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Abstract 

Precision medicine for brain diseases faces many challenges, including understanding the 
heterogeneity of disease phenotypes. Such heterogeneity can be attributed to the variations in 
cellular and molecular mechanisms across individuals. However, personalized mechanisms remain 
elusive, especially at the single-cell level. To address this, the PsychAD project generated population-
level single-nucleus RNA-seq data for 1,494 human brains with over 6.3 million nuclei covering 
diverse clinical phenotypes and neuropsychiatric symptoms (NPSs) in Alzheimer’s disease (AD). 
Leveraging this data, we analyzed personalized single-cell functional genomics involving cell type 
interactions and gene regulatory networks. In particular, we developed a knowledge-guided graph 
neural network model to learn latent representations of functional genomics (embeddings) and 
quantify importance scores of cell types, genes, and their interactions for each individual. Our 
embeddings improved phenotype classifications and revealed potentially novel subtypes and 
population trajectories for AD progression, cognitive impairment, and NPSs. Our importance scores 
prioritized personalized functional genomic information and showed significant differences in 
regulatory mechanisms at cell type level across various phenotypes. Such information also allowed 
us to further identify subpopulation-level biological pathways, including ancestry for AD. Finally, we 
associated genetic variants with cell type-gene regulatory network changes across individuals, i.e., 
gene regulatory QTLs (grQTLs), providing novel functional genomic insights compared to existing 
QTLs. We further validated our results using external cohorts. Our analyses are available through 
iBrainMap, an open-source computational framework, and as a personalized functional genomic atlas 
for Alzheimer's Disease. 

Main 

Precision medicine in neuropsychiatric and neurodegenerative diseases considers variability in 
genomics, environment, and lifestyle for each person in order to dissect the complex and 
heterogeneous etiology of each disorder, and to deliver more accurate diagnoses and targeted 
therapies1–4. The heterogeneity of these diseases stems from differences in cellular and molecular 
mechanisms. Functional genomics examines cell type interactions and cell type gene regulatory 
mechanisms to dissect this heterogeneity and to uncover disease mechanisms2. To advance 
precision medicine in AD and to further our understanding of disease heterogeneity, there is an 
urgent need to perform personalized analysis that better captures interindividual variability. Current 
personalized analyses in brain diseases predominantly rely on brain imaging5–8, often overlooking 
crucial biologically mechanistic information. Recently, several attempts have been made to capture 
disease-specific and personalized gene expression patterns9–11. For example, Dozier11 identified 
individual variations in immune response among AD using personalized gene co-expression network 
analysis. Another study identified personalized network patterns and driver genes in various cancers 
by building individual-specific networks from gene expression data9. However, gene expression is 
fundamentally governed by gene regulation, which is a highly cell-type-specific molecular mechanism. 
Similarly, several population studies have shown that intercellular crosstalk is an essential component 
in the process of AD (e.g., astrocyte-microglia crosstalk in β-amyloid pathology12 and 
neuroinflammation13). This suggests that capturing personalized cell type interactions and gene 
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regulatory mechanisms at the single-cell level can provide mechanistic insights into disease 
development, heterogeneity, and progression9,14,15.  

Large amounts of individual data are essential to capture the complexities and variability 
present across populations in AD. Recent developments in single-cell sequencing technology have 
provided opportunities to characterize cell diversity, reveal the genomic landscape, and understand 
disease heterogeneity of the human brain at single-cell resolution16–18. To explore neurodegenerative 
and neuropsychiatric disease mechanisms, the PsychAD Consortium (Supplementary Notes 
“PsychAD dataset”) generated population-level single-nucleus RNA sequencing (snRNA-seq) data 
from 1,494 donors across 6.3 million nuclei from the human dorsolateral prefrontal cortex (DLPFC) 
brain region19,20. The dataset includes donors with neurodegenerative or neuropsychiatric disorders 
such as AD, schizophrenia (SCZ), and diffuse Lewy body disease (DLBD), either as standalone 
diagnoses or in combinations of multiple diagnoses. For a subset of samples, there is detailed 
information on neuropsychiatric symptoms (NPS, e.g., depression). Additionally, quantitative 
measurements of AD-related phenotypes, including Braak stages (neurofibrillary tangles) and 
cognitive impairment, are available for all donors diagnosed with AD and the majority of neurotypical 
controls as well. 

Analyzing such large-scale population data typically requires emerging computational 
approaches to discover the personalized functional genomic information that traditional methods 
cannot capture. Existing machine learning approaches to analyze AD-associated single cell data 
have focused on identifying key genes and biomarkers, reconstructing cellular trajectories underlying 
neurodegeneration, and conducting multi-omics integrative analyses to study the disease in 
detail16,21,22. More advanced approaches like graph neural network based methods23 pool cells from 
the population to learn cell embeddings which are then used for cell clustering24,25, inferring 
phenotypic biological networks24,26, and multimodal integration24–26. These approaches mainly focus 
on group-level analyses and are, therefore, effective in identifying group level gene expression and 
cell embedding patterns. However, they often fail to capture individual-specific patterns, potentially 
overlooking functional genomics that may be crucial for some individuals but are diluted in population-
wide averages.  

Here, we present a personalized single-cell transcriptomics analysis of 1,494 human brains 
from the PsychAD cohort. Our analysis reveals personalized functional genomic patterns, prioritizing 
cell types, genes and their interactions for AD and clinical phenotypes. We demonstrated the 
robustness of our results using independent cohorts. We also identify genetic variants associated with 
cell-type-level gene regulation for 27 cell subclasses. Our results are accessible online through a 
personalized functional genomic atlas and a computational framework for general personalized 
analyses. 
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Personalized functional genomic atlas across brain 
disease phenotypes  

Figure 1: Personalized functional genomic atlas and analysis for brain disease phenotypes. a, The 
iBrainMap framework uses the PsychAD20 snRNA-seq data of 1,494 human brain donors to output 
personalized disease-associated functional genomics information for brain diseases including Alzheimer's 
Disease (AD) and Schizophrenia (SCZ). b, The iBrainMap framework first constructs a personalized functional 
genomics graph (PFG) and then applies graph diffusion to integrate known disease genes to generate bio-
diffused PFGs for each individual. The KG-GNN, a multi-head graph attention model, uses the bio-diffused 
PFGs of each individual to classify AD vs. Control, learn graph embeddings, and prioritize nodes and edges for 
AD (through learned AD, SCZ, and data-driven priors). Genotype data can be used to capture variations in our 
model and impute donor graph embeddings. These imputed embeddings can then be used in cohorts that only 
have genetic information for phenotype predictions. More details in Methods, Supplementary Note 1-2, 
Supplementary Figures 1-2, c, Using graph embeddings, we can classify donors across disease phenotypes 
and stratify them into potential novel subtypes. Using prioritized edges, we can prioritize phenotype-associated 
personalized networks, identify known and novel disease genes, and perform cell type-level gene-regulation 
QTLs (grQTLs) that link associated SNPs with gene regulatory links.  
 
To perform personalized analyses, we developed a computational framework called iBrainMap that 
leverages snRNA-seq from multiple donors for phenotype classification, population subtyping, and 
the prioritization of functional genomic information at the individual level (Figure 1a). We applied this 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316589doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.01.24316589


 5 

framework to data from the PsychAD consortium19, which includes over 6.3 million nuclei (including 
27 cell types) from 1,494 donor brains, representing a diverse range of cross-disorders, AD 
progression phenotypes, and a range of AD-associated NPSs. iBrainMap constructs Personalized 
Functional Genomics graphs (PFGs) for each donor, integrating prior biological knowledge of 
diseases into each graph. Each PFG is a directed graph, with nodes representing cell types, 
transcription factor genes (TFs), and target genes (TGs), and edges denoting cell type interactions 
and cell type regulatory links from TFs to TGs. These PFGs are then used as input for a knowledge-
guided graph neural network (KG-GNN), generating two key outputs for each individual: graph 
embeddings and importance scores for PFG nodes and edges, facilitating several downstream 
analyses (see Methods, Supplementary Note 1-2).  

We enhance the PFGs by incorporating prior biological knowledge of known disease genes 
(e.g., AD and SCZ genes27,28), resulting in bio-diffused PFGs where edges associated with disease 
gene nodes are assigned higher weights (see Methods, Extended Figure 1a-b). These bio-diffused 
PFGs are then input to our KG-GNN model for classification into disease (case) and control groups 
(see Methods, Supplementary Note 1, Supplementary Figure 1). The KG-GNN model, a multi-
head graph attention network, learns two types of priors (or attention scores): data-driven priors from 
the input data and disease-specific priors from prior knowledge of disease genes (e.g. AD-prior and 
SCZ-prior) (see Supplementary Note 2, Supplementary Figure 2). Following classification, the KG-
GNN model outputs graph embeddings and importance scores (for PFG nodes and edges) for each 
individual through learned priors, which are then used to rank disease-associated functional 
genomics (nodes: cell types, TFs, TGs; edges: cell type to TF, cell type to TG, and TF-TG) across 
individuals. Additionally, an imputation module leverages genotype information to impute graph 
embeddings for new individuals enabling disease diagnosis (Figure 1b).  

Based on our framework's outputs, we conducted downstream analyses in two parts (Figure 
1c). First, using graph embeddings, we classified donors according to disease-related phenotypes, 
including case-control status, pathology capturing different stages of AD, and presence of NPSs. 
Additionally, we performed population subtyping to identify novel subgroups capturing different 
disease stages. With pseudotime analyses of the graph embeddings, we uncovered several 
population trajectories associated with AD pathology, cognitive status, and NPSs. Second, we used 
importance scores to prioritize nodes and edges of individuals (through learned AD, SCZ, and data-
driven priors), which were then utilized to identify significant subnetworks and to uncover potential 
biomarkers associated with AD phenotypes, including cell types and cell type regulatory elements 
(TFs, TGs). Additionally, we associated genetic variants with cell type gene regulatory network 
changes across individuals, i.e., gene regulatory QTLs (grQTLs), providing novel functional genomic 
insights linking SNPs to TF-TG regulatory mechanism as opposed to linking SNPs to genes and 
regulatory elements in traditional QTL analysis. 
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Extended Figure 1: Multi-cohort snRNA-seq data for personalized functional genomic analyses. a, Part 
of a personalized functional genomics graph (PFG) for a donor from the Mount Sinai Brain Bank/MSSM (M) 
cohort. The donor is female with European ancestry, age >80 years old, diagnosed with AD, showing 
pathology for Braak stage 6 and CERAD score 4 (definite AD), and diagnosed with Dementia (see 
Supplementary Note 3). Nodes are either cell types, transcription factors (TFs), or target genes (TGs); edges 
represent intercellular communications or cell type-specific regulatory mechanisms, b, Summary statistics 
about the number of edges (left) and nodes (right) of PFGs constructed by iBrainMap across 1,494 donors, c, 
Donors from multi-cohort AD studies: PsychAD (Mount Sinai Brain Bank/MSSM (M) (n=1,042), Rush 
Alzheimer’s Disease Center/RADC (R) (n=152), Seattle Alzheimer’s Disease Brain Cell Atlas/SEA-AD (S) 
(n=80) and NIMH-IRP Human Brain Collection Core/HBCC (H) (n=300). Data summary of phenotypic donors 
used in this study divided into three levels: Disease vs. Control (AD vs. Control, SCZ vs. Control, AD-DLBD vs. 
Control, AD-resilient vs. AD vs. Control), Disease Progression (Braak stages, CERAD, Cogdx), and 
Neuropsychiatric symptoms (Dysphoria, DecInt (Anhedonia), Sleep/Weight Gain/Guilt/Suicide (S/W/G/S), 
Depression/Mood (D/M)); each horizontal bar is a phenotype contrast.  
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316589doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.01.24316589


 7 

Phenotype classification and subtyping using 
personalized functional genomics 

 
Figure 2: Graph embeddings for personalized functional genomics enable high classification accuracy 
and disease progression subtyping. a, ROC curves for classifying KG-GNN graph embeddings for AD vs. 
Controls from the MSSM held-out: AD (n=62) vs. Control (n=30) and the independent validation data 
RADC+SEA-AD: AD (n=93) vs. Controls (n=68). The datasets are described in Extended Figure 1c. b, 
Average five-fold cross-validated ROC for classification of KG-GNN graph embeddings across phenotype 
contrasts from Extended Figure 1c. c, Graph embeddings based UMAP (Left: colored by AD donors vs 
Controls; Right: colored by clusters from unsupervised clustering/subtyping of graph embeddings) d, 
Heatmaps depict phenotype enrichments for clusters from (c) across AD progressions: AD pathology (Braak, 
CERAD) and cognitive status (clinical dementia rating) showing an increasing trend from c1-c5, using -
log10(hypergeometric test p-value) (see Methods). 
 
To study the functional genomics associated with AD, we trained our KG-GNN model for binary 
classification of individual bio-diffused PFGs into AD and Control groups. Our KG-GNN model 
demonstrated superior classification performance compared to several state-of-the-art machine 
learning models. Specifically, we trained the KG-GNN and other models on 80% of donors from the 
MSSM cohort with AD diagnosis information: AD (n=438) vs. Control (n=179) (see Supplementary 
Note 4). The KG-GNN model achieved a high area-under-the-curve (AUC) of 0.93 on the 20% held-
out donors from MSSM with AD (n= 62) vs. Control (n=30). Further validation on independent data 
with AD (n=93) vs. Controls (n=68), combined from RADC and SEA-AD17 cohorts, yielded a 
combined AUC of 0.808 (Figure 2a, Supplementary Figure 3). Benchmarking against state-of-the-
art graph learning models showed that KG-GNN outperformed them, achieving a high AUC score 
(Supplementary Figure 4a). The KG-GNN model demonstrated superior performance over 
traditional machine learning algorithms that use gene expression alone for population disease 
classification of AD and Controls (Supplementary Figure 5, see Supplementary Note 5). 

Next, we applied the pre-trained KG-GNN model to bio-diffused PFGs from donors across 
other MSSM contrasts other than AD vs. Control (Extended Figure 1c) to extract graph embeddings. 
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These embeddings were then classified using machine learning models for binary (Disease vs. 
Control, NPS) and multi-class (Disease Progression) classification tasks. Here we report a high 
cross-validated AUC score for multiple phenotypes (Figure 2b; Supplementary Note 6). 
Additionally, we used the donor graph embeddings to classify cross-diseases, including SCZ, on an 
independent cohort from NIMH-IRP Human Brain Collection Core (HBCC): SCZ (n=50) vs. Control 
(n=250) (Supplementary Figure 6) and achieved an ROC of 0.616. These results highlight the 
robustness and versatility of our framework for disease and phenotype classifications. 

Our model effectively distinguished between AD and Controls, as visualized in the UMAP 
representation of graph embeddings (Figure 2c: left). We further explored potential novel subtypes 
within these graph embeddings using unsupervised clustering (see Methods), identifying five distinct 
clusters (c1-c5) (Figure 2c: right). Enrichment analysis across AD progression phenotypes revealed 
that these clusters capture trends in Braak stages, cognition (Clinical Dementia Rating (CDRscore)), 
and CERAD score (Figure 2d). Specifically, c1-c2 correspond to (a) early Braak stages (Braak 0,1,2), 
(b) controls in CDRscore, and (c) ‘No AD’ based on CERAD score; while clusters c4-c5 were 
associated with (a) later Braak stages (Braak 5,6), (b) Dementia in clinical diagnosis of cognitive 
status (CDRscore), and (c) presence of AD based on CERAD score. These findings suggest that our 
graph embeddings can identify potential novel population subgroups (c1-c5), each statistically 
enriched with donors exhibiting AD progression pathologies and cognitive decline. 

Phenotypic population trajectories for AD progression, 
cognition, and neuropsychiatric symptoms  
AD progression exhibits significant heterogeneity across donors, particularly in terms of age of onset, 
rate of cognitive decline, and worsening of disease pathology. Capturing individual-specific disease 
mechanisms can therefore provide insights into disease trajectories at a population level. In this 
study, we used donor graph embeddings, extracted from our pre-trained KG-GNN model, to infer 
population-level trajectories for AD phenotypes (Extended Figure 1c). By analyzing donor graph 
embeddings corresponding to different phenotypes, we computed phenotypic pseudotimes for these 
embeddings (Figure 3a, see Methods). Specifically, these graph embeddings allowed us to 
temporally order donors by assigning pseudotimes based on their phenotypes (e.g., AD, Braak, 
CERAD).  

We first inferred a trajectory for donors with AD diagnosis versus Controls, assigning an AD 
pseudotime to each donor (Figure 3b). Our findings revealed that donors diagnosed with AD were 
assigned later pseudotimes compared to the Controls (Figure 3c). Furthermore, when correlating this 
AD pseudotime against AD pathology (Plaque counts) and cognition (CDRscore), we observed a 
clear progression trend, with increasing plaque levels and higher CDRscores associated with later 
pseudotimes (Figure 3d, see Supplementary Note 3). To further explore AD phenotypic 
pseudotimes, we inferred trajectories for progression and cognition phenotypes like Braak, CERAD, 
and CDRScore (Figure 3e). Across all three phenotypes, we observed a consistent trend of 
increasing pseudotime associated with more advanced stages of disease severity. This demonstrates 
that individual-level graph embeddings can effectively uncover phenotypic trajectories, as evidenced 
by the alignment of increasing AD pseudotime with more advanced stages of AD. 
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Figure 3: Population-level pseudotime analysis uncovers phenotypic trajectories for AD progression, 
cognition, and NPS using pre-trained KG-GNN model. a, Graph embeddings are extracted for donors with 
different phenotypic information using the pre-trained KG-GNN model. Then pseudotime analysis of graph 
embeddings is done to uncover phenotypic trajectories, b, AD phenotypic trajectory captured for graph 
embeddings of donors with AD vs. controls, c, Boxplot comparing pseudotimes from b. shows controls 
appearing earlier compared to donors with AD having a later occurrence, d, Comparison of AD trajectory 
pseudotimes (from a.) with AD pathology (Plaque) and cognition (Clinical Dementia Rating score) are 
consistent e, Boxplots showing pseudotimes computed from graph embeddings for donors with AD pathology 
and cognition reveal an increasing trend with stage progression; left: Braak stages=early vs. mid vs. late 
(Mann-Kendall, P = 0), middle: CDRScore=Control vs. Mild Cognitive Impairment (MCI) vs. Dementia (Mann-
Kendall, P = 0), right: CERAD=No AD vs. Possible vs. Probable vs. Definite AD  (Mann-Kendall, P = 0); inset 
plots: graph embeddings based UMAPs colored by pseudotime, f, Density plots showing the distribution of 
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neuropsychiatric symptoms (NPS) across donors diagnosed with NPS including Dysphoria (P < 4.21e-3), Early 
Insomnia (P < 1.30e-3), and Middle Insomnia (P < 4.21e-3) across NPS phenotypic pseudotimes. 
 

NPSs often co-occur in individuals with AD, with different symptoms manifesting at distinct 
stages of the disease29. For instance, dysphoria is reported to be more prevalent during the early 
stages of cognitive impairment29,30. Consistent with previous findings, our analysis revealed that 
pseudotimes inferred from graph embeddings of AD donors diagnosed with dysphoria were closer to 
zero or initial stages of AD progression (Figure 3f: left). Similarly, pseudotime analysis of AD donors 
diagnosed with early- and mid- insomnia revealed that these sleep disturbances occur along different 
stages as AD progresses (Figure 3f: mid, right, Supplementary Figure 7). 

We extended this analysis to the SEA-AD cohort to independently validate the phenotypic 
trajectories derived from the graph embeddings generated by our model. We first constructed the bio-
diffused PFGs for 80 donors from SEA-AD and extracted their graph embeddings using our pre-
trained KG-GNN model (Extended Figure 2a, see Methods). We then compared the pseudotimes 
inferred from these embeddings with the continuous pseudoprogression score (CPS)17, which used a 
machine-learning model on quantitative neuropathology measurements and immunohistochemical 
stains. Interestingly, the two measures had a strong concordance, with a Pearson correlation of 0.63 
(P < 1.38e-3, Extended Figure 2b). Furthermore, the pseudotimes effectively captured disease 
severity stages in AD progression (Thal, CERAD) and cognition (cogdx) (Extended Figure 2c-e). 
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Extended Figure 2: Independent validation of phenotypic pseudotimes by SEA-AD cohort. a, Graph 
embeddings are extracted for donors with different phenotypes using a pre-trained KG-GNN model to be used 
for pseudotime analysis and generate phenotypic pseudotimes, b, Comparison of pseudotime of graph 
embeddings from KG-GNN with CPS shows high Pearson correlation r = 0.63, P < 1.38e-3, c-e, Boxplots show 
increasing pseudotime (from a.) along AD pathology for Thal (Mann-Kendall, P < 1.44e-2) and CERAD (Mann-
Kendall, P < 1.17e-2), and clinical diagnosis cogdx (Mann-Kendall, P < 1.61e-2). 

Prioritization of personalized cell type interactions, 
genes, and regulatory networks for AD 

 
Figure 4: Cell type and interaction score evaluation and comparison. a, Identifying important cell types for 
AD phenotype. Dotted lines represent cell type fraction, and solid lines indicate cell type importance score. The 
plot is sorted by cell type fraction. b, Correlation comparison of importance score and gene expression for 
different clinical (age) and pathological phenotypes (CDR score, cognitive tau resilience, plaque count, and 
polygenic risk score). c, Variance heatmap of different gene regulatory (TF-TG) links across control and AD 
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donors (annotated for significance) using importance scores from different biological priors for attention head 
groups. Green/Red: low and high difference in average importance score between control and AD donors. d, 
Volcano plot of log-fold change against significance for cell type-cell type interactions. Blue: control; red: AD. e, 
Prioritized subnetwork (top 1% edges across cell types within each donor) showcasing connectivity among cell 
types, TFs, and target genes for AD phenotype. Each ellipse represents a gene, shaded along a yellow to red 
gradient corresponding to the frequency of occurrence in prioritized nodes across donors. Edges represent 
regulatory links between TFs and target genes and are colored uniquely for astrocytes, oligodendrocytes, 
excitatory neurons, and inhibitory neurons. Edges in all other cell types are colored gray for ease of 
visualization. Borders of genes linked to AD and SCZ in the literature are shaded blue or red, respectively, and 
a few such genes are labeled with a similar color scheme. 
 
Graph embeddings improved phenotype prediction and provided insights into disease progression 
(e.g., population trajectories). Our next step was to perform a more granular analysis of the PFGs by 
examining the nodes and edges within each donor graph. The nodes include cell types and genes 
(TFs and TGs). The edges include cell type interactions and cell-type gene regulatory links (cell types 
to TFs, TFs to TGs). We used the attention scores from our trained KG-GNN model as the edge 
importance scores and designed an importance scoring metric for nodes of the PFG for each donor 
using the edge importance scores (see Methods and Supplementary Note 7). As the model was 
trained to classify AD vs. Control, the importance score represents the AD importance scores of each 
edge and node of the PFG. 

As our KG-GNN model had higher AD classification performance than using gene expression 
alone (Supplementary Figure 5), we wanted to test that the importance scores from our model 
provide deeper insights compared to traditional gene expression based approaches. We first 
compared the node importance scores of different cell types with the cell type fractions across all 
samples. We observed that cell type fraction did not affect cell type importance (Figure 4a). Further, 
EN_L5_6_NP, EN_L6_IT_2, and IN_LAMP5_LHX6 cell types had the highest importance scores for 
AD pathology. When comparing with SCZ, we also identified several cell types with higher importance 
scores among AD donors than SCZ donors (Supplementary Figure 8). Using the Mann-Whitney U 
Test, the top three cell types with significantly higher importance scores among AD donors were 
IN_PVALB (FDR < 9e-4), EN_L6_CT (FDR < 2e-3), and IN_SST (FDR < 3e-4). Similarly, we 
compared the correlation of the gene importance scores and gene expression with clinical (Age) and 
pathological (CDR score, cognitive tau resilience, plaque, and polygenic risk scores) phenotypes for 
AD contrast. We saw higher correlations between these phenotypes and the importance scores 
compared to gene expression (importance: corr = 0.117; expression: corr = 0.067, Figure 4b, 
Supplementary Table 2). We observed better predictive capabilities using our importance scores 
among AD vs. controls for several genes that were not identified by gene expression. For example, 
gene expression of the GAD2 gene in IN_VIP cell type was not correlated with PRS, while importance 
scores identified a positive correlation among AD donors and a negative correlation among control 
donors (Supplementary Figure 9). Extending our analyses beyond AD phenotypes and PRS, we 
saw a higher correlation of importance scores in comparison to gene expression for SCZ, Braak, AD 
Resilience, and Sleep/Weight Gain/Guilt/Suicide(S/W/G/S) phenotypes (Supplementary Figure 10a-
f). Thus, these observations suggest that our gene importance scores are more information-dense 
than gene expression and confer knowledge beyond AD pathology alone, allowing for risk prediction 
concerning diseases such as SCZ and clinical phenotype prediction. 
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Since our importance scores are generally more correlated with clinical phenotypes, and both 
gene regulatory links and cell type-cell type interactions provide insights into disease mechanisms, 
we compared importance scores between AD and controls for individual interactions. Our model 
provides three importance scores: AD-prior, SCZ-prior, and data-driven. The importance scores with 
each prior displayed significantly differing prioritizations, leading to uniquely prioritized edges (Figure 
4c, Supplementary Figure 11). For example, TF IRF8 regulatory interactions in microglia had 
significantly higher data-driven importance scores in controls (IRF8-RASGEF1C: P < 7e-3; IRF8-
LILRB1: P < 9e-4). Changes in IRF8, a crucial microglial TF for AD, can cause abnormal expression 
of many AD-related genes31. Similarly, interactions from TCF7L2 in astrocytes had higher importance 
scores across all priors in AD donors. TCF7L2 is associated with the Wnt/β-catenin signaling pathway 
which plays a crucial role in AD32. ZEB1 also plays a major role in epigenetic regulation in AD and 
had higher importance scores in AD donors33. A complete list of all the regulatory edge differences 
between AD and controls is available in Supplementary Data 1. We then examined differential 
importance scores on cell type interactions to identify AD-associated cell type interactions. The top 
three significant cell type interactions among AD donors are PC-VLMC (logFC = 4.050, P < 1.58e-
03), IN_SST-IN_PVALB_CHC (logFC = 2.347, P < 9e-08), and IN_SST-IN_ADARB2 (logFC = 2.043, 
P < 3e-09). Similarly, the top three interactions among controls are VLMC-IN_SST (logFC = -1.673, P 
< 3e-04, Micro-EN_L6B (logFC = -1.467, P < 3e-06), and Micro-EN_L6_CT (logFC = -1.365, P < 9e-
07). We also observed that interactions with microglia and IN_SST as source cell types were 
enriched in control and AD donors, respectively (Figure 4d). Microglia are known to have many 
effects on AD pathology and therapeutic intervention, which corroborates their high importance34. 
Thus, the importance score not only provided a comprehensive analysis of cell type importance but 
also facilitated the identification of significant cell type interactions, particularly highlighting the role of 
Microglia and IN_SST in AD.  

We wanted to examine prioritized TFs and their regulatory relationships further as they 
pertained to specific cell types and disease classifications. We visualized and combined the top 10% 
of edges from each donor (based on our importance scores) into a consensus functional genomic 
network spanning all prioritized cell types (Figure 4e). This subnetwork illuminated several 
biologically relevant features of our model. For instance, visualization of the subnetwork suggests 
clear edge segregation into three main clusters consisting mainly of oligodendrocytes, astrocytes, and 
excitatory neuronal cell types, indicating that our model consistently prioritized regulatory edges in 
these cells across donors. We also recorded the occurrence of prioritized genes across donors and 
found that most frequently prioritized genes are predominantly regulated in oligodendrocytes. 
Furthermore, the model prioritized several known AD and SCZ genes and illuminated their cell type-
specific roles. For instance, PCDH11X, an aging-related gene associated with late-onset AD in 
GWAS35, is prioritized in excitatory neurons in our model. A previous study identified variants in the 
CR1 gene associated with AD36. Our model suggests that FOSB mediates CR1 regulation, and this 
regulation is relevant for AD PVM cells. We also observed a considerable representation of known 
SCZ genes within this subnetwork. Overall, our model effectively identifies and prioritizes a 
subnetwork that recapitulates known AD biology, particularly regarding cell-type-specific regulation of 
several genes with prior evidence. Thus, other genes in the prioritized subnetwork are likely 
candidates that have remained elusive thus far.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316589doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.01.24316589


 14 

Personalized prioritization enables subpopulation-level 
analysis in diseases and clinical phenotypes 

 
Figure 5: Cross disorder and progression prioritization using our personalized importance scores. a, 
Differential gene importance scores between cross disorder (AD vs SCZ) and AD progression (early vs mid vs 
late Braak). The x-axis is different cell types, and the y-axis represents the transcription factors. Each dot 
varies by size and color. Light green denotes positive log fold change and darker green denotes negative fold 
change. The dot size indicates the significance of the differential analysis (-log10(p-value)) b, Edge importance 
distributions for select gene regulatory links, compared for various AD progression phenotypes and annotated 
with ANOVA. c, Histogram of edges scoring in the top 5% of data-driven importance scores among the whole 
population and GO-term enrichments (bar plots) for genes in the resultant highly conserved (top 2%, 51-875 
occurrences, orange), conserved (top 2-4%, 23-51 occurrences, purple), and unique (top 4-6%, 15-23 
occurrences, green) edge groups. Only the top 20% of edges are shown in the histogram for visualization 
purposes. d, Enrichment of highly conserved edges from African (AFR, n = 120), admixed American (AMR, n = 
99), and European (EUR, n = 792) subpopulations. 
 
As our importance scores are differentiable across disease and control groups, we next sought to 
compare cell type interactions and regulatory links across diseases and clinical phenotypes. We 
extended our analysis to other phenotypes, including cross disorders (AD vs SCZ), AD progression 
phenotypes, and ancestry. We first looked at differential importance scores for these phenotypes. 
Several TFs from inhibitory neurons (IN) and excitatory neurons (EN) were enriched in SCZ 
compared to AD, and TFs from astrocytes were enriched in AD donors (Figure 5a, Supplementary 
Data 2). Specifically, we identified several known SCZ TFs like TCF437, BCL11A38, RBFOX239, and 
ZMAT440 as the top enriched genes in SCZ donors which were also significantly differentially 
expressed in a study of 388 human brains41. Similarly, for Braak stages, we identified several TFs 
from IN cell types enriched in early Braak stages while TFs from astrocytes and microglia cell types 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316589doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.01.24316589


 15 

enriched in late Braak stages (Figure 5a). Using the differential gene importance scores, we were 
able to identify cell type and TF relationships across diseases and disease progression. 

To further examine disease relationships with importance scores, we analyzed edge 
importance score distribution differences across phenotypes, particularly Braak stages, CDR score, 
and CERAD score (Figure 5b). We found several significant relationships, including the microglia 
edge NFATc2-IKZF1, which displays significant differences in distribution across all Braak stages 
(early vs late: P < 1.79e-6). NFATc2 has been linked to AD pathology in mouse models through 
modulation of microglial activation42. Additionally, we found the TCF7L1-BOC edge in astrocytes to 
separate extreme cases of CERAD scores (No AD vs AD: P < 2.31e-5). TCF7L1 is known to be a 
highly astrocyte-specific regulator in AD pathology43. Our model was able to effectively uncover 
significant prioritization differences across AD progression and pathology phenotypes, revealing 
potentially novel disease regulatory relationships. 

We extended our analysis beyond disease phenotypes to understand conservation of 
regulatory links across the dataset population. As the population includes donors with different 
disease phenotypes beyond AD, we used data-driven importance scores rather than AD-prior 
importance scores. As shown in Figure 5c, most of the edges are present in few donors, but some 
select edges are shown to be common in PFG graphs. These edges may be separated into groups 
based on frequency then enriched to examine patterns within the common edges. For this analysis, 
we sorted edges in the top 5% of data-driven importance scores by frequency and performed 
enrichments on groupings of the constituent top genes. We grouped these edges into three 
categories: highly conserved (top 2%), conserved (top 2-4%), and unique (top 4-6%) edges based on 
empirical observation. Each edge was split into constituent genes to construct a gene list for 
enrichment (Figure 5c, see Methods). Among the enriched terms in the highly conserved category, 
we observed relationships with regulation of leukocyte differentiation. Low leukocyte counts are 
associated with increased risk for developing AD44. We also found dendritic cell differentiation to be 
enriched among conserved edges. Dendritic cells have been shown to be associated with AD 
progression and depression45. Interestingly, the head development pathway was also significantly 
enriched among unique edges. The model allows for intuitive prioritization of regulatory links and 
genes, which can be used for further downstream analysis. 

Differing subpopulations, such as ancestries, have been shown to have significant AD risk 
disparities46,47. We leveraged our data-driven importance scores across ancestries to complement the 
growing body of research which finds racial disparities in AD risk, performing enrichment of highly 
conserved genes for individual ancestries (Figure 5d). In particular, we analyzed African (AFR, n = 
120), admixed American (AMR, n = 99), and European (EUR, n = 792) populations. Regulation of 
phagocytosis had the highest significance among AFR (AFR: P < 6.31e-6; AMR: P < 2.52e-4; EUR: P 
= 1). Phagocytosis of amyloid-beta (Aβ) plaques, particularly by microglia, is strongly related to AD 
severity48. The analysis also reveals obscure and previously unseen relationships. For instance, 
connective tissue development was particularly significant across AFR and admixed AMR populations 
(AFR: P < 2.00e-7; AMR: P < 2.00e-7; EUR: P < 3.17e-3). Expression of connective tissue growth 
factor is a regulator of Aβ plaque, which directly pertains to AD pathology49. We also found several 
common enrichments, including Myeloid cell development (AFR: P < 6.31e-4; AMR: P = 1.00e-4; 
EUR: P = 1.00e-5) which is generally associated with AD pathology50. Ancestry analyses for AD and 
SCZ-prior-based importance score distributions are available in Supplementary Figure 12. The edge 
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importance scores revealed shared and unique pathways among subpopulations such as ancestry, 
offering a more detailed understanding of the mechanisms underlying AD pathology. 

Genotype association and gene regulatory QTL (grQTL) 
analysis  

 
Figure 6: genotype association with gene regulatory networks. a, Correlation between polygenic risk 
score and importance score for each regulatory link (Transcription Factor to target gene). The X-axis indicates 
the polygenic risk score and the y-axis represents the importance score. AD importance score is showcased 
on the left and SCZ importance score on the right. Each dot in the plot represents a donor. The gray line is a 
monotonically increasing/decreasing best-fit line, included for clarity. b, Manhattan plot showing grQTLs for 
microglia (top) and IN_SST (bottom) cell types. The X-axis indicates the chromosome locations, and the y-axis 
represents the association significance calculated using - log10(p-value). Triangles indicate the cisTF-grQTL 
meaning the SNP is associated with the TF coordinate, while circles represent cisTG-grQTL. c, Variation of the 
number of cell type grQTLs per cell type. Blue indicates shared grQtls between cisTF and cisTG, orange 
indicates cisTF-grQTLs, and green indicates cisTG-grQTLs. d, grQTLs intersected with psychEncode2 (link) 
eQTLs across different cell types. 
 
Genetic variation influences gene regulation through various mechanisms like alterations in cis-
regulatory elements, which leads to cell type differences in gene expression, impacting disease 
susceptibility or progression41,51–53. We first explored the relationship between PRS and importance 
scores derived from iBrainMap to understand association between disease heritability and our PFGs 
(Figure 6a). We identified several edges correlated with PRS scores. The top correlating edge 
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consisted of the genes BCL6 and CDH23 (corr = -0.861, P < 3.26e-4), which are known to be linked 
with AD54,55. Additionally, the second edge links Immune cells and SPI1 (corr = -0.811, P < 4.41e-3), 
which has been associated with AD56 and the age of Alzheimer’s onset57. BATF in EN_L3_5_IT_1 
cell type has a high correlation with SCZ PRS (corr = 0.862, P < 1.36e-3). BATF has been associated 
with immune dysfunction in SCZ58. Similarly, IN_LAMP5_RELN to ARID5B edge (corr = -0.911, P < 
1.68e-4) was highly correlated with the SCZ PRS measure. 

As the edge correlation with PRS scores was high, we wanted to understand how genetic 
variants affect gene regulation in different brain cell types. Therefore, we performed genotype 
association with cell type TF-TG regulatory links. We specifically tested the association of genotypes 
of SNPs within a 1-Mb cis region (including the gene body) of both TF and TG genes with the TF-TG 
regulatory score from SCENIC for 27 cell types (see Methods). We call the variants associated with 
the TF-region cisTF-grQTL and variants associated with the target gene region cisTG-grQTL. In total, 
we identified 40,052,033 grQTLs across 27 cell types (FDR < 1e-5, Fig. 6b). Among these ~40M 
grQTLs, there were 9,733,663 cisTF-grQTLs and 30,318,370 cisTG-grQTL. On average, we identified 
1,483,408 grQTLs per cell type with microglia having one of the lowest counts (1,003,126 grQTLs) 
and IN_SST having one of the highest counts (1,718,902 grQTLs). The grQTL plots for all the 
remaining cell types are available in Supplementary Data 3. 

The number of independent grQTLs varied across different cell types with 274 grQTLs 
identified in EN_L5_ET cell type and PVM cell type had the lowest count with 57 (Figure 6c). The 
majority of cell types shared the grQTLs. Furthermore, most of the grQTLs were shared between 
cisTF and cisTG, with some exceptions. For example, Microglia has more cisTG-grQTLs than cisTF-
grQTLs and shared grQTLs. We then compared the grQTLs with recent brain cell-type eQTLs41 and 
found several cell types with high intersection of the SNP-gene pairs (e.g., n = 1,559 for EN_L2_3_IT, 
n = 916 for EN_L6_IT_1, and n = 918 for oligodendrocytes, Figure 6d). Our analysis revealed 
significant associations between genetic variants and cell type specific gene regulation in the brain, 
identifying grQTLs for 27 cell types. This provides novel insights into how genetic variation influences 
gene regulation in different brain cell types, potentially contributing to the heterogeneity observed in 
AD and other neuropsychiatric disorders.  

Next, we used genotype data to impute graph embeddings for new donors for whom only 
genotype data was available (Extended Figure 3a). With these imputed graph embeddings, we 
classified donors into different disease phenotype groups (see Supplementary Note 8). For instance, 
using genotype information from donors in the ROSMAP59 cohort, we imputed their graph 
embeddings and classified them into Early vs. Late Braak stages, achieving an AUC score of 0.57 
(Extended Figure 3b). We then clustered the donor graph embeddings to identify potential novel 
subtypes (Extended Figure 3c), ultimately inferring seven clusters. We further performed 
hypergeometric tests on these clusters to identify novel subtypes (Extended Figure 3d). In particular, 
we found that clusters c2-c6 were enriched with CERAD stages, which increase in severity from ‘No 
AD’ to ‘Definite’. By leveraging genotype data to impute graph embeddings, we were able to predict 
disease phenotypes and identify novel subtypes in AD. 
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Extended Figure 3: independent validation for graph embedding imputation from genotype. a, Cross-
modal imputation of graph embeddings from genotype data using optimal transport60 (see Supplementary 
Note 8) b, ROC curve for classifying imputed graph embeddings into Early vs Late Braak stage donors from 
ROSMAP59 (Early (n=88) vs. Late (n=113) Braak stages) c, Graph embeddings based UMAP (Left: colored by 
Early vs Late Braak stage donors; Right: colored by clusters from unsupervised clustering/subtyping of graph 
embeddings) d, Heatmaps depict phenotype enrichments for clusters from (c) across AD progressions: AD 
pathologies (CERAD) and cognitive diagnosis (Cogdx, Dcfdx) showing an increasing trend from c1-c7, using -
log10(hypergeometric test p-value) (see Methods). 

Discussion 
In this study, we present what is, to our knowledge, the first personalized functional genomics (PFG) 
analysis of AD using population-scale snRNA-seq data. Through the iBrainMap framework, we 
constructed PFGs for 1,494 donors in the PsychAD cohort, capturing cell type interactions and gene 
regulatory mechanisms at donor-level. We applied graph-based learning on these PFGs to generate 
graph embeddings, which were used to classify phenotypes, stratify donors, and reveal potential 
novel subgroups. Additionally, the model produced personalized importance scores for genes, cell 
types, and interactions, prioritizing personalized subnetworks, including those involving cell type 
interactions and gene regulation for various phenotypes. We also computed cell type gene regulatory 
QTLs (grQTLs) to associate genotypes with cell type-specific gene regulation. Our findings were 
validated on external snRNA-seq datasets, including SEA-AD and ROSMAP, demonstrating the 
framework’s utility in phenotype classification and identification of personalized phenotypic 
subnetworks. These results have been compiled into a personalized functional genomic atlas for 
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Alzheimer’s disease, which includes PFGs, a pre-trained knowledge-guided graph neural network 
(KG-GNN) model for phenotype prediction and functional genomic prioritization, and cell type-level 
grQTLs associating SNPs with gene regulatory mechanisms. This atlas is accessible via an 
interactive Shiny web app, and the iBrainMap framework and pre-trained model are available as 
open-source tools on GitHub. 

The robustness of our KG-GNN model was further confirmed through independent validation 
on the SEA-AD dataset, despite lacking some cell types and genes present in the training data from 
the MSSM cohort. By employing a sub sampling technique, our model successfully captured and 
processed information from incomplete data, maintaining its predictive power and analytical 
capabilities even with datasets differing in composition from the training data. This flexibility in 
handling incomplete PFGs not only underscores the model's adaptability but also broadens its 
applicability across diverse datasets, highlighting its effectiveness as a tool for personalized functional 
genomics analysis in AD and potentially other complex disorders. 

Genetic variability in complex diseases like Alzheimer’s enables the study of personalized 
functional genomics. By capturing this variability, our approach can drive the development of tailored 
therapeutic strategies. Prior research has shown that cell type-specific networks can enhance the 
prediction of potential novel drug targets and AD-related genes, which is valuable in drug repurposing 
and predicting clinical phenotypes of AD61. Additionally, a computational drug-repurposing screen 
identified bumetanide as a potential treatment to lower AD risk in donors carrying the APOE ε4 
variant62. Our study offers new insights into potential biomarkers and genetic regulatory mechanisms 
that can be targeted for more personalized and effective treatments, further contributing to the field of 
precision medicine. Moreover, our personalized functional genomics approach can be further 
extended to other complex diseases exhibiting significant genetic variability like schizophrenia, bipolar 
disorder, autism spectrum disorder41 and cancer63, especially when population functional genomics 
data is available. 

Our work has several limitations. First, the personalized functional genomics graphs are 
created by selecting key transcription factors and target genes for each cell type of an individual, 
focusing on significant regulatory mechanisms. While this approach highlights meaningful interactions 
and our model performs well on independent datasets, it only captures only a portion of the regulatory 
activity. Future work could incorporate scaling the personalized functional genomics graphs (e.g., 
TFs, TGs) to provide a complete representation of an individual’s regulatory mechanisms. 
Additionally, our graph neural network model treats all nodes and edges in these graphs as uniform, 
which overlooks cellular and molecular networks' inherent diversity and complexities. To address this, 
future efforts could explore using more sophisticated models, such as heterogeneous graph neural 
networks64, that can distinguish different node and edge types, including various cell types, genes, 
and regulatory mechanisms. Moreover, extending our analyses to emerging single-cell multimodal 
such as epigenomics, proteomics, and spatial data, could provide a more holistic view of disease 
mechanisms.  
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Methods 
Datasets and data preprocessing 
Dataset 
Our analysis is focused on the population-level snRNA-seq data from the PsychAD consortium 
covering the dorsolateral prefrontal cortex (DLPFC) brain region from 1494 donors, derived from 
three cohorts: NIH NeuroBioBank at the Mount Sinai Brain Bank/MSSM (M), Rush Alzheimer’s 
Disease Center/RADC (R), and the NIMH-IRP Human Brain Collection Core/HBCC (H). The 
PsychAD data description is available in the “PsychAD dataset” (See Supplementary Information). 
Our analyses utilized disease diagnosis (e.g. AD, SCZ, DLBD), quantitative assessment of the 
disease stages for donors with AD (e.g. Braak or CERAD), and diagnosis of neuropsychiatric 
symptoms (e.g. depression or weight loss). Accordingly, these donors were categorized into three 
levels: disease versus control (AD, SCZ, DLBD, AD Resilience), AD progression (Braak stages, 
Cogdx, CERAD), and NPSs (Dysphoria, DecInt (Anhedonia), Sleep/Weight Gain/Guilt/Suicide 
(S/W/G/S), Depression/Mood (D/M)) (Extended Figure 1c, Supplementary Note 3). We mainly 
used the MSSM (M) cohort for all the training and used RADC (R) as well as an external dataset from 
The Seattle Alzheimer’s Disease Brain Cell Atlas/SEA-AD (S)18 for independent validation.  

Data processing and feature selection 

PsychAD snRNA-seq data was preprocessed as described in Lee et al.19 and Fullard et al.20. The 
preprocessing involved identifying 5,000 highly variable genes (HVGs). We selected the protein-
coding genes from these 5,000 HVGs and intersected them with the genes from the SEA-AD dataset. 
We ended up with 2,766 HVGs which were used as features in our analysis. We applied standard 
Scanpy (v1.9.3) functions to preprocess SEA-AD data. For SEA-AD, we selected DLPFC regions of 
39 donors with dementia and 39 without dementia to retain individual balance. For independent 
validation, we constructed bio-diffused PFGs for the donors and included the same set of 2,766 HVG 
genes as features as the PscyhAD dataset.  

Construction of personalized functional genomics graph 
For each donor, we define his/her Personalized Functional Genomics graph (PFG) as a directed 
graph with two major node types: cell types and genes where gene nodes include cell type-specific 
transcription factor (TFs) and target genes (TGs) nodes. Each edge in the PFG conveys distinct 
information depending on the type of nodes. For example, cell type-cell type edge captures 
intercellular relationships and communications, TG-TG links capture gene regulatory relationships, 
and cell type-TF links capture cell type specificity relationship of TFs. As some of the donors had 
fewer cells for the cell type interactions and gene regulatory relationship algorithms to capture 
(Supplementary Figure 13), we were able to construct PFGs for 1478 out of 1494 donors. Below, 
we provide details on constructing each component of PFG. 

Inferring cell type interactions 

For each donor, the cell type to cell type links were constructed using CellChat65 to quantify the 
intercellular interactions. CellChat provides a consolidated score for each cell type to cell type 
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interaction by adding all the probabilities of ligand-receptor interactions between two cell types. We 
used snRNA-seq data from each donor as input to CellChat with 27 subclass information as the label. 
We used the default settings in CellChat to extract the scores using the function 
computeCommunProb. We then normalized the scores by cell type and retained all links with the 
normalized score above a 0.5 threshold to construct cell type to cell type links for each donor. 

Extracting cell type gene regulatory links 
We first used GRNBoost2 on the snRNA-seq data for each donor to deduce gene co-expression 
networks across all cell types. SCENIC66 was then used to infer cell type gene regulatory links. 
Specifically, we applied runscENIC_1_coexNetwork2modules and runscENIC_2_createRegulons 
functions in Python with default setting (constraining the TF search to 10-kbps radius around the TSS 
or 500 bp upstream) to identify regulons. Regulons with at least 10 genes were scored in each cell 
using runscENIC_3_scoreCells. We then computed AUCell enrichment based on the top 1% of genes 
detected per cell. We incorporated the regulon specificity score (RSS)67 to evaluate the cell type 
specificity of the regulon. For each cell type, we select the top 10% of the regulons based on the RSS 
score as the cell type regulons. We then keep the top 10% of the TGs for each cell type regulon. 
Together, these comprise the cell type gene regulatory links for each donor.  

Definition of PFGs 

Let 𝐺! 	= 	 (𝑉! , 𝐸!) (Extended Figure 1a) be a PFG for donor 𝑖, with 𝑁! 	= |𝑉!|	nodes and 𝐸! 
representing the edges. Then, an edge 𝑒!,#$ ∈ 	𝐸! connecting the source node 𝑠 to a target node 𝑡 
represents one of the following relationships: 

 
   		1, 𝑖𝑓	𝑠	𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠	𝑤𝑖𝑡ℎ	𝑡, 𝑤ℎ𝑒𝑟𝑒	𝑠	𝑎𝑛𝑑	𝑡	𝑎𝑟𝑒	𝑐𝑒𝑙𝑙	𝑡𝑦𝑝𝑒𝑠; 
     1, 𝑖𝑓	𝑠	𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑠	𝑡, 𝑤ℎ𝑒𝑟𝑒	𝑠	𝑖𝑠	𝑎𝑡	𝑇𝐹, 𝑡	𝑖𝑠	𝑎	𝑇𝐺; 

𝑒!,#$ 	= {	  1, 𝑖𝑓	𝑡	𝑏𝑒𝑙𝑜𝑛𝑔𝑠	𝑡𝑜	𝑡ℎ𝑒	𝑐𝑒𝑙𝑙	𝑡𝑦𝑝𝑒	𝑟𝑒𝑔𝑢𝑙𝑜𝑛	𝑜𝑓	𝑠, 𝑤ℎ𝑒𝑟𝑒	𝑠	𝑖𝑠	𝑎	𝑐𝑒𝑙𝑙	𝑡𝑦𝑝𝑒, 𝑡	𝑖𝑠	𝑎	𝑇𝐹; 
                1, 𝑖𝑓	𝑡	𝑏𝑒𝑙𝑜𝑛𝑔𝑠	𝑡𝑜	𝑡ℎ𝑒	𝑐𝑒𝑙𝑙	𝑡𝑦𝑝𝑒	𝑟𝑒𝑔𝑢𝑙𝑜𝑛	𝑜𝑓	𝑠, 𝑤ℎ𝑒𝑟𝑒	𝑠	𝑖𝑠	𝑎	𝑐𝑒𝑙𝑙	𝑡𝑦𝑝𝑒, 𝑡	𝑖𝑠	𝑎	𝑇𝐺; 
                0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

The node features used for each PFG depend on the type of node. We used the average gene 
expression of 2,766 highly variable genes (HVGs) from all cells as the features for cell type (CT) 
nodes and the coexpression of these HVGs with the gene expression for the TF/TG nodes. 

Integrating prior biological knowledge into PFGs via network diffusion 
We then applied network diffusion to propagate the influence of known disease genes on the PFGs 
(see Supplementary Note 2). This diffusion process allows us to incorporate known disease-related 
information into our graph structure, potentially enhancing the model's ability to capture disease-
relevant patterns. We currently use well-known disease genes for AD and SCZ extracted from the 
DisGeNet27 database and filtered based on manually curated sources with “CTD_human” or 
“GWASCAT” identifiers. Additionally, we downloaded high-confidence SCZ genes from the 
PsychENCODE project28. In total, we identified 361 AD genes and 945 SCZ genes. The resulting 
matrices are called "bio-diffused PFGs" and are used to train our graph neural network model. While 
we focus on AD and SCZ in this paper, this method can be applied to any gene-of-interest (GOI) list. 
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Graph classification using Knowledge-guided Graph Neural Network (KG-
GNN) 
The KG-GNN model is based on the multi-head Graph Attention Networks (GAT)68 that learns from 
arbitrary bio-diffused PFGs as inputs for the binary graph classification of healthy versus AD. It is an 
interpretable machine learning model that integrates prior biological knowledge, personalized 
functional genomics, and biologically driven multi-head graph attention networks to derive insights 
about disease and underlying disease mechanisms at an individual level. The details of architecture, 
training procedure, validation, and benchmarking are provided in Supplementary Note 1. The input 
to the KG-GNN mode is the PFGs. The trained model outputs graph embeddings and personalized 
AD importance scores for nodes and edges.  

Population subtyping and enrichment based on graph embeddings 
We clustered graph embeddings extracted for donors with AD vs. Controls using the function 
sc.tl.louvain() from the Python package scanpy69. Before clustering, we identified the nearest 
neighbors using the sc.pp.neighbors() function and computed the umap embeddings using the 
sc.tl.umap() function. Then we performed Louvain clustering using the function sc.tl.louvain() and set 
the resolution = 0.35 to get 5 clusters. We clustered the graph embeddings to identify potential novel 
subtypes. To identify novel subtypes, we performed enrichment analysis using a hypergeometric test 
to see if any clusters were enriched with AD progression stages. We used the stats.hypergeom.cdf() 
from the Python package Scipy70 for this analysis and reported the -log10(p-value) of phenotype 
enrichment in each cluster. 

Phenotypic population trajectory inference 
We inferred phenotypic trajectories across AD phenotypes based on individual graph embeddings 
extracted from our pre-trained KG-GNN model. Here we used a diffusion-based algorithm71 within the 
scanpy package in Python to infer trajectories. Given a phenotype, we run the functions sc.tl.diffmap() 
and sc.tl.dpt() for individual graph embeddings associated with the phenotype. We annotate a root 
individual based on the phenotype. For example, we set a randomly selected individual with Braak 
stage 0 as the root for comparing AD vs. controls.  

Similarly, for other AD progression phenotypes, we set the root as follows: (1) Braak 
pseudotime: randomly selected a donor within Braak stage 0 (2) CERAD pseudotime: randomly 
selected a donor within CERAD stage 0/No AD, (3) Cogdx pseudotime: randomly selected a donor 
with cognitive diagnosis set to 1/Control. Next, to infer the pseudotimes for different NPS, we again 
set a randomly selected a donor with a CERAD score of 2 as the root. This is because all donors 
diagnosed with NPS have a CERAD score equal to 2 at least. 

To infer the trajectory for SEA-AD donors, we first extracted their graph embeddings from the 
pre-trained KG-GNN model. Then using similar functions as above (sc.tl.diffmap(), sc.tl.dpt()), we 
computed a trajectory by randomly selecting a donor with CERAD score = “Absent” as the root. 
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Calculation of importance scores 
The trained KG-GNN model outputs edge attentions which are used as edge importance scores. We 
get three different edge importance scores: AD-prior, SCZ-prior, and data-driven based on prior 
biological knowledge from known AD-genes and SCZ-genes. We derive the node importance scores 
using the edge importance scores. We use a combination of both incoming and outgoing edge 
importance as the basis to calculate these scores. Further details about node importance calculation 
are available in Supplementary Note 7. 

Subpopulation edge conservation based on importance scores 
To determine gene conservation across donors, we first counted instances where each edge was 
scored in the 95th percentile or above based on the attention scores of the selected head. We then 
sorted the edge by frequency and established three groups: Highly conserved edges (top 2%), 
conserved edges (top 2-4%), and unique edges (top 4-6%). The genes associated with each edge 
group were compiled into lists for subsequent enrichment analysis. The grouping of the edges was 
based on heuristics, as the frequency with which highly prioritized edges appeared in the PFG graphs 
declined rapidly from the 100th to 94th percentiles. 

Gene set enrichment analysis 
We used Metascape72 for gene set enrichment. All genes within our analysis were used as the 
background for the enrichment analysis. P-values were transformed into a readable format and 
colored according to their significance and group. 

Polygenic Risk Score (PRS) calculation 

We used AD GWAS73 and SCZ GWAS74 to compute the PRS scores within the paper. Both were 
calculated for donors using PRS-CS75 and PLINK 2.076. The PRS-CS-auto method was utilized, 
which employs continuous shrinkage priors to refine effect sizes derived from summary statistics. We 
used an LD reference panel from the creators of PRS-CS, based on the 1000 Genomes Project 
data77 (available at https://github.com/getian107/PRScs). Default settings were maintained for PRS-
CS, including the γ-γ prior parameters 𝑎 = 1 and 𝑏 = 0.5, 1,000 MCMC iterations, 500 burn-in 
iterations, and a thinning factor of 5. The global shrinkage parameter 𝜙 was estimated using a fully 
Bayesian approach. PRS calculations at the donor level were performed using PLINK 2.0. 

Gene-regulation QTL (grQTL) analysis 
We associated genotype with the TF-TG edge scores per cell type and called it grQTLs. To do this, 
we mapped cis-eQTLs within a 1-Mb window region of the TSS of both TFs and TGs using 
QTLtools78. We call the SNPs associated with the TF region cisTF-grQTL and the TG region cisTG-
grQTL. We used the first three genotyping PCs, age, gender, and 50 PEER factors as covariates. 
Using the associated grQTLs, we then performed FDR correction and used 1e-5 as the cut-off to 
identify the most significant cell type-specific cisTF-grQTLs and cisTG-grQTLs. 
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for generating figures can be accessed at https://zenodo.org/records/13635676. All graphs were 
visualized using cytoscape79 and panels of all figures were combined using BioRendr 
(https://www.biorender.com/). 
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Supplementary Materials 
Supplementary Notes 1-8, Supplementary Figures 1-13, and Supplementary Tables 1-2. 

Supplementary Data 
Supplementary Data 1. The importance scores of cell type TF-TG regulatory links for AD vs. Controls. 
Each row is a gene regulatory link and the columns represent the importance scores and contains four 
scores based on prior biological knowledge (AD-prior, SCZ-prior, data-driven, and combined). 

Supplementary Data 2. Differential TFs based on importance score across multiple phenotypes. Each 
row is a TF gene and the columns are cell type, p-value, fdr, log fold change (logFC), and phenotype. 

Supplementary Data 3. Top 100 Cell type cisTF- and cisTG- grQTLs for 25 cell subclasses. The 
columns indicate SNP id, gene regulatory link, chromosome, position, p-value, cell type, cis type.  
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