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 41 

Abstract   42 

Many clinical questions in medicine cannot be answered through randomized controlled trials 43 

(RCTs) due to ethical or feasibility constraints. In such cases, observational data is often the 44 

only available resource for evaluating treatment effects. To address this challenge, we have 45 

developed Decision Path Similarity Matching (DPSM), a novel machine learning (ML)-based 46 

algorithm that simulates RCT-like conditions to debias observational data. In this study, we 47 

apply DPSM to the clinical question of living donor liver transplantation (LDLT) versus deceased 48 

donor liver transplantation (DDLT), helping to identify which patients benefit most from LDLT. 49 

DPSM leverages decision paths from a Random Forest classifier to perform accurate, one-to-50 

one matching between LDLT and DDLT recipients, minimizing confounding while retaining 51 

interpretability. Using data from the Scientific Registry of Transplant Recipients (SRTR), 52 

including 4,473 LDLT and 68,108 DDLT patients transplanted between 2002 and 2023, we 53 

trained independent Random Survival Forest (RSF) models on the matched cohorts to predict 54 

post-transplant survival. DPSM successfully reduced confounding associations between the two 55 

groups as shown by a decrease in area under the receiver operating characteristic (AUROC) 56 

from 0.82 to 0.51. Subsequently, RSF (C-indexldlt=0.67, C-indexddlt=0.74) outperformed the 57 

traditional Cox model (C-indexldlt=0.57, C-indexddlt=0.65). The predicted 10-year mean survival 58 

gain was 10.3% (SD = 5.7%). In conclusion, DPSM provides an effective approach for creating 59 

RCT-like comparability from observational data, enabling personalized survival predictions. By 60 

leveraging real-world data where RCTs are impractical, this method offers clinicians a tool for 61 

transitioning from population-level evidence to more nuanced, personalization.     62 

 63 
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 72 

1. Main  73 

Many clinical questions in medicine cannot be addressed through randomized controlled trials1 74 

(RCTs) due to ethical, logistical, or practical challenges. In liver transplantation (LT), for 75 

example, it is not feasible to randomize patients between living donor liver transplantation 76 

(LDLT) and deceased donor liver transplantation (DDLT) because of the ethical implications of 77 

assigning healthy donors and the urgency for life-saving transplants2–4. As a result, we often rely 78 

on observational data to assess the relative benefits of LDLT and DDLT. 79 

Clinically, LDLT offers significant advantages over DDLT, such as reduced waitlist times5–8, 80 

improved graft quality5,9, and lower rejection rates10. Despite these benefits, LDLT remains 81 

underutilized, representing only 5% of all LT cases in the United States6. Previous studies5,10,11 82 

have shown general survival benefits of LDLT compared to DDLT, but they lack sufficient 83 

adjustment for confounding factors, making it difficult for clinicians to determine which individual 84 

patients would benefit most from LDLT. 85 

RCTs are considered the gold standard for assessing intervention effects, but as mentioned, 86 

they are not feasible in the LDLT versus DDLT context. This has led to the development of 87 

advanced statistical and machine learning methods that can simulate RCT-like conditions using 88 

observational data. Propensity Score Matching (PSM)12,13 is one such method, but it has 89 

limitations. By reducing complex, multi-dimensional covariate space into a single probability 90 

score, PSM can fail to balance key variables and interactions, leading to residual confounding 91 

and imprecise graft-type effect estimates14–16. 92 

In response to these limitations, we introduce Decision Path Similarity Matching (DPSM), a 93 

novel machine learning-based algorithm designed to improve matching by leveraging the 94 

decision paths from Random Forest models. Unlike PSM, our method matches patients based 95 

on entire decision paths rather than a single probability score. This richer representation 96 

captures complex, non-linear relationships between covariates, enabling more precise matching 97 

and minimizing confounding. DPSM also allows for explainability by providing per-matched-pair 98 

visualization of the key variables driving the decision-making process. 99 

After applying DPSM to match LDLT and DDLT patients, we utilize a time-to-event machine 100 

learning framework, specifically Random Survival Forest (RSF) models, to predict long-term 101 
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survival outcomes. To the best of our knowledge, no existing method offers individualized 102 

survival benefit predictions for LDLT versus DDLT based on patient-specific variables, making 103 

this work a significant advancement in the field. 104 

 105 

2. Results 106 

2.1. Patient characteristics  107 

A total of 72,581 LT recipients were included in the study. DDLTs constituted 93.8% (𝑛𝑑𝑑𝑙𝑡 =108 

68,108), while LDLTs comprised a much lesser percentage at 6.2%, (𝑛𝑙𝑑𝑙𝑡 = 4,473). 109 

Demographic and clinical study variables for both groups are reported in Table 1. DDLT patients 110 

had higher rates of post-transplant mortality (29.7%) as compared to LDLT (22.3%).      111 

 112 

 113 

2.2. LDLT-DDLT matching  114 

 
  Table 1. Clinicodemographic characteristics of LDLT, DDLT recipients.  
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In our study, where the goal is to estimate the survival benefit associated with receiving one 115 

type of intervention (LDLT) over another (DDLT), it becomes necessary to minimize 116 

confounding associations to ensure that our findings are not subject to bias. To this end, we 117 

developed the DPSM matching algorithm (details in Sec. 4.4) that performs optimal one-to-one 118 

matching between LDLT and DDLT patients using all study variables listed in Sec. 4.2 (Fig. 1a). 119 

Unlike propensity score matching (PSM), which matches patients based on an output probability 120 

scalar, DPSM leverages and scores entire decision paths produced by a Random Forest model. 121 

This approach not only enhances the accuracy of the matching process but also increases the 122 

explainability of the method, providing a more transparent and interpretable framework for 123 

understanding factors influencing the matching.   124 

 125 

First, we evaluated the effectiveness of our matching technique. Fig. 1b compares 1-D, 2-D pre- 126 

and post-match distributions for 2 key variables: age and MELD score across LDLT, DDLT 127 

patients. We observe a high degree of overlap for the matched populations, confirming the 128 

success of our method. Originally, DDLT patients had a relatively higher MELD score (22.4 ±129 

8.7) than those that received an LDLT (14.0 ± 4.5). High MELD (>33) patients, generally much 130 

sicker, are unable to be matched as they do not possess an LDLT counterpart. All other 131 

variables used in the study were also found to exhibit good matching (Fig. S2). Additionally, we 132 

sought to understand how matching impacts survival times of LDLT and DDLT patients. Kaplan-133 

Meier analysis estimated LDLT and DDLT median survival times in the original dataset to be 134 

219 and 184 months respectively (Fig. 1c). After matching using our DPSM technique, we 135 

observed a slight decrease in median survival times for the two groups (tsurv, ldlt = 215 months, 136 

tsurv, ddlt = 176 months) (Fig. 1d). For completeness, survival times after PSM matching were also 137 

computed (tsurv, ldlt = 219 months, tsurv, ddlt = 192 months) (Fig. 1e).  138 

 139 

Next, we quantitatively evaluated the efficacy of our DPSM method by computing the AUROC of 140 

a Random Forest classifier trained on the pre- and post-matched datasets (Fig. 1f). The mean 141 

AUROC performance dropped significantly from 0.83 on the original dataset to 0.51 after 142 

matching, indicating that the model found it challenging to accurately classify patients as LDLT 143 

or DDLT, thus demonstrating the success of our matching process in reducing systematic 144 

differences between the two groups. Notably, post-match AUROC for DPSM (0.509 ± 0.018) 145 

was lower than that achieved using traditional PSM (0.589 ± 0.007), suggesting that our method 146 

performed better in achieving balanced and comparable groups. This enables establishment of 147 

a clearer causal relationship between graft type and survival outcomes.  148 
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149 

 A key advantage of our DPSM method is its ability to provide explainable matching, enhancing 150 

the transparency of the model’s decision-making process. To illustrate this, we show the 10 151 

most frequently occurring patient variables in the decision paths across all trees of the Random 152 

Forest. This type of interpretability is essential because it transforms a complex, “black-box” 153 

setup into something that can be understood by researchers and clinicians. Fig. 2 shows these 154 

explanations for three randomly selected LDLT-matched DDLT patient pairs, where we observe 155 

 
 

Fig. 1. LDLT-DDLT Matching.  

(a) Workflow of our DPSM algorithm; (b) 1-D/2-D distributions (histogram) for recipient age and MELD score 

variables pre- and post-matching; (c) observed LDLT, DDLT survival in original dataset (pre-match); (d) 

observed LDLT, DDLT survival post-DPSM-matching; (e) observed LDLT, DDLT survival post-PSM-

matching; (f) post-match AUROCs achieved by our DPSM and traditional PSM methods for the graft-type 

prediction task. The ideal case is AUROC=0.5, which corresponds to an actual RCT. Error bars indicate standard 

deviations across 10 random samplings.    
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that MELD score, waitlist time, weight and BMI are the top variables that influence the model 156 

deciding whether a patient received an LDLT or DDLT. Other patient characteristics such as 157 

age, sex and height were also found to be important predictors. Among etiologies, Alcoholic 158 

Cirrhosis, HCV Cirrhosis and PSC were deemed important by the Random Forest model to 159 

make graft-type predictions.      160 

 161 

2.3. Evaluation of survival model 162 

Building on the matched LDLT and DDLT cohorts generated by DPSM, we trained and 163 

evaluated survival models to predict patient survival outcome. Methodological details are 164 

provided in Sec. 4.5. For this task, we compared the performance of two popular time-to-event 165 

models, Random Survival Forest (RSF) and Cox Proportional Hazards (CPH). Two independent 166 

models were trained on the LDLT and matched DDLT populations.       167 

 168 

In general, RSF (𝐶 − 𝑖𝑛𝑑𝑒𝑥𝑙𝑑𝑙𝑡 = 0.673, 𝐶 − 𝑖𝑛𝑑𝑒𝑥𝑑𝑑𝑙𝑡 = 0.740) performed better than CPH (𝐶 −169 

𝑖𝑛𝑑𝑒𝑥𝑙𝑑𝑙𝑡 = 0.572, 𝐶 − 𝑖𝑛𝑑𝑒𝑥𝑑𝑑𝑙𝑡 = 0.652) on the C-index and was therefore selected as the 170 

model of choice (Fig 3b). The improved performance may be attributed to the former’s ability to 171 

model non-linear data patterns without making explicit assumptions about underlying 172 

distributions. The average Brier score did not exceed 0.14. Additionally, we performed SHAP 173 

analysis to understand feature contributions to our outcome of interest, i.e., post-transplant 174 

mortality (Fig. 3c, d). Recipient age emerged as the strongest predictor of mortality with older 175 

patients at much greater risk. Other important factors were weight, BMI, MELD, height and 176 

blood type A. In terms of the primary indication for transplant, PSC, MASH, Alcoholic Cirrhosis 177 

and HCV Cirrhosis were all found to be important risk factors. In light of these findings, it 178 

becomes important to point out that variables such as age, MELD score, weight and BMI have 179 

 
 

Fig. 2. Frequently occurring patient characteristics across forest-level decision paths.   

For a given LDLT-matched DDLT patient pair, we show the 10 most frequently occurring variables across 

decision paths across all Trees of the Random Forest. A high degree of overlap indicates similarity between the 

two patients (differing by graft-type) in terms of how the forest makes decisions. This is illustrated for 3 

randomly chosen patient pairs.  
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been identified as key confounders. This is because these variables impact both, graft-type 180 

assignment (Fig. 2) as well as survival outcome. 181 

 182 

2.4. Estimation of LDLT benefit  183 

A major strength of our ML-based technique is its ability to personalize survival prediction by 184 

incorporating individual patient variables into the modeling process. The emphasis in this 185 

section is on estimating the benefit in receiving an LDLT over a DDLT for an individual patient. 186 

To achieve this, we applied the trained RSF-LDLT and RSF-DDLT models to the LDLT and their 187 

matched DDLT counterparts, respectively. By contrasting the survival predictions generated by 188 

these models, we can estimate the personalized benefit of LDLT for each patient.    189 

 
 

Fig. 3. Performance evaluation and SHAP. 

(a) Model training and evaluation methodology: LDLT, DDLT cohorts are passed into the DPSM matching 

algorithm using all selected variables to account for confounding. Matched cohorts with waitlist time excluded 

are split into train and test sets. 2 graft-specific models are trained independently on the training samples, using a 

k-fold (k=5) cross-validation strategy and the best model across various hyperparameter settings is selected 

based on minimum Brier score. C-index is computed on the validation set and the best model is saved for further 

evaluation on the held-out test set; (b) RSF model C-index computed on the test set. Random Survival Forest 

(RSF) performance is compared with Cox proportional hazards (CPH) model, used as a baseline. Average Brier 

score varied from 0.10-0.14; top 10 features as predicted by SHAP on test set patients; (c) RSF-LDLT model 

applied to LDLT patients; (d) RSF-DDLT model applied to matched DDLT patients.      
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 190 

Fig. 4 shows individual examples for two etiologies of interest: for the patient diagnosed with 191 

Primary Sclerosing Cholangitis (PSC), our model predicts a 10-year survival gain of 16.8 % (Fig. 192 

4b). To further understand the factors driving this predicted benefit, we conducted a patient-193 

specific differential SHAP analysis (Fig. 4c), which identifies the key features contributing to 194 

survival gain. Variables highlighted in blue are associated with increased survival gain, while 195 

those in red indicate increased risk. The top variables that strongly influenced benefit were 196 

MELD, height, PSC and BMI. Original patient variables are also shown (Fig. 4d).  197 

 198 

Next, we compute the population-level predicted LDLT benefit by considering the matched 199 

patient groups. This is done on the held-out test set of patients, untouched during the model 200 

training process (Fig. 5a). Based on variables at the time of listing, our ML model predicts a 201 

 
 

Fig. 4. LDLT versus DDLT survival for individual patient. 

(a) Estimation of LDLT survival benefit: LDLT, DDLT survival models are applied independently to obtain the 

predicted survival functions ps, ldlt(𝑡) and ps, ddlt(𝑡)for LDLT and matched DDLT recipients (test), respectively.  

At a desired evaluation time-point, fractional LDLT survival benefit is defined as the probability difference 

between LDLT and DDLT survival normalized by DDLT survival; (b) LDLT benefit (%) at 1-, 3-, 5- and 10-

years post-transplant for a patient diagnosed with PSC. Blue and red curves show survival functions of the 

LDLT and matched DDLT patient predicted by the respective models. Individual SHAP explanations (c) as well 

as corresponding patient characteristics (d) are also shown.    
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mean long-term (10-year) benefit of 10.3%. For validation, we also performed standard Kaplan-202 

Meier analysis on the same set of patients to evaluate observed LDLT versus DDLT survival 203 

differences (Fig. 5b).   204 

 205 

2.5. Etiology-specific benefit  206 

Finally, we evaluated the predicted survival benefit of LDLT over DDLT across six different 207 

etiologies (primary diagnoses) within the matched cohort, namely Autoimmune Hepatitis (AH), 208 

PBC, PSC, HCV Cirrhosis (HCV), MASH, and Alcoholic Cirrhosis (AC). By analyzing the 209 

survival outcomes for specific diseases, we aimed to identify which etiologies were associated 210 

with the highest LDLT benefit.  211 

 
 

Fig. 5. LDLT survival benefit.  

(a) 1, 3, 5 and 10-year fractional survival benefit of receiving LDLT over DDLT (𝑛𝑡𝑒𝑠𝑡 = 401) for LDLT 

recipients. If 𝑡 does not exist for either of the LDLT, DDLT models, we perform interpolation, so that % benefit 

can be computed appropriately; (b) Kaplan-Meier estimator applied on the test set confirms LDLT survival 

benefit at the population-level. Survival times are cut-off at 120 months (10-years).   
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 212 

Using our ML-guided approach, we computed the differential survival gain of LDLT for each 213 

patient and then aggregated these results based on their primary diagnosis (Fig. 6a). The 214 

analysis revealed that certain etiologies exhibited a significantly higher survival benefit when 215 

transplanted with LDLT compared to DDLT. Patients diagnosed with PSC (12.4 ± 5.3 %) and 216 

HCV (12.1 ± 5.7 %) showed substantial long-term survival advantages with LDLT, over a 10-217 

year period. For comparison with ground truth, we also evaluated observed survival differences 218 

between the two groups (Fig. 6b). These findings suggest that LDLT may be particularly 219 

advantageous for patients with these conditions, potentially influencing clinical decision-220 

making.    221 

 222 

3. Discussion 223 

 
 

Fig. 6. Etiology-specific benefit.      

(a) Bar chart shows 10-year (long-term) post-transplant LDLT benefit (%) for each of the 6 distinct etiologies: 

Alcoholic Cirrhosis, Autoimmune Hepatitis, HCV Cirrhosis, MASH, PBC and PSC. Results are computed on 

the held-out test set, these patients are untouched during RSF model training; (b) observed survival (Kaplan-

Meier) for all 6 etiologies to evaluate matched LDLT (blue) vs DDLT (red) survival differences. Survival data is 

cut-off at 10 years.    
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The challenge of determining which patients would benefit most from receiving a living donor 224 

liver transplant (LDLT) versus a deceased donor liver transplant (DDLT) is compounded by the 225 

impracticality of conducting randomized controlled trials (RCTs). To address this, we create a 226 

novel approach which we call Decision Path Similarity Matching (DPSM) algorithm, that 227 

combines advanced matching and machine learning (ML) techniques to emulate the balanced 228 

conditions of an RCT using observational data to personalize survival predictions. By effectively 229 

minimizing confounding factors, DPSM enables causal-type estimation of the effect of graft-type 230 

on post-transplant survival. 231 

 232 

3.1. DPSM: a novel, multivariate method for one-to-one matching 233 

Our innovative algorithm represents a significant advancement in the field of observational study 234 

design, particularly in contexts where conducting randomized controlled trials (RCTs) is 235 

impractical or impossible. Unlike traditional Propensity Score Matching (PSM), which 236 

compresses complex patient data into a single propensity score, DPSM leverages the full 237 

decision paths generated by a Random Forest classifier to perform one-to-one matching 238 

between LDLT and DDLT patients. This approach allows DPSM to retain the multidimensional 239 

complexity of patient data, resulting in more nuanced and accurate matching that closely mimics 240 

the balance achieved in RCTs. 241 

 242 

The key strength of DPSM is its ability to minimize confounder bias, thereby producing more 243 

balanced cohorts than traditional PSM. Our study demonstrated that DPSM significantly 244 

decreased the AUROC for graft-type prediction after matching, a clear indication that DPSM 245 

more effectively mitigates covariate differences between the LDLT and DDLT groups. This 246 

enhanced performance is crucial in creating a robust foundation for subsequent survival 247 

analysis, ensuring that any observed differences in outcomes are attributable to graft-type 248 

differences.  249 

 250 

Additionally, by utilizing decision paths instead of a single scalar score, DPSM allows clinicians 251 

and researchers to understand the prominent variables involved in the decision-making process 252 

leading up to the matching. These insights are particularly valuable in clinical settings, where 253 

understanding the rationale behind matching decisions can foster greater confidence in the 254 

study’s findings and support more informed clinical decision-making. The ability to visualize and 255 

interpret the decision-making process also aligns DPSM more closely with the principles of 256 

RCTs, where the reasoning behind patient assignment is clear and systematic. 257 
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 258 

In summary, DPSM is a powerful technique, enabling researchers to simulate the conditions of 259 

an RCT more effectively in observational studies. Its superior matching performance and 260 

transparency make it a valuable tool not only for advancing research in liver transplantation but 261 

also for broader applications where the target questions are causal in nature. As the field of 262 

clinical research increasingly turns to observational data in the absence of feasible RCTs, 263 

methods like DPSM will play a critical role in ensuring that the insights drawn from these studies 264 

are both accurate and actionable. 265 

 266 

3.2. ML framework for personalized survival predictions  267 

Applying our RSF model on a test set of patients, we report a mean predicted LDLT survival 268 

gain of 2.7%, 6.6%, 7.1% and 10.3% at 1-, 3-, 5- and 10-years post-transplant respectively. It is 269 

worth placing this in the context of prior evidence pertaining to LDLT versus DDLT survival. 270 

Barbetta et. al.10 also analyzed SRTR data and found a mortality risk reduction of 17%, 15% 271 

and 13% at 1-, 3- and 5-year post-transplant for LDLT recipients. Higher estimated benefit in the 272 

latter is suspected to be a consequence of the lack of matching in their analysis. In fact, another 273 

study11 around the same time that analyzed Canadian transplant recipients found that graft-type 274 

differences got washed away upon adjustment for donor as well as recipient characteristics. 275 

 276 

In our study, where we predict individual LDLT benefit using patient-specific variables at the 277 

time of listing, we find significant heterogeneity across all patients that we evaluated our method 278 

on, underscoring the importance of personalization. The ability to predict individualized survival 279 

outcomes allows clinicians to move beyond a ‘one-size-fits-all’ approach, enabling more tailored 280 

decisions that align with the specific characteristics and needs of each patient. This not only 281 

optimizes transplant outcomes but also enhances patient counseling, as clinicians can provide 282 

more accurate, data-driven information to patients and their families when discussing treatment 283 

options. 284 

 285 

Finally, our etiology-specific analysis underscores the importance of individualized treatment 286 

planning, as the survival benefit of LDLT can vary significantly depending on the underlying liver 287 

disease. These insights could guide clinicians in making more informed decisions about 288 

transplant strategies, particularly for patients with specific diagnoses where LDLT offers the 289 

most substantial benefit. Among all etiologies tested, our ML tool predicted the highest benefit 290 

for patients diagnosed with PSC (12.4 ± 5.3 %). These patients often experience slow 291 
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progression of the disease, but when complications such as cholangitis arise, timely 292 

transplantation becomes critical. LDLT, with its shorter wait times, offers a significant survival 293 

advantage in such urgent cases. Our result is backed by a recent study by Sierra et. al.17, which 294 

also reported a long-term (10-year) survival advantage for PSC patients who received an LDLT 295 

(81.9 %) over a DDLT (72.7 %).   296 

 297 

Integrating these personalized predictions into clinical workflows could significantly improve 298 

decision-making processes, ensuring that patients are referred for LDLT especially when the 299 

survival benefit is significant. As the field of liver transplantation progresses towards precision-300 

based approaches, tools like these will become essential in guiding downstream clinical 301 

decisions and potentially improving overall patient care. 302 

 303 

3.3. Study strengths and limitations  304 

This study has several notable strengths that enhance its contribution to the field of liver 305 

transplantation. First, the development and application of the Decision Path Similarity Matching 306 

(DPSM) algorithm represents a significant advancement in observational study design, allowing 307 

us to create well-matched cohorts that closely mimic the conditions of an RCT. This is evident in 308 

the substantial reduction in systematic differences between the LDLT and DDLT cohorts, as 309 

evidenced by the drop in AUROC from 0.83 (pre-matching) to 0.51 (post-matching), which 310 

shows that our algorithm effectively removed confounding associations among variables. By 311 

reducing bias and aligning survival outcomes across groups, DPSM enables a more accurate 312 

comparison of LDLT and DDLT outcomes, which is crucial in the absence of feasible RCTs. 313 

Additionally, the integration of Random Survival Forest (RSF) models to provide personalized 314 

survival predictions adds a valuable dimension to clinical decision-making, offering tailored 315 

insights that can optimize patient care. 316 

 317 

Our study also has important limitations. The retrospective nature of the analysis, relying on 318 

data from the SRTR, may introduce biases inherent in observational studies. It is important to 319 

note that DPSM is able to mitigate these confounding biases, as long as they are observable, 320 

i.e., captured within our dataset. Another limitation is the reliance on clinico-demographic 321 

variables available at the time of listing, which, although comprehensive, may not capture all 322 

factors influencing transplant outcomes. Incorporating additional variables, such as genetic 323 

markers or more detailed comorbidity data, could further refine the predictive models and 324 

enhance the precision of survival estimates.  325 
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 326 

We also acknowledge the absence of external validation as a limitation of this study. This was 327 

primarily due to the lack of access to sufficiently large datasets outside the SRTR. DPSM 328 

performs optimally with larger sample sizes, especially the DDLT pool, as these allow for more 329 

reliable transformation of observational data into RCT-like conditions. Smaller datasets may not 330 

provide the robustness needed for effective matching, underscoring the importance of future 331 

research focused on validating these findings in different cohorts and clinical environments.  332 

Finally, while the RSF model demonstrated good performance in this study, further validation in 333 

prospective studies and across different cohorts is necessary to confirm its broader applicability. 334 

 335 

In conclusion, this study introduces a novel Decision Path Similarity Matching (DPSM) 336 

methodology, which represents a significant advancement in creating RCT-like comparability 337 

from observational data and debiasing transplant outcomes. DPSM offers a more transparent 338 

and explainable approach to matching patients compared to traditional methods, allowing for 339 

personalized predictions of survival benefit in living donor liver transplantation. While further 340 

research and external validation are required to enhance its robustness and generalizability, the 341 

innovations presented here mark an important step toward more individualized, data-driven 342 

decision-making in liver transplantation. 343 

 344 

4. Methods  345 

4.1. Study Design  346 

We conducted a retrospective, cross-sectional study from the SRTR database. The SRTR 347 

includes data of all organ donors, as well as waitlisted and transplanted recipients in the United 348 

States submitted by the Organ Procurement and Transplantation Network (OPTN). This study 349 

was approved by the Research Ethics Board at the University Health Network.  350 

 351 

Adult (≥18-years-old) LT patients, listed between 28th February 2002 and 23rd May 2023, were 352 

included in the analysis. Study exclusion criteria is clearly defined in Fig. S1. Patients with 353 

reported MELD scores greater than 40 were excluded. These patients (<5% of the entire 354 

population) are generally very sick and highly prone to pre-operative mortality, including them 355 

would make it challenging to clearly delineate the effect of transplant type on post-transplant 356 

survival. Recipients with previous or multi-organ transplants were excluded as were those 357 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316601doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.01.24316601
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

diagnosed with HIV, acute liver failure (ALF) and HCC. Patients who received exception points 358 

were also removed.   359 

 360 

4.2.  Variables and Outcomes  361 

Clinico-demographic patient variables: age, sex, blood group, BMI, height, weight, MELD score, 362 

primary diagnosis (indication for transplant) and time on the waitlist were collected at the time of 363 

listing. For variable comparison between the LDLT, DDLT patient cohorts, an alpha level of 364 

<0.05 was selected as the significance threshold. Post-transplant, mortality (all-cause) was the 365 

outcome or event of interest and event times were defined from the time of transplant to either 366 

the time of death or censored at the date of last follow-up.   367 

 368 

4.3. Data Preparation and Preprocessing 369 

Covariates with greater than 20% missingness were excluded from the analysis. For continuous 370 

variables with missing values, mean imputation was performed. Categorical variables were one-371 

hot encoded (OHE). Subsequently, we ended up with 21, unit normalized input features to the 372 

ML model.   373 

 374 

4.4. Matching  375 

We designed and implemented a new method, Decision Path Similarity Matching (DPSM) to 376 

account for confounding bias, ensuring that predicted survival differences would be 377 

predominantly attributed to graft-type. The key feature of DPSM being that it uses the “similarity” 378 

or closeness between decision paths, which provides a richer feature encoding as opposed to 379 

matching based on output probabilities alone in the case of PSM. The constituent steps of our 380 

algorithm are shown in Fig. 1a along with the pseudocode below (Fig. 7) - (1) first, the original 381 

LDLT-DDLT dataset is randomly split into train (70%) and test (30%) sets. A Random Forest 382 

(RF) classifier is trained on the training set to predict transplant type using all input variables 383 

previously listed in Sec. 4.2. RF was selected due to its ability to capture non-linear 384 

relationships among variables and handle imbalanced data, crucial in the LDLT versus DDLT 385 

context. (2) The best model is selected across a hyperparameter search (𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 =386 

50, 100, 200, 300, 500, 1000, 𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠,𝑙𝑒𝑎𝑓 = 500) using k(=5)-fold cross-validation (cv) on the 387 

train set and performance is evaluated on the test set using the area under the receiver operator 388 

characteristic (AUROC) curve. (3) From the trained model, we extract decision paths for 389 

individual patients in the held-out test set, averaged across all the Trees in the Forest. This is an 390 
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n-dimensional binary vector [1, 0, 1, 0, ..], where “n” is the total number of decision nodes 391 

(features) per tree. A node is “1” if it applies to a particular patient and “0” otherwise. (4) 392 

Hamming distance (𝑑𝐻) is then computed for every pair of (LDLT, DDLT) decision paths. To 393 

remove “poor” matches or outliers, patients whose pairwise 𝑑𝐻 exceeds a selected threshold 394 

(𝑡ℎ) are removed. The optimal threshold was determined as that which minimized 395 

|𝐴𝑈𝑅𝑂𝐶𝑝𝑜𝑠𝑡−𝑚𝑎𝑡𝑐ℎ − 0.5|, at an acceptable patient dropout rate (Table S1). We selected 𝑡ℎ =396 

0.45. (5) The filtered distance matrix is used to perform one-to-one matching using the “Munkres 397 

Assignment” procedure18. This is an “optimal” algorithm that matches by minimizing the total 398 

Hamming distance across all LDLT-DDLT patient pairs. After this step, we repeat step (2) to 399 

calculate the AUROC for the matched dataset using a k(=5)-fold cv strategy. The same set of 400 

hyperparameters are used. Finally, match effectiveness is quantified as the difference between 401 

pre- and post-match AUROCs.   402 
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 403 

 404 

4.5. Model Training and Validation 405 

The matched sub-populations (𝑛𝑙𝑑𝑙𝑡 = 𝑛𝑑𝑑𝑙𝑡 = 1,337) were first split into train (70%) and test 406 

(30%) sets (𝑛𝑡𝑟𝑎𝑖𝑛 = 936, 𝑛𝑡𝑒𝑠𝑡 = 401). For the time-to-event survival prediction, two Random 407 

Survival Forest (RSF) models were trained independently on the matched LDLT-DDLT cohorts, 408 

respectively. Hyperparameter tuning was performed on the train dataset using k (=5)-fold cross 409 

validation and the model that produced minimum Brier score was selected as the best one. For 410 

validation, both C-index and Brier score, averaged across 5 evaluation time points: 0.5, 1, 3, 5 411 

and 10 years were computed on the held-out test set.  412 

 
 

Fig. 7. DPSM: pseudocode 
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During hyperparameter tuning, it is common to use C-index as the evaluation metric for time-to-413 

event models. While this is useful in understanding relative risk ranking, it is not informative 414 

about the accuracy and calibration of the predicted survival predictions. We instead utilize the 415 

Brier score, defined as follows: 𝐵𝑆 = (1/𝑁) ∑ (𝑔𝑡𝑖 − 𝑝𝑖)2𝑁
𝑖=1 , where 𝑁 is the sample size, 𝑔𝑡𝑖  and 416 

𝑝𝑖 are the actual and predicted event probabilities for observation 𝑖. This metric quantifies the 417 

error rate between prediction and ground truth, serving as an ideal choice for calibrating survival 418 

models. Subsequently, the optimal hyperparameters selected are those that minimize the time-419 

averaged Brier score.   420 

 421 

4.6. Estimation of LDLT Survival Benefit 422 

For a given LDLT and matched DDLT patient, the corresponding trained models (RSF-LDLT, 423 

RSF-DDLT) are applied to obtain the respective predicted survival functions 𝑆𝑙𝑑𝑙𝑡(𝑡) and 424 

𝑆𝑑𝑑𝑙𝑡(𝑡). RSF models produce unique event times according to the data they were trained on. 425 

To ensure that both LDLT and DDLT models predict definitive survival for a given evaluation 426 

time point 𝑡𝑖 , we interpolate predicted survival probabilities across all time. Finally, differential 427 

LDLT benefit is evaluated as (𝑆𝑙𝑑𝑙𝑡(𝑡) − 𝑆𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑑𝑑𝑙𝑡(𝑡))/𝑆𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑑𝑑𝑙𝑡(𝑡).  428 

 429 

5. Code availability 430 

The source code for this work is available on GitHub 431 

(https://github.com/Anivader/LDLT_survival_benefit_ML_tool). All analysis was performed using 432 

Python.   433 
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6. References  435 

1.   Spieth, P. M. et al. Randomized controlled trials – a matter of design. Neuropsychiatr. 436 

Dis. Treat. 12, 1341–1349 (2016). 437 

2.   Schiano, T. D., Kim-Schluger, L., Gondolesi, G. & Miller, C. M. Adult living donor liver 438 

transplantation: The hepatologist’s perspective. Hepatology 33, 3–9 (2001). 439 

3.   Brown, J., Sorrell, J. H., McClaren, J. & Creswell, J. W. Waiting for a Liver Transplant. 440 

Qual. Health Res. 16, 119–136 (2006). 441 

4.   Larson, A. M. & Curtis, J. R. Integrating Palliative Care for Liver Transplant 442 

Candidates“Too Well for Transplant, Too Sick for Life”. JAMA 295, 2168–2176 (2006). 443 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316601doi: medRxiv preprint 

https://github.com/Anivader/LDLT_survival_benefit_ML_tool
https://doi.org/10.1101/2024.11.01.24316601
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

5.   Humar, A. et al. Adult Living Donor Versus Deceased Donor Liver Transplant (LDLT 444 

Versus DDLT) at a Single Center: Time to Change Our Paradigm for Liver Transplant. Ann. 445 

Surg. 270, 444 (2019). 446 

6.   Ivanics, T. et al. Low utilization of adult-to-adult LDLT in Western countries despite 447 

excellent outcomes: International multicenter analysis of the US, the UK, and Canada. J. 448 

Hepatol. 77, 1607–1618 (2022). 449 

7.   Tran, L. & Humar, A. Expanding living donor liver transplantation in the Western world: 450 

changing the paradigm. Dig. Med. Res. 3, (2020). 451 

8.   Karnam, R. S. et al. Sex Disparity in Liver Transplant and Access to Living Donation. 452 

JAMA Surg. 156, 1010–1017 (2021). 453 

9.   Lee, S.-G. A Complete Treatment of Adult Living Donor Liver Transplantation: A Review 454 

of Surgical Technique and Current Challenges to Expand Indication of Patients. Am. J. 455 

Transplant. 15, 17–38 (2015). 456 

10. Barbetta, A. et al. Meta-analysis and meta-regression of outcomes for adult living donor 457 

liver transplantation versus deceased donor liver transplantation. Am. J. Transplant. Off. J. 458 

Am. Soc. Transplant. Am. Soc. Transpl. Surg. 21, 2399–2412 (2021). 459 

11. Goto, T. et al. Superior Long‐Term Outcomes of Adult Living Donor Liver 460 

Transplantation: A Cumulative Single‐Center Cohort Study With 20 Years of Follow‐Up. Liver 461 

Transpl. 28, 834–842 (2022). 462 

12. Benedetto, U., Head, S. J., Angelini, G. D. & Blackstone, E. H. Statistical primer: 463 

propensity score matching and its alternatives†. Eur. J. Cardiothorac. Surg. 53, 1112–1117 464 

(2018). 465 

13. Abadie, A. & Imbens, G. W. Matching on the Estimated Propensity Score. Econometrica 466 

84, 781–807 (2016). 467 

14. King, G. & Nielsen, R. Why Propensity Scores Should Not Be Used for Matching. Polit. 468 

Anal. 27, 435–454 (2019). 469 

15. Nguyen, T.-L. et al. Double-adjustment in propensity score matching analysis: choosing 470 

a threshold for considering residual imbalance. BMC Med. Res. Methodol. 17, 78 (2017). 471 

16. Rubin, D. B. & Thomas, N. Combining Propensity Score Matching with Additional 472 

Adjustments for Prognostic Covariates. J. Am. Stat. Assoc. 95, 573–585 (2000). 473 

17. Sierra, L. et al. Living-Donor Liver Transplant and Improved Post-Transplant Survival in 474 

Patients with Primary Sclerosing Cholangitis. J. Clin. Med. 12, 2807 (2023). 475 

18. Munkres, J. Algorithms for the Assignment and Transportation Problems. J. Soc. Ind. 476 

Appl. Math. 5, 32–38 (1957). 477 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316601doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.01.24316601
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

  478 

7. Acknowledgements 479 

Mamatha Bhat acknowledges support from the Toronto General and Western Hospital 480 

Foundation, Canadian Institutes for Health Research and Canadian Donation and Transplant 481 

Research Program. Chris McIntosh holds the Chair in Medical Imaging at the Joint Department 482 

of Medical Imaging at the University Health Network, and the Department of Medical Imaging at 483 

the University of Toronto. Michael Brudno holds a CIFAR AI Chair.  484 

 485 

8. Author contributions 486 

A.G., C.M., M. Bhat. and Y.S. conceptualized the study. C.M. supervised the experimental 487 

design, A.G. developed the computational analysis pipelines and generated all the data. Y.S. 488 

helped with the data pre-processing script. B.J.H. and X.Z. helped with clinical interpretability. 489 

A.G. wrote the manuscript and C.M., B.J.H., M. Bhat provided feedback and M. Brudno 490 

reviewed the manuscript. C.M. and M. Bhat. supervised the study.  491 

 492 

9. Ethics declarations 493 

The authors declare no competing interests.  494 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316601doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.01.24316601
http://creativecommons.org/licenses/by-nc-nd/4.0/

