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Abstract 58 

Obesity and type 2 diabetes (T2D) are metabolic diseases with shared pathophysiology. 59 

Traditional polygenic risk scores (PRS) have focused on these conditions individually, yet the 60 

single disease approach falls short in capturing the full dimension of metabolic dysfunction. We 61 

derived biologically enriched metabolic PRS (MetPRS), a composite score that uses multi-62 

ancestry genome-wide association studies of 22 metabolic traits from over 10 million people. 63 

MetPRS, optimized to predict obesity (O-MetPRS) and T2D (D-MetPRS), was validated in the UK 64 

Biobank (UKB, n=15,000), and tested in UKB hold-out set (n=49,377), then externally tested in 3 65 

cohorts – All of Us (n=245,394), Mass General Brigham (MGB) Biobank (n=53,306), and a King 66 

Faisal Specialist Hospital and Research Center cohort (n=6,416). O-MetPRS and D-MetPRS 67 

outperformed existing PRSs in predicting obesity and T2D across 6 ancestries (European, African, 68 

East Asian, South Asian, Latino/admixed American, and Middle Eastern). O-MetPRS and D-69 

MetPRS also predicted morbidities and downstream complications of obesity and T2D, as well as 70 

the use of GLP-1 receptor agonists in contemporary practice. Among 37,329 MGB participants 71 

free of T2D and obesity at baseline, those in the top decile of O-MetPRS had a 103% relatively 72 

higher chance, and those in the top decile of D-MetPRS had an 80% relatively higher chance of 73 

receiving a GLP-1 receptor agonist prescription compared to individuals at the population median 74 

of MetPRS. The biologically enriched MetPRS is poised to have an impact across all layers of 75 

clinical utility, from predicting morbidities to informing management decisions. 76 
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Introduction 89 

Obesity and type 2 diabetes (T2D) are closely interconnected through a shared 90 

pathophysiology, often characterized by insulin resistance, and together constitute a major portion 91 

of metabolic diseases. This relationship, frequently referred to as "diabesity",1 reflects the 92 

overlapping genetic architecture of both conditions, emphasizing the need to study their combined 93 

effects on metabolic health and related morbidities.2,3 While research into the shared and distinct 94 

genetic bases of metabolic traits has provided valuable biological insights,4 this multivariable 95 

knowledge has not been fully translated into clinical utility via genetic risk assessment. The 96 

polygenic risk score (PRS) has emerged as a powerful tool for assessing composite genetic risks, 97 

gaining traction for its potential clinical applications.5,6 98 

The PRSs for obesity and T2D have been developed individually based on a single 99 

disease approach thus far,7 without accounting for the multivariable nature of these conditions. 100 

We and others previously demonstrated that incorporating genetic information for relevant 101 

diseases enabled a significant boost in disease risk predictive performance.8–10 Building on this 102 

multi-disease approach, we have now further incorporated a broader spectrum of measures for 103 

diabesity, acknowledging that different measures of obesity (e.g., body mass index[BMI], waist 104 

circumference[WC], waist-to-hip ratio[WHR]) and diabetes (e.g., HbA1c, fasting glucose[FG], 105 

insulin sensitivity) capture intersecting but also complementary biology of these conditions. For 106 

instance, BMI typically measures overall body mass, whereas WC provides more specific 107 

information about abdominal or central adiposity.11 Leveraging multiple indices that measure 108 

various dimensions of metabolic dysfunction may effectively capture the underlying metabolic 109 

complexity and potentially translate it into a biologically enriched and clinically meaningful PRS. 110 

By integrating genetic information for related diseases and measures, we developed a 111 

metabolic PRS (MetPRS) optimized for obesity (O-MetPRS) and T2D (D-MetPRS). We 112 

incorporated genetic data from 22 metabolic traits, utilizing multi-ancestry genome-wide 113 

association study (GWAS) data from over 10 million participants. The model was validated and 114 

tested in the UK Biobank (UKB), and externally tested in three multiethnic cohorts comprising up 115 

to 300,000 participants. This multi-disease and multi-measure approach has resulted in a 116 

biologically enriched and cross-ancestry transferable PRS capable of predicting a broad spectrum 117 

of metabolic health outcomes with high accuracy and relevance to clinical care. 118 

Results 119 

We integrated GWAS summary statistics from 22 obesity and diabetes related traits 120 

including, but not limited to, BMI, body weight, body fat percentage, WC, WHR, hip circumference, 121 

abdominal subcutaneous adipose tissue (ASAT), visceral adipose tissue (VAT), gluteofemoral 122 

adipose tissue (GFAT), HbA1c, fasting glucose, fasting insulin, 2-hr glucose, and insulin 123 

sensitivity index (Supplementary Table 1). The GWAS summary statistics were derived from the 124 

largest contemporary data consortia, including Million Veteran Program (MVP), FinnGen, Biobank 125 

Japan (BBJ), UK Biobank (UKB), and Taiwan Biobank, encompassing over 10 million participants. 126 

Participants in the UK Biobank were divided into three distinct groups: the dataset for GWAS, the 127 
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training set, and the hold-out test set, with no overlap between samples across these groups 128 

(Extended Data Fig.1). The obesity and T2D models were validated on 15,000 individuals of 129 

European ancestry, including 3,814 individuals with obesity (BMI ≥ 30 Kg/m2 for European) and 130 

1,196 with T2D. UKB hold-out test set consisted of 49,377 individuals, with 70.1% of European 131 

ancestry, 13.9% of African ancestry, 2.6% of East Asian ancestry, and 13.4% of South Asian 132 

ancestry (Extended Data Fig.1 and Supplementary Table 2). The remaining European-ancestry 133 

samples (N=378,921) were used for de novo GWAS analysis, and incorporated in the PRS score 134 

development (Supplementary Table 1). The model development process is illustrated in Fig. 1.  135 

Genetic Correlations Among Metabolic Traits 136 

We selected 22 traits associated with diabesity and insulin resistance for which GWAS 137 

summary statistics are currently available and have no sample overlap with UK biobank participants 138 

(Supplementary Table 1). We assessed the genetic correlations among 22 metabolic traits using 139 

cross-trait LD-score regression (Fig. 2). Significant correlations were observed between traits 140 

associated with obesity, such as BMI, WC, body weight, VAT, reflecting their shared genetic 141 

underpinnings. For example, the genetic correlation between BMI and WC was 0.90, while VAT 142 

showed strong correlations with both body fat (0.71) and WC (0.79), which remained significant 143 

after multiple testing corrections (Fig. 2 and  Supplementary Table 3). In contrast, the Modified 144 

Stumvoll insulin sensitivity index (ISI)12 displayed negative genetic correlations with most traits, 145 

as the index is inversely related to insulin resistance.  146 

 147 

Model Development and Internal Validation of MetPRS in the UK Biobank 148 

We used a previously described multi-ancestry and multi-trait GWAS integration 149 

framework8 for developing high-performance and cross-ancestry transferable metabolic PRS 150 

(MetPRS), with the purpose specifically optimized to predict obesity (O-MetPRS) and T2D (D-151 

MetPRS), Fig 1. The predictive performance of O-MetPRS and D-MetPRS was first evaluated in 152 

the hold-out test set from the UK Biobank (n = 49,377) (Fig. 3 and Extended Data Fig.1). For 153 

obesity among European participants, O-MetPRS achieved an odds ratio per standard deviation 154 

(OR/SD) of 2.22 (95% CI: 2.16–2.28), outperforming all previously published PRSs for obesity – 155 

the second best performing PRS for obesity (PGS catalog: PGS000027) had an OR/SD of 1.79 156 

(95% CI: 1.75–1.84) (Fig. 3A and Supplementary Table 4). Moreover, the range of obesity 157 

prevalence stratified by O-MetPRS was significantly broader, spanning from 2.9% to 70.3% 158 

across percentiles, compared to 6.3% to 58.2% for the second best performing PRS, PGS000027 159 

(Fig. 3B). For T2D, D-MetPRS showed an OR/SD of 2.08 (95% CI: 2.00–2.18), also exceeding 160 

the performance of all previously published PRSs (Fig. 3C and Supplementary Table 5). 161 

Similarly, D-MetPRS stratified a notably wider range of T2D prevalence, from 0.9% to 28.8% 162 

across percentiles, compared to 2.6% to 23.9% for the second best PGS001357 (Fig. 3D). 163 

Likewise, O-MetPRS and D-MetPRS consistently ranked as the top-performing PRSs for obesity 164 

and T2D among African and East Asian participants (Fig. 3A and Fig. 3C). These findings 165 

demonstrate that MetPRS provides superior risk stratification for both obesity and T2D in diverse 166 

ethnic groups compared to existing PRSs. 167 
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We further tested the associations of O-MetPRS and D-MetPRS with various metabolic 168 

traits (Extended Data Fig.2 and Supplementary Table 6). A consistent significance across all 169 

traits (P < 0.0001) suggested that both O-MetPRS and D-MetPRS effectively capture the genetic 170 

predispositions related to obesity and T2D, respectively. O-MetPRS demonstrated large 171 

association coefficients observed for weight (β = 4.75 Kg per SD, SE = 0.07, P < 0.0001), hip 172 

circumference (β = 2.95 cm per SD, SE = 0.047, P < 0.0001), and BMI (β = 1.86 Kg/m2 per SD, 173 

SE = 0.024, P < 0.0001). D-MetPRS showed strong associations with HbA1c (β = 1.434 mmol/mol 174 

per SD, SE = 0.034, P < 0.0001), triglycerides (TG) (β = 6.53 mg/dl per SD, SE = 0.003, P < 175 

0.0001), and glucose (β = 3.098 mg/dl per SD, SE = 0.007, P < 0.0001). Notably, O-MetPRS has 176 

a larger effect size on obesity-related traits and D-MetPRS has larger effect size on diabetes-177 

related traits, suggesting that each score captured its relevant biological insights. 178 

External validation of MetPRS in multiple cohorts  179 

We validated the MetPRS in three external multiethnic cohorts: All of Us (n = 245,394), 180 

Mass General Brigham (MGB) Biobank (n = 53,306), and the King Faisal Specialist Hospital and 181 

Research Center [KFSH&RC] cohort (n = 6,416) (Fig. 4; Supplementary Tables 7-12). MetPRS 182 

was compared against the top 5 obesity and T2D PRSs from the PGS Catalog.13 We selected the 183 

top 5 PRSs that consistently ranked highly across all external datasets as comparators, excluding 184 

any scores that incorporated each test cohort (i.e., All of Us) in their score development. The 185 

OR/SD with 95% CI for prevalent obesity and T2D was assessed for O-MetPRS and D-MetPRS, 186 

respectively, in a logistic regression model adjusted for age, sex, genotyping array, and the first 187 

10 principal components of ancestry. MetPRS was the best-performing score across diverse 188 

ancestries, except for O-MetPRS in the East/South Asian population of MGB Biobank, D-MetPRS 189 

in Middle Eastern population of All of Us, and D-MetPRS in East Asian population of MGB Biobank 190 

(Fig.4). In addition to predicting binary obesity, we also evaluated O-MetPRS for its ability to 191 

predict continuous BMI (Extended Data Fig.3). O-MetPRS outperformed the top five comparator 192 

scores across diverse ancestries in predicting BMI, with the exception of East/South Asian and 193 

African populations in the MGB Biobank (Extended Data Fig.3 and Supplementary Table 13). 194 

The consistently high performance across multi-ancestry external cohorts underscored the 195 

robustness and generalizability of MetPRS. 196 

Although MetPRS consistently performed better than pre-existing scores across 197 

ancestries in relative space, its performance was suboptimal in individuals of African ancestry 198 

(Fig. 4). To address this gap, we developed an African-optimized MetPRS by training the model 199 

in UK Biobank African participants, which led to a further performance improvement tested in the 200 

All of Us and MGB Biobank (Extended Data Fig.4). 201 

Prediction of Morbidities Related to Obesity and Type 2 Diabetes 202 

Obesity and T2D are not only major health challenges on their own but also serve as 203 

strong risk factors and precursors for a wide array of downstream diseases and complications. 204 

We assessed the ability of MetPRS to predict morbidities related to obesity and T2D using a Cox 205 

proportional hazards model for individuals in the MetPRS top decile compared to those of the rest 206 
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cohort; the risk of all tested morbidities was significantly higher in top decile group for O-MetPRS 207 

and D-MetPRS (Extended Data fig.5; Supplementary Table 14). When compared to the top 5 208 

comparator scores, O-MetPRS had the best prediction of obesity-related morbidities, ranking first 209 

for predicting 12 out of 14 obesity-related morbidities such as hypertension (hazard ratio[HR] 1.39; 210 

95% CI: 1.30-1.49), venous thromboembolism (HR1.47; 95% CI: 1.21-1.80), and Nonalcoholic 211 

fatty liver disease (HR 1.83; 95% CI: 1.41-2.37) (Fig. 5A and 5B; Extended Data Fig. 6). Similarly, 212 

D-MetPRS most accurately predicted diabetes-related morbidities, ranking first for predicting 11 213 

out of 13 diabetes-related morbidities such as neuropathy (HR 1.87; 95% CI: 1.35-2.59), 214 

nephropathy (HR 1.89; 95% CI: 1.65-2.16), and retinopathy (HR 1.87; 95% CI: 1.35-2.59) (Fig. 215 

5C and 5D; Extended Data Fig. 6). 216 

MetPRS and Risk of GLP-1 Receptor Agonist Prescription and Metabolic-bariatric Surgery 217 

The MGB Biobank consisted of 51,779 eligible participants, of whom 4,490 (8.7%) were 218 

prescribed GLP-1 receptor agonists during a mean follow-up of 5.53 (SD 2.96) years, and 1,487 219 

(2.9%) underwent metabolic-bariatric surgery during a mean follow-up of 5.53 (SD 3.32) years. 220 

Among 51,779 participants, 37,329 were free of obesity and T2D at baseline. To evaluate the 221 

relationship between MetPRS and clinical interventions in contemporary practice, we employed 222 

Cox proportional hazards regression models, adjusting for age, sex, and top 10 ancestry principal 223 

components. Participants were categorized into three risk groups based on their MetPRS – the  224 

top 10%, middle quintile (40–60%), and bottom 10%.  225 

Among 37,329 MGB individuals free of obesity and T2D, those in the top decile compared 226 

to the population median quintile of O-MetPRS had a markedly increased risk of receiving a GLP-227 

1 agonist prescription (HR 2.03; 95% CI: 1.65-2.50) and metabolic-bariatric surgery (HR 3.61; 95% 228 

CI: 2.06-6.33). The cumulative incidence of GLP-1 receptor agonist prescriptions and metabolic-229 

bariatric surgery showed significant variation across different O-MetPRS risk groups at 10-year 230 

(Fig. 6A and 6B; Extended Data Fig. 7A and 7B). Among the group free of obesity and T2D at 231 

baseline, participants in the top 10% risk group had a cumulative incidence of 12.6% for GLP-1 232 

receptor agonist prescriptions and 0.4% for metabolic-bariatric surgery. For the middle quintile 233 

group, the cumulative incidences were 6.5% and 0.1%, while the bottom 10% group had 234 

incidences of 3.4% and 0.0%, respectively (Fig.6A and 6B). These trends were consistent in the 235 

overall population, which included some participants with obesity and T2D at baseline who had 236 

not been treated with these interventions. The cumulative incidence of GLP-1 receptor agonist 237 

prescriptions and metabolic-bariatric surgery was generally higher in this population (Extended 238 

Data Fig. 7A and 7B). 239 

Similarly, those in the top decile compared to the population median quintile of D-MetPRS 240 

had a substantially increased risk of receiving a GLP-1 agonist prescription (HR 1.80; 95% CI: 241 

1.47-2.21) and metabolic-bariatric surgery (HR 2.29; 95% CI: 1.29-4.06). The cumulative 242 

incidence of GLP-1 receptor agonist prescriptions and metabolic-bariatric surgery also varied 243 

notably across the D-MetPRS risk groups at the 10-year mark (Fig. 6C and 6D; Extended Data 244 

Fig. 7). In the population, those in the top 10% risk category had cumulative incidences of 12.1% 245 

for GLP-1 receptor agonist prescriptions and 0.4% for metabolic-bariatric surgery. In contrast, the 246 

middle quintile group had cumulative incidences of 7.0% and 0.2%, and the bottom 10% group 247 
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had 3.9% and 0.0%, respectively (Fig.6C and 6D). These patterns persisted in the overall 248 

population with higher incidence rates (Extended Data Fig. 7C and 7D). 249 

  250 
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Discussion 251 

This study introduces MetPRS for diabesity based on a novel approach that captures the 252 

genetic architecture of metabolic dysfunction by synthesizing genetic association data from 253 

related measures and indices. This method leveraged biological insights to optimize genetic risk 254 

prediction for obesity, T2D, their related morbidities, and even clinical interventions in 255 

contemporary practice. We demonstrate that MetPRS outperformed all previous PRSs in 256 

predicting obesity and T2D across multiple ancestries, including European, African, East Asian, 257 

South Asian, Latino/admixed American, and Arab populations. Moreover, MetPRS precisely 258 

predicted downstream morbidities and clinical interventions associated with diabesity, such as 259 

GLP-1 receptor agonist prescriptions and metabolic-bariatric surgery, underscoring its potential 260 

clinical utility. The biologically enriched MetPRS is well-positioned to penetrate various aspects 261 

of clinical practice, from predicting morbidities to guiding management decisions. 262 

Metabolic disorders are inherently multifactorial and involve complex biology.  As such, 263 

integrating GWAS data for various diabesity-related measures resulted in a biologically-enriched 264 

PRS. No single metric can fully capture the etiology of metabolic disorders, necessitating the 265 

complementary use of multiple measures in clinical practice. For instance, HbA1c and fasting 266 

glucose levels offer complementary insights – HbA1c reflects long-term glycemic control, while 267 

fasting glucose levels indicate immediate glucose control.14 Likewise, multiple obesity measures, 268 

such as BMI, WC, WHR, VAT, ASAT, and GFAT provide both converging and diverging insights 269 

into different obesity subtypes and risk trajectories for obesity related morbidities.15 This growing 270 

body of evidence supported our strategy to develop a biologically-enriched PRS by leveraging 271 

genetic information across multiple diabesity-related measures.  Emdin et al. previously 272 

demonstrated that a PRS for WHR adjusted for BMI (WHRadjBMI) could capture a genetic 273 

predisposition to adiposity that was not evident when using the genetic risk of WHR or BMI 274 

alone.16 Meanwhile, their study was limited to combining only two metrics and was not specifically 275 

aimed at developing PRS that captures whole dimensions of underlying etiologies. We integrated 276 

a wider range of measures (22 measures), creating a metabolic PRS that is more comprehensive 277 

and better equipped to reflect the complex and heterogeneous nature of metabolic disease 278 

manifested by obesity and T2D. 279 

O-MetPRS and D-MetPRS demonstrated superior predictive accuracy compared to 280 

previously developed PRSs for obesity and T2D in the PGS catalog in both internal and external 281 

validations (Fig. 3 and 4). The genome-wide PRS for obesity (GPSBMI) introduced by Khera et 282 

al.(PGS000027),7 which utilized 2.1 million genetic variants, had previously set the benchmark for 283 

obesity PRS performance. However, our O-MetPRS showed a significant improvement, with an 284 

over 20% increase in OR/SD compared to GPSBMI (GPSBMI OR/SD 1.79 vs. O-MetPRS OR/SD 285 

2.22 in European population) (Fig. 3). This substantial enhancement could be attributed to the 286 

difference in genetic inputs and reflecting their biological relevance (Extended Data Fig.8); O-287 

MetPRS incorporated multiple ancestry GWAS from 22 traits, whereas GPSBMI relied on only BMI 288 

and European GWAS data. Similarly, D-MetPRS demonstrated over 20% increase in OR/SD 289 

compared to the second highest T2D PRS––AnnoPred PRS (PGS001357) (AnnoPred OR/SD 290 
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1.69 vs. O-MetPRS OR/SD 2.08 in European population).17 Such improvement over previous top 291 

scores for both obesity and T2D underscores the value of our multiplicative approach.  292 

Obesity and T2D are not only major health concerns in their own right but also strong risk 293 

factors for numerous morbidities,18–22 making it important to predict their related comorbidities for 294 

better health management. Our study demonstrates that MetPRS had a substantial improvement 295 

in predicting downstream morbidities and complications of diabesity compared to existing PRSs 296 

(Fig. 5 and Extended Data Fig.6), likely due to its biologically enriched composition. Moreover, 297 

MetPRS effectively predicted cardiovascular mortality, likely indicating its ability to identify 298 

individuals at risk for poorer outcomes or prognosis, beyond merely predicting disease incidence. 299 

Few AI-based tools and clinical scores have been developed to predict obesity-related or diabetic 300 

complications, yet they require clinical factors that usually become evident in middle age as 301 

inputs.23–25 In contrast, MetPRS can predict morbidities long before the clinical factors manifest, 302 

potentially as early as birth.7 As sequencing technologies advance and become more cost-303 

effective and affordable,26,27 the use of MetPRS can shift morbidity care earlier in life and support 304 

primordial prevention.  305 

The MetPRS was able to predict the likelihood of requiring GLP-1 receptor agonist 306 

prescription in a population free of obesity and T2D at baseline, over a period of following up to 307 

13 years. The GLP-1 receptor agonists are indicated for treating obesity and T2D, yet their 308 

indications are expanding as mounting evidence shows their efficacy in reducing cardiovascular 309 

diseases,28 steatohepatitis,29 chronic kidney disease,30 and other conditions.31,32 Despite its 310 

growing status as a widely used treatment, the challenges in the pharmacological intervention lie 311 

in evaluating the risk-benefit ratio for each individual, as GLP-1 receptor agonists are not without 312 

adverse effects.33,34 An even greater concern is the significant economic burden these 313 

medications impose on healthcare systems, particularly in countries like the US, where up to 40% 314 

of the population may be eligible for treatment.35,36 Therefore, the ability to extend genetic 315 

prediction to GLP-1 receptor agonist prescription holds clinical implications, adding a data point 316 

for risk-benefit assessment, patient-physician communication, and cost-effective rollout. Currently, 317 

GLP-1 receptor agonists are typically reserved for individuals with obesity or diabetes who have 318 

comorbidities or have not achieved sufficient control through lifestyle modifications.37,38 The ability 319 

to genetically predict the eventual need for this drug could potentially move the needle in 320 

management plans and health system strategies. 321 

MetPRS is a multi-ancestry PRS that can be readily applied to diverse populations, as it 322 

showed robust prediction performance across different ancestries in our external validation data 323 

sets (Fig. 4). The Eurocentric bias inherent in many genetic studies has significantly limited the 324 

generalizability of PRSs, presenting a major barrier to their implementation in real-world settings 325 

where populations are inherently diverse.39–42 Our study addressed this challenge by 326 

incorporating GWAS data from multiple ancestries when developing the model, ensuring that 327 

genetic information from non-European populations is represented. We then validated the 328 

MetPRS across multiple ancestries, demonstrating consistent best performances across these 329 

populations. Notably, even though some existing PRSs were optimized for their specific non-330 

European ancestries, our multi-ancestry MetPRS still outperformed them in respective non-331 
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European populations (Fig. 3 and Fig. 4). Given its reliable performance among various 332 

ancestries, MetPRS can be readily implemented in ethnically diverse settings and contexts. Our 333 

findings contribute to the growing body of evidence that multi-ancestry genetic studies can 334 

facilitate more inclusive and widely applicable health services and alleviate the risk of propagating 335 

potential healthcare disparities in genomic medicine.8,43 336 

There are several limitations that must be acknowledged. First, while we incorporated 337 

multi-ancestry and non-European GWAS data to train MetPRS, the majority of the data used for 338 

model development and validation is still derived from GWAS of European descent, which may 339 

affect the score’s performance in non-European populations. Reassuringly, MetPRS consistently 340 

performed better than pre-existing scores across ancestries on a relative scale. However, its 341 

performance was suboptimal in individuals of African ancestry, and thus we developed an African-342 

optimized MetPRS, which led to a modest improvement in performance. Second, our study 343 

centered on obesity and T2D among metabolic traits. Future research could explore the inclusion 344 

of additional metabolic traits or different combinations based on biological commonality. However, 345 

there are several justifications for our focus. We specifically targeted obesity and T2D due to their 346 

closely related pathophysiology1,2 and shared treatment options, including GLP-1 receptor 347 

agonists and metabolic-bariatric surgery.44–46 Convergence in clinical management was a 348 

particularly important consideration, as our aim for MetPRS was to design a PRS that can predict 349 

across various layers of clinical aspects. The intersecting foundation in biology, etiology, and 350 

clinical workflow pertinent to both conditions enabled MetPRS to be a clinically relevant PRS. 351 

Finally, the clinical implementation of MetPRS requires further consideration of how to interpret 352 

and communicate PRS results to healthcare providers and patients, as well as how to measure 353 

its impact on patient outcomes and healthcare decision-making.47 354 

Conclusion 355 

This study presented a novel approach to genetic risk prediction of diabesity by introducing 356 

the MetPRS, a composite metabolic PRS that integrates multi-ancestry, multi-disease, and multi-357 

measure genetic data. Our findings have significant implications for precision medicine, offering 358 

more comprehensive scores to predict risks for obesity and T2D, as well as their complications 359 

and clinical management. The MetPRS outperformed traditional single-trait PRS models, 360 

demonstrating the value of a biologically-enriched approach to genetic risk prediction. By 361 

leveraging multi-ancestry GWAS data, MetPRS represents a step forward in creating more 362 

equitable and inclusive tools for genomic medicine.  363 

 364 

 365 

 366 

 367 
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Methods 368 

Study cohorts 369 

UK Biobank 370 

The UK Biobank (UKB) is an observational study that enrolled over 500,000 individuals 371 

aged 40 to 69 across the United Kingdom between 2006 and 2010. At the time of recruitment, 372 

participants provided electronically-signed consent, completed questionnaires on socio-373 

demographic, lifestyle, and health-related factors, and underwent various physical 374 

assessments.48 Anthropometric measurements, including body mass index, were measured at 375 

the initial enrollment visit. Among participants, 43,521 underwent MRI imaging between 2014 and 376 

2020.49,50 Participants were genotyped using the UK BiLEVE Axiom Array or the UK Biobank 377 

Axiom Array, each containing over 800,000 genome-wide variants. Imputation was carried out 378 

using reference panel from the Haplotype Reference Consortium (HRC),51 UK10K,52 and the 1000 379 

Genome Phase 3 data.53 The HRC was used as the primary imputation reference panel due to 380 

its large sample size (64,976 broadly European haplotypes). The 1000 Genomes phase 3 dataset 381 

was employed to assist with the phasing of samples from non-European ancestries. Imputation 382 

results were also combined from the merged UK10K and 1000 Genomes phase 3 reference 383 

panels and the HRC panel, with HRC imputation being prioritized when a SNP was present in 384 

both panels. Imputation was conducted using IMPUTE 4 (https://jmarchini.org/software/). 385 

 386 

All of Us 387 

The All of Us (AoU) Research Program is a longitudinal cohort study that has enrolled a 388 

diverse group of traditionally underrepresented individuals aged 18 and older from more than 730 389 

sites across the United States.54 Since its inception in 2018, the AoU program has consented to 390 

over 800,000 participants, with more than 560,000 completing the initial enrollment process, 391 

including health questionnaires and biospecimen collection. For these participants, ongoing 392 

linkage to electronic health record (EHR) data, including International Classification of Diseases 393 

(ICD)-9/ICD-10, Systematized Nomenclature of Medicine (SNOMED), and Current Procedural 394 

Terminology (CPT) codes, is maintained. This study utilized whole-genome sequencing (WGS) 395 

data from over 245,000 participants available in the Controlled Tier Dataset, version 7 release. 396 

Data analysis was conducted on the All of Us Researcher Workbench under the guidelines 397 

defined by the All of Us Ethical Conduct of Research Policy. 398 

 399 

Mass General Brigham Biobank 400 

The Mass General Brigham Biobank (MGBB) is a large-scale, healthcare-affiliated 401 

biobank based in the Greater Boston area of Massachusetts.55,56 Established in 2010, the MGBB 402 

has enrolled approximately 140,000 diverse individuals within the Mass General Brigham (MGBB) 403 

network, the largest healthcare system in Massachusetts. The biobank aims to uncover the 404 

complex relationships among genomic profiles, environmental factors, and disease 405 

manifestations in clinical practice. MGBB provides biomedical samples, such as plasma, serum, 406 

DNA, buffy coats, collected from patients and linked to clinical data from the EHR, quantitative 407 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316620doi: medRxiv preprint 

https://www.zotero.org/google-docs/?Fo1PSB
https://www.zotero.org/google-docs/?OaN1WT
https://www.zotero.org/google-docs/?zo8Erv
https://www.zotero.org/google-docs/?jnbo5O
https://www.zotero.org/google-docs/?WGd5Fk
https://jmarchini.org/software/
https://www.zotero.org/google-docs/?qQwSN3
https://www.zotero.org/google-docs/?9dbDH7
https://doi.org/10.1101/2024.11.01.24316620


 

 

data derived from medical images, and survey data on lifestyle, environment, and family history.57 408 

Genome-wide genotyping arrays of 53,306 MGBB participants were used in this study. 409 

 410 

King Faisal Specialist Hospital and Research Center cohort  411 

The King Faisal Specialist Hospital and Research Center (KFSH&RC) cohort consists of 412 

indigenous Arabs from Saudi Arabia referred for cardiology care at KFSH&RC, a tertiary care 413 

hospital recognized throughout Saudi Arabia and the Middle East, for work-up of cardiac disease 414 

from all over the country58. In addition to blood samples for DNA extraction and genotyping array 415 

analyses, participants provided access to their electronic health records for phenotype data and 416 

shared socio-demographic information through a clinical research coordinator. All participants 417 

gave informed consent to participate in the study. 418 

 419 

Phenotype definitions 420 

 421 

For the UK Biobank participants, weight and height were collected at baseline when 422 

participants attended the initial assessment center. BMI was constructed from height and weight 423 

measured during the initial Assessment Centre visit. BMI is not present if either of these readings 424 

were omitted. Obesity was defined as a BMI ≥ 25 kg/m² for individuals of East Asian ancestry and 425 

a BMI ≥ 30 kg/m² for individuals of other ancestries,59,60 which was used also for AoU, MGBB and 426 

KFSH&RC cohorts. T2D was identified either through self-reported diagnosis during an interview 427 

with a trained nurse or via the ICD-10 code E11.X in hospitalization records. For comorbidities, 428 

detailed definitions of diseases included in the comorbidities analysis are provided in 429 

Supplementary Table 17. For example, coronary artery disease cases were defined centrally 430 

based on self-report at enrollment, hospitalization records, or death registry records; retinopathy 431 

case ascertainment was based on hospitalization records and death registry records; sleep apnea 432 

ascertainment was based on self-report at the time of enrollment, hospitalization records, and 433 

death registry records. 434 

For All of Us, BMI was taken from physical measurements of EHR data. T2D was identified 435 

as EHR records containing the term “Type 2 diabetes mellitus” in Controlled Tier Dataset v7 436 

Conditions. For MGBB, BMI was obtained from the electronic health records T2D was identified 437 

as glycated hemoglobin ≥ 6.5% or diagnosis records from the electronic health records. For 438 

the KFSH&RC cohort, disease status and metabolic traits were collected during routine clinical 439 

care and manually extracted from the electronic health record by trained medical personnel. The 440 

diagnosis of T2D was curated from the electronic health records. Height and weight 441 

measurements obtained in the context of care and the first visit measured on referral to the King 442 

Faisal Specialist Hospital and Research Center was used.  443 

 444 

Define polygenic risk score percentiles 445 

 446 

Residual scores for MetPRS, and PRS scores calculated by the variant weight from the  447 

PGS Catalog were extracted after adjustment for the first ten principal components of genetic 448 

ancestry, then normalized to a mean of 0 with a standard deviation of 1. The percentile distribution 449 
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of the polygenic risk scores was analyzed to assess the stratification of obesity (BMI ≥ 30 kg/m²) 450 

and T2D. 451 

 452 

Quality control and sample selection 453 

 454 

UK Biobank 455 

Participants were excluded from the analysis if they met any of the following criteria: (1) a 456 

mismatch between self-reported sex and genetically inferred sex, (2) sex chromosome aneuploidy, 457 

(3) a genotyping call rate below 0.95, (4) being outliers for heterozygosity, (5) having second-458 

degree or closer relatives, (6) with unknown self-reported ancestry, or (7) without BMI or T2D 459 

phenotypes. After applying these sample quality controls, 444,345 participants remained 460 

available (Extended Data Fig.1).  461 

To further boost the power for constructing PRS scores, we conducted de novo GWAS for 462 

ten traits（BMI, T2D, body fat percentage, height, body weight, waist circumference, hip 463 

circumference, HbA1c, Glucose, cT1) traits utilizing data from 378,921 participants randomly 464 

selected from UKB European ancestry participants (self-reported ancestry, Field ID 21000). For 465 

the remaining participants of European ancestry, 15,000 and 34,626 individuals were assigned to 466 

the training and testing sets for PRS score development, respectively. A total of 1,304 individuals 467 

who self-identified as Chinese were included for East Asian ancestry validation, 6,842 individuals 468 

who self-identified as Black were included for African ancestry validation, and 6,605 individuals 469 

of South Asian descent (self-reported as Indian, Pakistani, or Bangladeshi) were included for 470 

South Asian ancestry validation. Individuals with body (abdominal) magnetic resonance imaging 471 

(MRI) data (UK Biobank Field ID 12224) were excluded from the training and validation datasets, 472 

since GWAS for MRI-derived visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral 473 

(GFAT) adipose tissue volumes was conducted on UKB MRI-tested participants;61 we additionally 474 

excluded individuals with whole body DXA scan (UK Biobank Field ID 20201), (Extended Data 475 

Fig.1). 476 

Genetic variants were included in the GWAS if they met the following quality control criteria: 477 

(1) imputation quality score (INFO) > 0.3, (2) minor allele frequency (MAF) > 0.001, (3) minor 478 

allele count (MAC) > 100, and (4) SNP genotyping missing rate < 10%. These criteria resulted in 479 

a total of 15,848,715 imputed variants available for analysis. Common variant association studies 480 

for ten traits (BMI, T2D, body fat percentage, height, body weight, waist circumference, hip 481 

circumference, HbA1c, Glucose, cT1) were conducted using REGENIE (v3.2.7), genotype 482 

variants were centrally imputed from UK Biobank.48 483 

 484 

All of Us 485 

Within All of Us, details of whole genome sequencing and quality control are described 486 

extensively in Jurgens et al.62 and the All of Us Genomic Research Data Quality Report 487 

C2022Q4R9 CDR v7, available at https://support.researchallofus.org/hc/en-488 

us/articles/4617899955092-All-of-Us-Genomic-Quality-Report. Briefly, 229,517 out of total 489 

245,394 samples remained after filtering for sex concordance, a cross individual contamination 490 

rate below 3%, a call rate above 98% and related samples by AoU Central quality control. We 491 

used the Allele Count/Allele Frequency (ACAF) threshold SNP callset curated by AoU, which 492 
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includes SNPs of population-specific allele frequency > 1% or allele counts over 100 for each 493 

ancestral subpopulation. The inferred ancestry information is obtained from the “ancestry_pred” 494 

column, which is available as part of the genetically predicted ancestry TSV file. The quality 495 

control metrics were centrally provided by the AoU project.54 SNPs deviated from Hardy-Weinberg 496 

equilibrium (P < 1×10−6) in each genetic ancestry were removed. Principal components of genetic 497 

ancestry used for the correction of population structure were calculated in each ancestry group 498 

separately using SNPs present in the 1000 Genomes project phase 3 release.  499 

 500 

Mass General Brigham Biobank 501 

Within MGB Biobank, 53,306 individuals were genotyped by Illumina Global Screening 502 

Array (Illumina, CA) and imputed to the TOPMed multi-ancestry imputation reference panel 503 

(TOPMed r2 panel).56 Variants with high missingness (> 2%) and low MAF (< 1%) and variants 504 

that failed the Hardy–Weinberg test (P < 1 × 10−6) were removed. After excluding individuals due 505 

to discrepancies between reported and genotypic sex, sex chromosome aneuploidy, genotyping 506 

call rate < 0.95, heterozygosity outliers, and excess relatedness (second-degree relatives or 507 

closer), 49,825 individuals remained for validation. We inferred genetic ancestry using a public 508 

diverse population, including 3,380 unrelated individuals from the 1000 Genomes Project (1KG) 509 

and the Human Genome Diversity Project (HGDP), called 1KG_HGDP.63 We extracted common, 510 

high-quality SNPs (missingness < 1%, MAF > 1%) across MGBB and the 1KG_HGDP dataset. 511 

After pruning SNPs, we computed SNP weights for the genetic principal component using the 512 

1KG_HGDP dataset. Then, we projected MGBB participants into the same principal component 513 

space using the top 20 PCs. Using genetic PCs in the 1KG_HGDP dataset as a feature matrix, 514 

we trained a K-nearest neighbor model (k=1) for 1KG_HGDP reference populations to assign 515 

population labels to MGBB participants.  516 

 517 

King Faisal Specialist Hospital and Research Center cohort  518 

All participants from the King Faisal Specialist Hospital and Research Center cohort were 519 

of Middle Eastern ancestry and variants and sample quality control were previously described.58 520 

Briefly, we excluded samples due to variant calling missingness > 5%, heterozygosity rate > 5 521 

standard deviations above the mean, and mismatch between genotypically-determined and self-522 

reported sex. Variant-level quality control was conducted to remove variants with call rate < 98%, 523 

MAF < 0.01, or Hardy–Weinberg test (P < 1 × 10−6). After imputation by TOPMed r2 panel datasets, 524 

the variants with INFO < 0.3 and MAF < 0.01 were removed. 525 

 526 

Genetic correlation estimation between traits 527 

 528 

We selected 22 traits that directly or indirectly serve as proxies for the status of obesity 529 

and T2D (Supplementary Table 1). Our focus on obesity and T2D among various metabolic 530 

diseases is due to their closely related pathophysiology and shared treatment options, including 531 

GLP-1 receptor agonists and metabolic-bariatric surgery. This common biological, etiological, and 532 

clinical foundation justified the development of a composite metabolic PRS for diabesity. We 533 

defined a ‘trait’ as a composite of binary disease status (e.g., T2D) and continuous measures for 534 

metabolic status (e.g., BMI, HbA1c). 535 
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Genetic correlations between 22 traits were estimated using cross-trait LD-score 536 

regression (LDSC v1.0.1). Precomputed LD scores were obtained from ~1.2 million common 537 

SNVs in the well-imputed HapMap3 variants panel.64 For each trait, only GWAS with the largest 538 

sample size of European individuals was used to perform cross-trait LD-score regression analysis. 539 

A Bonferroni corrected P value threshold of 0.00227 (0.05/22) was used to define statistical 540 

significance.  541 

 542 

Polygenic risk score derivation 543 

 544 

Summary statistics from recent obesity and T2D-related GWAS studies (Supplementary 545 

Table 1) conducted in diverse ancestries were used to determine the primary weights for obesity 546 

and T2D PRSs. To ensure an independent holdout dataset for training and validating the obesity 547 

and T2D metabolic polygenic risk scores (O-MetPRS and D-MetPRS), UK Biobank participants 548 

for de novo GWAS were excluded for PRS score development (Extended Data Fig.1). Ancestry-549 

specific linkage disequilibrium (LD) reference panels were derived from the 1000 Genomes 550 

Project phase 3 data to match the ancestry of the discovery GWAS. 551 

The construction of O-MetPRS and D-MetPRS involved a two-layer process (Fig.1B). In 552 

layer 1, multiple PRS derived from ancestry-specific GWAS data were combined to yield a multi-553 

ancestry PRS for each trait. In layer 2, the multi-ancestry PRSs for 22 traits were further combined 554 

to generate MetPRS.  555 

In layer 1, separate PRSs were constructed based on each ancestry-stratified GWAS 556 

using the LDpred2 method, a Bayesian approach that calculates posterior mean effects for all 557 

variants, considering prior GWAS effect sizes and subsequent shrinkage based on LD.65 Only 558 

HapMap3 variants—a set of 1,296,172 variants representing common genetic variation across 559 

diverse populations—were included in the score calculation. 560 

The LDpred2 method used default parameters, including proportion of causal variant 561 

(values of P = 1.0 × 10−4, 1.8 × 10−4, 3.2 × 10−4, 5.6 × 10−4, 1.0 × 10−3, 1.8 × 10−3, 3.2 × 10−3, 5.6 562 

× 10−3, 1.0 × 10−2, 1.8 × 10−2, 3.2 × 10−2, 5.6 × 10−2, 1.0 × 10−1, 1.8 × 10−1, 3.2 × 10−1, 5.6 × 10−1 563 

and 1), heritability scales (s = 0.7, 1, and 1.4), and whether a sparse LD matrix was applied. 564 

These parameter combinations yielded 102 candidate PRSs for each GWAS summary statistic. 565 

Genotypes were extracted from a centrally imputed data repository by the UK Biobank, processed 566 

using bgenix,66 and PRSs were calculated for each individual in the UK Biobank using PLINK 567 

2.0.67 The best PRS was selected based on its performance in predicting obesity or T2D in an 568 

independent sample of 15,000 White British individuals from UK Biobank. The obesity model used 569 

log(BMI) as the outcome, while the diabetes model used T2D. The best score for each ancestry 570 

was selected based on predictive performance measured by odds ratio (binary traits) or 571 

incremental R2(continuous traits). The discriminative capacities (AIC) were then used to 572 

determine the optimal combination of different ancestry scores. A regression model estimated the 573 

mixing weights for ancestry-specific PRSs, which were then linearly combined into a single multi-574 

ancestry score. Similar procedures were followed for other diabesity-related traits. 575 

In layer 2, these multi-ancestry trait-specific PRSs were linearly combined with the multi-576 

ancestry obesity/T2D PRSs from layer 1 to generate the final O-MetPRS and D-MetPRS. Same 577 

as the layer 1, stepAIC was used for the feature selection for predicting log(BMI) or T2D to identify 578 
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the best combination of trait-level scores for mixing. Then, a regression model was used to 579 

estimate the mixing weights for each individual trait-specific PRS as described above, which were 580 

then linearly combined into a single MetPRS (O-MetPRS or D-MetPRS). Among the 93 ancestry- 581 

and trait-specific scores analyzed in the MetPRS training, 31 and 37  scores significantly 582 

contributed to the overall prediction in O-MetPRS and D-MetPRS, respectively, after optimization 583 

with stepAIC and weighting via regressions across both layers. The final mixing weights for each 584 

layer were summarized in Extended Data fig 8, and were listed in Supplementary Table 15 and 585 

16.  586 

 587 

Polygenic risk score validation 588 

 589 

MetPRS underwent internal hold-out validation within UK Biobank. To evaluate its 590 
performance, we compared it with previously published polygenic risk scores for BMI and T2D 591 
from the PGS Catalog (https://www.pgscatalog.org/). The variant effect sizes for these scores 592 
were obtained from the PGS Catalog and calculated within the same UK Biobank testing dataset, 593 
which included 34,626 European ancestry samples, 6,842 of African ancestry, 1,304 of East Asian 594 
ancestry, and 6,605 South Asian ancestry samples (Extended Data Fig.1). External validation 595 
was also performed in the All of Us (n=245,394), MGB Biobank (n=53,306), and a KFSH&RC 596 
cohort (n=6,416).  597 
 598 

GLP-1 agonist prescription and metabolic-bariatric surgery 599 

 600 

We conducted a comprehensive analysis using data from the MGB Biobank to evaluate 601 

the predictive utility of MetPRS for incident GLP-1 receptor agonist prescriptions and metabolic-602 

bariatric surgeries. GLP-1 receptor agonist prescription and metabolic-bariatric surgery were 603 

selected as clinical endpoints as they are interventions indicated for obesity and/or T2D. Initial 604 

datasets were filtered to include only individuals with complete genotypic and phenotypic data, 605 

excluding those censored before the biobank enrollment date, leaving 51,779 participants for 606 

analysis. For each participant, O-MetPRS and D-MetPRS were calculated using ancestry-607 

adjusted models. The first ten principal components were regressed out of the raw O-MetPRS 608 

and D-MetPRS using linear regression to account for population stratification. The residuals from 609 

this regression, which represent the MetPRS adjusted for ancestry, were then standardized to 610 

have a mean of 0 and a standard deviation of 1. 611 

To assess the association of MetPRS with clinical interventions, we utilized Cox 612 

proportional hazards regression models adjusted for age, sex, and ancestry PCs. We stratified 613 

participants into three risk groups based on their MetPRS values: top 10%, middle quintile (40–614 

60%), and bottom 10%. The primary outcomes were the cumulative incidence of GLP-1 receptor 615 

agonist prescriptions and metabolic-bariatric surgery over the follow-up period. Incidence was 616 

tracked from baseline until the first event or censoring. Competing risk models were applied to 617 

calculate cumulative incidence functions, and Kaplan-Meier curves were generated to visualize 618 

time-to-event data.  619 

 620 

Statistical analysis 621 
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For score training and validations, prediction for a continuous trait was calculated using 622 

linear regression models, while logistic regression models were employed for predicting the risk 623 

of a binary trait. All the models included baseline covariates: enrollment age, sex, genotyping 624 

array, and the first ten principal components of genetic ancestry. For the comorbidities analysis, 625 

the top decile of the PRS distribution was labeled as "carriers," while the remaining individuals 626 

were labeled as "non-carriers". The top five obesity and T2D scores in the score comparisons 627 

among 34,626 European individuals from the UK Biobank were compared with the O-MetPRS 628 

and D-MetPRS, respectively. Cox proportional-hazards models were used to estimate hazard 629 

ratios (HRs) for incident diseases in the UK Biobank, with enrollment age, genetically inferred sex, 630 

genotyping array, and the first ten principal components as covariates. The frequency of the 631 

highest prediction for each score was then calculated. All statistical analyses were performed 632 

using R software (version 4.2.2, R Project for Statistical Computing), and figures were generated 633 

using the ggplot2 R package (version 3.4.2). 634 

 635 

Data availability 636 

 637 

 All data are made available from the UK Biobank (https://www. ukbiobank.ac.uk/enable-638 

your-research/apply-for-access) to researchers from universities and other institutions with 639 

genuine research inquiries following institutional review board and UK Biobank approval. This 640 

research was conducted using the UK Biobank resource under application number 89885. All of 641 

Us data are made available from the All of Us Research Study to researchers from universities 642 

and other institutions with genuine research inquiries following institutional review board and All 643 

of Us approval. KFSH&RC and MGBB data are governed by local laws, so relevant data could be 644 

made available by contacting the investigators. The genome-wide association data supporting the 645 

findings of this study are publicly available in KoGES (https://koges.leelabsg.org/), Biobank Japan 646 

(http://jenger.riken.jp/en/result), FinnGen (https://www.finngen.fi/en/access_results), AGEN T2D 647 

(https://kp4cd.org/index.php/node/309), GIANT 648 

(https://portals.broadinstitute.org/collaboration/giant/) and Million Veteran Program (via dbGaP at 649 

https://ftp.ncbi.nlm.nih.gov/dbgap/studies/, under accession number phs001672). The research 650 

was approved by the Beijing Institute of Genomics (Chinese Academy of Sciences) and the China 651 

National Center for Bioinformation institutional review board, and the Mass General Brigham 652 

institutional review board.  653 
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Fig.1 | Study overview.  864 

Overview of study (A) and MetPRS development (B). Polygenic risk scores were developed using 865 

cohort-specific, ancestry-stratified summary statistics for 22 metabolic traits. (a) For each trait, 866 

such as BMI, the optimal combination of cohort-specific, ancestry-stratified PRSs was identified 867 

using stepAIC, the selected PRSs were then combined linearly to create multi-ancestry scores 868 

for predicting target trait (Obesity or Type 2 diabetes). The best mixing weights (β) were calculated 869 

using regression on 15,000 European participants from the UK Biobank training set (layer 1).(b) 870 

The most effective combination of multi-ancestry, trait-specific PRSs was identified using stepAIC 871 

for predicting target trait, and their optimal mixing weights (β) for selected PRSs were determined 872 

through regression on the same dataset. The chosen PRSs were then linearly combined to 873 

produce O-MetPRS and D-MetPRS (layer 2). The participants in the validation and testing set are 874 

non-overlapping individuals and independent with input GWAS samples. (c) These MetPRS were 875 

tested on internal (UK Biobank hold out test set) and external (All of Us, MGB Biobank, KFSH&RC) 876 

datasets. The genetic predispositions to traits indicative of obesity (i.e., BMI, waist circumference, 877 

and visceral adipose tissue) or T2D (i.e., fasting glucose, HbA1c, and insulin sensitivity) can 878 

contribute unique insights into the multifaceted nature of metabolic dysfunction. Leveraging 879 

genetic signature of related traits might capture a more comprehensive underlying metabolism 880 

and enhance the overall prediction of obesity and T2D. BMI: body mass index; DM: type 2 881 

diabetes; WC: waist circumference; HC: hip circumference; WHR: waist-to-hip ratio; VAT: visceral 882 

adipose tissue; ASAT: abdominal subcutaneous adipose tissue;  GFAT: gluteofemoral adipose 883 

tissue; vatGfatRatio: VAT/GFAT ratio; asatGfatRatio: ASAT/GFAT ratio; vatAsatRatio: VAT/ASAT 884 

ratio; 2hG: 2-hour glucose; ISI: insulin sensitivity index; FG: fasting glucose; FI: fasting insulin; 885 

cT1: MRI-based Liver iron corrected T1; NAFLD: non-alcoholic fatty liver disease. 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316620doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.01.24316620


 

 

 898 
Fig.2 | Genetic correlations across 22 metabolic traits and measures associated with 899 

insulin resistance. 900 

Genetic correlations were obtained from cross-trait LD-score regression using sex-combined 901 

summary statistics. Stumvoll insulin sensitivity index (ISI) is inversely proportional to insulin 902 

resistance as it measures insulin sensitivity. Genetic correlation heatmap matrix remained 903 

significant after multiple testing corrections are indicated by asterisks. BMI: body mass index; DM: 904 

type 2 diabetes; WC: waist circumference; HC: hip circumference; WHR: waist-to-hip ratio; ASAT: 905 

abdominal subcutaneous adipose tissue; VAT: visceral adipose tissue; GFAT: gluteofemoral 906 

adipose tissue; asatGfatRatio: ASAT/GFAT ratio; vatAsatRatio: VAT/ASAT ratio; vatGfatRatio: 907 

VAT/GFAT ratio; 2hG: 2-hour glucose; FG: fasting glucose; FI: fasting insulin; cT1: MRI-based 908 

Liver iron corrected T1; ISI: insulin sensitivity index; NAFLD: non-alcoholic fatty liver disease. 909 
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Fig.3 | Internal validation of MetPRS performance in UK Biobank hold-out test set 911 

The OR/SD with 95% CI and prevalence (%) across percentile bins were assessed for obesity 912 

(A,B) and T2D (C,D) in UK Biobank hold out test set (n = 49,377). MetPRS was compared with 913 

all obesity and T2D PRSs published in PGS Catalog (https://www.pgscatalog.org/) that had not 914 

included UK Biobank in score development. We then selected highest-performing score among 915 

published studies for obesity (PGS000027 - GPS_BMI - Khera AV et al) and T2D (PGS001357 - 916 

T2D_AnnoPred_PRS - Ye et al), and compared them with MetPRS by grouping according to 917 

polygenic risk score percentiles. Obesity was defined as a BMI of 25 Kg/m2 or above for East 918 

Asians, and 30 Kg/m2 or above for all other populations. O-MetPRS: obesity MetPRS; D-MetPRS: 919 

T2D MetPRS; OR/SD: odds ratio per increase in 1 standard deviation. 920 
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 955 

Fig.4 | External validation of MetPRS in multiple ancestries.  956 

The OR/SD for prevalent obesity (A) and T2D (B) was assessed for each polygenic risk score in 957 

a logistic regression model adjusted for age, sex, genotyping array and the first ten principal 958 

components of ancestry in external datasets: All of Us (n = 245,394), MGB Biobank (n = 53,306), 959 

and KFSH&RC cohort (n = 6,416). MetPRS was compared with top 5 obesity and T2D scores in 960 

PGS Catalog. Polygenic risk scores that consistently ranked highly across external datasets were 961 

selected as comparators (top 5), excluding any scores that incorporated any test cohort (i.e., All 962 
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of Us) in their score development. Obesity was defined as a BMI of 25 Kg/m2 or above for East 963 

Asians, and 30 Kg/m2 or above for all other populations. AoU: All of Us; MGBB: Massachusetts 964 

General Brigham Biobank; Admixed: Latino/admixed American; O-MetPRS: obesity MetPRS; D-965 

MetPRS: T2D MetPRS; OR/SD: odds ratio per increase in 1 standard deviation of PRS score. 966 
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 1005 
Fig.5 | Prediction of obesity and diabetes-related morbidities. 1006 

The top decile of the MetPRS distribution was identified as "carriers," and their risk was assessed 1007 

against the rest of the cohort. Risk was estimated using a Cox proportional hazards regression 1008 

model, adjusted for age, sex, genotyping array and the first ten principal components of ancestry. 1009 

The performance of O-MetPRS and the other top scores in predicting obesity-related morbidities 1010 

was evaluated (A), and their corresponding rank frequencies across morbidities were summarized 1011 

(B). The performance of D-MetPRS and other top scores in predicting diabetes-related morbidities 1012 

and complications was evaluated (C), and their corresponding rank frequencies across 1013 

morbidities and complications were summarized (D). The forest plot for the other conditions refers 1014 

to Extended Data Fig.5. Full list of morbidities is provided in Supplementary Table 14. 1015 
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Fig.6 | Risk for incident GLP-1 receptor agonist prescription and metabolic-bariatric 1018 

surgery according to MetPRS strata in MGB Biobank participants free of obesity and T2D 1019 

at the baseline 1020 

The 37,329 participants without baseline obesity and T2D were included for analysis. Cumulative 1021 

incidence of GLP-1 receptor agonist prescription (A) and metabolic-bariatric surgery (B) stratified 1022 

by O-MetPRS; cumulative incidence of GLP-1 receptor agonist prescription (C) and metabolic-1023 

bariatric surgery (D) stratified by D-MetPRS. The risks were estimated using Cox proportional 1024 

hazards regression model adjusted for age, sex, and the first ten principal components of ancestry 1025 

in a 37,329 population without obesity and T2D at the baseline in MGB Biobank. GLP-1 receptor 1026 

agonist prescription and metabolic-bariatric surgery were selected as clinical endpoints as they 1027 

are interventions indicated for obesity or diabetes or both. 1028 

 1029 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316620doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.01.24316620

