
 1

Title: Deep learning-based detection and segmentation of osseous metastatic prostate cancer lesions on computed 

tomography 

Authors: S J Pawan PhD1,2*, Joseph Rich BS2,3*, Shreyas Malewar BS2, Daksh Patel BS2, Matt Muellner BS2, Darryl H 

Hwang PhD2, Xiaomeng Lei MPH1, Steven Y Cen PhD1, Timothy Triche MD4, Amir Goldkorn MD5, Passant 

Mohammed MD1, Assad Oberai PhD6, Vinay Duddalwar MD1,2,7 

Institutions 

1Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA  

2Radiomics Lab, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, 

CA, USA 

3Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA 

4Center for Personalized Medicine, Dept of Pathology and Laboratory medicine, Children's Hospital, Los Angeles, CA, 

USA 

5Department of Medicine and Biochemistry & Molecular Medicine, USC Norris Comprehensive Cancer Center & 

Keck School of Medicine, Los Angeles, CA, USA 

6Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering of the University of Southern 

California, Los Angeles, CA, USA 

7Department of Biomedical Engineering, Viterbi School of Engineering of the University of Southern California, Los 

Angeles, CA, USA 

*Indicates co-first authorship 

 

Corresponding Author: Joseph Rich, jmrich@usc.edu 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316594doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.11.01.24316594
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

Abstract: 

Purpose: Prostate adenocarcinoma frequently metastasizes to bone and is detected via computed tomography (CT) 

scans. Accurate detection and segmentation of these lesions are critical for diagnosis, prognosis, and monitoring. This 

study aims to automate lesion detection and segmentation using deep learning models. 

Methods and Materials: We evaluated several deep learning models for lesion detection (EfficientNet, ResNet34, 

DenseNet) and segmentation (nnUNetv2, UNet, ResUNet, ResAttUNet). Performance metrics included F1 score, 

precision, recall, Area Under the Curve (AUC), and Dice Similarity Coefficient (DSC). Pairwise t-tests compared 

segmentation accuracy. Additionally, we conducted radiomic analyses to compare lesions segmented by deep learning 

to manual segmentations 

Results: EfficientNet achieved the highest detection performance, with an F1 score of 0.82, precision of 0.88, recall of 

0.79, and AUC of 0.71. Among segmentation models, nnUNetv2 performed best, achieving a DSC of 0.74, with 

precision and recall values of 0.73 and 0.83, respectively. Pairwise t-tests showed that nnUNetv2 outperformed 

ResAttUNet, ResUNet, and UNet in segmentation accuracy (p < 0.01). Clinically, nnUNetv2 also demonstrated 

superior specificity for lesion detection (0.9) compared to the other models. All models performed similarly in 

distinguishing diffuse and focal lesions, predicting weight-bearing lesions, and identifying lesion locations, although 

nnUNetv2 had higher specificity for these tasks. Sensitivity was highest for rib lesions and lowest for spine lesions 

across all models. 

Conclusions: EfficientNet and nnUNetv2 were the top-performing models for detection and segmentation, respectively. 

The radiomic features derived from deep learning-based segmentations were comparable to those from manual 

segmentations, supporting the clinical applicability of these methods. Further analysis of lesion detection and spatial 

distribution, as well as lesion quality differentiation, underscores the models' potential for improving diagnostic 

workflows and patient outcomes in clinical settings. 
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Introduction: Prostate cancer is the most common non-dermatologic cancer in men, and it remains a leading cause of 

cancer-related mortality1,2. The disease often metastasizes to the bones, particularly the spine, pelvis, and ribs, leading 

to significant morbidity. These lesions often display an osteoblastic appearance. Early and accurate detection of 

osseous metastatic lesions is critical for effective management and treatment planning. Computed Tomography (CT) is 

a widely used imaging modality for detecting these metastases due to its high resolution and ability to provide detailed 

anatomical information3 (Fig 1). However, manual interpretation of CT scans can be time-consuming and prone to 

inter-observer variability, highlighting the need for automated and reliable detection methods. Furthermore, manual 

interpretation cannot provide quantitative assessment such as radiomics, which must rely on segmentation. 

Automatically segmenting lesions from multiple CT images with complex background anatomical structures is 

challenging, as it involves identifying the slice containing the metastatic lesion and then applying the auto-

segmentation algorithm.  

 

Deep learning has revolutionized medical image analysis, providing powerful tools for the automated classification and 

segmentation of various pathologies. Convolutional Neural Networks (CNNs) have been extensively utilized for these 

tasks, significantly enhancing accuracy and efficiency compared to traditional image analysis methods. For detection, 

deep learning models such as ResNet4, DenseNet5 and EfficientNet6 excel at identifying complex patterns and features 

within medical images. Similarly, for segmentation, the U-Net7 , nnUNetv28 characterized by its encoder-decoder 

structure with skip connections, allows for precise localization and delineation of lesions. These architectures have 

demonstrated promise in various radiologic analysis tasks, including lesion classification, lesion detection, whole bone 

and lesion segmentation, and treatment planning 9-14. Several studies have explored the application of deep learning for 

detecting and segmenting osseous metastases in prostate cancer patients. 

 

Chmelik et al.15 developed a deep convolutional neural network (CNN) to segment and classify lytic and sclerotic 

metastatic spinal lesions on 3D CT data, addressing the challenges of ill-defined lesions through automatic feature 

extraction and incorporating a medial axis transform and Random Forest-based meta-analysis. Moreau et al.16 

implemented two U-Net based methods to segment bones and bone lesions on 18FDG PET/CT images in metastatic 

breast cancer, showing improved precision and Dice Similarity Coefficient (DSC) by incorporating bone information 
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into the training process and introducing an automatic PET bone index. Noguchi et al.17 created a CNN based on the U-

Net architecture for whole-body CT bone segmentation, achieving high accuracy through novel data augmentation 

techniques and demonstrating generalizability across various datasets. Afnouch et al.9 introduced the BM-Seg dataset 

for bone metastases segmentation and developed the Hybrid-AttUnet++ architecture with dual decoders and an 

ensemble approach, achieving superior performance compared to existing methods. Chang et al.18 developed a deep 

CNN to detect sclerotic spinal metastases on body CTs, achieving high DSC scores and sensitivity, which 

demonstrated the potential of deep learning models in detecting sclerotic spinal lesions. Despite the promise of these 

projects, the task of lesion segmentation for osseous metastatic prostate cancer remains unsolved.  This project aims to 

develop a robust and efficient deep learning-based pipeline for detecting, segmenting, and characterizing osseous 

metastatic prostate cancer lesions on CT images. By leveraging advanced architectures such as ResNet, DenseNet, 

Efficient Net for detection and UNet, ResUNet, ResAttUNet, and nnUNetv2 for segmentation, this study aims to 

achieve high accuracy and reliability in identifying and delineating bone lesions. The development of such a pipeline 

will eventually enhance diagnostic accuracy and streamline the workflow for radiologists, ultimately contributing to 

better patient outcomes. 

Materials and Methods: Our IRB-approved, and HIPAA-compliant cohort consists of 8863 2D images across 23 male 

patients identified with metastatic prostate carcinoma and enrolled in a clinical trial at our institution.  Under the 

supervision of an expert radiologist with 20+ years of experience in radiology and oncologic imaging, the manual 

binary segmentation of metastatic lesions is carried out to serve as the ground truth. The ground truth mask with pixel-

level annotation depicts the lesion and the background. For the detection task, these masks were converted to a binary 

label corresponding to each image, with 0 indicating the absence of a lesion and 1 indicating the presence of a lesion. 

We formed an 80:20 ratio to train and test the performance of detection and segmentation methods. 

 

In this study, we utilized three different deep learning architectures for lesion detection, namely ResNet34, DenseNet, 

and EfficientNet and four different architectures for segmentation, namely UNet, ResUNet, ResAttUNet, and 

nnUNetv2, respectively. We chose these architectures since they have achieved high accuracy, robustness, and 

efficiency in various medical imaging tasks. ResNet (Residual Network) utilizes skip connections to enable the training 

of deep networks by addressing the vanishing gradient problem, enhancing learning efficiency. DenseNet (Dense 
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Convolutional Network) creates direct connections between each layer and all subsequent layers, promoting feature 

reuse and strengthening gradient propagation. EfficientNet employs a compound scaling method to uniformly scale 

network depth, width, and resolution, optimizing performance while maintaining computational efficiency. 

Furthermore, in all the detection models, we have incorporated Gradient-weighted Class Activation Mapping 

(GradCAM) to ensure the model focuses on the region of interest (ROI) (Fig 2). GradCAM offers visual explanation 

by highlighting the regions that contribute most significantly to the decision-making process. This technique enhances 

the interpretability of our models, allowing us to verify that the models accurately identify the ROI during lesion 

detection. Fig 3 presents a detailed workflow for lesion detection and segmentation of osseous metastatic prostate 

cancer, followed by the evaluation process incorporating clinical and radiomic analyses. 

 

For segmentation tasks, the UNet architecture, known for its encoder-decoder structure with skip connections, excels in 

precise localization, making it highly effective for biomedical segmentation tasks. ResUNet (Residual Network) is a 

variant of the UNet architecture that incorporates residual learning, enhancing feature extraction, reuse, and 

propagation capabilities for more robust performance. The ResAttUNet combines the strengths of UNet and ResUNet, 

integrating attention mechanisms to focus on relevant parts of the input image, enhancing the network's ability to 

model complex dependencies for detailed and accurate segmentation. Lastly, we employed the nnUNetv2 framework, 

an automated and self-configuring network that adapts to the specific dataset, utilizing a 5-fold cross-validation 

strategy in the training phase and generating an ensemble of the results to achieve optimal performance. The nnUNetv2 

framework offers several key benefits, including its automated and self-configuring design, which adapts to the 

specific dataset at hand, eliminating the need for manual tuning. Additionally, its extensive data augmentation and 

preprocessing capabilities streamline the workflow, ensuring consistency and reproducibility in segmentation tasks. By 

comparing these architectures, we aim to evaluate various state-of-the-art detection and segmentation models 

comprehensively. 

 

Next, we describe the metric used to quantify the performance of the detection and segmentation algorithms. True 

positive (TP) refers to a slice (or pixel/voxel) which contains a lesion in both the ground truth (GT) and the prediction. 

False positive (FP) refers to a slice (or pixel) which contains a lesion in the prediction but not in the ground truth. False 

negative (FN) refers to a slice (or pixel) which contains a lesion in the ground truth but not in the prediction. True 
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negative (TN) refers to a slice (or pixel) which does not possess a lesion in both the ground truth and the prediction. 

For the detection task, evaluation metrics include accuracy, precision, recall, F1-score, and AUC. For the segmentation 

task, evaluation metrics include dice similarity coefficient (DSC), precision, and recall at pixel level. We performed 

analysis on clinically relevant features on the prediction masks generated by the segmentation models. The clinical 

analysis tasks are defined as follows: 

• Number of 3D lesions detected: Count the number of unique lesions in 3D space, where a single lesion is 

considered to be a region of positive values in the segmentation mask that are adjacent in 2D space (including 

diagonal neighbors) or that overlap in at least one neighboring pixel to adjacent slices in 3D space 

• Number of spatially clustered lesions: For each lesion in 3D space, count the number of neighboring lesions, 

where a neighboring lesion is defined as one that is found within 10 slices of another lesion  

• Diffuse vs. focal nature: For each lesion in 3D space, determine if the lesion is diffuse or focal throughout the 

bone which it occupies, where a lesion is considered diffuse if the prediction mask occupies the vast majority 

of the bone in at least one slice 

• Bone identity: For each lesion in 3D space, determine in which bone it resides (skull, rib, spine, pelvis, 

extremity) 

• Weight-bearing nature of bone: For each lesion in 3D space, determine whether or not it resides in a weight-

bearing bone (legs, pelvis, or spine) 

 

For the ground truth segmentation masks and the predicted masks from each of the models, we assigned each unique 

lesion a numeric identifier. For each unique lesion, we determined in which method it appeared (GT, UNet, ResNet, 

ResAttnNet, nnUNetv2), the number of neighboring lesions, whether the lesion was diffuse or focal (binary), the bone 

identity of the lesion, and the weight-bearing nature of the bone in which the lesion resides (binary). We conducted a 

statistical analysis, using the ground truth lesions as anchors for assessing sensitivity and specificity of each model for 

each clinical task. 

Results: Quantitative results for the detection and segmentation tasks are presented in Fig 4, Table 1, and Table 2, 

respectively. The detection architectures exhibit more balanced performance, as illustrated in Fig 4a. Among them, 

EfficientNet achieves the highest performance across all metrics, with an F1 score of 0.82, a precision of 0.88, a recall 
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of 0.79, and an AUC of 0.71. ResNet34 and DenseNet also attain good precision values of 0.87 and 0.85, respectively; 

however, their recall and AUC values are ssubstantially lower. Among the segmentation models, nnUNetv2 performs 

the best, achieving a Dice Similarity Coefficient (DSC) of 0.73, along with precision and recall values of 0.73 and 

0.83, respectively (Fig 4b). In contrast, the Dice score for the other architectures are appreciably lower. To further 

quantify these differences in segmentation accuracy, we conducted pairwise paired t-tests across UNet, ResUNet, 

ResAttUNet and nnUNetv2, using Dice similarity coefficients. ResAttUNet achieved a Dice coefficient of 0.60 ± 0.28, 

outperforming U-Net, which scored 0.56 ± 0.24, with a mean paired difference of 0.16 ± 0.14 (p < 0.01). Similarly, 

ResUNet, with a Dice coefficient of 0.58 ± 0.27, slightly outperformed U-Net, which had a Dice coefficient of 0.56 ± 

0.24, with a mean paired difference of 0.02 ± 0.13 (p < 0.01). nnUNetv2 model demonstrated superior segmentation 

accuracy, achieving a Dice coefficient of 0.74 ± 0.21, outperforming ResAttUNet by 0.12 ± 0.37 (p < 0.01), ResUNet 

by 0.12 ± 0.35 (p < 0.01), and U-Net by 0.16 ± 0.331 (p < 0.01). Supplementary Fig. 1 presents a qualitative analysis of 

different segmentation methods on slices selected from the test set. The first and second columns display the input and 

corresponding ground truth, followed by predictions from the remaining methods. These results further illustrate the 

superior performance of the nnUNetv2 model.  

 

Further, we interpret the clinical significance of segmentation results through the detection of distinct lesions, the 

differentiation between focal and diffuse lesion quality, the spatial clustering of lesions, the distribution of predicted 

lesions across bone locations, and the weight-bearing nature of these locations. Analyzing results based on clinical 

relevance is crucial because it ensures that the model's performance aligns with real-world diagnostic needs, enhancing 

its utility in clinical decision-making and patient outcomes. Although all models exhibited similar sensitivity for lesion 

detection, nnUNetv2 demonstrated significantly higher specificity at 0.9, compared to 0.48 for UNet, 0.65 for 

Attention UNet, and 0.46 for ResAttUNet (Fig 5a). All models excelled at distinguishing between diffuse and focal 

lesions, achieving perfect sensitivity of 1.0 and specificities above 0.9 (Fig 5b). In terms of spatial clustering, UNet 

predicted the largest spatial clusters, possessing both the highest correct and incorrect counts; nnUNetv2 predicted the 

smallest spatial clusters, possessing the lowest correct and incorrect counts (Fig 5c). All models showed similar 

sensitivity for predicting the number of weight-bearing lesions, ranging from 0.3 to 0.5, but nnUNetv2 had the highest 

specificity at 0.95, compared to 0.6 to 0.8 for the other methods (Fig 5d). When predicting lesion locations, all models 

had similar sensitivity and high specificity (~1), but with lower sensitivity overall (Fig 5e). The models globally had 
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the lowest sensitivities for predicting spine lesions, with values between 0.25-0.4, and the highest sensitivities for 

predicting rib lesions, with values between 0.6-1.0 (Fig 5e).  

 

Often, segmented ROIs for lesions are used as input to algorithms that evaluate radiomic features. Given this, we wish 

to determine whether using ROIs generated by the deep learning algorithm versus those determined by the expert 

radiologist can have an impact on final radiomic features. To evaluate this the Intraclass Correlation Coefficient (ICC) 

between radiomic features extracted from algorithm-predicted ROIs and those obtained from manually segmented 

ROIs was evaluated. Across all metrics the nnUNetv2 segmentation has the largest values of ICC values indicating that 

it is closest to the manual segmentation (Table 3).  

Discussion: The findings presented in this study highlight the performance and clinical relevance of various deep 

learning architectures for the detection and segmentation of lesions. Our results indicate that nnUNetv2 consistently 

outperforms other models across multiple metrics, both in segmentation accuracy and in preserving the integrity of 

radiomic features. The detection architectures evaluated in this study demonstrate a balanced performance, with 

EfficientNet emerging as the most effective model, achieving the highest scores across all metrics, including F1 score, 

precision, recall, and AUC. This model's ability to maintain high precision and recall suggests a well-calibrated 

approach to managing false positives and false negatives, which is crucial in clinical settings where misclassification 

can have significant consequences. While ResNet34 and DenseNet also perform decently, their lower recall and AUC 

scores indicate that these models may miss certain lesions, reducing their reliability in practice. Among the 

segmentation models, nnUNetv2 distinctly outperforms its counterparts, achieving superior Dice Similarity 

Coefficients (DSC) and demonstrating higher precision and recall. This performance is likely due to nnUNetv2's robust 

architecture, which includes extensive data augmentation and advanced normalization techniques that enhance 

generalization across different datasets. The pairwise comparisons further validate nnUNetv2’s superiority, with 

statistically significant improvements over ResUNet, U-Net, and ResAttnUNet.  

 

The clinical relevance of the segmentation results was further explored by analyzing the models' ability to detect 

distinct lesions, differentiate between focal and diffuse lesion qualities, and predict lesion distribution across various 

bone locations. nnUNetv2 not only demonstrated higher overall accuracy but also excelled in specificity, particularly in 
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distinguishing between different types of lesions and in predicting the spatial clustering of lesions. This is a critical 

aspect in clinical setting, where the accurate classification of lesion types and their spatial distribution can directly 

influence treatment decisions. The higher specificity observed with nnUNetv2, especially in weight-bearing lesions, 

underscores its potential utility in clinical workflows, where precision in identifying critical lesion locations can be 

pivotal. 

 

Radiomics enhances diagnostic and prognostic capabilities by extracting quantitative features from medical imaging, 

but its effectiveness relies on accurate initial segmentation. We analyzed the radiomic features extracted from 

segmentations predicted by different methods and compared them to those derived from ground truth (GT) 

segmentations. We evaluated how effectively each deep learning architecture preserved these radiomic features 

compared to the GT. Our study reveals significant variability in the Intraclass Correlation Coefficient (ICC) values 

across different segmentation models and radiomic features. The lower ICC values associated with NGTDM across all 

models, except nnUNetv2, suggest that this texture feature is particularly sensitive to misalignment in the region of 

interest (ROI). nnUNetv2's superior performance in maintaining high ICC values across a broad range of radiomic 

features, including NGTDM, indicates that it offers the most reliable segmentation output for radiomics. The narrow 

confidence intervals observed in the ICC values for nnUNetv2 further emphasize its consistency and robustness, 

making it a preferred choice for studies where radiomic analysis is integral. In contrast, the lower ICC values observed 

in ResUNet and ResAttnUNet indicate potential limitations in their application for radiomic feature extraction. 

 

While this study provides valuable insights into the performance of different segmentation models, some limitations 

need to be acknowledged. The dataset used for training and evaluation may not encompass the full variability 

encountered in clinical practice, particularly regarding lesion types, sizes, and locations. In subsequent studies, we aim 

to include more diverse cases, which would enhance the generalizability of the findings. While nnUNetv2 

demonstrated superior performance in this study, it is important to consider the computational demands associated with 

its training and deployment. The same holds true for the EfficientNet, which performed well in the detection task. The 

high computational cost may limit its accessibility in resource-constrained environments. Developing more efficient 

versions of nnUNetv2 or alternative models that offer a better balance between performance and computational 

requirements will be explored. Finally, the integration of radiomics with segmentation models, as demonstrated in this 
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study, highlights the potential for personalized medicine. However, the clinical translation of these findings will require 

rigorous validation through large-scale, multi-center studies. 
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Figure Captions 

Fig 1. CT scans depicting diffuse osteoblastic metastasis in the bones of the pelvis (highlighted within the bounding 

box). Broadly, osteoblastic metastatic disease can be identified by increased intensity relative to surrounding tissue and 

typical bone intensity. 

 

Fig 2. This figure illustrates the regions of the input image that are most influential in the CNN's decision-making 

process. The heatmap overlay highlights areas with the highest gradient-based class activation, providing insights into 

the model's attention and interpretability of its predictions. Brighter colors indicate regions with higher importance in 

the final classification, while darker colors signify lesser importance. 

Fig 3. This figure illustrates a comprehensive workflow for lesion detection, segmentation, and evaluation of osseous 

metastatic prostate cancer lesions. The process begins with lesion detection, where CT images and their lesion status 

(presence or absence) are processed using detection methods. Following this, the segmentation stage to generate lesion 

masks. Clinical evaluations are carried out based on unique lesions, clustering, diffuseness, and location, along with 

radiomic analysis to demonstrate that the radiomic features derived from the lesions segmented by deep learning 

methods are comparable to manual annotations. 

Fig 4. Quantitative detection and segmentation metrics. (a) Detection performance of classifier architectures including 

EfficientNet, ResNet34, and DenseNet. Blue, F1-Score; green, precision; red, recall; yellow; AUC. (b) UNet-based 

architectures for the lesion segmentation task. Blue, DSC; green, precision; red, recall. 

 

Fig 5. Clinical segmentation metrics, with sensitivity and specificity relative to ground truth. (a) Lesion prediction. (b) 

Diffuse vs. focal lesion status. (c) Local clustering of lesions. (d) Weight-bearing nature of the predicted lesions. (e) 

Fraction of lesions in each body part – spine, pelvis, and ribs.                

       

Supplementary Fig 1. The qualitative analysis of various segmentation methods. The first and second columns 

represent the input and the corresponding ground truth, followed by the predictions of the rest of the methods. 
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Table 1. Quantitative analysis of Detection Performance. 
 
 

 
 
 
 
 
Table 2. Quantitative Analysis of Segmentation Performance. 

 
 

 
Table 3. Comparative Analysis of Intraclass Correlation Coefficient (ICC) Across Various Methods for Radiomic Feature 
Assessment 

 
 
 
 
 
 

Methods Precision Recall F1-score AUC 
EfficientNet 88.34 78.60 82.23 71.21 
DenseNet 87.41 54.93 64.25 63.26 
Resnet 85.35 65.20 72.06 66.81 

Methods Dice Precision Recall Parameters 
(Million) 

Unet 55.89 57.10 68.63 6.7M 
ResUNet 58.97 63.86 64.27 7.7M 
ResAttUNet 61.65 62.20 72.62 8M 
nnUNetv2 73.37 73.56 83.22 30.6M 

ICC (Min, Max) 
 First GLCM GLDM GLRLM GLSZM NGTDM 
UNet 0.93 (0.92, 0.93) 0.84 (0.83, 0.85) 0.92 (0.91, 0.93) 0.87 (0.86, 0.88) 0.83 (0.81, 0.84) 0.73(0.69,0.77) 
ResUNet 0.96 (0.95, 0.96) 0.81 (0.79, 0.82) 0.89 (0.88, 0.90) 0.82 (0.80, 0.83) 0.81 (0.79, 0.83) 0.40 (0.32, 0.47) 
ResAttUNet 0.97 (0.97, 0.98) 0.88 (0.87, 0.89) 0.94 (0.94, 0.95) 0.89 (0.88, 0.90) 0.89 (0.88, 0.90) 0.46 (0.39, 0.53) 
nnUNetv2 1.0(1.0,1.0) 0.91 (0.90, 0.91) 0.95 (0.95, 0.96) 0.95 (0.94, 0.95) 0.94 (0.93, 0.94) 0.95 (0.94,0.95) 
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