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Abstract

Vaccinations are fundamental public health interventions. Yet, inequalities in vaccines uptake
across socioeconomic groups can significantly undermine their impact. Moreover, heterogeneities
in vaccination coverage across socioeconomic strata are typically neglected by epidemic models
and considered, if at all, only at posteriori. This limitation reduces their ability to predict and
assess the effectiveness of vaccination campaigns. Here, we study the impact of socioeconomic
inequalities in vaccination uptake on epidemic burden. We consider a modeling framework based
on generalized contact matrices that extend traditional age-stratified approaches to incorporate
socioeconomic status (SES) variables. We simulate epidemic dynamics under two scenarios. In
the first vaccination campaigns are concurrent with epidemics. In the second instead, vaccina-
tions are completed before the onset of infection waves. By using both synthetic and empirical
generalized contact matrices, we find that inequalities in vaccine uptake can lead to non-linear
effects on disease outcomes and exacerbate disease burden in disadvantaged groups of the pop-
ulation. We demonstrate that simple models ignoring SES heterogeneity produce incomplete or
biased predictions of epidemic burden. Additionally, we show how inequalities in vaccine coverage
interact with non-pharmaceutical interventions (NPIs) compounding differences across subgroups.
Overall, our findings highlight the importance of integrating SES dimensions, alongside age, into
epidemic models to inform more equitable and effective public health interventions and vaccination
strategies.

Introduction

Vaccination is one of the most effective public health interventions for controlling infectious diseases,
protecting individuals and communities [1]. Besides their efficacy to different endpoints (e.g., infection,
death), vaccine access and uptake are key factors shaping the impact on disease burden. Vaccines are
designed to be accessible to all, but limited stockpiles often raise the issue of optimal distribution [2, 3].
Common protocols priorities essential workers, the elderly, children, or individuals with underlying
health conditions. Social status should not determine access and yet, as clearly observed during
the COVID-19 Pandemic, vaccination access is shaped by significant inequalities across and within
countries [4–9]. Indeed, studies have shown that individuals from lower socioeconomic backgrounds
are less likely to be vaccinated against COVID-19 [10–12]. For example, disparities have been observed
in Florida’s initial vaccine rollout [13], where lower-income and minority communities faced significant
obstacles in accessing vaccines. Geographic and ethnic disparities also play a crucial role, as seen in
Hungary, where socioeconomic deprivation has been found to be correlated with lower vaccination
coverage [12, 14, 15]. In the Greater Manchester area in the UK, COVID-19 vaccination rates have
been significantly lower among Black and Asian ethnic groups compared to others [16].
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The correlation between socioeconomic status (SES) and vaccination uptake varies across different
illnesses [17], but individuals experiencing lower SES exhibit lower vaccination rates due to barriers
like limited access to healthcare, but also exposure to (mis)information, and vaccine hesitancy [18].
Indeed, social and behavioural factors emergent from interactions and (mis)information exposure play
an important role in vaccine uptake [19, 20]. Studies in France have highlighted higher COVID-19
vaccine hesitancy among groups experiencing lower SES, driven by concerns over vaccine safety and
distrust in government health measures [21, 22]. Overall, these findings remain consistent regardless
of age, indicating that socioeconomic factors play a crucial role in vaccine hesitancy and access across
all age groups [23, 24].

Additionally, for any given uptake and coverage level, the impact of a vaccination campaign is
closely tied to its timing and speed relative to the progression of the epidemic. A campaign that
begins only after a large portion of the population has already been infected will inevitably have a
much smaller effect compared to one initiated earlier. During the COVID-19 Pandemic, vaccinations
started in December 2020 (in the Global North) [25, 26]. At that time many countries were facing a rise
in infections induced by the winter seasonality and by the spread of a more transmissible variant (i.e.,
Alpha). Furthermore, doses were a scarce resource and countries had to deal with tremendous logistical
challenges for their distribution. As a result, the initial vaccination rates were far from optimal. Hence,
the beginning of COVID-19 vaccinations is a clear example of a campaign that starts amid an epidemic
that instead finds a large majority of the population susceptible. Non-pharmaceutical interventions
(NPIs) have been critical to support these complex phases. However, NPIs have also been associated
with socioeconomic inequalities . Indeed, the ability to self-isolate, work from home, and avoid crowded
places varied significantly across different socioeconomic groups [9, 27–31]. As a result, disadvantaged
groups of the population suffered from compounding inequalities . On one side, they had limited access
to vaccines. On the other, they could not afford to reduce the risk of infection by adopting NPIs. These
disparities have significant implications for public health, leading to sub-optimal vaccination coverage
and perpetuating the spread of vaccine-preventable diseases.

In this context, incorporating socioeconomic factors in epidemic models beyond the traditional age-
wise stratification is essential [32–37]. However, current approaches fail to do so potentially resulting
in incomplete or biased predictions about epidemic burden and vaccination campaign effectiveness.
To address these complexities and limitations, here we adopt and extend the epidemic framework
proposed in Ref. [38] that features generalized contact matrices. The model allows accounting for
the stratification of contacts across multiple dimensions such as age and SES [38]. In doing so, it
provides a finer description of the population under investigation and allows to assess how disparities
in vaccination coverage and NPIs adoption influence the overall epidemic outcome. To isolate the
interplay between social contacts and vaccination uptake across subgroups we consider both synthetic
and real generalized contact matrices that stratify contacts according to age and one SES indicator.
The age stratification is data-driven in both cases, while the stratification for the SES dimension is
built either by using a simple model or from data collected in Hungary [39, 40]. To account for the
effect of vaccination timing, these analyses are developed in two distinct scenarios. The first simulates
a situation where the vaccination campaign and the epidemic are concurrent. The second scenario
instead simulates a situation in which the vaccination campaign begins before the epidemic, reaching
a substantial portion of the population prior to the outbreak.

Our results emphasize the importance of models that explicitly account for socioeconomic dispari-
ties to accurately estimate the epidemic burden within specific subgroups of the population. Indeed,
we demonstrate that, when disparities in vaccination uptake exist across subgroups, models that do
not incorporate these dimensions fail to accurately predict the epidemic burden within these groups.
Furthermore, we find that the unequal distribution of vaccines across socioeconomic groups might
lead to a non-linear effect on epidemic outcomes that, in general, cannot be estimated a posteriori
from models that account just for the traditional age stratification. Finally, our findings show how
disparities intensify when compounded by the interaction with NPIs.

Overall, our results underscore the importance of incorporating subgroup-specific factors into epi-
demic models to enhance the accuracy of predictions and, in turn, the effectiveness of public health
interventions and vaccination strategies.
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Results

We consider a Susceptible-Exposed-Infectious-Recovered (SEIR) compartmental model incorporating
multidimensional contact matrices with an additional dimension with three levels (i.e., subgroups),
besides age [38]. We take into account eight age classes [0− 5), [5− 15), [15− 30), [30− 45), [45− 60),
[60 − 70), [70 − 80), [80+), and three SES: low, middle, and high. Specifically, we use generalized
contact matrices G as multidimensional objects, whose elementsGa,b capture the contact rates between
individuals in group a and b. Here, a = (i, α) and b = (j, β) are index vectors (i.e., tuples) representing
individual’s membership to each category defined along age i, j and the second dimension α, β. The
stratification for age is obtained from data [39, 40], while the stratification for SES is either synthetic,
obtained from a simple model, or measured from data. In the first case, we introduce assortativity by
assuming that 60%, 50%, and 65% of the contacts in the first, second, and third SES category take place
within each group. Furthermore, we assume that activity levels are distributed heterogeneously, with
20%, 40%, and 40% of the total contacts allocated to the first, second, and third groups, respectively.
We set an uneven population distribution with group sizes comprising 35%, 45%, and 20% of the
total population. The model used to generate the synthetic population and mixing patterns along the
second dimension follows Ref. [38].

We model a vaccination rollout, where each day a fraction of the population receives a vaccine that
reduces the probability of infection and death by 60% and 80% respectively [41]. Additionally, we
assume that infected vaccinated individuals are 40% less likely to transmit the virus further. The daily
allocation of vaccines to age groups is taken from data in Hungary reflecting the COVID-19 vaccination
campaign (See SI Section 1.1). We study and compare three different vaccination uptake distributions
(VD for short) across the SES subgroups. In the first case (V D1), each subgroup receives an equal
share, i.e., one-third of the vaccines. In the second case (V D2), the second subgroup (middle SES)
receives 40% of the available vaccines each day, while the first (low SES) and third (high SES) subgroups
receive each 30%. Finally, in the third case (V D3), the distribution is more uneven, especially for
the subgroups experiencing a low SES, with the three subgroups receiving 25%, 35%, and 40% of
the vaccines, respectively. Under all vaccination distributions, we assume that each subgroup can be
vaccinated up to 95%. We refer the reader to the Materials and Methods section and the Supplementary
Information for more details about the model and simulation setup.

Finally, as mentioned in the introduction, the interaction between the timing of a vaccination cam-
paign and the progression of the epidemic plays a critical role in shaping the epidemic burden. To
investigate their effect on the epidemic outcome, we focus on two simulation scenarios. In the first
(Scenario 1 ), the epidemic and vaccination campaign start simultaneously. We set the basic reproduc-
tion number R0, defined as the number of secondary infections caused by a single infected individual
in an otherwise fully susceptible population [42], to 1.6, representing a relatively slow epidemic and
leading to a substantial overlap between the epidemic wave and the vaccination campaign. In the sec-
ond scenario,(Scenario 2 ), the vaccination campaign is completed before the epidemic begins. Here,
contrary to the previous scenario, we set a relatively high value of the basic reproductive number,
R0 = 3, to simulate more rapid epidemic dynamics. The higher R0 allows us to observe the rapid
spread of the virus in a predominantly vaccinated population.

Scenario 1: concurrent vaccinations and epidemics

In Figure 1a we begin by observing the epidemic wave under different vaccination distributions (i.e.,
V D1, V D2, V D3) as predicted by the generalized model (see coloured solid lines) and an age-stratified
model (see black dashed line). The first observation is that, as expected from Ref. [38], the generalised
model’s projections significantly differ from those of the age-stratified model. Indeed, the latter overes-
timates the total number of infected individuals. The discrepancy is due to the distribution of activity,
assortativity and population among subgroups. Second, the total number of infected projected by the
generalized model varies across the vaccination uptake distributions. Notably, vaccination distribution
of V D3 (in orange) proves to be the most effective, as it reduces the number of infections the most.
This effectiveness is primarily due to the allocation of doses, where 75% of the total daily available
vaccines are distributed to the two most socially active groups. Specifically, the third group, which,
despite being the smallest by population size, exhibits the highest assortativity and activity (alongside
the second group), receives 40% of doses. The combination of being both the smallest and the most
active means that, in V D3, the third group becomes entirely vaccinated (up to the saturation value).
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At the same time the second group, also highly active, receives 35% of doses. Prioritizing these two
active groups maximizes the impact of the vaccination campaign. On the contrary, a different outcome
is produced by V D2 (in green). In this case, 40% of the vaccines are allocated to the second group,
which is both the most active (along with group 3) and the largest in population size. However, the
vaccination share allocated to the second group is insufficient to effectively hamper infections. Simul-
taneously, the lower vaccination rate in the third group, combined with its high activity level, allows
for increased transmission rates, which affect the overall dynamics of the epidemic. Similar results are
observed for V D1 (in blue). Although doses are distributed evenly, the unequal population size and
activity levels result in a performance comparable to V D2.
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Figure 1: Scenario 1: epidemic outcomes. Panel a displays the number of infected individuals
over time. The dotted black line corresponds to the outcome of the age-stratified model (Cij), and the
solid coloured lines correspond to the outcomes of the generalized model (Gab) in the three different
vaccination strategies (V D1, V D2, V D3). Panel b shows the attack rate by the second dimension (dim
2) predicted by the generalized model (Gab. Panel c shows the difference between the attack rates
predicted by the generalized model Gab and those estimated from the aggregate output of the age-
stratified model f(Cij by the second dimension (dim 2). Results refer to the median of 500 runs with
IQRs. Epidemiological parameters: Γ = 0.25,Ψ = 0.4, g1 = 0.6, R0 = 1.6. Simulations start with
I0 = 100 initial infectious seeds.

The generalized model allows us to estimate the disease burden across the three socioeconomic
subgroups by summing over all age groups. For example, to compute the total number of infected
individuals in subgroup α at time t, we can sum over all age groups i.e., Iα(t) =

∑
i Ii,α(t). Exploiting

this feature of the generalized model, in panel b of Fig. 1, we examine the attack rates predicted by
the generalised model by subgroup for each vaccination distribution. Interestingly, the third group
consistently appears as the most affected, while the first group remains the least infected across all
vaccination distributions. This is solely due to the differences in activity levels: as the third group is
the most active, it is always the most infected relative to its population size. Notably, in V D2, the
disparity in infections for the third group is even more pronounced, as it receives significantly fewer
vaccines compared to the other groups, further amplifying its vulnerability.

Finally, we investigate whether, and to what extent, it is possible to predict these outcomes from
models that do not explicitly account for SES. First, we point out that infections across subgroups of
the population, not explicitly considered by a model, can be estimated only a posteriori by leveraging
outputs of the age-stratified model, such as attack rates for vaccinated (ARV ) and non-vaccinated
(ARNV ) individuals. We developed a technique to estimate the number of infections within each
subgroup α by multiplying the attack rates by the total number of vaccinated and non-vaccinated
individuals in each subgroup at time t. For further details on this method, we refer the reader to
the Methods section and Supplementary Information. This technique has two significant limitations:
1) it assumes precise knowledge of the number of vaccinated individuals in each subgroup defined by
age and SES, which might not be realistic in practice, 2) it cannot, by definition, capture potentially
different dynamics such as different peak times across subgroups unseen by the model.

In panel c of Fig.1 we show the difference between the number of cases in each subgroup projected by
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the generalized modelGab and estimated from an age-stratified model f(Cij)
1. The differences between

the two are consistently away from zero. Indeed, the epidemic burden within each subgroup results
from the interplay among activity levels, contact patterns, population distribution, and vaccination
coverage. This cannot be captured by traditional models that do not account, explicitly, for these
factors. In Section 6 of Supplementary Information we further explore these results by running the
same analysis under different vaccination distribution settings and a homogeneous mixing case. Overall,
we observe the same qualitative findings.

The interplay between vaccinations and NPIs

We now investigate how the interplay between heterogeneities in adherence to NPIs and vaccination
distribution among subgroups affects epidemic outcomes. We explore hypothetical cases where a
population modifies its behaviour in response to the introduction of NPIs during an ongoing vaccination
campaign. We assume that, to reduce contacts, NPIs are introduced 65 days after the onset of the
epidemic leading to a 20% overall reduction in contact rates, though with variations across subgroups.
Indeed, we assume that the ability to adhere to the NPIs is associated with membership in a particular
population group. Specifically, we explore a case where people in the first group (i.e., experiencing the
lowest SES) cannot afford to protect themselves as the other two groups. We assume that the NPIs
introduce changes in both assortativity and activity. Specifically, due to the NPIs, 50%, 60%, and
70% of the contacts for the first, second, and third groups, respectively, take place within their group.
Thus, assortativity increases across all groups, with the second and third groups experiencing the most
significant rise. Additionally, NPIs shift activity levels to 40%, 25%, and 35% for the first, second,
and third groups, respectively. This results in a decrease in activity for the second and third groups,
while the first group experiences a relative increase, further exacerbating its vulnerability. Following
the same logic as before, we study the effects of three different vaccination uptake distributions (i.e.,
V D1, V D2, V D3).

In Fig. 2a, we report the results in a baseline case where the disease spreads unmitigated by any
NPIs. The first column of panel Fig. 2a displays the prevalence over time, while the second column
shows the corresponding attack rates per 1000. The differences between all vaccination strategies are
small, but V D3 is still the most effective, leading to a higher reduction. In contrast, V D1 and V D2
are less effective, with V D2 being the least effective.

However, as shown in Fig. 2b, when NPIs are introduced, the attack rate of the different SES changes
(See SI Section 7 for the corresponding plot) thus influencing the relative effectiveness of the vaccination
strategies. By ensuring better coverage for the first group, which is now more vulnerable due to its
higher activity, strategy V D1 results in a more balanced reduction of cases across all subgroups.
Meanwhile, V D2 becomes even less effective, as the majority of vaccines are assigned to the second
group, the less active, while the more active groups receive fewer vaccines. Additionally, V D3 loses
its relative efficacy due to the reduced activity of group three, which receives the highest share of
vaccines, and the increased activity in group one, which is the least vaccinated. For completeness, in
the Supplementary Information, we investigate the effect of mortality by modelling the daily number
of deaths. In SI Section 7 we report the corresponding results, which show the same trend.

Scenario 2: vaccinations completed before epidemics

In this scenario, we explore the epidemic dynamics assuming the vaccination rollout is already com-
pleted before the onset of the epidemic. This represents situations akin to a post-vaccination wave of
infection, where the majority of the population has received vaccines, but a virus continues to circulate,
possibly due to new variants or waning immunity.

Following the structure of the previous scenario, Fig. 3a illustrates the number of newly infected
individuals over time for the three vaccination distributions, as projected by the generalized model
(see coloured solid lines) and the traditional age-stratified model (see black dotted line). Also in this
scenario, the generalized model projects different epidemic outcomes compared to the age-stratified
model. Additionally, the differences between epidemic outcomes across vaccination distributions are
more pronounced. This is because the epidemic starts only after the vaccinations have been fully
implemented, maximizing the impact of the different vaccination strategies. Notably, V D3 remains

1The f describes the a posteriori estimation of disease burden from traditional models featuring only age-structured
contact matrices Cij
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Figure 2: Scenario 1: The impact of NPIs under different vaccination distributions. Panel
a refers to the baseline case, with insets depicting the activity distribution along the second dimension
of the generalised contact matrix. The first column shows the prevalence, while the second column
the attack rates per 1000. Panel b follows the same structure but refers to the case where NPIs are
introduced, reducing contacts by 20%. The epidemic starts at tepi = 0 with the onset of vaccination.
NPIs are introduced 65 days after the epidemic onset. Results represent the median of 500 runs with
confidence intervals. Epidemiological parameters: Γ = 0.25, Ψ = 0.4, g1 = 0.5, g2 = 0.8, and R0 = 2.5.
Simulations begin with I0 = 100 initial infected seeds.

the most effective strategy, resulting in a significantly lower number of infections. The success of V D3
stems from the priority given to the most active groups, ensuring that the most socially active members
of the population are well-protected. Conversely, V D2, which prioritizes the middle SES group, leads
to a higher overall number of cases, as the third, more active SES group remains under-vaccinated and
plays a critical role in sustaining transmission.

Fig. 3b breaks down the attack rates by SES, showing that even in this scenario, the most active
group (SES 3) experiences the highest number of infections relative to their population size, particularly
in V D2. This confirms that, despite overall high vaccination coverage, specific subgroups can still
disproportionately contribute to the spread of the virus.
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Figure 3: Scenario 2. Epidemic outcomes: Panel a displays the prevalence over time. The
dotted black line corresponds to the outcome of the age-stratified model (Cij), and the solid coloured
lines correspond to the outcomes of the generalized model (Gab) in the three different vaccination
distribution strategies (i.e., V D1, V D2, V D3). Panel b shows the attack rates per 1000 by the second
dimension (dim 2) projected by the generalized model (Gab. Panel c shows the difference between the
attack rates projected by the generalized model Gab and those estimated from the aggregate output
of the age-stratified model f(Cij by the second dimension (dim 2). Results refer to the median of 500
runs with IQRs. Epidemiological parameters: Γ = 0.25,Ψ = 0.4, g1 = 0.6, R0 = 3. Simulations start
with I0 = 100 initial infectious seeds.
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In panel 2c, we compare the predictions of the generalized model (Gab) with those derived from
the age-stratified model (Cij) using the same technique discussed above (See MM and SI Section 4).
Once again, we observe significant discrepancies between the methods. Overall, these results highlight
the importance of explicitly incorporating subgroup-specific dimensions, such as socioeconomic status,
into epidemic models.

In the Supplementary Information, we further explore these results by conducting a robustness
analysis running the same analysis under a different vaccination distribution settings. In particular,
we consider a case which age is ignored and another that assumes homogeneous mixing between groups.
Notably, in the latter, we find that the difference between the projected burden of the epidemic from
aggregate model output (f(Cij)) and those gathered from the generalized model(Gab) is consistently
0. This implies that in case of homogeneous mixing and when the overlap between vaccination and
epidemics is zero the differences across sub-groups can be obtained also a posteriori from models that
neglected them.

The interplay between vaccinations and NPIs

In this scenario, the population is already fully vaccinated before the start of the epidemics. We assume
that, before the start of the vaccination, some NPIs were in place. Hence we consider a situation where
NPIs are then relaxed, leading to a 20% overall increase in contact rates. As before, we assume that
the ability to adhere to NPIs varies across subgroups, with the variations remaining consistent with
those depicted in Fig. 2. The NPIs are reduced 65 days after the onset of the epidemic.

In the baseline case (see Fig. 4a), although the different impact of vaccination distributions is
more pronounced compared to the previous case, the relative effectiveness of the vaccination strategies
follows the order V D2, V D1, and V D3, with V D2 being the least effective. However, when NPIs are
relaxed (see Fig. 4b), the epidemic burden in the different SES changes according to the new activity
distribution, and in turn affects the relative effectiveness of the strategies. In this case, strategy V D1
becomes more effective than V D3, while V D2 remains the least effective vaccination strategy.

These simulations highlight how the interplay between NPIs and vaccination strategies influences
epidemic outcomes, with effectiveness depending on the timing and intensity of interventions. Again,
in the Supplementary Information, we investigate the effect of mortality which shows the same trends
(See SI Section 7 for the corresponding results).
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Figure 4: Scenario 2: The impact of NPIs under different vaccination distributions. Panel
a refers to the baseline case, with insets depicting the activity distribution along the second dimension.
The first column shows the prevalence as function of time, while the second column shows the attack
rate scaled by 1000. Panel b follows the same structure but refers to the case where NPIs are released,
increasing contacts by 20%. NPIs are adjusted 65 days after the epidemic onset. Results represent
the median of 500 runs with confidence intervals. Epidemiological parameters: Γ = 0.25, Ψ = 0.4,
g1 = 0.5, g2 = 0.8, and R0 = 2.5. Simulations begin with I0 = 100 initial infected seeds.
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Hungarian contact data

We applied the model to empirical data describing social contacts stratified by age and one SES
variable (i.e., self-perceived wealth with respect to the average) in Hungary during the COVID-19
Pandemic. The data has been collected via computer-assisted surveys from 1000 respondents describing
a representative sample of the Hungarian adult population in terms of gender, age, education level, and
type of settlement [39, 40]. To build these matrices we used two contact diaries collected in April and
November 2021, respectively just before the third and the fourth wave of the COVID-19 Pandemic in
Hungary. We refer the reader to the Materials and Methods section and the Supplementary Information
for more details about the data and its collection.
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Figure 5: Epidemic outcomes under different vaccination distributions and real contact
data. Panels in (a) refer to Scenario 1 and display the number of cases per 1000 stratified by vacci-
nation status (non-vaccinated, vaccinated, and overall) and under different vaccination distributions
(V D1, V D2, V D3). Panels b show the corresponding numbers for Scenario 2. Results refer to the me-
dian of 500 runs with confidence intervals. Epidemiological parameters: Γ = 0.25,Ψ = 0.4, g1 = 0.6,
g2 = 0.8 and R0 = 3. Simulations start with I0 = 100 initial infectious seeds.

In Fig. 5, we present the outcomes for the Hungarian case, respectively for Scenario 1 (panel a)
and Scenario 2 (panel b). In each panel, we show the number of cases per 1000 individuals stratified by
the non-vaccinated (Non−vax) and vaccinated (V ax) sub-populations and overall (All). To facilitate
straightforward visual comparison between outcomes, the y-axis of the three subplots in each panel is
set to span the same range. In other words, the difference between the maximum and minimum values
on the y-axis is fixed across all subplots within the same panel.

In Scenario 1, the population was initialized with 20% of individuals being immune, representing
those who had residual immunity. Vaccination was assumed to have started simultaneously with the
onset of the epidemic, setting the day of the epidemic as time tepi = 0. For Scenario 2, the population
was initialized with 40% of individuals being immune, reflecting a higher level of residual immunity. In
this case, the epidemic was set to begin at tepi = 220 when 55% of the population is vaccinated, which
implies 220 days had passed since the start of the vaccination campaign before the epidemic started.
This adjustment mirrors the same time gap observed between the start of the COVID-19 vaccination
campaign and the onset of the fourth epidemic wave in Hungary.

The scenarios, modelled under different vaccination distributions (i.e., V D1, V D2, V D3), reveal
distinct outcomes. In Scenario 1, the differences across vaccination distributions are small, as shown
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in Fig. 5a. This result can be explained by the fact that vaccination overlapped with a fairly fast
epidemic. As a result, the effects of varying vaccination uptake are less visible, leading to similar
outcomes.

In contrast, Scenario 2 (see Fig. 5b) shows more pronounced differences among the vaccination
strategies. Here, V D2 appears to be the most effective in reducing the epidemic burden. Interestingly,
as shown in the Supplementary Information, we find significant difference is also in the mortality of
the non-vaccinated population, indicating that even non-vaccinated individuals benefit indirectly from
effective vaccination strategies.

Discussion

The COVID-19 Pandemic was a stark reminder that inequalities in vaccine accessibility and in non-
pharmaceutical interventions compliance can shape the trajectory of an epidemic. Building on the
mathematical framework of generalized contact matrices recently presented in Ref. [38], here we studied
the impact of these inequalities .

The timing of vaccinations relative to epidemics is also a key factor. Hence, we explored two sce-
narios. In the first the epidemics and vaccinations begin simultaneously. In the second, the epidemics
start in an almost fully vaccinated population. In these settings, we analyze the impact of different
vaccination strategies, where subgroups of the population exhibit varying levels of vaccination uptake,
and quantified the misrepresentation of simpler models, based only on age, that neglect heterogeneities
along other dimensions.

Our results highlight the importance of using generalized models, that explicitly account for so-
cioeconomic inequalities , to accurately estimate the epidemic burden within different subgroups of the
population. Indeed, we compared the attack rates predicted by generalized models in each subgroup
of the population (e.g., SES) with those inferred a posteriori from the outputs of age-stratified mod-
els. Interestingly, we found consistent differences between the two. Hence, disparities in vaccination
uptake and contact patterns among subgroups make it challenging to estimate outcomes in subgroups
of the population from models that do not consider these additional stratifications. To test these
findings further, we conducted a sensitivity analysis by varying the values of R0 and the timing of
the epidemics’ onset (tepi). Adjusting these two parameters modulates the overlap between epidemic
waves and vaccinations, allowing us to explore situations in between the two scenarios. The analysis
showed that, as we fix R0 and increase tepi —thus reducing the overlap between epidemic waves and
vaccinations— the difference between the two methods converges to a stable value, typically different
than zero. A similar trend occurs when we increase R0 with tepi set to zero. For further details, see
Supplementary Information 6.2.2.

Additionally, we showed how NPIs, introduced or relaxed during an ongoing epidemic, can shift
the relative effectiveness of vaccination strategies. Finally, using real generalized contact matrices
from Hungary, we examined, in more realistic settings, how different vaccination distributions could
influence the trajectory of an epidemic. Also the results obtained considering real contact patterns
underscore the importance of incorporating socioeconomic factors into epidemic models.

It is important to acknowledge the limitations of our work. First, we note that our study relies
solely on what-if scenarios designed to mimic real-world cases. However, we did not calibrate the model
to epidemic data. The model used to generate synthetic generalized contact matrices, developed
in Ref. [38], was not designed to replicate empirical data but to provide a flexible framework for
exploration. The modelling of NPIs was guided by simplicity rather than realism. Indeed, our aim was
to showcase the potential interactions between vaccination uptake, contact patterns, and NPIs, and to
demonstrate their effects on the epidemic outcome, while providing a framework that can be adapted
to different settings. Finally, a simplification was made in the modelling of the vaccination protocol
by considering only a single dose that becomes immediately effective. More work is needed to address
these limitations and extend the scope of the research presented here. To this end, modelling efforts
should be assisted by progresses in data collection and sharing. Indeed, most of the relevant data is
now disaggregated only by age thus limiting the scope and application of generalised models.

Overall, our study shows that incorporating socioeconomic heterogeneities into epidemic models
allows for more accurate estimations of disease burden across different population subgroups. By
accounting for inequalities in both contact patterns and vaccination uptake, our model provides a
nuanced view of how these factors interact to influence epidemic dynamics. Our framework offers a
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straightforward, easy-to-implement, approach that enables fast and precise predictions of epidemic
burden and vaccination coverage across different subgroups. This method could assist public health
officials in tailoring vaccination campaigns and other interventions more effectively, ultimately reducing
the unequal impact of epidemics on vulnerable populations.

Materials and Methods

Epidemiological model

We consider a Susceptible-Exposed-Infectious-Recovered (SEIR) compartmental model with vaccina-
tion where susceptible (S) are healthy individuals at risk of infection, exposed (E) are infected but not
yet infectious, infectious (I) can spread the disease and recovered (R) are no longer infectious nor sus-
ceptible to the disease [43]. All compartments are then further stratified between non-vaccinated (NV)
and vaccinated (V) individuals. In the Supporting Information we also model mortality by adding a
death (D) compartment to the model.

We focus on two models that primarily differ in how they represent individual interactions: the
age-stratified and the generalized model (See SI 2 for further details).

Age-stratified model. The age-stratified model uses contact matrices stratified by ageC to account
for the differences in contact patterns among various age groups. The element Cij quantifies the average
number of contacts that an individual in age-bracket i has with individuals in age group j within a
certain time window [44–46]. The population is divided into age brackets so that N =

∑K
i=1 Ni. The

variables Ni capture the number of individuals in age group i while K indicates the number of different
age groups.

Generalized model. The generalized model extends the concept of age-stratified contact matrices
to include multiple dimensions, represented by generalized contact matrices G. In more detail, we
describe the generalized contact matrices as Ga,b, where a = (i, α) and b = (j, β) are tuples (i.e.,
index vectors) representing individuals membership to each category. With these matrices we can, for
example, capture contact stratification according to age and income (α). In this case, Ga,b would then
describe the average number of contacts that an individual in age bracket i and income α has with
people in age group j and income β, in a given time window. We refer the reader to the Supporting
Information for more details.

Vaccinations. Vaccination data on the daily doses administered is available, at the lower level, by
age groups (See SI Section 1.1) which we distribute among subgroups (SES) according to a given
distribution Pvax(α), which indicates the proportion of vaccines allocated to each subgroup. Let Ωi(t)
represent the daily administered doses at time t for age group i. The number of vaccines administered
to a subgroup α is then Ωi,α(t) = Ωi(t) ·Pvax(α). Each subgroup can be vaccinated up to 95%. If this
limit is reached, any excess vaccinations are redistributed randomly within that particular age group.

Numerical simulations

We developed a stochastic, discrete-time, compartmental model where the transitions among com-
partments are simulated through chain binomial processes. In particular, at time step t the num-
ber of individuals in group a and compartment X transiting to compartment Y is sampled from
PrBin(Xa(t), pXa−→Ya(t)),where pXa−→Ya(t) is the transition probability.

Inferring epidemic burden for subgroups

To estimate the epidemic burden for specific subgroups (α) using outputs from a model stratified
solely by age, we first need to infer the epidemic burden within each age group in the subgroup
(i, α) and subsequently aggregate these age-specific results to obtain ARα. This requires estimating
the number of susceptible individuals in each subgroup who became exposed during the epidemic i.e.,
MSi,α→Ei,α

. This involves calculating the attack rates for vaccinated ARV i and non-vaccinated ARNV i

individuals, in each age group i, from the age-stratified model (See SI Section 3 for further details on
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this calculation). Therefore, we can multiply ARNV i and ARV i by the total number of non-vaccinated
and vaccinated individuals in each group (i, α) at time t, taking into account the transitions between
non-vaccinated and vaccinated states over time. The equation used for this calculation reads as follows:

MSi,α→Ei,α = ARV i(t)MSNV i,α→SV i,α
(t) +ARNV i(t)

(
Ni,α −MSNV i,α→SV i,α

(t)
)
, (1)

where ARV i(t) and ARNV i(t) represent respectively the attack rates for vaccinated and non-
vaccinated individuals in age group i and MSNV i,α→SV i,α

(t) denotes the number of susceptible in-
dividuals in groups (i, α) who were vaccinated at time t. The attack rate for subgroups (i, α) can be
then calculated by dividing equation (1) for the population size as follows:

ARi,α =
ARV i(t)MSNV i,α→SV i,α

(t) +ARNV i(t)
(
Ni,α −MSNV i,α→SV i,α

(t)
)

Ni,α
(2)

We can then aggregate by age groups equation (2) and divide by the total number of individuals
in subgroup α as follows:

ARα =

∑
i ARV i(t)MSNV iα→SV iα

(t) +ARNV i(t) (Ni,α −MSNV iα→SV iα
(t))

Nα
(3)

See the Supplementary Information 4 for further details.

Real generalised contact matrices

The real generalised contact matrices used are obtained from the MASZK survey study [39, 40], a
large data collection effort on social mixing patterns made during the COVID-19 pandemic, conducted
in Hungary from April 2020 to July 2022. The study recorded 26 monthly cross-sectional anonymous
phone surveys using Computer Assisted Telephone Interview (CATI) methodology, with a nationally
representative sample of at least 1000 participants each month. The recorded population was repre-
sentative in terms of gender, age, education level, and type of settlement. Sampling errors were further
corrected by post-stratification weights. The data collection adhered to European and Hungarian pri-
vacy regulations, approved by the Hungarian National Authority for Data Protection and Freedom
of Information [47], as well as the Health Science Council Scientific and Research Ethics Committee
(resolution number IV/3073-1/2021/EKU) See SI Section 1.2. for further details).
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[25] Nicolò Gozzi, Michele Tizzoni, Matteo Chinazzi, Leo Ferres, Alessandro Vespignani, and Nicola
Perra. Estimating the effect of social inequalities on the mitigation of covid-19 across communities
in santiago de chile. Nature communications, 12(1):2429, 2021.

[26] Edouard Mathieu, Hannah Ritchie, Esteban Ortiz-Ospina, Max Roser, Joe Hasell, Cameron Ap-
pel, Charlie Giattino, and Lucas Rodés-Guirao. A global database of covid-19 vaccinations. Nature
human behaviour, 5(7):947–953, 2021.

[27] Nicola Perra. Non-pharmaceutical interventions during the COVID-19 pandemic: A review.
Physics Reports, 913:1–52, 2021.

[28] Jonathan Jay, Jacob Bor, Elaine O Nsoesie, Sarah K Lipson, David K Jones, Sandro Galea, and
Julia Raifman. Neighbourhood income and physical distancing during the covid-19 pandemic in
the united states. Nature human behaviour, 4(12):1294–1302, 2020.

[29] Eugenio Valdano, Jonggul Lee, Shweta Bansal, Stefania Rubrichi, and Vittoria Colizza. High-
lighting socio-economic constraints on mobility reductions during covid-19 restrictions in france
can inform effective and equitable pandemic response. Journal of travel medicine, 28(4):taab045,
2021.

[30] Giulia Pullano, Eugenio Valdano, Nicola Scarpa, Stefania Rubrichi, and Vittoria Colizza. Eval-
uating the effect of demographic factors, socioeconomic factors, and risk aversion on mobility
during the covid-19 epidemic in france under lockdown: a population-based study. The Lancet
Digital Health, 2(12):e638–e649, 2020.

13

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316556doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.01.24316556
http://creativecommons.org/licenses/by/4.0/


[31] Giovanni Bonaccorsi, Francesco Pierri, Matteo Cinelli, Andrea Flori, Alessandro Galeazzi,
Francesco Porcelli, Ana Lucia Schmidt, Carlo Michele Valensise, Antonio Scala, Walter Quattro-
ciocchi, et al. Economic and social consequences of human mobility restrictions under covid-19.
Proceedings of the National Academy of Sciences, 117(27):15530–15535, 2020.

[32] Michele Tizzoni, Elaine O Nsoesie, Laetitia Gauvin, Márton Karsai, Nicola Perra, and Shweta
Bansal. Addressing the socioeconomic divide in computational modeling for infectious diseases.
Nature Communications, 13(1):1–7, 2022.

[33] Caroline Buckee, Abdisalan Noor, and Lisa Sattenspiel. Thinking clearly about social aspects of
infectious disease transmission. Nature, 595(7866):205–213, 2021.

[34] Jon Zelner, Nina B Masters, Ramya Naraharisetti, Sanyu A Mojola, Merlin Chowkwanyun, and
Ryan Malosh. There are no equal opportunity infectors: epidemiological modelers must rethink
our approach to inequality in infection risk. PLoS computational biology, 18(2):e1009795, 2022.
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1 Data

1.1 Vaccination data

Data on the number of vaccines administered have been sourced from Our World in Data [1]. Figures
S1 presents the number of vaccines administered daily by age for Hungary.
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Figure S1: Hungary COVID-19 vaccination a. Share of people who completed the initial COVID-
19 vaccination protocol by age b. Total Daily Dosed for 100 people by age.

1.2 Contact data

In this study, we used data coming from the MASZK survey study [2, 3], a large data collection effort
on social mixing patterns made during the COVID-19 pandemic, conducted in Hungary from April
2020 to July 2022. The study involved 26 monthly cross-sectional anonymous phone surveys using
Computer Assisted Telephone Interview (CATI) methodology, with a nationally representative sample
of 1000 participants each month. The recorded population was representative in terms of gender, age,
education level, and type of settlement. Sampling errors were further corrected by post-stratification
weights. The data collection adhered to European and Hungarian privacy regulations, approved by
the Hungarian National Authority for Data Protection and Freedom of Information [4], as well as
the Health Science Council Scientific and Research Ethics Committee (resolution number IV/3073-
1/2021/EKU).

Relevant to this study, the questionnaires recorded information about the proxy social contacts,
defined as interactions where the respondent and a peer stayed within 2 meters for more than 15
minutes [5], at least one of them without wearing a mask. Approximate contact numbers were recorded
between the respondents and their peers from different age groups of 0–4, 5–14, 15–29, 30–44, 45–59,
60–69, 70–79, and 80+. Contact number data about underage children were collected by asking legal
guardians to estimate daily contact patterns. Participants during the whole data collection were asked
to report contacts referring (i) to the previous day and, during the first data collection campaigns (ii)
to an average pre-pandemic day (that we use for the analysis in Fig 1-4 in the main text). Additionally,
in three data collection waves: April 2021, November 2021, and June 2022 contacts have been collected
in the form of diaries (that we use for the analysis in Fig 5 in the main text). Namely, participants were
asked to list one by one the contacts they had on the previous day by providing some socio-demographic
information about the contacts such as their wealth situation. Beyond information on contacts before
and during the pandemic, the MASZK dataset provided us with information on social-demographic
characteristics of participants, such as their perceived wealth situation, gender, vaccination status, etc.

2 Epidemic models

This section provides a detailed description of the SEIR model with vaccination. Susceptible individ-
uals, in contact with the infected, might be exposed to the virus with a rate driven by the force of
infection Λ; exposed are not yet infectious and transition to the infected compartment with rate Ψ;
infected individuals recover with rate Γ. Each compartment is divided between non-vaccinated NV
and vaccinated V . Thus the total number of individuals in compartment X (i.e., X = [S,E, I,R]) is
X = XNV +XV . Individuals who received one dose of vaccine move to the compartments denoted with
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Figure S2: (1st row) Population distribution by age (2nd row) Age-contact matrices referred to the
pre-pandemic period for Hungary.

the superscript V . We assume all individuals except for the infectious can receive the vaccine. The
number of people that get vaccinated at each time step is defined by Ω(t), and it is distributed among
SNV , ENV , RNV , proportionally to their share in the population. The effectiveness of the vaccine is
described by g1 and g2 which respectively represent efficacy against infection and death. Additionally,
we assume that infected vaccinated individuals are less likely to further transmit the virus, this is mod-
elled by the parameter V E in the force of infection. The formulation of this model varies depending
on how the population structure and contact patterns are described. Below, we present two different
models that we study.

2.1 Age-stratification

Standard approaches to model the spreading of infectious diseases often acknowledge the stratification
of contacts across age brackets. To this end, contact matrices C are introduced. The element Cij

quantifies the average number of contacts that an individual in age-bracket i has with individuals in
age group j within a certain time window [6–8]. The population is divided into age brackets so that

N =
∑K

i=1 Ni. The variables Ni capture the number of individuals in age group i while K indicates
the number of different age groups. The SEIR model with vaccination that incorporates such matrices
can be written as follows:

dtSNV i(t) = −Λi(t)SNV i(t)− Ω(t)S ,

dtSV i(t) = −(1− g1)Λi(t)SV i(t) + Ω(t)S ,

dtENV i(t) = Λi(t)SNV i(t)−ΨENV i(t)− Ω(t)E ,

dtEV i(t) = (1− g1)Λi(t)SV i(t)−ΨEV i(t) + Ω(t)E ,

dtINV i(t) = ΨENV i(t)− ΓINV i(t),

dtIV i(t) = ΨEV i(t)− ΓIV i(t),

dtRNV i(t) = ΓINV i(t)− Ω(t)R,

dtRV i(t) = ΓIV i(t) + Ω(t)R,

(1)

where i is the index that describes the membership of individuals in the K age groups and the
subscripts NV and V indicate respectively the non-vaccinated and vaccinated individual in each com-
partment. The force of infection is then defined as the per-capita rate at which susceptibles acquire
infections:

Λi(t) = Φ
∑

j

Ci,j
INV j(t) + (1− V E)IV i(t)

Nj
(2)

3
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2.2 Generalized models

The SEIR model with vaccination featuring generalized contact matrices [9] considers the population
sliced in m+1 dimensions. Age, plus m others dimensions. Here, we have considered m = 1, hence two
dimensions in total. The epidemic dynamics are encoded in the following set of differential equations:

dtSNV a(t) = −Λa(t)SNV a(t)− Ω(t)S ,

dtSV a(t) = −(1− g1)Λa(t)SV a(t) + Ω(t)S ,

dtENV a(t) = Λa(t)SNV a(t)−ΨENV a(t)− Ω(t)E ,

dtEV a(t) = (1− g1)Λa(t)SV a(t)−ΨEV a(t) + Ω(t)E ,

dtINV a(t) = ΨENV (t)− ΓINV a(t),

dtIV a(t) = ΨEV a(t)− ΓIV a(t),

dtRNV a(t) = ΓINV a(t)− Ω(t)R,

dtRV a(t) = ΓIV a(t) + Ω(t)R,

(3)

where a = (i, α, . . . , γ) is the index vector that describes the membership of individuals in the
m + 1 groups and the subscripts NV and V indicate respectively the non-vaccinated and vaccinated
individual in each compartment. The force of infection can be written as:

Λa(t) = Φ
∑
b

Ga,b
INV b(t) + (1− V E)IV b(t)

Nb
(4)

where Φ is the transmissibility of the disease, V E is the vaccine efficacy against further trasmission.
The temporal dependence is induced by the variation in the number of infected across age brackets.

2.2.1 Modeling vaccination uptake among the second dimension

As shown in Figure S1, vaccination data on the daily doses administered is available, at the lower
level, by age groups. To introduce a bias in the vaccination uptake among individuals in the second
dimension, we use true data stratified by age and distribute it along the second dimension according
to a given distribution Pvax(α), which indicates the proportion of vaccines allocated to each subgroup.
Let Ωi(t) represent the daily administered doses at time t for age group i. The number of vaccines
administered to a subgroup α is then Ωi,α(t) = Ωi(t) · Pvax(α).

We assume that each subgroup can be vaccinated up to 95%. If this limit is reached, any excess
vaccinations are redistributed randomly within that particular age group.

3 Computing attack rates

The attack rate is defined as the fraction of all individuals in a susceptible population who have been
infected before a specific time t. In a SEIR model, the attack rate at time t can be computed as
follows:

AR(t) =
MS→E(t)

N
(5)

where M(S→E) indicates the number of transitions from the susceptible (S) to the exposed (E)
state up to time t, and N represents the total number of individuals in the population.

However, when vaccination is introduced, the computation of the attack rate for vaccinated and
non-vaccinated individuals separately becomes more complex. In particular, when vaccination is ad-
ministered during the course of the epidemic, not only are susceptible individuals vaccinated but also
those who have been exposed (i.e., already infected but not yet infectious) and those who have re-
covered. In epidemiological modeling, this means that over the course of the epidemic, there are
continuous movements between SNV → SV but also ENV → EV and RNV → RV .

When computing the attack rate for vaccinated and non-vaccinated individuals separately, it is
important to consider these transitions and account for the fact that vaccination is also administered

4
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to individuals in the ENV and RNV compartments. Therefore, the denominator of the attack rate is
not simply the total number of vaccinated and non-vaccinated individuals at time t, but it should also
account for these transitions.

Non-vaccinated population. For the non-vaccinated population, the denominator should include
not only the total number of individuals not yet vaccinated at time t but also all the transitions from
ENV → EV and RNV → RV up to time t. This is because these individuals, although vaccinated
later, were not vaccinated when they were exposed or recovered. Thus, the adjusted denominator is:

NNV (t) +MENV →EV
(t) +MRNV →RV

(t) (6)

Where NNV (t) is the total number of non-vaccinated individuals at time t, and MENV →EV
(t) and

MRNV →RV
indicate the number of individuals vaccinated up to time t in the exposed and recovered

compartments, respectively. As NNV (t) can also be expressed as the difference between the total
population and the vaccinated individuals, N −NV (t), and NV (t) can be expressed as the sum of all
the vaccinated individuals, ie MSNV →SV

(t) +MENV →EV
(t) +MRNV →RV

(t), we can rewrite Equation
(6) as the difference between the total population and the number of individuals vaccinated in the
susceptible compartment, the attach rate can be expressed as follow.

ARNV =
MSNV →ENV

(t)

N −MSNV →SV
(t)

(7)

Vaccinated population. Symmetrically, the denominator of the attack rate for vaccinated individ-
uals should account for the fact that individuals moving from ENV to EV and RNV to RV were not
vaccinated when they were initially infected. Therefore, these individuals should be removed from the
count of the total number of vaccinated individuals at time t. Thus, the denominator becomes:

NV (t)−MENV →EV
(t)−MRNV →RV

(t) (8)

By substituting NV (t) in Equation (8), we can compute the attach rate as follow:

ARV (t) =
MSV →EV

(t)

MSNV →SV
(t)

(9)

Entire population. Finally, the overall attack rate for the entire population can be computed as
follows:

AR(t) =
MSNV →ENV

(t) +MSV →EV
(t)

N
(10)
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4 Inferring the burden of the epidemic for subgroups from
age-stratified model output

To estimate the epidemic burden for specific subgroups α using outputs from a model stratified solely
by age, we first need to infer the epidemic burden within each age group in the subgroup (i, α) and
subsequently aggregate these age-specific results to obtain ARα. This requires estimating the number
of susceptible individuals in each group defined by age and SES who became exposed during the
epidemic i.e., MSi,α→Ei,α

.
Assuming knowledge of the number of vaccinated individuals across subgroups defined by age and

SES, one can infer this number using age-stratified output of traditional models. Namely, this involves
computing the attack rate for both vaccinated and unvaccinated individuals, as described in Equations
(9) and (7) in each age group i, from the age-stratified model. Therefore, we can multiply ARNV i and
ARV i by the total number of non-vaccinated and vaccinated individuals in each group (i, α) at time t.
However, in line with the considerations explained in the previous section, it is important to account
for the transitions ENV i → EV i and RNV i → RV i that occur over the course of the epidemic. The
equation used for this calculation reads as follows:

MSi,α→Ei,α = ARV i(t)MSNV i,α→SV i,α
(t) +ARNV i(t)

(
Ni,α −MSNV i,α→SV i,α

(t)
)
, (11)

where ARV i(t) and ARNV i(t) represent respectively the attack rates for vaccinated and non-
vaccinated individuals in age group i and MSNV i,α→SV i,α

(t) denotes the number of susceptible in-
dividuals in groups (i, α) who were vaccinated at time t. It is important to note that in a real-world
case, we can estimate the number of vaccines administered to those who have already recovered from
the infection, especially if they were symptomatic. However, it is not possible to determine the number
of vaccines administered to individuals who were exposed. The attack rate for groups (i, α) can be
then calculated by dividing equation (11) for the population size as follows:

ARi,α =
ARV i(t)MSNV i,α→SV i,α

(t) +ARNV i(t)
(
Ni,α −MSNV i,α→SV i,α

(t)
)

Ni,α
(12)

Finally, we can then aggregate by age groups equation (12) and divide by the total number of
individuals in subgroup α as follows:

ARα =

∑
i ARV i(t)MSNV iα→SV iα

(t) +ARNV i(t) (Ni,α −MSNV iα→SV iα
(t))

Nα
(13)

5 Synthetic population and mixing patterns

The age contact matrix and population distribution used are based on data for Hungary, as illustrated
in Figure S2. The model used to build the synthetic population and their mixing pattern (Figures
1− 4) is the same as in Ref. [9]. Here, we report the values of the activity, assortativity and the free
parameters (see Table S1).

SES Group 1 2 3

Population distribution 35% 45% 20%
Assortativity 60% 50% 65%
Activity 20% 40% 40%
Free parameters 0.6 0.6 0.5

Table S1: List of parameters used to generate Figure 2 in the main text.
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6 Robustness analysis for Figures 1 and 3

In this section, we present a series of alternative simulation settings for Figures 1 and 3 of the main text
to assess the robustness of the results. By exploring different assumptions and parameter variations,
we aim to ensure that the findings remain consistent across a range of plausible scenarios. These
robustness checks provide additional confidence in the conclusions drawn from the main simulations.

6.1 Vaccination stratified only by SES

Here, we simulate vaccination distributions that do not account for age, by only applying the vac-
cination distributions V D1, V D2, and V D3 across three socioeconomic status (SES) groups. This
approach is applied to both Scenario 1 and Scenario 2, as shown in Figures S3 and S4, respectively.

In these simulations, the variations among the three vaccination distributions (VDs) are more
pronounced in terms of overall prevalence across the population, as observed in panel a of Figures
S3 and S4. Notably, in Scenario 2, the effectiveness of V D2 and V D3 increases substantially, nearly
eliminating the epidemic wave.

Furthermore, differences among SES subgroups’ attach rate become even more evident, as shown
in panel b of Figures S3 and S4.

Finally, panels c of Figures S3 and S4 demonstrate that attack rates for specific subgroups are not
accurately predicted by the age-stratified model. Indeed, the discrepancy between the two methodolo-
gies, Gab − f(Cij), is almost always non-zero.

Overall, these simulation results align with the findings discussed in the main text, supporting the
conclusions on the influence of vaccination distribution patterns on epidemic outcomes.
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Figure S3: Scenario 1. Epidemic outcomes and predictability: Panel a displays the number
of newly infected individuals over time. The dotted black line corresponds to the outcome of the
age-stratified model (Cij), and the solid coloured lines correspond to the outcome of the generalized
model (Gab) in the three different vaccination strategies (V D1, V D2, V D3) Panel b shows the attack
rate by the second dimension (dim 2) predicted by the generalized model (Gab. Panel c shows the
difference between the attack rate predicted by the generalized model Gab and the one estimated from
the aggregate output of the age-stratified model f(Cij by the second dimension (dim 2). Results refer
to the median of 500 runs with IQRs. Epidemiological parameters: Γ = 0.25,Ψ = 0.4, g1 = 0.6,
R0 = 1.6. Simulations start with I0 = 100 initial infectious seeds.
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of newly infected individuals over time. The dotted black line corresponds to the outcome of the
age-stratified model (Cij), and the solid coloured lines correspond to the outcome of the generalized
model (Gab) in the three different vaccination strategies (V D1, V D2, V D3) Panel b shows the attack
rate by the second dimension (dim 2) predicted by the generalized model (Gab. Panel c shows the
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6.1.1 Homogeneous mixing

Keeping the same vaccination distributions, we run the same analysis as present in Figure 1 (Scenario
1) and Figure 3 (Scenario 2) of the main text on a simpler population mixing setting. Furthermore, we
consider vaccination only by SES as in the previous section. In this case, we assume homogeneous (i.e.,
random) mixing where contacts along the second dimension are set proportional to the product of the
population sizes in each group. The only set of parameters of interest is the population distribution,
which is set to 1

3 ,
1
3 ,

1
3 . Indeed, in these settings, no extra parameters are needed. Again the model is

the same as in Ref. [9].

Scenario 1. The first observation is that, as expected from Ref. [9], homogeneous mixing leads to the
same epidemic dynamics (i.e., same prevalence) across subgroups (see panels S5a). Indeed, regardless
of the vaccination distribution the coloured lines overlap. Furthermore, random mixing leads to the
same total prevalence regardless of the inclusion of a second dimension in the contact matrices. Indeed,
solid coloured and dashed grey lines representing respectively the prevalence estimated by modes fed
with generalised or traditional contact matrices overlap.

In panels b of Figure S5 we show the attack rate per one thousand (i.e., number of cases for
1000 individuals) for each subgroup, for each vaccination distribution (VDs). In a random mixing
situation, differences in disease burden among subgroups arise solely from variations in vaccination
uptake. When vaccination uptake is equal across all groups (V D1), infection rates are the same in
all three SES groups. Under vaccination distribution V D2, the second SES group shows the lowest
infection rate due to higher vaccination uptake. In the more unequal distribution of vaccines (V D3),
the number of cases in each group inversely correlates with their respective vaccination uptake: the
first group, having the lowest vaccination rate, becomes the most infected, while the third group, with
the highest vaccination uptake, experiences the fewest cases.

Finally, in panel S5c we show the difference of the number of cases in each subgroup from the
generalized model Gab and as estimated from a simple age-stratified model f(Cij). In this scenario,
the differences among the two techniques, although small, are almost always different from zero.
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Figure S5: Scenario 1. Epidemic outcomes and predictability: Panel a displays the number
of newly infected individuals over time. The dotted black line corresponds to the outcome of the
age-stratified model (Cij), and the solid coloured lines correspond to the outcome of the generalized
model (Gab) in the three different vaccination strategies (V D1, V D2, V D3) Panel b shows the attack
rate by the second dimension (dim 2) predicted by the generalized model (Gab. Panel c shows the
difference between the attack rate predicted by the generalized model Gab and the one estimated from
the aggregate output of the age-stratified model f(Cij by the second dimension (dim 2). Results refer
to the median of 500 runs with IQRs. Epidemiological parameters: Γ = 0.25,Ψ = 0.4, g1 = 0.6,
R0 = 1.6. Simulations start with I0 = 100 initial infectious seeds.

Scenario 2. Here, we report the results of the same simulation setting for Scenario 2, where the
vaccination campaign rollout happened before the epidemic outbreak.
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Panel a of Fig. S6 shows that similar to Scenario 1, the coloured lines overlap regardless of the
vaccination distribution, indicating consistent epidemic outcomes across different distribution strate-
gies. Additionally, these coloured lines match the dashed grey lines, which represent outcomes based
on traditional age contact matrices, highlighting that the introduction of an additional dimension does
not alter the overall results, as also discussed in [9].

Panel S6b shows the attack rate per one thousand (i.e., number of cases for 1000 individuals)
for each subgroup, for each vaccination distribution (VDs). As before, in a random mixing situation,
differences in disease burden among subgroups arise solely from variations in vaccination uptake. Thus
the qualitative differences among attach rates in subgroups follow the ones seen in Scenario 1.

Panel S6c shows the difference of the number of cases in each subgroup from the generalized
model Gab and as estimated from a simple age-stratified model f(Cij). Interestingly, in this case, the
difference is always zero, meaning that, in this case, it is possible to accurately predict the epidemic
burden in the three additional subgroups starting from the output from age-stratified models. Indeed,
in this scenario, since the vaccination is already completed before the epidemic begins, there is not a
dynamic interaction between the vaccination uptake and the epidemic spreading, thus the attack rate
in the different subgroups is fully captured by the overall number of individuals in each subgroup, that
were vaccinated before the epidemic started.
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Figure S6: Scenario 2. Epidemic outcomes and predictability: Panel a displays the number
of newly infected individuals over time. The dotted black line corresponds to the outcome of the
age-stratified model (Cij), and the solid coloured lines correspond to the outcome of the generalized
model (Gab) in the three different vaccination strategies (V D1, V D2, V D3) Panel b shows the attack
rate by the second dimension (dim 2) predicted by the generalized model (Gab. Panel c shows the
difference between the attack rate predicted by the generalized model Gab and the one estimated from
the aggregate output of the age-stratified model f(Cij by the second dimension (dim 2). Results refer
to the median of 500 runs with IQRs. Epidemiological parameters: Γ = 0.25,Ψ = 0.4, g1 = 0.6,
R0 = 3. Simulations start with I0 = 100 initial infectious seeds.

6.1.2 Sensitivity to varying tepi and R0

Finally, we run a sensitivity analysis for the difference between the predicted number of cases in each
subgroup from the generalized model and as estimated from a simple age-stratified model (Gab −
f(Cij)). Specifically, we examine the differences between the overall attack rate for each subgroup
as predicted by the generalized model Gab and the attack rate predicted by the outputs of the age-
stratified model aggregate at age level, as described in Equation (13) f(Cij). In Figure S7, we show
how this difference changes (i) as a function of tepi, the time at which the epidemic starts given that
vaccination began at t = 0 with R0 = 2.5, and (ii) as a function of R0, the reproduction number, with
tepi = 0. Again the vaccination is kept to be stratified only by SES. These analyses are done both
under a homogeneous mixing setting (panel a) and an assortative mixing setting (panel b). Both the
parameters tepi and R0 determine the overlap between the vaccination campaign and the epidemiologi-
cal wave: with high tepi, vaccination might be completed before the epidemic starts, whereas with high
R0, the epidemic might peak early during the vaccination campaign, diminishing the vaccination’s im-
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pact on the epidemic curve. The results indicate that only under random mixing, where vaccination is
completed before the epidemic begins, can we accurately predict the attack rate within each subgroup
based on the output of an age-stratified model (panel a, first column). Specifically, the difference
(Gab−f(Cij)) converges to zero as tepi increases, indicating that in a fully vaccinated population with
no interaction between epidemic and vaccination dynamics, the attack rate by subgroup aligns with
predictions from the age-stratified model. However, as the overlap between the vaccination campaign
and the epidemic increases, so does the error, as shown in panel a, first column, for low values of tepi
and in the second column for higher values of R0. In contrast, under assortative mixing, the interaction
between differences in individual activity levels and vaccination uptake prevents accurate predictions
(panel b).
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Figure S7: Sensitivity analysis to varying tepi and R0. Differences between the overall attack
rate for each subgroup as predicted by the generalized model Gab and the attack rate predicted by
the aggregate output of the age-stratified model, f(Cij) as a function of (i) tepi with R0 = 2.5, and
(ii) R0 with tepi = 0. These analyses are done both under a random mixing setting (panel a) and an
assortative mixing setting (panel b)

6.2 Vaccination stratified by age and SES

Here, we explore a simulation setting with homogenous mixing while maintaining the vaccination
modelling framework presented in the main analysis. Specifically, the distribution of vaccines follows a
two-step approach: first by age, based on daily administration data, and then by socioeconomic status
(SES), using three distinct vaccination uptake distributions (V D1, V D2, V D3).

6.2.1 Homogeneous mixing

We run the same analysis as presented in Figure 1 (Scenario 1) and Figure 3 (Scenario 2) of the main
text on a simpler population mixing setting. As before, in the case of homogeneous mixing contacts
along the second dimension are set proportional to the product of the population sizes in each group.
Again the model is the same as in [9].

The results for Scenario 1 and Scenario 2 are shown in Figure S8 and Figure S9, respectively.
These findings are consistent with the patterns discussed in the previous section, further validating
the dynamics observed when varying vaccination strategy and mixing assumptions.
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Figure S8: Scenario 1. Epidemic outcomes and predictability: Panel a displays the number
of newly infected individuals over time. The dotted black line corresponds to the outcome of the
age-stratified model (Cij), and the solid coloured lines correspond to the outcome of the generalized
model (Gab) in the three different vaccination strategies (V D1, V D2, V D3) Panel b shows the attack
rate by the second dimension (dim 2) predicted by the generalized model (Gab. Panel c shows the
difference between the attack rate predicted by the generalized model Gab and the one estimated from
the aggregate output of the age-stratified model f(Cij by the second dimension (dim 2). Results refer
to the median of 500 runs with IQRs. Epidemiological parameters: Γ = 0.25,Ψ = 0.4, g1 = 0.6,
R0 = 1.6. Simulations start with I0 = 100 initial infectious seeds.
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Figure S9: Scenario 2. Epidemic outcomes and predictability: Panel a displays the number
of newly infected individuals over time. The dotted black line corresponds to the outcome of the
age-stratified model (Cij), and the solid coloured lines correspond to the outcome of the generalized
model (Gab) in the three different vaccination strategies (V D1, V D2, V D3) Panel b shows the attack
rate by the second dimension (dim 2) predicted by the generalized model (Gab. Panel c shows the
difference between the attack rate predicted by the generalized model Gab and the one estimated from
the aggregate output of the age-stratified model f(Cij by the second dimension (dim 2). Results refer
to the median of 500 runs with IQRs. Epidemiological parameters: Γ = 0.25,Ψ = 0.4, g1 = 0.6,
R0 = 1.6. Simulations start with I0 = 100 initial infectious seeds.
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6.2.2 Sensitivity to varying tepi and R0

We conducted the same sensitivity analysis for the difference between the predicted number of cases
in each subgroup from the generalized model and as estimated from a simple age-stratified model
(Gab − f(Cij)), with results shown in Figure S10. As before, we examine both a homogeneous mixing
setting (panel a) and an assortative mixing setting (panel b).

Consistent patterns emerge, leading to the same qualitative results and outcomes. Specifically,
the results reaffirm that under random mixing, predictions of subgroup attack rates align closely with
those from an age-stratified model when vaccination concludes prior to the epidemic onset. However,
as the overlap between the vaccination campaign and the epidemic grows, discrepancies increase. This
effect is particularly pronounced under assortative mixing, where the interaction between subgroup
activity differences and vaccination uptake prevents accurate predictions.
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Figure S10: Sensitivity analysis Differences between the overall attack rate for each subgroup as
predicted by the generalized model Gab and the attack rate predicted by the aggregate output of the
age-stratified model, f(Cij) as a function of (i) tepi with R0 = 2.5, and (ii) R0 with tepi = 0. These
analysis are done both under a random mixing setting (panel a) and an assortative mixing setting
(panel b)
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7 Non pharmaceutical interventions

Table S2 reports the values for activity, assortativity, and other free parameters used for both the
tightened NPI simulation presented in Figure 2 (Scenario 1) and the relaxed NPI simulation presented
in Figure 4 (Scenario 2) of the main text.

SES Group 1 2 3

Assortativity 50% 60% 70%
Activity 40% 25% 35%
Free parameters 0.5 0.4 0.4

Table S2: List of parameters used to simulate the NPIs

For completeness, we extend the model by adding a new compartment (D) to estimate the number
of deaths under each vaccination distribution. In particular, we simulate the number of daily deaths by
applying the age-stratified Infection Fatality Rate (IFRi) estimated for COVID-19 by Ref.[10]. The
set of the equations presented in (3) can be extended as follows:

dtSNV a(t) = −Λa(t)SNV a(t)− Ω(t)S ,

dtSV a(t) = −(1− g1)Λa(t)SV a(t) + Ω(t)S ,

dtENV a(t) = Λa(t)SNV a(t)−ΨENV a(t)− Ω(t)E ,

dtEV a(t) = (1− g1)Λa(t)SV a(t)−ΨEV a(t) + Ω(t)E ,

dtINV a(t) = ΨENV (t)− ΓINV a(t),

dtIV a(t) = ΨEV a(t)− ΓIV a(t),

dtRNV a(t) = (1− IFRi)ΓINV a(t)− Ω(t)R,

dtRV a(t) = (1− (1− g2)IFRi))ΓIV a(t) + Ω(t)R,

dtDNV a(t) = IFRiΓINV a(t),

dtDV a(t) = (1− IFRi)ΓIV a(t) (14)

Section 1. We report the attack rate by socioeconomic status (SES) for both the Baseline setting
and the setting with non-pharmaceutical interventions (NPI) in Figure S11.
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Figure S11: Scenario 1: The impact of NPIs on SES groups under different vaccination
distributions. Panel a refers to the baseline case and shows the attack rate scaled by 1000 for
the three SES. Panel b follows the same structure but refers to the case where tightened NPIs are
introduced, reducing contacts by 20%. NPIs are adjusted 65 days after the epidemic onset. Results
represent the median of 500 runs with confidence intervals. Epidemiological parameters: Γ = 0.25,
Ψ = 0.4, g1 = 0.5, g2 = 0.8, and R0 = 2.5. Simulations begin with I0 = 100 initial infected seeds.

Figure S12 presents the results of the model with deaths for Scenario 1. In particular, panels a and
b show respectively the prevalence in the baseline case and the case with tightened NPIs where contacts
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are reduced by 20%. Similarly, panels c and d display the total number of deaths in the baseline case
and under tightened NPIs, respectively. The mortality trend exhibits the same qualitative behaviour
as the prevalence.
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Figure S12: Scenario 1: The impact of NPIs under different vaccination distributions.
Panel a refers to the baseline case, with insets depicting the activity distribution along the second
dimension. The first column shows the total number of infected individuals, while the second column
shows the attack rate scaled by 1000. Panel b follows the same structure but refers to the case where
tightened NPIs are introduced, reducing contacts by 20%. Panels c and d follow the same structure but
refer to the total number of deaths (first column) and mortality rate scaled by 10K (second column).
NPIs are adjusted 65 days after the epidemic onset. Results represent the median of 500 runs with
confidence intervals. Epidemiological parameters: Γ = 0.25, Ψ = 0.4, g1 = 0.5, g2 = 0.8, and R0 = 2.5.
Simulations begin with I0 = 100 initial infected seeds.

Scenario 2. Similarly, we report the attack rate by socioeconomic status (SES) for both the Baseline
setting and the setting with non-pharmaceutical interventions (NPI) in Figure S13.

While Figure S14 presents the results of the model that includes mortality for Scenario 2 following
the same structure of Figure S12. Also in this case the mortality trend exhibits the same qualitative
behavior as the prevalence.
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Figure S13: Scenario 2: The impact of NPIs on SES groups under different vaccination
distributions. Panel a refers to the baseline case and shows the attack rate scaled by 1000 for the
three SES. Panel b follows the same structure but refers to the case where tightened NPIs are released
and the contacts increase by 20%. Panels c and d follow the same structure but refer to the total
number of deaths (first column) and mortality rate scaled by 10K (second column). NPIs are adjusted
65 days after the epidemic onset. Results represent the median of 500 runs with confidence intervals.
Epidemiological parameters: Γ = 0.25, Ψ = 0.4, g1 = 0.5, g2 = 0.8, and R0 = 2.5. Simulations begin
with I0 = 100 initial infected seeds.
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Figure S14: Scenario 2: The impact of NPIs under different vaccination distributions.
Panel a refers to the baseline case, with insets depicting the activity distribution along the second
dimension. The first column shows the total number of infected individuals, while the second column
shows the attack rate scaled by 1000. Panel b follows the same structure but refers to the case where
tightened NPIs are released, increasing contacts by 20%. NPIs are adjusted 65 days after the epidemic
onset. Results represent the median of 500 runs with confidence intervals. Epidemiological parameters:
Γ = 0.25, Ψ = 0.4, g1 = 0.5, g2 = 0.8, and R0 = 2.5. Simulations begin with I0 = 100 initial infected
seeds.
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8 Hungarian contact data

For completeness, also in this case we explore the number of deaths estimated by our model under the
two different scenarios when the population distribution and the mixing patterns are taken from real
data. Panels a and c of Fig.S15 show the results for Scenario 1 while panels b and d of Fig.S15 refers
to Scenario 2.
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Figure S15: Epidemic outcomes under different vaccination distributions and real contact
data.. Panels in a and c refer to Scenario 1 and display the number of cases per 1000 (panel a) and the
number of deaths per 10000 (panel c), stratified by vaccination status (non-vaccinated, vaccinated, and
overall) and under different vaccination distribution scenarios (V D0, V D2, V D3). Panels in b and d
show the corresponding number for Scenario 2. Results refer to the median of 500 runs with confidence
intervals. Epidemiological parameters: Γ = 0.25,Ψ = 0.4, g1 = 0.6 and g2 = 0.8. R0 = 2.7 for the
third wave and R0 = 3 for the forth. Simulations start with I0 = 100 initial

Additionally, here we present the same results stratified by age and vaccination status. These figures
explore the dynamics of infection and mortality under different vaccination distribution scenarios
(V D1, V D2, and V D3).
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Figure S16: Epidemic outcomes under different vaccination distributions and real con-
tact data, stratified by age for the entire population. Panels (a) and (b) refer to Scenario 1.
Panel (a) displays the number of cases per 1000 individuals under different vaccination distributions
(V D0, V D2, V D3), while panel (b) shows the corresponding number of deaths per 10, 000 individu-
als. Panels (c) and (d) present the same results for Scenario 2. Results represent the median of 500
simulations with confidence intervals. Epidemiological parameters: Γ = 0.25, Ψ = 0.4, g1 = 0.6, and
g2 = 0.8. R0 = 2.7 for the third wave and R0 = 3 for the fourth. Simulations start with I0 = 100
initial infectious cases.
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Figure S17: Epidemic outcomes under different vaccination distributions and real contact
data, stratified by age for the vaccinated population. Panels (a) and (b) refer to Scenario 1.
Panel (a) displays the number of cases per 1000 individuals under different vaccination distributions
(V D0, V D2, V D3), while panel (b) shows the corresponding number of deaths per 10, 000 individu-
als. Panels (c) and (d) present the same results forScenario 2. Results represent the median of 500
simulations with confidence intervals. Epidemiological parameters: Γ = 0.25, Ψ = 0.4, g1 = 0.6, and
g2 = 0.8. R0 = 2.7 for the third wave and R0 = 3 for the fourth. Simulations start with I0 = 100
initial infectious cases.
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Figure S18: Epidemic outcomes under different vaccination distributions and real contact
data, stratified by age for the non-vaccinated population. Panels (a) and (b) refer to Scenario
1. Panel (a) displays the number of cases per 1000 individuals under different vaccination distributions
(V D0, V D2, V D3), while panel (b) shows the corresponding number of deaths per 10, 000 individuals.
Panels (c) and (d) present the same results Scenario 2. Results represent the median of 500 simulations
with confidence intervals. Epidemiological parameters: Γ = 0.25, Ψ = 0.4, g1 = 0.6, and g2 = 0.8.
R0 = 2.7 for the third wave and R0 = 3 for the fourth. Simulations start with I0 = 100 initial infectious
cases.
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