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Abstract 113 

Multiple germline and somatic genomic factors are associated with risk of coronary artery disease 114 
(CAD), but there is no single measure of risk that integrates all information from a DNA sample, limiting 115 
clinical use of genomic information. To address this gap, we developed an integrated genomic model 116 
(IGM), analogous to a clinical risk calculator that combines various clinical risk factors into a unified risk 117 
estimate. The IGM includes six genetic drivers for CAD, including germline factors (familial 118 
hypercholesterolemia [FH] variants, CAD polygenic risk score [PRS], proteome PRS, metabolome PRS) 119 
and somatic factors (clonal hematopoiesis of indeterminate potential [CHIP], and leukocyte telomere 120 
length [LTL]). We evaluated the IGM on CAD risk prediction in the UK Biobank (N=391,536), and 121 
validated it in the Trans-Omics for Precision Medicine (TOPMed) program (N=34,177). The 10-year 122 
CAD risk based on the IGM profile ranged from 1.1% to 15.5% in the UK Biobank and from 3.8% to 123 
33.0% in TOPMed, with a more pronounced gradient in males than females. IGM captured the 124 
cumulative effect of multiple genetic drivers, identifying individuals at high risk for CAD despite lacking 125 
obvious high risk genetic factors, or individuals at low risk for CAD despite having known genetic risk 126 
variants such as FH and CHIP. The IGM had the highest performance in younger individuals (C-statistic 127 
0.805 [95% CI, 0.699-0.913] for age ≤ 45 years). In middle age, IGM augmented the performance of 128 
the Pooled Cohort Equations (PCE), a clinical risk calculator for CAD. Adding IGM to PCE resulted in a 129 
continuous net reclassification index of 33.45% (95% CI, 32.11%-34.76%). We present the first model 130 
that integrates all currently available information from a single “DNA biopsy” to translate complex 131 
genetic information into a single risk estimate. 132 
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Introduction 138 

The early identification of individuals at high risk for coronary artery disease (CAD) is a 139 

fundamental strategy in preventing disease which remains the number one cause of mortality and 140 

morbidity.1 Utilizing DNA information for CAD risk prediction has gained traction due to its ability to 141 

identify early-onset cases, predict risk earlier in life, and augment the performance of existing clinical 142 

risk measures.2,3 Significant progress has been made in understanding germline genomic risk drivers 143 

of CAD. Both monogenic drivers of risk such as pathogenic variants in familial hypercholesterolemia 144 

(FH)-related genes (LDLR, APOB, and PCSK9) and polygenic risk scores (PRS) have shown promise 145 

in CAD risk stratification, individually and in combination.4,5 Moreover, age-related somatic mutations 146 

have been associated with increased CAD risk, attributed to clonal hematopoiesis of indeterminate 147 

potential (CHIP) and shortened leukocyte telomere length (LTL).6,7 Even though germline and somatic 148 

genomic variations shape CAD risk, they remain to be studied in aggregate. A single model leveraging 149 

all available information from a single DNA biopsy could have the potential to improve risk prediction of 150 

CAD.   151 

A comprehensive genomic risk model for CAD would integrate risk from early-life germline 152 

mutations with risk from somatic mutations occurring later in life. We previously demonstrated the 153 

interplay between monogenic and polygenic risk, highlighting that polygenic background alters the 154 

penetrance of FH variants.4 Thereafter, Zhao et al. reported that a combination of germline and somatic 155 

mutations augments the risk of CAD, as evidenced by the interaction between PRS and CHIP.8 This 156 

mounting evidence underscores that an ensemble model that integrates all known genetic drivers and 157 

their interactions might improve genomic risk prediction of CAD.  158 

As genomic medicine moves towards clinical adoption, it might be beneficial that a single 159 

measure of risk is communicated using the entirety of the data points available from an individual’s 160 

genome. Mixed information about risk is poised to confuse people unless integrated into a single 161 

number that is actionable. This concept has long been established in clinical risk prediction. For 162 

example, a single 10-year cardiovascular risk is provided by integrating information from factors such 163 

as blood pressure, cholesterol levels, smoking, and diabetes, each of which might indicate low or high 164 

risk for an individual.9 Similarly, in genomic risk prediction, an individual might have a monogenic FH 165 

variant, a low polygenic risk score, no CHIP variant, and a short LTL, challenged by how to interpret 166 

this complex combination of genetic risk factors. It is only helpful for the individual in this context to 167 

understand the summed effect and risk estimate.  168 

We developed an integrated genomic model (IGM) that uses a single score to maximize the 169 

precision in CAD risk prediction and enhance clinical translation. We demonstrated the accuracy, 170 

calibration, and added value of this all-at-once model using half a million people from the UK Biobank, 171 

and validated its performance in studies contributing to the Trans-Omics for Precision Medicine 172 

(TOPMed) program.  173 
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Results  175 

Developing an Integrated Genomic Risk Model for CAD  176 

We used the UK Biobank as a discovery cohort, including 391,536 individuals (mean [SD] age, 177 

56.5 [8.1] years; 53.8% women) including 28,346 (7.2%) participants who developed CAD over a 178 

median follow-up of 12.3 (interquartile range [IQR], 1.6) years. In the UK Biobank, 94.1% of participants 179 

were White (n = 368,296), with smaller proportions identifying as Asian (2.3%, n = 9,106), Black (1.6%, 180 

n = 6,237), and other ancestry (2.0%, n = 7,897). In contrast, TOPMed showed greater diversity, with 181 

68.3% White (n = 23,333), 25.9% Black (n = 8,858), 2.2% Asian (n = 737), and 3.7% Other ancestry (n 182 

= 1,250) (Supplementary Table 1). Whole-genome sequencing data was used to curate and compute 183 

features of risk previously shown to be associated with CAD. Specifically, we included two somatic 184 

features – CHIP and LTL– and four germline features – FH variants, CAD PRS, a proteome PRS 185 

(ProPRS) and a metabolome PRS (MetPRS). Of note, ProPRS and MetPRS were constructed using a 186 

series of genetic proxies for protein and metabolite levels derived from the atlas of genetic scores that 187 

predict multi-omics traits,10 rather than relying on actual measurement of protein and metabolite levels. 188 

Using this feature matrix, we developed a somatic risk score, a germline risk score, and an integrated 189 

genomic model (IGM) (Fig. 1). 190 

We then validated the IGM in 34,177 individuals from the TOPMed program (mean [SD] age, 191 

62.6 [10.6] years; 66.0% women) (Supplementary Table 1). Incident CAD events occurred in 3,972 192 

(14.3%) participants who developed CAD over a median follow-up of 10.5 (IQR, 8.6) years. The IGM 193 

model provided individual 10-year risk estimates across percentiles of somatic and germline risk (Fig. 194 

1). Further details on baseline characteristics by genetic drivers are presented in Supplementary Tables 195 

2-5. 196 

Germline and Somatic Genomic Drivers of CAD Risk 197 

We first estimated the individual risk of prevalent and incident CAD imparted by each of the two 198 

somatic and four germline drivers. When evaluating the association of the germline drivers with 199 

prevalent CAD in the UK Biobank, FH variant carriers had a three-fold increase in risk – odds ratio (OR) 200 

of 3.08 (95% confidence interval [CI], 2.46-3.85; p < 0.001). The CAD PRS (OR per standard deviation 201 

(SD), 2.15; 95% CI, 2.11-2.19; p < 0.001), MetPRS (OR per SD, 1.27; 95% CI, 1.25-1.29; p < 0.001), 202 

and ProPRS (OR per SD, 1.19; 95% CI, 1.17-1.21; p < 0.001) were also significantly associated with 203 

CAD (Fig. 2A). We combined these four germline risk factors into a single predictor called GermRisk. 204 

The OR per SD for GermRisk was 2.16 (95% CI, 2.12-2.20; p < 0.001), and individuals in the top quintile 205 

of GermRisk had 3.6-fold increase in risk compared to everyone else (95% CI, 3.47-3.73; p < 0.001) 206 

(Supplementary Table 6). The effect sizes of genetic drivers for prevalent CAD in TOPMed were overall 207 

consistent with those of UK Biobank (Fig. 2B; Supplementary Table 7). 208 

 We then evaluated the association of genomic drivers with incident CAD in the UK Biobank, 209 

and demonstrated strong associations of each of the germline and somatic drivers with incident CAD 210 

(Fig. 2C; Supplementary Table 8). For germline drivers, the HR for FH carriers was 1.69 (95% CI 1.41-211 

2.03, p < 0.001) and HRs per SD for CAD PRS, MetPRS, and ProPRS were 1.56 (95% CI 1.55-1.58, p 212 

< 0.001), 1.18 (95% CI 1.17-1.19, p < 0.001), and 1.15 (95% CI 1.14-1.17, p < 0.001), respectively.  For 213 

somatic drivers, CHIP and LTL were associated with CAD with HR of 1.13 (95% CI 1.06-1.20, p < 0.001) 214 

and 0.94 (95% CI 0.92-0.95, p < 0.001), respectively. We combined these two somatic risk factors into 215 

a single predictor called SomaRisk, similar to GermRisk.  Both GermRisk and SomaRisk demonstrated 216 

a strong association with incident CAD – HR per SD of 1.57 (95% CI 1.55-1.59, p < 0.001) and 1.05 217 

(95% CI 1.04-1.06, p < 0.001), respectively (Fig. 2C; Supplementary Table 8). The effect sizes of 218 

genetic drivers for incident CAD in TOPMed were mostly consistent with those of UK Biobank (Fig. 2D; 219 

Supplementary Table 9). 220 

Integrated Genomic Model to Predict CAD Risk 221 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316612doi: medRxiv preprint 

https://www.zotero.org/google-docs/?4LFczJ
https://doi.org/10.1101/2024.11.01.24316612
http://creativecommons.org/licenses/by-nc-nd/4.0/


We assessed pairwise correlations between six genetic variables from the UK Biobank and 222 

TOPMed studies using Pearson correlation coefficients to evaluate multicollinearity before combining 223 

them in a Cox proportional hazards model. This allowed us to gauge overlapping signals, particularly 224 

between CAD PRS, MetPRS, and ProPRS. The correlations among six drivers were weak (≤ 0.3) (Fig. 225 

2E and 2F), reassuring that each driver contributes distinct signals. 226 

To obtain a comprehensive assessment of a person’s CAD risk, we used an integrated genomic 227 

model (IGM) to quantify the risk from both germline and somatic drivers – a combined predictor of 228 

GermRisk and SomaRisk (Supplementary Fig. 1). The IGM risk was significantly associated with the 229 

risk of incident CAD (HR per SD, 1.58; 95% CI, 1.56-1.59; p < 0.001), and the effect size was consistent 230 

when validated in the TOPMed external data set (HR per SD, 1.46; 95% CI, 1.40-1.53; p < 0.001) (Fig. 231 

2C and 2D; Supplementary Tables 8-9). 232 

Joint modeling of germline and somatic drivers indicated substantial gradients in risk of CAD, 233 

according to inherited DNA variants and variation in the rate of LTL shortening and accumulation of 234 

somatic variants leading to CHIP. For the sex-combined estimation of the 10-year risk of CAD in UK 235 

Biobank, individuals in the lowest germline and somatic risk percentile have a 10-year risk as low as 236 

1.1%, while those in the highest germline and somatic risk percentile have a 10-year risk as high as 237 

15.5% (Fig. 3A). A similar gradient in risk across germline and somatic variation was observed in 238 

TOPMed, ranging from 3.8% to 33.0% (Fig. 3B). For a sex-stratified analysis in the UK Biobank, male 239 

individuals had a 10-year risk that ranged from 1.8% to 23.0% across the germline and somatic risk 240 

spectrum. This was about 2.3 times higher than the risk spectrum for females, which spanned from 0.7% 241 

to 10.3% (Fig. 3C). Large gradients in 10-year risk were consistently observed in the TOPMed for the 242 

sex-stratified analysis, with males ranging from 4.8% to 39.9% and females ranging from 3.0% and 243 

27.0% (Fig. 3D). 244 

Heterogeneity of Genomic Risk Profiles Captured by the Integrated Genomic Model 245 

The IGM effectively captured a range of genetic risk combinations for CAD, identifying high risk 246 

groups (top 20% overall risk) with diverse genetic profiles in the UK Biobank (Fig. 4A). High risk IGM 247 

group included individuals at high risk in both germline and somatic factors (20.6%), those at high risk 248 

for one of the factors (78.6%), and a small proportion with moderately elevated, yet sub-threshold, risks 249 

for both factors (0.8%) (Fig. 4A). Individuals at high risk for both germline and somatic factors had the 250 

highest 10-year risk (8.8%, 95% CI 8.43-9.19%) within the high risk IGM group (Supplementary Table 251 

10). As expected, the high risk group identified by the IGM had a larger number of genetic risk drivers 252 

compared to the low risk group. For example, 63.9% had two or more genetic drivers in the high risk 253 

group, compared to only 3.4 % in the low risk group in the UK Biobank (Fig. 4B). Notably, people at low 254 

IGM risk were not without genetic risk drivers, and a non-negligible proportion of 29.3% had one or 255 

more genetic risk drivers (Fig. 4B and Supplementary Table 11); however, mitigating effects from other 256 

genetic variants (e.g., low CAD PRS) seem to offset the overall risk, thus classifying these individuals 257 

as low risk. Similar proportions of breakdown and distribution patterns were observed in TOPMed (Fig. 258 

4C, 4D and Supplementary Table 11).  259 

Integrated Genomic Model and Clinical Risk 260 

The American College of Cardiology/American Heart Association, Pooled Cohort Equations 261 

(PCE) are a guideline-recommended clinical-risk calculator that uses clinical risk factors to identify high 262 

risk people for initiation of preventive treatments (i.e., statin).11 Within each of the guideline-defined 263 

strata of the PCE risk, the IGM score was a strong predictor of coronary artery disease events and 264 

showed a consistent risk gradient by IGM score category (Fig. 5A, B). Among participants at high PCE 265 

risk (> 20% 10-year risk), the 10-year CAD event rates were 5.4%, 9.5%, and 16.4%, for low, 266 

intermediate, and high IGM risk groups (Fig. 5A). Remarkably, a 10-year CAD risk threshold of 7.5% 267 

for initiating statin therapy as guideline recommended was reached even among individuals in the 268 

borderline (5.0%-7.4% 10-year risk) and intermediate (7.5%-19.9% 10-year risk) PCE categories when 269 
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stratified by IGM percentiles (Fig. 5B) – an IGM score higher than 95th and 72nd percentile, respectively 270 

for borderline and intermediate risk (Fig. 5B). A close match of the model predicted and actual observed 271 

10-year disease risk shows the models were well calibrated (Supplementary Fig. 2). When 272 

disaggregated to individual genetic risk drivers, the FH variants and CAD PRS most prominently re-273 

stratified the CAD risk across PCE categories, but other risk factors also have significant stratification 274 

ability (Supplementary Fig. 3). 275 

By combining the conventional clinical risk of PCE with the genetic risk of IGM, the model 276 

showed the most potent risk stratification ability. When 20,624 individuals who experienced CAD events 277 

in the UK Biobank were used to determine reclassification by adding IGM to PCE compared to PCE 278 

alone, 1,858 were correctly classified at a higher risk, while 1,452 were incorrectly placed at a lower 279 

risk (Fig. 5C), leading to a net proportion of accurate reclassifications for events is 1.97% (406/20,624). 280 

For nonevents, 22,954 individuals were correctly down-classified, and 16,708 were incorrectly up-281 

classified, leading to a net reclassification proportion of 1.75% (6,246/356,656) for nonevents. The 282 

overall NRI combines the events and nonevents, resulting in 3.72% (95% CI, 3.15%-4.26%). 283 

Continuous NRI was 33.45% (95% CI, 32.11%-34.76%). As shown in the full stratification table, there 284 

was a lower event rate in the low risk category for the combined model than in the PCE-alone model 285 

(1.9% versus 2.3%), however, a higher event rate was observed for the high risk category (27.1% 286 

versus 23.5%), demonstrating the prominent risk stratification ability of the IGM model with guideline-287 

recommended PCE risk estimator (Supplementary Table 12). 288 

Finally, we evaluated the discrimination of PCE, IGM, and combined model compared to a 289 

baseline model with age, sex and genetic ancestry. The C-statistic for the base model was 0.701 (95% 290 

CI, 0.698-0.704), PCE was 0.725 (95% CI 0.722-0.728), and the combination of base and IGM model 291 

was 0.734 (95% CI 0.731–0.737), respectively, in UK Biobank (Supplementary Fig. 4A; Supplementary 292 

Table 13). The performance was highest when combining PCE and IGM (C-statistic, 0.750; 95% CI, 293 

0.747-0.753). In the TOPMed data, the discrimination with IGM was further improved when limiting 294 

prediction to younger individuals (aged ≤ 45 years) (C-statistic 0.805, 95% CI, 0.699-295 

0.913)( Supplementary Fig. 4B and Supplementary Table 13). 296 

 297 

  298 
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Discussion  299 

We developed an integrated genomic model for CAD prediction that combines multiple known 300 

germline and somatic risk drivers that can be measured using a single DNA biopsy. The model 301 

demonstrated value in improving the precision of risk estimation and capturing people at risk due to 302 

diverse genetic risk profiles. Based on the IGM, the 10-year CAD risk varied from 1.1% to 15.5% among 303 

UK Biobank participants and 3.8% to 33.0% in TOPMed study participants, with a more pronounced 304 

gradient in males than females for both cohorts. The integrated genomic score showed a high 305 

discrimination when combined with clinical risk score or used in younger age groups. The addition of 306 

the IGM to the clinical risk model resulted in a continuous net reclassification index of 33.45%. The 307 

integrated genomic model captured cumulative and comprehensive effects of multiple genetic drivers, 308 

identifying high risk individuals who may otherwise be overlooked when using conventional risk models 309 

relying on a single genomic driver (i.e., PRS or FH). 310 

Conventional genomic risk models for CAD that focused on monogenic (FH) or polygenic (PRS) 311 

drivers were limited in their uniaxial approach, falling short of encompassing the wide range of genetic 312 

combinations present in real-world populations.12 For instance, individuals carrying FH and CHIP 313 

variants might still have a low overall risk of CAD if their effects are offset by protective PRS and low 314 

MetPRS. Other individuals may present with different combinations of risk and protective genetic factors 315 

that collectively indicate a high CAD risk. Such dynamics complicate CAD risk assessment using 316 

standard genomic approaches that rely on stratification by a single genetic driver. Our IGM captured 317 

such dynamics by integrating all known genomic risk drivers for CAD, including germline, somatic, and 318 

predicted proteomic/metabolomic drivers in a single model, without compromising the performance. We 319 

successfully demonstrated that IGM captures cumulative and comprehensive effects of multiple genetic 320 

drivers, identifying high risk individuals who do not have obvious germline and somatic risk but whose 321 

aggregate genetic risk escalates to a high overall risk (Fig. 4A, 4B). Conversely, a subset of individuals 322 

classified in the low risk group by IGM possessed one or more high risk genetic drivers (Fig. 4C), 323 

indicating other drivers may confer protective benefits and thus reduce the overall risk. Such a dynamic 324 

profile of personal genomics should be considered to fully achieve the goals of precision prevention and 325 

personalized care. 326 

The high risk group identified by the IGM exhibited an impressive diversity in their genetic 327 

profiles and combinations. In the high risk group identified by IGM, 20.9% and 19.8% of individuals 328 

carried a high risk classification for more than 3 genetic drivers while 36.1% and 37.6% had a high risk 329 

for only 1 or 0 drivers in UK Biobank and TOPMed studies, respectively (Supplementary Table 11). 330 

Interestingly, in the low risk group by IGM (bottom 20%), there were 32 and 593 UK Biobank participants 331 

carrying FH and CHIP variants respectively, suggesting that a single genetic factor does not necessarily 332 

dictate the overall risk for the disease (Supplementary Table 14). Our observation unveiled a cumulative 333 

pattern where the protective level of one or a group of drivers can offset the risk posed by others. The 334 

multidimensional nature of our model might facilitate a nuanced approach to risk stratification and draw 335 

clinical attention to at-risk individuals who would have otherwise been overlooked by conventional 336 

genomic models that are not designed to capture diversity of the genetic pool. 337 

The integrated genomic model based on comprehensive DNA information is a strong predictor 338 

of CAD in young adults enabling primordial prevention prior to the onset of clinical risk factors. While 339 

IGM had modestly higher discriminative capacity for incident CAD compared with the clinical risk score, 340 

its predictive accuracy was significantly higher in younger individuals (aged ≤45 years) in the TOPMed 341 

program studies (C-statistic 0.805) (Supplementary Table 13). Our findings imply that the use of genetic 342 

information to predict future CAD risk might be more profound for young adults, consistent with previous 343 

findings.13,14 In contrast to clinical risk models, the IGM is available even before clinical risk factors 344 

manifest, providing an additional benefit to young adults who often remain undetected on the radar of 345 

traditional assessments. 346 
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The highest prediction was achieved by combining IGM with clinical risk score, highlighting the 347 

value of genetics in complementing clinical risk prediction. The IGM enabled risk stratification for CAD 348 

within each clinical risk stratum, enhancing the identification of individuals requiring targeted clinical 349 

interventions. Low genetic risk individuals in the high PCE group demonstrated equivalent 10-year CAD 350 

risk with average genetic risk individuals in the intermediate PCE group, and a consistent downward 351 

trend was observed across all clinical risk strata (Fig. 5A). Conversely, an upward trend was observed 352 

for individuals with high genetic risk identified by IGM. Current guidelines recommend initiating statin 353 

therapy for individuals in the intermediate PCE category, defined as a 10-year CAD risk of 7.5% or 354 

higher.15 However, our findings indicate that individuals in the borderline PCE category who have a high 355 

genetic risk may also warrant targeted interventions, as their 10-year CAD risk is comparable (Fig. 5A). 356 

It is noteworthy that individuals at the 33rd, 72nd, and 95th percentiles of integrated genomic risk all 357 

exhibited an equivalent 10-year CAD risk of 7.5% (Fig. 5B), despite being categorized in high, 358 

intermediate, and borderline PCE groups, respectively. This further indicated that existing clinical-359 

focused models might not adequately encompass the multifaceted nature of CAD risk, warranting the 360 

consideration of the interplay between genetic and clinical factors in risk evaluations. 361 

While monogenic and polygenic drivers of risk have become well-established, emerging models 362 

based on proteomic data are now being developed to predict cardiovascular risk, expanding beyond 363 

traditional clinical and genomic models.16,17 Helgason et al. recently developed a protein risk score 364 

based on 4,963 plasma proteins from 13,540 Icelanders and demonstrated reliable predictability for 365 

major cardiovascular risk.16 Nevertheless, implementation of proteome measurement in clinical practice 366 

remains challenging due to the cost and feasibility constraints. To make the most of proteomic and 367 

metabolomic insights in settings without their direct measurements, we developed proteome and 368 

metabolome PRSs, leveraging genetically-predicted protein and metabolite levels instead of actual 369 

serum protein levels based on the genetic score atlas for multi-omics traits.10 We calculated genetic 370 

score for 2,692 proteins and 876 metabolites levels, with 124 proteins and 142 metabolites comprising 371 

the final ProPRS and MetPRS models after Lasso penalty was applied, respectively (Supplementary 372 

Fig. 5; Supplementary Tables 15-16). Although some correlation was present among the MetPRS, 373 

ProPRS and CAD PRS, the magnitude was weak (≤ 0.3) (Fig. 2), implicating that each driver 374 

contributes a distinct, non-overlapping signal. To the best of our knowledge, we have introduced the 375 

first genetically-predicted protein and metabolite risk scores for CAD risk prediction, which are readily 376 

obtainable through standard low-cost DNA microarray or sequencing and thereby more cost-effective 377 

than serum protein measurements. Our purpose was to make the most out of a single DNA biopsy, 378 

which is becoming increasingly feasible through adoption of genomic medicine and large biobanking 379 

efforts.  380 

This study has several limitations. First, we have not provided ancestry-specific results given 381 

the majority composition with European and smaller sample size for non-European ancestries. However, 382 

to promote inclusion and equity, we used multi-ancestry cohorts from UK Biobank and TOPMed in the 383 

primary analysis, as well as multi-ancestry PRS that has been demonstrated to perform well for both 384 

European and non-European ancestries.12 Second, this study evaluated CAD as the primary outcome 385 

whereas PCE was developed to predict cardiovascular disease which includes CAD and stroke. 386 

Nevertheless, previous studies have shown that the PCE is effective in predicting CAD.18,19 Third, the 387 

CAD PRS used in this study included low frequency and common variants, but did not incorporate rare 388 

high-impact genetic variants associated with CAD risk. However, based on whole genome sequencing 389 

data from half a million populations, we separately identified somatic mutations and curated significant 390 

rare variants such as those linked to FH to develop a comprehensive genomic model. This approach 391 

allowed us to comprehensively capture the diverse spectrum of genetic variant frequencies linked to 392 

CAD. Fourth, baseline CAD risk is different in the UK Biobank and TOPMed because UK Biobank 393 

consists of healthier individuals compared to TOPMed. The incidence of CAD was 7.2% and 12.7% 394 

respectively for UK Biobank and TOPMed (Supplementary Table 1), and this was reflected in the risk 395 

gradient captured by IGM the 10-year CAD risk ranged from 1.1% to 15.5% among UK Biobank 396 
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participants, and 3.8% to 33.0% in TOPMed participants (Fig. 3).  397 

Conclusion  398 

We integrated all currently available information from a single “DNA biopsy” to translate complex genetic 399 

information into a single risk estimate. The IGM powerfully stratifies CAD risk in young individuals and 400 

complements clinical risk prediction in middle-aged individuals. Because the model considered the 401 

contributions of multiple genomic drivers for every individual, it was able to identify high risk individuals 402 

who may otherwise be overlooked when using conventional risk models relying on a single genomic 403 

driver. Our model holds the promise to transform CAD risk assessment strategies in an emerging 404 

'genome-first' healthcare framework, where genomic information becomes readily accessible and a 405 

fundamental part of patient care. Moreover, the framework we propose could be extended to other 406 

diseases known to have multiple genomic risk drivers.   407 
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Methods  408 

Dataset and Quality Control 409 

Access to the UK Biobank data was approved with application ID 89885. Samples with discordance 410 

between self-reported sex (Field 31) and genetically inferred sex (Field 22001) were removed. 411 

Additionally, samples with individual-level genotype missing rates (Field 22005) greater than 5%, 412 

outliers for heterozygosity or missing rate (Field 22027), or sex chromosome aneuploidy (Field 22019) 413 

were excluded. To remove close relatives in the samples, we excluded one of the samples whose 414 

pairwise kinship value is greater than or equal to 0.0884 (threshold of the second-degree close 415 

relatives20) but also tried to keep as many samples as possible. Finally, 391,536 individuals were 416 

included in the final analysis (Supplementary Fig. 6A). 417 

A total of 80,588 participants from the NHLBI’s TOPMed program with available whole genome 418 

sequencing data were considered. These studies primarily consist of observational cohorts that have 419 

been described in detail previously.6 Among 80,588 participants, we excluded 49 samples with 420 

conflicting sex information, 1 sample without principal components, and 17,237 samples with excess 421 

kinship, defined as a second-degree relationship or closer, indicated by a KING coefficient greater than 422 

0.0884. Finally, 34,177 participants remained for analysis after excluding an additional 29,124 423 

participants without CAD phenotype (Supplementary Fig. 6B). Cohorts contributed to this population 424 

are Amish, Atherosclerosis Risk in Communities Study[ARIC], Cardiovascular Health Study[CHS], 425 

Genetic epidemiology of COPD[COPDGene], Diabetes Heart Study[DHS], Framingham Heart 426 

Study[FHS], Genetic Study of Atherosclerosis Risk[GeneSTAR], Genetic Epidemiology Network of 427 

Arteriopathy[GENOA], Jackson Heart Study[JHS], Multi-Ethnic Study of Atherosclerosis[MESA], and 428 

Women's Health Initiative[WHI]. 429 

Curation of FH, CHIP, and LTL 430 

To determine the carrier status of familial hypercholesterolemia (FH) for samples with available whole-431 

exome sequencing data, a combination of variant selection criteria was applied: 1) Variants from 432 

previous publications which were manually curated by clinical geneticists;4,21–23 2) Variants in LDLR, 433 

APOB and PCSK9 from the ClinVar database (downloaded February 27th, 2023, GRCh38) annotated 434 

as pathogenic, likely pathogenic, or pathogenic/likely pathogenic without conflicts. For APOB and 435 

PCSK9 gene, only variants associated with hypercholesterolemia but not hypobetalipoproteinemia were 436 

included; 3) Variants in LDLR annotated as high-confidence loss-of-function by the VEP Loss-Of-437 

Function Transcript Effect Estimator (LOFTEE) plugin were also included.24,25 Only variants with a net 438 

positive association with LDL cholesterol level accessed by an iterative conditional regression analysis 439 

were included in the final variant list for subsequent analysis (Supplementary Table 17).26  440 

The carrier status of clonal hematopoiesis of indeterminate potential (CHIP) was detected following a 441 

similar procedure described in Yu Zhi et al. and others.27–29 Specifically, carrier status was determined 442 

by carrying CHIP variants from one of the genes TET2, ASXL1, JAK2, PPM1D, TP53, SRSF2, and 443 

SF3B1. Leukocyte telomere length (LTL) was log-transformed to obtain a normal distribution and then 444 

Z-standardized using the distribution of all individuals with a telomere length measurement (Field 445 

22192). Details of processing were described in V. Codd et al.30 Unless otherwise specified, genetic 446 

drivers have been curated comparably for UK Biobank and TOPMed. More details on the curation of 447 

CHIP and LTL for TOPMed are described elsewhere.6 448 

CAD Polygenic Risk Score, Metabolome Polygenic Risk Score, and Proteome Polygenic Risk 449 

Score  450 

In the UK Biobank, CAD PRS was calculated using the imputed genotype data and variant weights from 451 
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the multi-ancestry and multi-trait polygenic risk score for CAD described in A. P. Patel et al.,12 452 

implemented with PLINK2.31 Proxy Risk scores for Metabolome  (Metabolon and Nightingale) and 453 

Proteome (Somalogic and Olink) were calculated with the imputed genotype data and model weight 454 

files downloaded from OMICSPRED resource which derived from the INTERVAL study cohort 455 

(https://www.omicspred.org/Scores/Somalogic/INTERVAL),10 with 726 (Metabolon), 141 (Nightingale), 456 

2,384 (Somalogic), and 308 (Olink) scores, respectively. We randomly sampled 200,000 individuals 457 

from UK Biobank as the training set, and a lasso penalty was applied to the Cox proportional hazards 458 

regression model with age, sex, and the top 10 principal components (PCs) as covariates and incident 459 

CAD as an outcome, similar to the process described elsewhere.16 Five-fold cross-validation was 460 

employed to select the optimal penalization strength for hyperparameters. Two independent models 461 

were trained for the prediction of CAD risk using proxy scores of metabolome (genetic risk scores for 462 

867 serum metabolites) and proteome (genetic risk scores for 2,692 serum proteins). With weights 463 

determined by the cross-validation procedures, the weighted proxy risk scores for Metabolome 464 

(MetPRS) and Proteome (ProPRS) were then calculated for all samples. The number of genetically 465 

predicted metabolome and proteome scores retained in the MetPRS and ProPRS lasso models were 466 

142 and 124, respectively (Supplementary Tables 15-16).  467 

CAD Definition 468 

In the UK Biobank, CAD was defined based on self-report at enrollment, hospitalization records, or 469 

death registry records as previously described (Supplementary Table 18).4  In the TOPMed studies, 470 

CAD was defined as ischemic heart disease events, including myocardial infarction and coronary 471 

revascularization.6 Incident CAD cases were defined as those diagnosed after recruitment. The survival 472 

year was defined as the years between recruitment and diagnosis for incident CAD cases, or between 473 

the time of the recruitment and the last censoring for controls. 474 

Covariates and Adjustment 475 

Untreated blood pressure was estimated by adjusting the raw value for anti-hypertensive medication 476 

intake by adding 15 mmHg to the systolic blood pressure and 10 mmHg to the diastolic blood pressure 477 

as previously described.32,33 Untreated lipid levels were estimated by adjusting the raw lab-tested value 478 

according to lipid-lowering medication intake as described previously12 and detailed in Supplementary 479 

Table 19.  480 

To eliminate potential confounding effects of covariates, PRS, MetPRS, ProPRS, and LTL were 481 

regressed on recruitment age, sex, and the first 10 principal components of genetic ancestry 482 

(Supplementary Fig. 7). The scaled residuals with mean zero and standard deviation of one were then 483 

used in the subsequent analyses. 484 

Developing the integrated genomic risk model 485 

We evaluated pairwise correlations between six genetic variables from the UK Biobank and TOPMed 486 

studies to assess potential multicollinearity before including these variables in a regression model. The 487 

correlation matrix was computed using Pearson correlation coefficients. As germline genetic risk drivers 488 

(FH, PRS, MetPRS, and ProPRS) remain constant from birth, while CHIP accumulates and LTL 489 

shortens with age (somatic risk drivers), we systematically characterized and investigated the joint 490 

effects of germline and somatic risk drivers on CAD. Germline risks were combined into a single value 491 

termed GermRisk, and somatic risks were combined into a single value termed SomaRisk, the 492 

combination weights were estimated by a joint regression model. Specifically, for prevalent CAD, the 493 

germline risk drivers (FH, PRS, MetPRS, and ProPRS) were fitted into a logistic regression model, and 494 

the coefficients were used as weights to combine the values of the drivers into GermRisk linearly. For 495 

incident CAD, the germline risk drivers were fitted to a Cox proportional hazards model, and GermRisk 496 
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was calculated as a weighted summation of germline variables and their corresponding Cox coefficients, 497 

and similar procedures were performed to obtain SomaRisk. 498 

Next, GermRisk and SomaRisk were regressed on recruitment age, sex, and the top 10 PCs, and the 499 

residuals were scaled to have zero mean and unit standard deviation, respectively. The standardized 500 

residuals of GermRisk and SomaRisk were then fitted to a Cox proportional hazards model. A final 501 

predictor, termed IGM (integrated genomic model), was a linear summation of GermRisk and SomaRisk 502 

residual according to the Cox coefficient estimation. The weights were fixed and applied to TOPMed 503 

data for independent validation. The overall framework for developing and validating the integrated 504 

genomic model is shown in Fig. 1. 505 

Estimating Effect Sizes 506 

To investigate the genomic factors driving the risk of prevalent and incident CAD, a logistic regression 507 

model and Cox proportional hazards regression model were employed respectively to estimate the 508 

effect sizes for individual genetic drivers. Additionally, PRS, MetPRS, ProPRS, LTL, and the ensembled 509 

ones (IGMRisk, GermRisk and SomaRisk) were binarized, with individuals in the top 20% treated as 510 

carriers (hPRS, hMetPRS, hProPRS, hIGMRisk, hGermRisk and hSomaRisk) or bottom 20% treated 511 

as a carrier (sLTL) for telomere length.  512 

Interplay Between Genomic Drivers and Clinical Risk Score 513 

To investigate the interplay between genomic risk and PCE, participants in the UK Biobank were divided 514 

into four groups based on guideline-defined categories of the  PCE –  low (estimated risk less than 5%), 515 

borderline (risk between 5% to 7.5%), intermediate (risk between 7.5% and 20%), and high (risk greater 516 

than 20%).15 For the IGM, we divide samples into three risk groups as standard in genomic analyses – 517 

high genomic risk (top quintile of the distribution), intermediate genomic risk (middle three quintiles), 518 

and low risk (bottom quintile).   519 

Estimating 10-year risk of CAD 520 

The 10-year risk of CAD was estimated by Cox proportional hazards regression with GermRisk and 521 

SomaRisk as predictors and the age, sex, and first 10 principal components of genetic ancestry as 522 

covariates. To investigate the stratification capacity of different models, the C-statistic from 1) a base 523 

model (sex, age, and first 10 PCs), 2) a log-transformed value of PCE, 3) a base model and IGM, and 524 

4) a base model, IGM and log(PCE), was estimated by a Cox proportional hazards model, respectively. 525 

To evaluate the improvement of prediction by adding the IGM to PCE, the net reclassification 526 

improvement was calculated based on a 10-year risk threshold of 7.5% for categorical reclassification 527 

and threshold 0 for continuous reclassification as demonstrated elsewhere.18,19 Confidence intervals 528 

were estimated by 100 times bootstrap. All statistical analyses were done using R v4.2.2 (R Foundation, 529 

Vienna, Austria), including the following packages: survival (v3.5-7), survminer (v0.4.9), tableone 530 

(v0.13.2), pROC(v1.18.5), nricens(v1.6), rms(v6.7-1) and glmnet (v4.1-8). 531 

Data availability 532 

All data are made available from the UK Biobank (https://www.ukbiobank.ac.uk/enable-your-533 

research/apply-for-access) to researchers from universities and other institutions with genuine 534 

research inquiries following institutional review board and UK Biobank approval. This research was 535 

conducted using the UK Biobank resource under Application Number 89885 and approved by Beijing 536 

Institute of Genomics review board. The weights of MetPRS and ProPRS are available in the 537 

Polygenic Score Catalog (IDs: PGS005093-PGS005094). This paper used the TOPMed whole 538 

genome sequencing (WGS) data and cardiovascular disease phenotype data. Genotype and 539 

phenotype data are both available in database of Genotypes and Phenotypes (dbGaP). The TOPMed 540 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316612doi: medRxiv preprint 

https://www.zotero.org/google-docs/?XwTtvw
https://www.zotero.org/google-docs/?U1W7xa
https://doi.org/10.1101/2024.11.01.24316612
http://creativecommons.org/licenses/by-nc-nd/4.0/


WGS data were from the following eleven study cohorts: Amish, Atherosclerosis Risk in Communities 541 

Study (ARIC), Cardiovascular Health Study (CHS), Genetic epidemiology of COPD (COPDGene), 542 

Diabetes Heart Study (DHS), Framingham Heart Study (FHS), Genetic Study of Atherosclerosis Risk 543 

(GeneSTAR), Genetic Epidemiology Network of Arteriopathy (GENOA), Jackson Heart Study (JHS), 544 

Multi-Ethnic Study of Atherosclerosis (MESA), and Women's Health Initiative (WHI).  545 
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 755 

Fig. 1. Overview of development and validation of integrated genomic model (IGM). Based on 756 
sequencing data from UK Biobank (N=391,536), we curated 6 genomic features that are associated 757 
with the risk of CAD. Scores of somatic and germline risks were ensembled to construct IGM, which 758 
was then validated in the TOPMed cohort (N=34,177). 759 
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 772 

Fig. 2. Effect size of genomic drivers in UK Biobank and TOPMed. Effect sizes based on prevalent 773 
coronary artery disease (CAD) in UK Biobank (A) and TOPMed (B), and incident CAD in UK Biobank 774 
(C) and TOPMed (D) are presented. Odds ratio and hazard ratio per standard deviation are shown for 775 
all continuous measures (PRS, MetPRS, ProPRS, LTL, GermRisk, SomaRisk, IGMRisk). Odds ratio 776 
and hazard ratio per carrier status are shown for FH and CHIP.  Estimates are derived from logistic 777 
regression (panels A and B) or Cox proportional hazards model (panels C and D) with sex, recruitment 778 
age, and the first 10 principal components of genetic ancestry as covariates. GermRisk is a weighted 779 
combination of four genetic drivers (PRS, MetPRS, ProPRS, and FH) as a single predictor, with weights 780 
estimated by a logistic regression model. SomaRisk is a weighted combination of two somatic drivers 781 
(CHIP and LTL) as a single predictor, with weights estimated by a Cox proportional hazards model. 782 
IGMRisk is a combination of GermRisk and SomaRisk, weighted from a Cox proportional hazards 783 
regression model estimation. Correlations among the six genetic drivers are shown for the UK Biobank 784 
(E) and TOPMed (F). CI, confidence interval; PRS, polygenic risk score (PRS) for CAD; MetPRS, 785 
metabolome PRS; ProPRS, proteome PRS; LTL, leukocyte telomere length; FH, familial 786 
hypercholesterolemia variants; CHIP, clonal hematopoiesis of indeterminate potential.  787 
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 792 

Fig. 3. Ten-year risk of CAD as a function of somatic and germline risk from the integrated model. Ten-793 
year risk of CAD among all participants from UK Biobank (A) and TOPMed (B), and sex-stratified 10-794 
year risks of CAD in UK Biobank (C) and TOPMed (D) are presented. 795 
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 809 

Fig. 4. The integrated genomic model (IGM) captures participants with diverse genetic risk profiles 810 
contributing to risk in the UK Biobank (A, B) and TOPMed (C, D). (A) and (C), The ten-year risk of CAD 811 
was estimated for each IGM risk group in the UK Biobank and TOPMed dataset. Categories were 812 
defined as low risk (bottom 20%), intermediate risk (middle 60%), and high risk group (top 20%). In the 813 
high risk group, the genetic profile was further partitioned by the status of carrying a high germline risk 814 
or high somatic risk. The high germline risk was defined as the top 20% with a composite risk estimated 815 
from four germline genetic risk drivers (FH, PRS, MetPRS, and ProPRS). The high somatic risk was 816 
defined as the top 20% with a composite risk estimated from two somatic risk drivers (CHIP and LTL). 817 
(B) and (D), the genetic risk profiles for the IGM low risk (bottom 20%) and high risk (top 20%) groups, 818 
respectively. The six drivers are FH, PRS, MetPRS, ProPRS, CHIP, and LTL. The continuous variables 819 
were binarized, with individuals in the top 20% treated as carriers, except for LTL (the bottom 20% were 820 
treated as carriers). PRS, polygenic risk score (PRS) for CAD; MetPRS, metabolome PRS; ProPRS, 821 
proteome PRS; LTL, leukocyte telomere length; FH, familial hypercholesterolemia variants; CHIP, 822 
clonal hematopoiesis of indeterminate potential.  823 
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 833 

Fig. 5. Stratification (A, B) and reclassification (C) of 10-year predicted CAD risk based on IGM. A, 834 
stratification by IGM risk within PCE risk stratum. B, Predicted 10-year CAD risk gradient by genetic 835 
risk percentile. C, Reclassification of 10-year predicted CAD risk–columns and rows indicate categories 836 
of 10-year predicted risk, with the number of individuals in each risk category, the number of samples 837 
correctly reclassified and wrongly reclassified are in dark and light blue, respectively. A continuous net 838 
reclassification index was 33.45% (95% CI, 32.11%-34.76%). IGM categories were defined as low risk 839 
(bottom 20%), intermediate risk (middle 60%), and high risk group (top 20%), respectively. PCE 840 
categories were defined as low (estimated risk less than 5%), borderline (risk between 5% to 7.5%), 841 
intermediate (risk between 7.5% and 20%), and high (risk greater than 20%), respectively. IGM: 842 
integrated genomic model; PCE, pooled cohort equation.  843 
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