, E2, ..., ENE
}

with Ei ∈ RdE , each one composed by the sum of three parts:

• Value embedding: for an event ei the value embedding is E(V ALi) = Vd × vd + Vt × vt +
tanh(Vvar×vvar) (note that just one of the tree vectors will be no zero vector) with Vd, Vt and
Vvar parameters to learn within the model. We embedded the status vector divided by the 3
vectors that composed it, obtaining 3 embedding: E(Pgen) = Vgen×Pgen, E(PD) = Vd×PD,
E(PT ) = Vt × PT , with Vgen parameters to learn within the model, while Vd and Vm are the
same for the status vectors and the events.

• Type embedding: obtained with a lookup table that map the TYPE token in a vector of
the same dimension of the embedding space (nE).

• Time embedding: we used a fully-learnable time representation [35] as it has been show
it may lead to better results in classification tasks compared to the classical fixed sinusoidal
embedding of the BERT model [36].

Attention Encoder

The original BERT model was composed by a stack of transformer layer.[11] The Core of
the transformer is the multi-head attention mechanism: given an input sequence of vectors X ∈
RnE×dE , it transforms them into queries Q = XWQ, keys K = XWK and values V = XWV with
WQ,WR,WV ∈ RdE×dZ learnable parameters. Queries and keys vectors are then used to calculate
the attention weights to be multiplied by the values vectors. Hence, the output is calculated as:

Z = Softmax
(QKT

√
dZ

)
V

Attention with Relative Position Representations [9] introduced a new term in the calculation
of the weights to take into account the distance between the corresponding vectors, namely:

Z = Softmax
(QKT + Srel√

dZ

)
V

Where each element of the matrix Srel ∈ RnE×nE is calculated as si,j = qi(ai,j)
T , being qi the

query corresponding to the i-th element in the input sequence and ai,j = (ti − tj)Wrel ∈ RdZ the
embedding of the relative distance between events i and j.
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Appendix B. Supplementary figures

Figure B.4: Study subject diagram.
(Abbreviations: PT =Pre-training, FT=Fine-tuning).
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Figure B.5: Fine tuning prediction example for the three outcomes. The model correctly predicts the
change in treatment of the patient, moving from non-insulin to insulin base glucose-lowering treatment. Similarly, it
predicts the CKD onset, even if it is a year late. Finally, even if it fails to correctly predict that the patient reaches
HbA1c target in the 4th year of follow-up, the predicted target probability has a positive trend, showing that the
model tends to predict an improvement of the HbA1c levels.
(Abbreviations: y.o.=years old, CVD=Cardiovascular disease, metf.=Metformin, sulfs.= Sulfonylurea,
SBP/DBP=Systolic/diastolic blood pressure, TG=triglycerides, HDL= High density lipoprotein, LDL=Low
density lipoprotein, HbA1c=glycated haemoglobin, NIAD=non-insulin diabetic drugs, Neurop.=Neuropathy,
HTN=Hypertension, Retinop.=Retinopathy, CKD=Chronic kidney disease)

Figure B.6: Visual inspection of the output space of DARE. Each point represents a different HbA1c mea-
surement, with dotted lines connecting consecutive measurements of the same patient. Colours represent different
HbA1c levels, while the shapes of the dots distinguish between subjects who consistently maintain their target
HbA1c level (squares) and those who do not (circles).
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Figure B.7: DARE results on fine-tuning.Mean AUC for the fine-tuning tasks for varied sizes of the training
set. The lighter intervals indicate 95% confidence intervals.
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Appendix C. Supplementary tables

comorbidity abbreviation codes

Hypertension HTN
I10 I11 I11.0 I11.9 I12 I12.0 I12.9 I13 I13.0 I13.1 I13.2 I13.9 I15
I15.0 I15.1 I15.2 I15.8 I15.9

Chronic vascular
diseases

CVD

I20 I20.0 I20.17 I20.8 I20.9 I21 I21.0 I21.1 I21.2 I21.3 I21.4 I21.9 I22
I22.0 I22.1 I22.8 I22.9 I23 I23.0 I23.1 I23.2 I23.3 I23.4 I23.6 I23.8
I24 I24.0 I24.1 I24.8 I24.9 I25 I25.0 I25.1 I25.2 I25.3 I25.4 I25.5
I25.6 I25.8 I25.9 T82.2 E11.5 Z95.1 Z95.5

Neuropathies
and neurological
complications

E11.4 E14.4 G13.0 G50 G50.0 G50.17 G50.8 G50.9 G51 G51.0
G51.1 G51.2 G51.3 G51.4 G51.8 G51.9 G52 G52.1 G52.2 G52.3
G52.7 G52.8 G52.9 G53 G53.0 G53.1 G53.3 G53.8 G54 G54.0 G54.1
G54.2 G54.3 G54.4 G54.5 G54.6 G54.7 G54.8 G54.9 G55 G55.0
G55.1 G55.2 G55.3 G55.8 G56 G56.0 G56.1 G56.2 G56.3 G56.4
G56.8 G56.9 G57 G57.0 G57.1 G57.2 G57.3 G57.4 G57.5 G57.6
G57.8 G57.9 G58 G58.0 G58.7 G58.8 G58.9 G59 G59.0 G59.8 G60
G60.0 G60.17 G60.17 G60.8 G60.9 G61 G61.0 G61.1 G61.8 G61.9
G62 G62.0 G62.1 G62.2 G62.8 G62.9 G63 G63.0 G63.2 G63.3 G63.5
G63.6 G63.8 G64

Opthamological
complications

E11.3 E13.3 E14.3 H36.0

Chronic kidneys
diseases

CKD E11.2 N08.3 E13.2 E14.2

Table C.5: ICD-10 codes with the corresponding comorbidities groups.
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Fine-tuning Pre-training

Sex, Male 12992(51.97) 92270(52.15)
Age (years) 69.29(9.75) 71.60(11.07)

Clinical variables
HbA1c[%] 7.63(1.37) 7.63(1.37)

BMI[kg/m] 30.36(4.97) 30.14(5.06)
SBP[mmHg] 136.65(15.70) 135.63(16.47)
DBP[mmHg] 74.42(9.91) 73.59(10.24)
HDL[mg/dl] 49.73(12.87) 49.69(12.95)
LDL[mg/dl] 102.28(31.46) 102.30(31.70)

Total Cholesterol[mg/dl] 180.87(36.69) 180.75(37.03)
TG[mg/dl] 160.05(108.52) 158.88(107.87)

Creatinine[mg/dl] 0.95(0.39) 1.00(0.56)
ACR[mg/g] 50.08(172.67) 51.67(178.81)

eGFR-CKDEPI[%] 72.92(17.86) 71.07(19.48)
eGFR-MDRD[%] 57.07(7.22) 56.13(8.92)

ABI-right 1.11(0.39) 1.11(0.43)
ABI-left 1.11(0.40) 1.12(0.43)

REGICOR score 7.20(4.03) 7.15(4.05)

Commorbidities
Hypertension 18079(72.32) 153251(86.62)

Cardiovascular disease 3480(13.92) 39110(22.11)
Neuropathy 3508(14.03) 23557(13.31)
Retinopathy 3253(13.01) 21589(12.20)

Chronic kidney disease 905(3.62) 9333(5.28)

Antidiabetic treatments
Insulin 8212(32.85) 58473(33.05)

Metformin 21280(85.12) 159347(90.07)
Sulfonylureas 10627(42.51) 68138(38.51)

DPP-4 1973(7.89) 8514(4.81)
GLP-1 421(1.68) 1508(0.85)

Table C.6: Basal values for pre-training and fine-tuning data. Data are reported as mean and standard
deviation for continuous variables and with number of events and percentages for categorical ones.
(Abbreviations: HbA1c=Glycated haemoglobin, BMI=Body mass index, SBP/DBP= Systolic/diastolic blood pres-
sure, HDL=High density lipoprotein, LDL= Low density lipoprotein, TG=Triglycerides, ACR=Albumin/creatinine
ratio, eGFR=estimated glomerular filtration rate, ABI=ankle brachial index, DPP-4=Dipeptidyl peptidase-4 in-
hibitor, GLP-1 = Glucagon-like peptide-1 receptor agonists)
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Hidden size n. layers att. heads loss

360 3 18 2.45
216 3 12 2.51
576 6 18 2.52
288 6 18 2.52
216 3 6 2.52
216 3 6 2.53
432 6 18 2.53
432 3 6 2.53
432 3 6 2.54
288 6 18 2.56
432 3 6 2.56
432 3 6 2.56
432 9 18 2.56
216 9 12 2.57
432 6 18 2.57
288 3 18 2.57
216 3 12 2.57
216 9 6 2.57
432 6 6 2.57
432 6 18 2.58

Table C.7: Results of the parameter search algorithm for the top 20 configurations. Explored hyperparemeters
where: hidden size: [216, 288, 360, 432, 576]; number of layers: [3, 6, 9]; attention heads: [6, 12, 18].
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