Alarkeimer's-associated inflammation inflammation inflamer inflameries in a superiormation inflameries and temporal regions across clinical variants of Alzheimer's disease
Patrick Lao¹, Seonjoo Lee¹, Daniel Talmasov¹ Patrick Lao¹, Seonjoo Lee¹, Daniel Talmasov¹, Dina Dass¹, Nbdusi Chi
Smith¹, Diana Guzman¹, Amarachukwu Okafor¹, Hannah Houlihan¹,
Samantha Rossano¹, William Kreisl¹, James Noble¹, Yasir Qureshi¹, Patrick Lao⁻, Seonjoo Lee⁻, Daniel Talmasov⁻, Dina Dass⁻, Nbdusi Chikwem⁻, Aubrey Johnson⁻, Anna
Smith¹, Diana Guzman¹, Amarachukwu Okafor¹, Hannah Houlihan¹, Lauren Heuer¹, Thairi Sanchez¹,
Samanth

Smith", Diana Guzman", Amarachukwu Okafor", Hannah Houlinan
Samantha Rossano¹, William Kreisl¹, James Noble¹, Yasir Qureshi¹, 1
1. Taub Institute for Research on Alzheimer's Disease and the
Department of Neurolo , Lauren Heuer⁻, Thairi Sanchez⁻
Scott Small¹
e Aging Brain, G.H. Sergievsky Ce
lical Center ,
er , William Kreisl , James Noble , Yasir Qureshi , Scott Small
Ite for Research on Alzheimer's Disease and the Aging Brai
It of Neurology, Columbia University Irving Medical Center
or: r

Samantha Rossano
1. Taub Institu
Departmen
Corresponding auth 1. The Internative for Research on Alzheimer's District and the Aging Dian, The Disgiten, James,
Department of Neurology, Columbia University Irving Medical Center
is Responding author:
ick Lao, Ph.D. onding author:
ao, Ph.D.
st 168th St, PH18-330 (
|
|} Patrick Lao, Ph.D.
630 West 168th St, PH1
Department of Neurolo
Columbia University, NY /
630 West 168th St
Department of Ne
Columbia Universi
pjl2133@cumc.co Department of Neurology
Columbia University, NY, New
pjl2133@cumc.columbia.edu ں
Columbia University, NY, N
Dil2133@cumc.columbia.e
Columbia.e pjl2133@cumc.columbia.edu pjeland in the state of the

Marian
Objective
However
We hypo
associate
Methods Objectives: Microglia monitor and respond to the brain's microenvironment to maintain homeostasis.
However, in Alzheimer's disease and related dementias (ADRD), microglia may contribute to pathology
We hypothesized that AD

However, in Alzheimer's disease and related dementias (ADRD), microglia may contribute to pathology.
We hypothesized that AD-related inflammatory changes, measured with TSPO PET, would be locally
associated with amyloid, t Associated with amyloid, tau, and neurodegeneration, and influence key pathways among them.
Methods: Participants (21 controls, 25 with ADRD) from the Longitudinal Imaging of Microglial Activa
in Different Clinical Variant associated with amyloid, tau, and neurodegeneration, and numerice to y pathways among Methods: Participants (21 controls, 25 with ADRD) from the Longitudinal Imaging of Microglial Adin Different Clinical Variants of Alzhei Method Clinical Variants of Alzheimer's Disease study underwent baseline amyloid PET (Florbetaben
SUVR), tau PET (MK6240 SUVR), TSPO PET (ER176 SUVR), and structural MRI (gray matter volume).
Cognitive assessments and cons SUVR), tau PET (MK6240 SUVR), TSPO PET (ER176 SUVR), and structural MRI (gray matter volume).
Cognitive assessments and consensus diagnoses (e.g., MCI, AD, PCA, FTD, LATE) were performed at the
CUIMC ADRC with biomarker in Supprimediations and consensus diagnoses (e.g., MCI, AD, PCA, FTD, LATE) were performed at CUIMC ADRC with biomarker information when available. We evaluated regional colocalization of biomarker elevation in ADRD compared CUIMC ADRC with biomarker information when available. We evaluated regional colocalization of
biomarker elevation in ADRD compared to controls, TSPO associations with ATN biomarkers, and TSPO
mediations along key ATN pathw

biomarker elevation in ADRD compared to controls, TSPO associations with ATN biomarkers, and T
mediations along key ATN pathways. Sensitivity analyses were stratified by amyloid positivity.
Results: Elevated TSPO was spati biomarker elevation in ADRD comparison in ADRD comparison in ADRD controls, ABS

Results: Elevated TSPO was spatially colocalized with elevated tau (8 regions), amyloid (7 regions), and

neurodegeneration (4 regions). High Results: Elevated TSPO was spatially colocalized with elevated tau (8 regions), amyloid (7 region
neurodegeneration (4 regions). Higher TSPO in limbic, temporal, and parietal regions was assoc
with higher tau (0.8 to 2.3, neurodegeneration (4 regions). Higher TSPO in limbic, temporal, and parietal regions was associated
with higher tau (0.8 to 2.3, p<0.03), which remained significant after adjusting for amyloid and
neurodegeneration in the with higher tau (0.8 to 2.3, p<0.03), which remained significant after adjusting for amyloid and
neurodegeneration in the inferior parietal cortex. TSPO mediated the association between tau and
neurodegeneration in limbic with higher tau (0.8 to 2.3, p<0.03), which remained significant after adjusting for amyloid and
neurodegeneration in the inferior parietal cortex. TSPO mediated the association between tau and
neurodegeneration in limbic neurodegeneration in limbic and temporal regions (-0.27 to -0.39, p<0.02; 43% to 89% of the total
effect), while tau did not mediate the association between TSPO and neurodegeneration. TSPO also
mediated the association be neurodegeneration in limbic and temporal regions (-0.27 to -0.39, p<0.02; 43% to 89% of the total

effective in any loid-positive ADRD.

Simply in amyloid-positive ADRD.

Conclusion: Across ADRD diagnoses with different underlying brain microenvironments (e.g.,

pathology/copathology) to which microglia are sensitive, h only in amyloid-positive ADRD.
Conclusion: Across ADRD diagnoses with different underlying brain microenvironments (e.g.,
pathology/copathology) to which microglia are sensitive, higher microglia density was associated wit Conclusion: Across ADRD diagnet
pathology/copathology) to white
greater tau burden and mediate
target for intervention strategie pathology/copathology) to which microglia are sensitive, higher microglia density was associa
greater tau burden and mediated tau-associated neurodegeneration. Glia may represent a pr
target for intervention strategies in preater tau burden and mediated tau-associated neurodegeneration. Glia may represent a promising
target for intervention strategies in ADRD-associated tau and neurodegeneration.
The sensitive micrographs of the micrographs greater for intervention strategies in ADRD-associated tau and neurodegeneration.
The may represent a property and provide a property of the property of the property of the property of the proof.
The may represent a proper target for intervention strategies in ADRD-associated tau and neurodegeneration.

MATERENTATION
A cor
(such as the 1)
(including me)
preventing ne
(for reviews,
adipose sacci The misfolding, aggregation, and spreading of amyloid and tau) with immunopathic mechanisms
ag molecular and cellular components) could uncover alternative modifiable targets for
ing neurodegeneration and cognitive decline (including molecular and cellular components) could uncover alternative modifiable targets for
preventing neurodegeneration and cognitive decline, beyond the traditional focus on amyloid and tau
(for reviews, see [1, 2]). (for reviews, see [1, 2]). The initial case of AD noted glial cells with extensive fibrous structures adipose saccules[3], later corroborated by genome-wide association studies implicating inflamnelated genes in AD and rel preventing neurodegeneration and regimental engineeration and and for reviews, see [1, 2]). The initial case of AD noted glial cells with extensive fibrous structures and adipose saccules[3], later corroborated by genome-w adipose saccules[3], later corroborated by genome-wide association studies implicating inflammation-
related genes in AD and related dementias (ADRD)[4]. A chronic inflammatory environment is a hallmark
of ADRD, leading to

under different physiological conditions. Studies employing TSPO PET imaging to assess microglial related genes intervals and relations in brain structure and function.

Microglia are one of the brain's resident immune cells, continuously surveilling and responding

to stimuli, including infection, toxins, and injury, Microglia are one of the brain's resident immune cells, continuous
to stimuli, including infection, toxins, and injury, thereby contributing to ne
However, microglial function depends on the brain's microenvironment, w
und II, including infection, toxins, and injury, thereby contributing to neuroprotection and repair.

The microglial function depends on the brain's microenvironment, which can vary significantly

ifferent physiological condit The stimular method is stimular method in the brain's microenvironment, which can vary significantly
under different physiological conditions. Studies employing TSPO PET imaging to assess microglial
activity have revealed under different physiological conditions. Studies employing TSPO PET imaging to assess microglial
activity have revealed consistent increases in key brain regions across various neurodegenerative
disorders, indicating pote activity have revealed consistent increases in key brain regions across various neurodegenerative
disorders, indicating potential disease-promoting mechanisms associated with microglia; however
reductions in microglial den action, indicating potential disease-promoting mechanisms associated with microglia; howeve
reductions in microglial density in key brain regions for autism spectrum disorder and various
neuropsychiatric syndromes, suggest ductions in microglial density in key brain regions for autism spectrum disorder and various
neuropsychiatric syndromes, suggests a lack of homeostatic maintenance in the absence of microg
Understanding both the disease st reductions in microgram and the preductions in the absence of m
neuropsychiatric syndromes, suggests a lack of homeostatic maintenance in the absence of m
Understanding both the disease stage (such as the extent of neurode neuropsychiatric syndromes, suggests a lack of homeosteric final material of neurodes and cognitive
impairment) and the brain microenvironment (including amyloid and tau positivity and regional
susceptibility) is essential impairment) and the brain microenvironment (including amyloid and tau positivity and regiona
susceptibility) is essential for developing a unified framework that encompasses both proteopa
immunopathic aspects of ADRD.
We u

susceptibility) is essential for developing a unified framework that encompasses both proteopatly
immunopathic aspects of ADRD.
We utilize TSPO PET imaging to broadly capture "AD-associated inflammatory alterations
that th immunopathic aspects of ADRD.

We utilize TSPO PET imaging to broadly capture "AD-associated inflammatory alterations" given

that the 18kDa translocator protein (TSPO) is primarily expressed in microglia, as well as in as We utilize TSPO PET imag
that the 18kDa translocator prote
and infiltrating macrophages alth
endothelial cells[6-8]. TSPO PET i
humans[9]. This imaging techniq
including sTREM2[10]. The novel 18kDa translocator protein (TSPO) is primarily expressed in microglia, as well as in astrocytes
trating macrophages although at a lower level, and even in non-immune cell types such as
social cells[6-8]. TSPO PET may refl and infiltrating macrophages although at a lower level, and even in non-immune cell types such as
endothelial cells[6-8]. TSPO PET may reflect microglial density and recruitment rather than function in
humans[9]. This imag and infiltration cells [6-8]. TSPO PET may reflect microglial density and recruitment rather than function
humans [9]. This imaging technique has been shown to correlate with other inflammatory markers,
including sTREM2 [1 humans[9]. This imaging technique has been shown to correlate with other inflammatory markers,
including sTREM2[10]. The novel TSPO PET radiotracer ER176 exhibits favorable pharmacokinetic
properties, including a specific manual principle in the novel TSPO PET radiotracer ER176 exhibits favorable pharmacokinetic
properties, including a specific non-displaceable binding ratio and a lack of radiometabolites enterin
brain, which is an improvem properties, including a specific non-displaceable binding ratio and a lack of radiometabolites ente
brain, which is an improvement over previous TSPO radiotracers[11, 12]. Notably, ER176 is less se
to the single nucleotid properties, which is an improvement over previous TSPO radiotracers[11, 12]. Notably, ER176 is less sensitive
to the single nucleotide polymorphism in the TSPO gene (rs6971) that previously limited the signal to
noise rat brain, which is an improvement of the TSPO gene (rs6971) that previously limited the signal to noise ratio of earlier TSPO PET radiotracers for approximately 10% of the population[13]. Using semi-
quantitative standard up noise ratio of earlier TSPO PET radiotracers for approximately 10% of the population[13]. Using semi-
quantitative standard uptake value ratio (SUVR) with the cerebellum as a pseudo-reference region, we
observed regional TSPO radiotracers[16]. Furthermore, the simplified PET acquisition method using ER176 is more amenable to older populations with ADRD. paintance value represents in TSPO for individuals with mild cognitive impairment (MCI) and AD
compared to controls, aligning with gold standard distribution volume (V_T) quantification obtained
through arterial line sam compared to controls, aligning with gold standard distribution volume (V_T) quantification obtained
through arterial line sampling[14]. Other groups have shown the cerebellum to be a suitable pseu
reference region on the through arterial line sampling[14]. Other groups have shown the cerebellum to be a suitable pseud
reference region on the pathological level[15], adding validation for its use with previous generatio
TSPO radiotracers[16].

spreading across Braak stage regions, tau and neurodegeneration, and neurodegeneration and TSPO radiotracers[16]. Furthermore, the simplified PET acquisition method using ER176 is more
amenable to older populations with ADRD.
Cross-sectionally, in MCI/AD, a previous TSPO PET radiotracer, PBR28, was associated wi THE LATAL MALLET PLATAL MALLET THE SIMPLE AT A MALLET AND TRANSMONT AMPLE ARRENT AT MALLET AND RET TRANSPORE TRANSPORE TRANSPORE TRANSPORE TRANSPORE TRANSPORE TRANSPORE TRANSPORE AND APPROPRIATION METHOD METHOD USING USING Cross-sectionally, in MCI/AD, a prev
amyloid and tau burden, independently of r
spreading across Braak stage regions, tau ar
cognition[17]. Longitudinally, the pathways and tau burden, independently of neurodegeneration. It mediated the association betwee
ng across Braak stage regions, tau and neurodegeneration, and neurodegeneration and
n[17]. Longitudinally, the pathways of tau propagat amylon and tau burden tau burden, independently of neurodegeneration. In the analogue are associated the association and cognition [17]. Longitudinally, the pathways of tau propagation in MCI/AD depended on baseline PBR28 cognition [17]. Longitudinally, the pathways of tau propagation in MCI/AD depended on baseline PBR28 contains, the pathways of tau propagation in MCI/AD depended on baseline PBR288.
Longitudinal pathways of tau propagation in MCI/AD depended on baseline PBR288.
Longitudinal pathways of the pathways of the pathways of the

network strength, highlighting the role of microglia in tau propagation[10]. A recent study using ER176
demonstrated that TSPO PET was elevated in early onset MCI, a group characterized by a lack of
expected copathology, c expected copathology, compared to controls. TSPO PET exhibited a regional distribution similar to that of

expected compairment [18].

Impairment [18].

Here, we sought to generalize microglia-tau associations across various ADRD diagnoses that

represent different brain microenvironments using simplified SUVR quantification fo The and neurodegeneration, with the stronger associations and and a correlation of memory impairment[18].

Here, we sought to generalize microglia-tau associations across various ADRD diagnoses that

represent different br represent different brain microenvironments using simplified SUVR quantification for novel TSPO
radiotracer, ER176. We hypothesized that within a cohort characterized at the Columbia Alzheimer's
Disease Research Center (AD The different brain microenvironments using simplified SUVR quantification for novel TSPO
cer, ER176. We hypothesized that within a cohort characterized at the Columbia Alzheimer's
Research Center (ADRC) comprising individ radiotracer, ER176. We hypothesized that within a cohort characterized at the Columbia Alzheimer's
Disease Research Center (ADRC) comprising individuals with MCI, AD, and posterior cortical atrophy
(PCA) among other clinic radiotely state of Center (ADRC) comprising individuals with MCI, AD, and posterior cortical atrophy
(PCA) among other clinical variants, ER176 SUVR would be (1) elevated in ADRD across key brain regionilar to tau and neur (PCA) among other clinical variants, ER176 SUVR would be (1) elevated in ADRD across key brain regi
similar to tau and neurodegeneration, (2) most strongly associated with tau, and (3) a mediator of
progressive association (PEA) among other clinical variance) and the matter (2) elevated with tau, and (3) a mediator of
similar to tau and neurodegeneration, (2) most strongly associated with tau, and (3) a mediator of
progressive associations b

progressive associations between amyloid, tau, and neurodegeneration.

Methods

Participants

in the Columbia Alzheimer's Disease Variant Imaging study (R01AG063888) were co-enro

in the Columbia Alzheimer's Disease Resear Participants in the Alzheimer's Disease Variant Imaging study (R01AG063888) were co-enrolled
in the Columbia Alzheimer's Disease Research Center (P30AG066462). Participants underwent amyloid
PET, tau PET, TSPO PET, structu Participants

Participants in the Alzheimer's Disease Variant Imaging study (R01AG063888) were co-enrolle

in the Columbia Alzheimer's Disease Research Center (P30AG066462). Participants underwent amylo

PET, tau PET, TSPO with the Mini-Mental State Examination (MMSE)[19], and domain-specific tests including the Selective plumbia Alzheimer's Disease Research Center (P30AG066462). Participants underwent amyloid
PET, TSPO PET, structural MRI, and ADRC cognitive testing. Briefly, participants were evaluated
P. Mini-Mental State Examination (MM PET, tau PET, TSPO PET, structural MRI, and ADRC cognitive testing. Briefly, participants were evaluated
with the Mini-Mental State Examination (MMSE)[19], and domain-specific tests including the Selective
Reminding Test[2 PET, The Mini-Mental State Examination (MMSE)[19], and domain-specific tests including the Selective
Reminding Test[20], Trail Making Test[21], and categorical fluency[22]. Domain-specific cognitive test
scores were transf Reminding Test[20], Trail Making Test[21], and categorical fluency[22]. Domain-specific cognitive test
scores were transformed into z-scores using age-, sex-, and education-adjusted normative data derived
for the National Reminding Test[20], Trail Making Test[for the National Alzheimer's Coordinating Center Uniform Dataset (NACC)[23]. At CUIMC ADRC case
consensus, participants were categorized as cognitively unimpaired (n=21), amnestic or non-amnestic
mild cognitive impairment consensus, participants were categorized as cognitively unimpaired (n=21), amnestic or non-amnesti
mild cognitive impairment (MCI; n=7), AD dementia (n=7), PCA (n=5), IvPPA (n=1), LATE (n=1), and FT
(n=1). Three individua mild cognitive impairment (MCl; n=7), AD dementia (n=7), PCA (n=5), IvPPA (n=1), LATE (n=1), and FTD
(n=1). Three individuals with cognitive impairment have not yet gone to case consensus for a specific
diagnosis, but scor (n=1). Three individuals with cognitive impairment have not yet gone to case consensus for a specific diagnosis, but scored 1.5 standard deviations below the normative sample and are included in the ADRD group. Biomarker d (n=1). Three individuals with cognitive impairment have normative sample and are included in the AD
diagnosis, but scored 1.5 standard deviations below the normative sample and are included in the AD
group. Biomarker data diagnoup. Biomarker data was used in case consensus when available. All participants (or their legally
authorized representatives) provided informed consent according to the Declaration of Helsinki. The
Institutional Revie group.
Authorized representatives) provided informed consent according to the Declaration of Helsinki. The
stitutional Review Board of Columbia University Irving Medical Center gave ethical approval for the
work.
TSPO bind

authorized representatives) provided informed consent according to the Declaration of this
Institutional Review Board of Columbia University Irving Medical Center gave ethical approval for this
work.
TSPO binding affinity Institutional Review Board Center TSPO binding affinity was determined as previously described[24]. Briefly, genomic DNA from
Each subject was used to genotype the rs6971 polymorphism using a TaqMan assay[25]. Participants each s
were ł
13%),
KASPa
rs7412 oject was used to genotype the rs6971 polymorphism using a TaqMan assay[25]. Participants
gh affinity binders (HAB; 55%), mixed affinity binders (MAB; 32%), or low affinity binders (LAB;
igning with previously reported fr each subject was used affinity binders (HAB; 55%), mixed affinity binders (MAB; 32%), or low affinity binders (LAB
13%), aligning with previously reported frequencies[25]. APOE Genotyping was determined using the
KASPar® P 13%), aligning with previously reported frequencies[25]. APOE Genotyping was determined using the
KASPar® PCR SNP genotyping system (LGC Genomics) for the single nucleotide polymorphisms (SNPs)
rs7412 and rs429358. Genoty 13%), angling with previously reported frequencies for the single nucleotide polymorphisms (SNPs)
137412 and rs429358. Genotype data for these two SNPs were used to unambiguously define ε2, ε3, a
14 alleles. APOE informati

RETAR AT A PARAW SHANDAY PROTHER SUPPLANT AND SUPPLANT PROPERTIES.

ESTA12 and rs429358. Genotype data for these two SNPs were used to unambiguously define ε2, ε3, a

E4 alleles. APOE information was only available in a su F4 alleles. APOE information was only available in a subset of 17 participants (10 controls, 7 patients).

Neuroimaging

Structural T1 MRI was performed in a 3T GE Signa Premier scanner (repetition time (TR): 6.6 ms,

ech Structural T1 MRI was performed in a 3T GE Signa Premier scanner (repetition time (TR): 6.6 m
echo time (TE): 3 ms, voxel size = 1x1x1 mm³). Regions of interest were defined using the Hammers-
N30R83-1 MM atlas in the PN Structure

Structure

N30R83-1 MM

N30R83-1 MM The (TE): 3 ms, voxel size = 1x1x1 mm³). Regions of interest were defined using the Hammers-
-1 MM atlas in the PNEURO module of PMOD 3.9 (PMOD Technologies, [26]), except for the
-1 MM atlas in the PNEURO module of PMO echo time (TE): 3 ms, voxel size = 1x1x1 mm
N30R83-1 MM atlas in the PNEURO module of
Siders in the PNEURO module of N_{30R} 3-1 MM atlas in the PNEURO module of PMOD 3.9 (PMOD 3.9 (PMOD 3.9 (PMOD Technologies, $\frac{1}{26}$), except for the PMOD 3.9 (PMOD 3.9

entorhinal cortex, which was defined using the Desikan-Killiany atlas in FreeSurfer 6.0 (Massachusetts
General Hospital, Harvard Medical School; http://surfer.nmr.mgh.harvard.edu). Gray matter volumes
were calculated for 1 Final Hospital, Harvard Hospital, Harvard Medical Cortex, Insula, Cingulate Gyrus, Fusiform, Lingua
Gyrus, Entorhinal cortex, Middle Inferior Temporal Gyrus, Superior Temporal Gyrus, Inferior Parietal
Cortex, Superior Pari

Gyrus, Entorhinal cortex, Middle Inferior Temporal Gyrus, Superior Temporal Gyrus, Inferior Parietal
Cortex, Superior Parietal cortex, Amygdala, Hippocampus, and Striatum).
All PET scans were performed in Siemens Biograph Cortex, Superior Parietal cortex, Amygdala, Hippocampus, and Striatum).
Cortex, Superior Parietal cortex, Amygdala, Hippocampus, and Striatum).
OSEM (voxel size = 1x1x2 mm³), and corrected for radioactive decay, attenuat All PET scans were performed in Siemens Biograph64 mCT/PET sc
OSEM (voxel size = 1x1x2 mm³), and corrected for radioactive decay, atter
and scanner deadtime and normalization. All preprocessing steps (i.e., fra
with segm voxel size = 1x1x2 mm³), and corrected for radioactive decay, attenuation, scatter, random even deadtime and normalization. All preprocessing steps (i.e., frame realignment, coregistra; mented MRI, SUVR calculation) and OSEM (voxel size = 1x1x2 mm), and corrected for radioactive decay, attenuation, scatter, random events,
and scanner deadtime and normalization. All preprocessing steps (i.e., frame realignment, coregistration
with segment and segmented MRI, SUVR calculation) and partial volume correction using the voxelwise Geometric
Transfer Method (GTM) were performed in PMOD[27]. Amyloid PET was performed using Florbetaben
(8.1 mCi; FBB) and FBB SUVR was Transfer Method (GTM) were performed in PMOD[27]. Amyloid PET was performed using Florbetaber (8.1 mCi; FBB) and FBB SUVR was calculated using 90-110 min data and cerebellar gray matter as reference region. Tau PET was per (8.1 mCi; FBB) and FBB SUVR was calculated using 90-110 min data and cerebellar gray matter as
reference region. Tau PET was performed using MK-6240 (5 mCi) and MK-6240 SUVR was calculated
using 90-110 min data and inferio eference region. Tau PET was performed using MK-6240 (5 mCi) and MK-6240 SUVR was calculat
using 90-110 min data and inferior cerebellar gray matter as reference region. TSPO PET was perf
using ER176 (up to 20 mCi) and ER1 using 90-110 min data and inferior cerebellar gray matter as reference region. TSPO PET was perform
using ER176 (up to 20 mCi) and ER176 SUVR was calculated using 60-90 min data and cerebellar gray
matter as pseudo-referen

using ER176 (up to 20 mCi) and ER176 SUVR was calculated using 60-90 min data and cerebellar gray matter as pseudo-reference region.
Statistical analysis
Demographic characteristics, biomarker levels, and clinical characte using ER176 (up to 20 may) and ER176 The CR176 SUVR was calculated using 60-90 min data and cerebellar gray)
matter as pseudo-reference region.
Statistical analysis
Demographic characteristics, biomarker levels, and clinic matter as pseudo-reference region.

Statistical analysis

Demographic characteristics, biomarker levels, and clinical characteristics were compared

between controls and individuals with ADRD. For descriptive purposes, amy Demograp
Demograp
between controls a
visually according t
Parahippocampal (controls. Given the
were calculated as Demographic characteristics, biomance recents in the monocletrical controls and individuals with ADRD. For descriptive purposes, amyloid positivity was rate according to vendor instructions[28]. Tau positivity across Braak between controls and intertwitten controls (28). Tau positivity across Braak I/II (Hippocampus,
Parahippocampal Gyrus) was categorized as 2 standard deviations above the mean of MK6240 SUVR
controls. Given the large range Parahippocampal Gyrus) was categorized as 2 standard deviations above the mean of MK62
controls. Given the large range of ER176 SUVR in controls, TSPO positivity across a composit
were calculated as above the mean in contr

Farmivols. Given the large range of ER176 SUVR in controls, TSPO positivity across a composite brain ROI

were calculated as above the mean in controls by binding affinity groups (Supplemental Figure 1).

For analytic purp were calculated as above the mean in controls by binding affinity groups (Supplemental Figure 1).

For analytic purposes, all biomarkers were used continuously. To assess regional biomarker

elevations, we compared partici For analytic purposes, all biomarkers were used continuously. To assess regional biomarke
elevations, we compared participants with ADRD to controls in separate ANCOVAs. To assess pairw
biomarker associations across ROIs, ns, we compared participants with ADRD to controls in separate ANCOVAs. To assess pairwist are associations across ROIs, we included biomarker by ROI interactions in general linear most adjusted biomarker associations, we biomarker associations across ROIs, we included biomarker by ROI interactions in general linear mode
To assess adjusted biomarker associations, we included amyloid, tau, and neurodegeneration by ROI
interactions as simulta To assess adjusted biomarker associations, we included amyloid, tau, and neurodegeneration by ROI
interactions as simultaneous predictors of TSPO in general linear models. To assess key mechanistic
pathways, we included TS interactions as simultaneous predictors of TSPO in general linear models. To assess key mechanistic
pathways, we included TSPO mediations from amyloid to tau within ROIs (i.e., TSPO mediates amyloi
related tau); tau in ear interactions are included TSPO mediations from amyloid to tau within ROIs (i.e., TSPO mediates amylc
related tau); tau in earlier Braak stages to tau in subsequent Braak stages (i.e., TSPO mediates tau-
related spreading); understand the different brain microenvironments in which associations were present. All models were adjusted
adjusted for age, sex, and body mass index (BMI)[29]. Models with ER176 SUVR were further adjusted for TSPO binding affinity and models with gray matter volume were further adjusted for intracranial total relations-presention). To support causal inference from cross-sectional mediations, opposite dir
were also assessed (TSPO to amyloid to tau; TSPO to earlier Braak tau to later Braak tau; TSPO
neurodegeneration). We perform were also assessed (TSPO to amyloid to tau; TSPO to earlier Braak tau to later Braak tau; TSPO to tau to neurodegeneration). We performed a series of sensitivity models, stratifying by amyloid positivity, to understand the were adjusted for age, sex, and body mass index (BMI)[29]. Models, stratifying by amyloid positivity, to understand the different brain microenvironments in which associations were present. All models were adjusted for age neurodegeneration). We performed a series of series of series of any performance and distributed for age, sex, and body mass index (BMI)[29]. Models with ER176 SUVR were further adjusted for TSPO binding affinity and model adjusted for age, sex, and body mass index (BMI)[29]. Models with ER176 SUVR were further adjusted
for TSPO binding affinity and models with gray matter volume were further adjusted for intracranial tota
volume (ICV). All for TSPO binding affinity and models with gray matter volume were further adjusted for intracranial tot
volume (ICV). All estimates are standardized for a measure of effect size and to facilitate comparison
across models. volume (ICV). All estimates are standardized for a measure of effect size and to facilitate comparison
across models. Statistical models were adjusted for multiple comparisons using the multivariate t
distribution or the F across models. Statistical models were adjusted for multiple comparisons using the multivariate t
distribution or the False Detection Rate method, depending on the model, and run in R 4.4.1.
Results distribution or the False Detection Rate method, depending on the model, and run in R 4.4.1.
Results
Results distribution or the False Detection Rate method, depending on the model, and run in R 4.4.1.1.1.1.1.
Results

Controls and individuals with ADRD were similar in age, sex, BMI, race, ethnicity, TSPO affinity, and APOE Genotype (Table 1). As expected, individuals with ADRD had lower MMSE and cognitive domain scores. Out of 21 indivi and a scores. Out of 21 individuals without cognitive impairment 50% were amyloid negative, tan negative, tan
negative, TSPO negative and 50% were amyloid negative, tau negative, TSPO positive by definition.
of 25 individu negative, TSPO negative and 50% were amyloid negative, tau negative, TSPO positive by definition. (
of 25 individuals with ADRD, 47% were amyloid positive, tau positive, and TSPO positive; 12% were
amyloid positive, tau po negative, The International processive, The International of 25 individuals with ADRD, 47% were amyloid positive, tau positive, and TSPO positive; 12% were amyloid positive; tau positive; and TSPO positive; and 29% were am amyloid positive, tau positive, and TSPO negative; 12% were amyloid negative, tau positive, and TSF
positive; and 29% were amyloid negative, tau negative, and TSPO positive (For biomarker positivity
profile by ADRD diagnos

amyloid negative, tau negative, and TSPO positive (For biomarker positivity
profile by ADRD diagnosis, see Supplemental Figure 2).
The spatial colocalization of elevated TSPO with elevated tau (8 regions) was greater than profile by ADRD diagnosis, see Supplemental Figure 2).
The spatial colocalization of elevated TSPO with elevated tau (8 regions) was greater than th
with elevated amyloid (7 regions) and elevated neurodegeneration (4 regio The spatial colocalization of elevated TSPO with
with elevated amyloid (7 regions) and elevated neurode
for elevated TSPO and tau colocalization was the amygo
prefrontal cortex, and inferior and superior parietal cort
amyl vated amyloid (7 regions) and elevated neurodegeneration (4 regions; Figure 1). A unique regic
ted TSPO and tau colocalization was the amygdala, while the middle inferior temporal gyrus,
al cortex, and inferior and superio With elevated TSPO and tau colocalization was the amygdala, while the middle inferior temporal gyrus,
prefrontal cortex, and inferior and superior parietal cortex also had elevated neurodegeneration and
amyloid. The hippoc prefrontal cortex, and inferior and superior parietal cortex also had elevated neurodegeneration and
amyloid. The hippocampus only had elevated TSPO, striatum and insula only had elevated amyloid, and
entorhinal cortex onl

prefrontal cortex and with greater TSPO in limbic, temporal, and parietal regions was associated with greater ta
entorhinal cortex only had elevated tau.
Further, greater TSPO in limbic, temporal, and parietal regions was entorhinal cortex only had elevated tau.

Further, greater TSPO in limbic, temporal, and parietal regions was associated with greater tau

and with greater neurodegeneration (i.e., lower gray matter volume) in pairwise bio Further, greater TSPO in limbic, t
Further, greater TSPO in limbic, t
and with greater neurodegeneration (i.e.
(Figure 2). After adjustment for amyloid
greater tau in the inferior parietal cortex
greater TSPO was associate Further, greater neurodegeneration (i.e., lower gray matter volume) in pairwise biomarker models

2). After adjustment for amyloid and neurodegeneration, greater TSPO was associated with

tau in the inferior parietal corte and with greater in an engagement of any other gray matter velocity of pairwise terms in the engagement for amyloid and neurodegeneration, greater TSPO was associated with greater TSPO was associated with greater neurodege (Figure 2). After adjustment for amyloid and the inferior parietal cortex (0.3 [0.1, 0.5], p=0.05). After adjustment for amyloid and to greater TSPO was associated with greater neurodegeneration in the amygdala (-3.4 [-4.4 greater TSPO was associated with greater neurodegeneration in the amygdala $(-3.4 [-4.4, -2.4], p=2e-10)$,
hippocampus $(-1.9 [-2.6, -1.3], p=6e-08)$, and fusiform gyrus $(-0.68 [-1.1, -0.28], p=0.01)$. Greater TSPO
was associated with low bippocampus (-1.9 [-2.6, -1.3], p=6e-08), and fusiform gyrus (-0.68 [-1.1, -0.28], p=0.01). Greater TSPO
was associated with lower amyloid in the hippocampus, which did not survive adjustment for tau and
neurodegeneration.

was associated with lower amyloid in the hippocampus, which did not survive adjustment for tau and
neurodegeneration.
Assessing the role of TSPO in ATN progression, we found that TSPO mediated the association
between tau a meurodegeneration.
Assessing the role of TSPO in ATN progression, we found that TSPO mediated the association
between tau and neurodegeneration in the middle inferior temporal gyrus (70% of total effect),
amygdala (89%), a mentergeneration.

Assessing the

between tau and neu

amygdala (89%), and

associated neurodeg

associated with grea

effect of greater tau Assessing the relation in the middle inferior temporal gyrus (70% of total effect),
a (89%), and hippocampus (43%; Table 2), while the opposite mediation (tau mediating TSPO
ed neurodegeneration) was not present. However, between targetween table 2), while the opposite mediation (tau mediating
associated neurodegeneration) was not present. However, in the cingulate gyrus, higher tau was
associated with greater TSPO, which was associated wit

greater frequency of APOE4 compared to controls (Supplemental Table 1). Elevated amyloid and tau associated with greater TSPO, which was associated with larger gray matter volume (despite a direffect of greater tau with lower gray matter volume).
In sensitivity analyses, we assessed the role of TSPO in the context of effect of greater tau with lower gray matter volume).

In sensitivity analyses, we assessed the role of TSPO in the context of amyloid positive ADRD

amyloid negative ADRD separately. Amyloid positive ADRD, but not amyloid effect of anyloid negativity analyses, we assessed the role of amyloid negative ADRD separately. Amyloid positive β greater frequency of APOE4 compared to controls (Su were the most widespread changes in amyloid positiv negative ADRD separately. Amyloid positive ADRD, but not amyloid negative ADRD, had a
frequency of APOE4 compared to controls (Supplemental Table 1). Elevated amyloid and tau
e most widespread changes in amyloid positive A anylong method of APOE4 compared to controls (Supplemental Table 1). Elevated amyloid and taken widespread change in amyloid negative ADRD (Supplemental Table 2). For TSPO and tau association there were positive associatio were the most widespread changes in amyloid positive ADRD, whereas the elevated TSPO was the m
widespread change in amyloid negative ADRD (Supplemental Table 2). For TSPO and tau associations
there were positive associatio widespread change in amyloid negative ADRD (Supplemental Table 2). For TSPO and tau associations,
there were positive associations that survived amyloid and neurodegeneration adjustment in amyloid
positive ADRD, but simila where were positive associations that survived amyloid and neurodegeneration adjustment in amyloid
positive ADRD, but similar associations did not survive adjustment in amyloid negative ADRD
(Supplemental Table 3). TSPO me positive ADRD, but similar associations did not survive adjustment in amyloid negative ADRD
(Supplemental Table 3). TSPO mediated amyloid-associated tau as well as tau spreading across Braak
regions in amyloid positive ADR positive ADRD, TSPO mediated amyloid-associated tau as well as tau spreading across regions in amyloid positive ADRD. TSPO also mediated tau-associated neurodegeneration in thippocampus and amygdala in amyloid negative ADR The serions in amyloid positive ADRD. TSPO also mediated tau-associated neurodegeneration in the
hippocampus and amygdala in amyloid negative ADRD (Supplemental Table 4). Notably, in amyloid
negative ADRD, the hippocampus hippocampus and amygdala in amyloid negative ADRD (Supplemental Table 4). Notably, in amylo
negative ADRD, the hippocampus had both elevated TSPO and tau. There was a negative associa
between TSPO and amyloid in the hippoc hegative ADRD, the hippocampus had both elevated TSPO and tau. There was a negative associatio
between TSPO and amyloid in the hippocampus for amyloid negative ADRD, driving the negative ef
the overall sample (Figure 2). T negative ADRD, driving the hippocampus for amyloid negative ADRD, driving the negative effective and a myloid in the hippocampus for amyloid negative ADRD, driving the negative effective effective and a sample (Figure 2). between TSPO and any potential in the mpp computer amy predictionary and analyses such that lower
the overall sample (Figure 2). This was additionally captured in the mediation analyses such that lower
amyloid was associat the overall sample (Figure 2). This was additionally captured in the mediation analyses such that lower
amyloid was associated with greater TSPO, which in turn was associated with greater tau in the amyloid was associated with greater TSPO, which in turn was associated with greater tau in the

hair, and neurodegeneration in the absence of amyloid positivity.
Discussion
AD-associated inflammatory alterations, measured with TSPO PET, were colocalized with tau t
greater spatial extent than amyloid and neurodegenera The matrice of application in the absence of amylois positivity.

Discussion

AD-associated inflammatory alterations, measured with 1

greater spatial extent than amyloid and neurodegeneration, was burden and neurodegenera Discussion
AD-associated inflammatory alterations, measured with TSPO PET, were colocalized with tau to a
greater spatial extent than amyloid and neurodegeneration, was associated with the magnitude of tau
burden and neuro spatial extent than amyloid and neurodegeneration, was associated with the magnitude of tau
and neurodegeneration but not necessarily with amyloid, and was a mediator of tau-associated
generation. While typical Alzheimer's burden and neurodegeneration but not necessarily with amyloid, and was a mediator of tau-associated
neurodegeneration. While typical Alzheimer's disease is conceptualized as an amyloid-induced
tauopathy, elevated TSPO was burden and neurodegeneration. While typical Alzheimer's disease is conceptualized as an amyloid-induced
tauopathy, elevated TSPO was present and correlated with tau burden and neurodegeneration,
particularly in the hippoca tauopathy, elevated TSPO was present and correlated with tau burden and neurodegeneration,
particularly in the hippocampus, even in amyloid negative individuals with ADRD. Therapeutic
intervention strategies should conside taularly in the hippocampus, even in amyloid negative individuals with ADRD. Therapeutic
intervention strategies should consider AD-associated inflammatory alterations as an alternative
additional target[30].
Amyloid and t

particularly in the hippocampus, even into protongative interventions in anternatively entity additional target
additional target[30].
Amyloid and tau have distinct effects on microglia morphology, a proxy measure for m
fu additional target[30].

Amyloid and tau have distinct effects on microglia morphology, a proxy measure for microglia

function, being ameboid near amyloid plaques and dysmorphic near tau neurofibrillary tangles[31, 32].

C Cytokine-induced alterations in gene, protein, and surface receptor expression towards pro-Amylon and tard area amyloid plaques and dysmorphic near tau neurofibrillary tangles[31, 32]

a-induced alterations in gene, protein, and surface receptor expression towards pro-

atory processes can contribute to the prod Cytokine-induced alterations in gene, protein, and surface receptor expression towards pro-
inflammatory processes can contribute to the production, secretion, post-translation modification,
aggregation, and spreading of a oligodendrocytes via complement cascades, inflammasome production, and other molecular
components can modify these pathways[35, 36]. Additionally, build-up of insoluble lipid debris within inflammation, and spreading of amyloid and tau, contributing to their downstream effects on
neurodegeneration and cognitive decline[1, 2]. Microglia can promote amyloid aggregation via APC
related pathways[33] and microgli aggregation, and spreading of any predicte [1, 2]. Microglia can promote amyloid aggregation velated pathways[33] and microglia depletion can prevent tau spreading via endosome-relat pathways[34]. Further, crosstalk among neurodegeneration and microglia depletion can prevent tau spreading via endosome-related
pathways[34]. Further, crosstalk among dysfunctional neurons, microglia, astrocytes, and
oligodendrocytes via complement cascades, in relatively pathways [34]. Further, crosstalk among dysfunctional neurons, microglia, astrocytes, and
oligodendrocytes via complement cascades, inflammasome production, and other molecular
components can modify these pathwa pathodoxytes via complement cascades, inflammasome production, and other molecustion components can modify these pathways [35, 36]. Additionally, build-up of insoluble lipid distribution in the context of neurodegeneration omponents can modify these pathways[35, 36]. Additionally, build-up of insoluble lipid debri
microglia in the context of neurodegeneration can also lead to microglia dysfunction, feeding
amyloid and tau pathology and/or ne microglia in the context of neurodegeneration can also lead to microglia dysfunction, feeding back into
amyloid and tau pathology and/or neurodegeneration[37]. Rather than gaining pathology promoting
functions, microglia c amyloid and tau pathology and/or neurodegeneration [37]. Rather than gaining pathology promoting
functions, microglia can lose surveillance and phagocytosis function (i.e., senescence) [38], allowing
amyloid and tau pathol amyloid and tau pathology and lose surveillance and phagocytosis function (i.e., senescence)[38], allowing
amyloid and tau pathology to accumulate unchecked. The complexity of specific responses of microgl
to particular ta functions, matrice and transmitted and phagocytom complexity of specific responses of microgroup and the particular targets in a given microenvironment is reflected in the nomenclature (for review, see [3], Here, we broadl be particular targets in a given microenvironment is reflected in the nomenclature (for review, see [39]).
Here, we broadly interpret TSPO PET signal to reflect AD-association inflammatory alterations that
depend on the mi there, we broadly interpret TSPO PET signal to reflect AD-association inflammatory alterations that
depend on the microenvironment (i.e., pathologies/co-pathologies), but is strongly linked to tau
pathology and leads to ne

depend on the microenvironment (i.e., pathologies/co-pathologies), but is strongly linked to tau
pathology and leads to neurodegeneration across ADRD diagnoses.
In this sample of older adults, there was a wide range of ER1 pathology and leads to neurodegeneration across ADRD diagnoses.

In this sample of older adults, there was a wide range of ER176 SUVR even in amyloid ne

tau negative controls. Hence, we chose to categorize individuals as panticially and leads to neurodegeneration across to any discussion in this sample of older adults, there was a wide range of ER:
tau negative controls. Hence, we chose to categorize individuals as 1
mean in controls (rath In this sample of the controls. Hence, we chose to categorize individuals as TSPO positive if they were above the
controls (rather than above 1-2 standard deviations above the mean as is typical for biomarkers
athology). T mean in controls (rather than above 1-2 standard deviations above the mean as is typical for biomarkers
of AD pathology). TSPO positivity was observed in 8/10 of amyloid positive, tau positive individuals with
ADRD, 2/2 am mean in controlling pathology). TSPO positivity was observed in 8/10 of amyloid positive, tau positive individuals with
ADRD, 2/2 amyloid negative, tau positive individuals with ADRD, and 5/5 amyloid negative, tau negative of AD pathology). The permany mast the individuals with ADRD, and 5/5 amyloid negative, tau negative individuals with ADRD. In the context of early-onset MCl and less clinical heterogeneity (i.e., less expected copathology individuals with ADRD. In the context of early-onset MCI and less clinical heterogeneity (i.e., less
expected copathology), TSPO PET was elevated in AD-specific regions[17, 18]. Here, amyloid negative,
tau negative, TSPO p expected copathology), TSPO PET was elevated in AD-specific regions[17, 18]. Here, amyloid negative, TSPO positive individuals with ADRD could have unmeasured pathology (e.g., TDP-4
LATE) or systemic risk factors that acco tau negative, TSPO positive individuals with ADRD could have unmeasured pathology (e.g., TDP-43 in
LATE) or systemic risk factors that account for elevated TSPO without AD pathology. Alternatively, this
could suggest that LATE) or systemic risk factors that account for elevated TSPO without AD pathology. Alternatively, this
could suggest that elevated TSPO can precede and promote AD pathology[10, 17]. Studies have
demonstrated that AD-assoc LATE) or system that alevated TSPO can precede and promote AD pathology[10, 17]. Studies have demonstrated that AD-associated inflammatory alterations precede AD pathology in autosomal dominant AD[40], AD in adults with Do come engate that AD-associated inflammatory alterations precede AD pathology in autosomal
dominant AD[40], AD in adults with Down syndrome[41], and late-onset AD[42]. Longitudinal TS
data capturing conversion to amyloid an dominant AD[40], AD in adults with Down syndrome[41], and late-onset AD[42]. Longitudinal TSPO PET
data capturing conversion to amyloid and/or tau PET positivity is needed. data capturing conversion to amyloid and/or tau PET positivity is needed. data capturing conversion to amyloid and/or tau PET positivity is needed.

We investigated individual AD-related regions rather than composite Braak stage ROIs to capture
the spatial heterogeneity across ADRD. Our findings suggest that there may be a specific TSPO
association with tau, independen association with tau, independent of amyloid and neurodegeneration. First, we observed association with tau, independent of amyloid and neurodegeneration. First, we observed associated such that in the hippocampus, amygdal between TSPO and tau in the hippocampus, amygdala, middle inferior temporal gyrus, inferior parietal
cortex, and superior parietal cortex. After accounting for amyloid and neurodegeneration, greater TSP
was still associate between TSPC
cortex, and superior parietal cortex. After accounting for amyloid and neurodegeneration, greater TSPC
was still associated with greater tau burden in the inferior parietal cortex, a region that may be commo
t was still associated with greater tau burden in the inferior parietal cortex, a region that may be common
to our two largest diagnostic groups—MCI/AD and PCA[43]. Second, mediation analyses demonstrated
that elevated TSPO to our two largest diagnostic groups—MCI/AD and PCA[43]. Second, mediation analyses demonstrated
that elevated TSPO in response to elevated tau can lead to neurodegeneration in the hippocampus and
amygdala, even within amy that elevated TSPO in response to elevated tau can lead to neurodegeneration in the hippocampus and
amygdala, even within amyloid negative individuals with ADRD. Together, this suggests that AD-
associated inflammatory alt amygdala, even within amyloid negative individuals with ADRD. Together, this suggests that AD-
associated inflammatory alterations can be observed in relation to tau pathology without microglia
simply being recruited to cl

inflammatory alterations. In the cingulate gyrus, greater tau was associated with greater TSPO, which We also observed differential results that may reflect the complexity of AD-associated
inflammatory alterations. In the cingulate gyrus, greater tau was associated with greater TSPO, which
was in turn associated with great However, we cannot rule out the presence of secreted phospho-tau[32, 44], rather than tau
neurofibrillary tangles measured with PET, as the driver of these TSPO-related pathways.
We also observed differential results that neurofibrillary tangles measured with PET, as the driver of these TSPO-related pathways.
We also observed differential results that may reflect the complexity of AD-associate
inflammatory alterations. In the cingulate gyru neuron many congress measured many of the driver of these Perscheid pathways.
We also observed differential results that may reflect the complexity of AD-assoc
inflammatory alterations. In the cingulate gyrus, greater tau Meridial Representation of the cingulate gyrus, greater tau was associated with greater TSPO,
arm associated with greater gray matter volume, suggesting a neuroprotective effect of
all sample. Whether this protective effec was in turn associated with greater gray matter volume, suggesting a neuroprotective effect of TSPO in
the overall sample. Whether this protective effect is specific to the disease stage, brain region, or
microglia subtype was interestinguished with graves gray matter volume, and subset the disease stage, brain region, or microglia subtype needs to be further explored. We found that TSPO mediated amyloid-associated tau is the middle inferior the middle inferior temporal gyrus, inferior parietal cortex, and superior parietal cortex, but only if amyloid positive ADRD subgroup. Previous work suggests the link between amyloid and tau may be astrocyte-dependent pat middle inferior temporal gyrus, inferior parietal cortex, and superior parietal cortex, but only in the
amyloid positive ADRD subgroup. Previous work suggests the link between amyloid and tau may be an
astrocyte-dependent the middle positive ADRD subgroup. Previous work suggests the link between amyloid and tau may be an
astrocyte-dependent pathway[45], although astrocytes may be captured to some extent with TSPO PET.
Further, we found that astrocyte-dependent pathway[45], although astrocytes may be captured to some extent with TSPO PET
Further, we found that TSPO mediated tau spreading across Braak regions in the amyloid positive ADRD
subgroup, which has bee Further, we found that TSPO mediated tau spreading across Braak regions in the amyloid positive ADRD
subgroup, which has been demonstrated in MCI/AD[10, 17, 34], but not in the amyloid negative ADRD
subgroup, as tau spread Furtherman and the presented in MCI/AD[10, 17, 34], but not in the amyloid negative ADRD
subgroup, as tau spreading may follow a different spatial and temporal pattern compared to Braak
staging outside of amyloid positive subgroup, as tau spreading may follow a different spatial and temporal pattern compared to Braak
staging outside of amyloid positive MCI/AD. TSPO mediated tau-associated neurodegeneration was
spatially limited to the hippo staging outside of amyloid positive MCI/AD. TSPO mediated tau-associated neurodegeneration was
spatially limited to the hippocampus, amygdala, and fusiform gyrus in the overall group and was dr
in the hippocampus and amygd spatially limited to the hippocampus, amygdala, and fusiform gyrus in the overall group and was driven the hippocampus and amygdala by the amyloid negative ADRD subgroup. TSPO mediated amyloid associated tau and TSPO media in the hippocampus and amygdala by the amyloid negative ADRD subgroup. TSPO mediated amyloid-
associated tau and TSPO mediated tau spreading may be dependent on amyloid positivity, whereas TSP
mediated tau-associated neuro

mediated tau-associated neurodegeneration, which was present even in amyloid negative ADRD and mediated tau-associated neurodegeneration may not.

Anti-amyloid treatments normalize the amyloid plaque burden[46, 47] and may prevent

subsequent buildup and spreading of tau neurofibrillary tangles through TSPO-related Anti-amyloid treatments normalize the amylois
subsequent buildup and spreading of tau neurofibrillar
individuals with amyloid-positive ADRD. However, the i
mediated tau-associated neurodegeneration, which wa
may contribute Anti-amyloid and spreading of tau neurofibrillary tangles through TSPO-related pathways
als with amyloid-positive ADRD. However, the normalization of amyloid may not prevent
d tau-associated neurodegeneration, which was pr subsequent build provided positive ADRD. However, the normalization of amyloid may not prevent TS
mediated tau-associated neurodegeneration, which was present even in amyloid negative ADRD an
may contribute to the pseudo-a individuals with amyloid negative ADRD and
may contribute to the pseudo-atrophy[48] thought to be related to amyloid plaque clearance from the
parenchyma and/or a reduction in AD-associated inflammatory alterations. Anti-a may contribute to the pseudo-atrophy[48] thought to be related to amyloid plaque clearance from th
parenchyma and/or a reduction in AD-associated inflammatory alterations. Anti-amyloids further red
secreted phospho-tau by may contribute to the proton in AD-associated inflammatory alterations. Anti-amyloids further reduced secreted phospho-tau by approximately 20%, and the contribution of soluble tau should be incorporate
in future studies.

parenchyma and the contribution of soluble tau should be incorporated
in future studies.
Limitations of the study include cross-sectional analysis, relatively small sample size, lack of
APOE as a covariate, and lack of oth in future studies.

Limitations of the study include cross-sectional analysis, relatively small sample size, lack of

APOE as a covariate, and lack of other measures of ADRD pathology and inflammation. While this is a

cro Imitation

Limitation

APOE as a covaria

cross-sectional an

longitudinal data

likely plays a critic

not yet available f a covariate, and lack of other measures of ADRD pathology and inflammation. While this is
ctional analysis, we assessed mediations in the opposite direction to infer causality. Ongoing
inal data collection will allow us to The sectional analysis, we assessed mediations in the opposite direction to infer causality. Ongoing
longitudinal data collection will allow us to additionally use temporality to infer causality. APOE genot
likely plays a consideration and the offered mediationally are temporality to infer causality. APOE genot
likely plays a critical role, along with TREM2, in microglia phagocytosis of amyloid[33]. Genetic data w
not yet available for all likely plays a critical role, along with TREM2, in microglia phagocytosis of amyloid[33]. Genetic data was
not yet available for all participants and was missing more often in the ADRD group compared to the
not yet availab not yet available for all participants and was missing more often in the ADRD group compared to the
not yet available for all participants and was missing more often in the ADRD group compared to the not yet available for all participants and was missing more often in the ADRD group compared to the

control group precluding any sensitivity analyses in those with APOE information. Sensitivity analyses suggest that APOE may be more important in amyloid positive ADRD than amyloid negative ADRD.
Commonly co-occurring pat Suggest that APOC That APOC important in any local positive ADRD. As and α-synuclein, courchibuting to the TSPO PET signal. TSPO PET, which we broadly interpret as AD-associated inflammatory alterations, may provide trans Contributing to the TSPO PET signal. TSPO PET, which we broadly interpret as AD-associated
inflammatory alterations, may provide transdiagnostic information through its magnitude of change and
spatial distribution, similar contribution of the TSPO PET for ADRD. A larger analytic sample with broad biomarcharacterization, similar to FDG PET for ADRD. A larger analytic sample with broad biomarcharacterization is needed to provide mechanistic in spatial distribution, similar to FDG PET for ADRD. A larger analytic sample with broad biomarker
characterization is needed to provide mechanistic insight into these findings. Still, the elevated
density/recruitment of mic characterization is needed to provide mechanistic insight into these findings. Still, the elevated
density/recruitment of microglia in AD-related brain regions, particularly the hippocampus, across
different brain microenv density/recruitment of microglia in AD-related brain regions, particularly the hippocampus, across
different brain microenvironments provides valuable supporting information for future mechanistic
investigations.
In conclu

different brain microenvironments provides valuable supporting information for future mechanistic
investigations.
In conclusion, AD-associated inflammatory alterations, measured with TSPO PET using a
simplified acquisition Investigations.

In conclusion, AD-associated inflammatory alterations, measured with TSPO PET using a

simplified acquisition and quantification scheme, were present in individuals with ADRD diagnoses i

spatial pattern f investigations
In cond
simplified acque
spatial pattern
and mediated the inflammatory aspreading given In a conclusition, and quantification scheme, were present in individuals with ADRD diagnosized attern following tau, associated with tau burden accounting for amyloid and neurodeger diated tau-associated neurodegeneration spatial pattern following tau, associated with tau burden accounting for amyloid and neurodegeneratio
and mediated tau-associated neurodegeneration across various ADRD diagnoses. 'AD-associated
inflammatory alterations' ma spatial perferences target and mediated tau-associated neurodegeneration across various ADRD diagnoses. 'AD-associated
inflammatory alterations' may additionally be involved in the link between amyloid and tau as well as t and mediate tale tartions' may additionally be involved in the link between amyloid and tau as we
spreading given the presence of elevated amyloid. Future work should focus on understanding th
cellular and molecular compon spreading given the presence of elevated amyloid. Future work should focus on understanding the
cellular and molecular components of these AD-associated inflammatory alterations, particularly in the
hippocampus, towards a spreading given the presence of electrical amylon with a term included and the material amily incellular and molecular components of these AD-associated inflammatory alterations, particularly in
hippocampus, towards a unif cellular and molecular components of these AD-associated inflammatory, and alternative, particularly in the
hippocampus, towards a unified framework incorporating the pathogenic and immunogenic pathways in
ADRD. hippocampus, towards a uniform incorporation incorporation in the pathogenic pa

Data Availability
All data produced in the present study are available upon reasonable request to the authors.
Conflict of Interest Statement
WCK has a consulting agreement with Cerveau Technologies and an employee of Esai All data produced in the present study are arbitrary are available upon request to the authors.
Conflict of Interest Statement
WCK has a consulting agreement with Cerveau Technologies and an employee of Esai. SR is an
of L WCK has a consulting agreement
of Life Molecular Imaging. Hove
study design or interpretation
analysis of data while at Colun
to report. WE Life Molecular Imaging. However, Cerveau, Esai, and Life Molecular Imaging were not involved in the study design or interpretation of these results. WCK and SR contributed to the design, collection, and analysis of data study design or interpretation of these results. WCK and SR contributed to the design, collection, and
analysis of data while at Columbia University Irving Medical Center. No authors have conflicts of interest
to report.
T

analysis of data while at Columbia University Irving Medical Center. No authors have conflicts of intere
to report.
Funding/Acknowledgements
This work was funded by NIA R01 AG063888 and R00 AG065506. Research reported in t analysis of data while at Columbia University Irring Medical Center. No authors connect to the University
This work was funded by NIA R01 AG063888 and R00 AG065506. Research reported in this publication
was supported by th Funding/A
This work
was suppc
Number P
represent This work was funded by NIA
was supported by the Nationa
Number P30AG066462. The c
represent the official views of was supported by the National Institute on Aging of the National Institutes of Health under Award
Number P30AG066462. The content is solely the responsibility of the authors and does not necessarily
represent the official Number P30AG066462. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Number P30AG066462. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Table 1. Demographic characteristics for controls and individuals with ADRD.

It is made available under a CC-BY-ND 4.0 International license. **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.11.01.24316493;](https://doi.org/10.1101/2024.11.01.24316493) this version posted November 4, 2024. The copyright holder for this preprint

Figure 1. Average biomarker values for controls and individuals with ADRD as well as the difference between groups for (A) TSPO (ER176), (B) Amyloid (FBB), (C) Tau (MK6240), and (D) Neurodegeneration (Gray Matter Volume) across ROIs. Note that Neurodegeneration is displayed differently to accommodate a wide range of regional volumes and inverted (Control-ADRD) relative to other biomarkers for direct comparison across standardized effect sizes.

Figure 2. Scatterplots and pairwise biomarker models among TSPO and (A) Amyloid (FBB), (B) Tau (MK6240), and (C) Neurodegeneration (Gray Matter Volume) across ROIs. Circles represent Controls, Triangles represent ADRD, and colors represent select Regions of Interest (ROI). Asterisks indicate associations that survive adjustment in the multiple biomarker model.

Table 2. TSPO mediation standardized estimates from a model of amyloid-associated tau (top), tau spreading (middle), and tau-associated neurodegeneration (bottom). Mediations from TSPO to Tau to Neurodegeneration were not significant.

-
-
-
- 2021. **18**(11): p. 849-857.
Chen, Y. and Y.J.J.o.n. Yu, *Tau and neuroinflammation in Alzheimer's disease: Interplay*
mechanisms and clinical translation. 2023. **20**(1): p. 165.
Alzheimer, A.J.A.Z.P., *Uber eigenartige Erk*
-
- 1. Weaklyndian and their Interaction of Meurodegeneration in Alzheimer's disease: Interplay

1. Chen, Y. and Y.J.J.o.n. Yu, Tau and neuroinflammation in Alzheimer's disease: Interplay

1. McIntern ext. A.J.A.Z.P., Uber ei mechanisms and clinical translation. 2023. **20**(1): p. 165.

2. Alzheimer, A.J.A.Z.P., *Uber eigenartige Erkrankung der Hirnrinde*. 1907. **64**: p. 146-148.

4. Holtman, I.R., et al., *Interpretation of Neurodegenerative GW* Alzheimer, A.J.A.Z.P., Uber eigenartige Erkrankung der Hil
Holtman, I.R., et al., Interpretation of Neurodegenerative
their Interplay with Other Cell Types. 2024: p. 531-544.
Gouilly, D., et al., Neuroinflammation PET imag 3. Holtman, I.R., et al., *Interpretation of Neurodegenerative GWAS Risk Alleles in Microglit*
their Interplay with Other Cell Types. 2024: p. 531-544.
5. Gouilly, D., et al., *Neuroinflammation PET imaging of the transloc* their Interplay with Other Cell Types. 2024: p. 531-544.

5. Gouilly, D., et al., Neuroinflammation PET imaging of the translocator protein (TSPO) in

Alzheimer's disease: An update. 2022. 55(5): p. 1322-1343.

6. Cosenza-The Souilly, D., et al., *Neuroinflammation PET imaging of thalzheimer's disease: An update.* 2022. 55(5): p. 1322-13
Cosenza-Nashat, M., et al., *Expression of the translocatinacrophages and astrocytes based on immunohist* Alzheimer's disease: An update. 2022. 55(5): p. 1322-1343.

6. Cosenza-Nashat, M., et al., Expression of the translocator protein of 18 kDa by microglic

macrophages and astrocytes based on immunohistochemical localization Alzheimer's disease: An update. 2022. **55**(5): p. 1322-1343.
Cosenza-Nashat, M., et al., *Expression of the translocator pi*
macrophages and astrocytes based on immunohistochemic
brain. 2009. **35**(3): p. 306-328.
Zhang, Y. macrophages and astrocytes based on immunohistochemical localization in abnormal huidinn. 2009. 35(3): p. 306-328.

7. Zhang, Y., et al., Purification and Characterization of Progenitor and Mature Human Astro

7. Zhang, Y.
-
-
-
-
- brain. 2009. 35(3): p. 306-328.
Zhang, Y., et al., *Purification and Characterization of Progenitor and Mature Human Astrocytes*
Reveals Transcriptional and Functional Differences with Mouse. Neuron, 2016. 89(1): p. 37-53
 Thang, Y., et al., *Purification and*
Reveals Transcriptional and Fur
Reveals Transcriptional and Fur
Zhang, Y., et al., An RNA-sequer
vascular cells of the cerebral co
Nutma, E., et al., *Translocator p*
human neur Reveals Transcriptional and Functional Differences with Mouse. Neuron, 2016. **89**(1): p. 37-53.

2. Zhang, Y., et al., An RNA-sequencing transcriptome and splicing database of glia, neurons, and

vascular cells of the cere Zhang, Y., et al., An RNA-sequencing transcriptome and splicing database of glia, neurons, and
vascular cells of the cerebral cortex. J Neurosci, 2014. **34**(36): p. 11929-47.
Nutma, E., et al., Translocator protein is a ma 8. Vascular cells of the cerebral cortex. J. Neurosci, 2014. 34(36): p. 11929-47.

9. Nutma, E., et al., Translocator protein is a marker of activated microglia in rodent models but n

human neurodegenerative diseases. 202 Nutma, E., et al., *Translocator protein is a marker of activated microglia in*
human neurodegenerative diseases. 2023. **14**(1): p. 5247.
Pascoal, T.A., et al., *Microglial activation and tau propagate jointly across B*
2 9. Numan neurodegenerative diseases. 2023. 14(1): p. 5247.

10. Pascoal, T.A., et al., Microglial activation and tau propagate jointly across Braak stages. 2021.

27(9): p. 1592-1599.

11. Fujita, M., et al., Comparison of man and alternative discusses.

Pascoal, T.A., et al., Microglial activation and tau propagat

27(9): p. 1592-1599.

Fujita, M., et al., Comparison of four 11 C-labeled PET ligar

kDa (TSPO) in human brain:(R)-PK11195, PBR 27(9): p. 1592-1599.

11. Fujita, M., et al., Comparison of four 11 C-labeled PET ligands to quantify translocator protein .

kDa (TSPO) in human brain:(R)-PK11195, PBR28, DPA-713, and ER176—Based on recent

publications **27**(9): p. 1592-1599.
Fujita, M., et al., Comparison of four 11 C-labeled PET ligands to quantify translocator protein 18
 kDa (TSPO) in human brain:(R)-PK11195, PBR28, DPA-713, and ER176—Based on recent
publications tha 11. Fugino 11. The same of CITAC COMPLET publications that measured specific-to-non-displaceable ratios. 2017. **7**: p. 1-5.

12. Zanotti-Fregonara, P., et a
-
-
-
-
- publications that measured specific-to-non-displaceable ratios. 2017. 7: p. 1-5.
Zanotti-Fregonara, P., et al., Head-to-head comparison of 11 C-PBR28 and 11 C-ER176 fo.
quantification of the translocator protein in the hum public Fregonara, P., et al., *Head-to-head comparison of 11 C-PBR28 and 11 C-*
quantification of the translocator protein in the human brain. 2019. **46**: p. 1822
lkawa, M., et al., 11*C-ER176, a radioligand for 18-kDa tra* quantification of the translocator protein in the human brain. 2019. **46**: p. 1822-1829.

13. Islama, M., et al., 11C-ER176, a radioligand for 18-kDa translocator protein, has adequate

sensitivity to robustly image all th lkawa, M., et al., 11C-ER176, a radioligand for 18-kDa translocator protein, has adequated sensitivity to robustly image all three affinity genotypes in human brain. 2017. **58**(2): p. Rossano, S., et al., Validating noninv sensitivity to robustly image all three affinity genotypes in human brain. 2017. **58**(2): p. 32.

14. Rossano, S., et al., Validating noninvasive techniques for 11C-ER176 PET quantification in

21. and Alzheimer's disease Rossano, S., et al., Validating noninvasive techniques for 11C-ER176 PET quantification in controls
and Alzheimer's disease patients. 2023. **19**: p. e081801.
Garland, E.F., et al., The mitochondrial protein TSPO in Alzheim 20. Rossano, S.M., et al., *Nicroglia measured by TSPO in Alzheimer's disease: relation to the*

14. Rossano, C.H., et al., *The mitochondrial protein TSPO in Alzheimer's disease: relation to the*

16. Lyoo, C.H., et al., and national E.F., et al., The mitochondrial protein TSPO in A.
Garland, E.F., et al., The mitochondrial protein TSPO in A.
severity of AD pathology and the neuroinflammatory environ.
Lyoo, C.H., et al., Cerebellum can ser severity of AD pathology and the neuroinflammatory environment. 2023. **20**(1): p. 186.

16. Lyoo, C.H., et al., Cerebellum can serve as a pseudo-reference region in Alzheimer disease t

detect neuroinflammation measured wi Lyoo, C.H., et al., *Cerebellum can serve as a pseudo-reference region in Alzheimer diseasedetect neuroinflammation measured with PET radioligand binding to translocator prote 56(5): p. 701-706.
Rossano, S.M., et al., <i>Mic* detect neuroinflammation measured with PET radioligand binding to translocator protein. 2

16. Bossano, S.M., et al., Microglia measured by TSPO PET are associated with Alzheimer's disea

pathology and mediate key steps in
- Forther and Service Rossano, S.M., et a
Rossano, S.M., et a
pathology and mea
Appleton, J., et al.,
due to early-onset
Folstein, M.F., L.N.
Ruff, R.M., et al., S
-
-
- 56(5): p. 701-706.

Rossano, S.M., et al., *Microglia measured by TSPO PET are associated with Alzheimer's disease*

pathology and mediate key steps in a disease progression model. 2024.

Appleton, J., et al., *Brain infla* 17. Rossano, S.M., et al., *Microglia measured by TSPO PET are associated with Alzheimer's disease*

pathology and mediate key steps in a disease progression model. 2024.

18. Appleton, J., et al., *Brain inflammation co-l* pathology and mediate concorrelation, J., et al., *Brain inflammation co-localizes highly with tau in midue to early-onset Alzheimer's disease.* 2024: p. awae234.
Folstein, M.F., L.N. Robins, and J.E.J.A.o.g.p. Helzer, *Th* due to early-onset Alzheimer's disease. 2024: p. awae234.

19. Folstein, M.F., L.N. Robins, and J.E.J.A.o.g.p. Helzer, *The mini-mental state examination*. 1983.

40(7): p. 812-812.

20. Ruff, R.M., et al., *Selective Remi* Folstein, M.F., L.N. Robins, and J.E.J.A.o.g.p. Helzer, *The mi.*
40(7): p. 812-812.
Ruff, R.M., et al., *Selective Reminding Tests: A normative st*
11(4): p. 539-550.
Tombaugh, T.N.J.A.o.c.n., *Trail Making Test A and B:* 19. Folstein, M.F., L.N. Statestick Controllect Contro 11(4): p. 539-550.

Ruff, R.M., et al., S
 11(4): p. 539-550.

Tombaugh, T.N.J.A
 education. 2004. **1**

Rosen, W.G.J.J.o.c.

135-146.

Shirk, S.D., et al., A
-
- **21.** Tombaugh, T.N.J.A.o.c.n., *Trail Making Test A and B: normative data stratified by age and education.* 2004. **19**(2): p. 203-214.

22. Rosen, W.G.J.J.o.c. and e. neuropsychology, *Verbal fluency in aging and dementi* **11**(4): p. 539-550.
Tombaugh, T.N.J.A.o.c.n., *Trail Making Test A and B: normative data stratified by age and
education. 2004. 19(2): p. 203-214.
Rosen, W.G.J.J.o.c. and e. neuropsychology, <i>Verbal fluency in aging and* 21. Experimental and May 21. Tombaugh, The education. 2004. 19(2): p. 203-214.

22. Rosen, W.G.J.J.o.c. and e. neuropsychology, Verbal fluency in aging and dementia. 1980. 2

135-146.

23. Shirk, S.D., et al., A web-based education. 2004. 2014. Press 22. Mosen, W.G.J.J.o.c. and e. neuropsyc
Rosen, W.G.J.J.o.c. and e. neuropsyc
135-146.
Shirk, S.D., et al., *A web-based norm*
neuropsychological test battery. 201
- 22. Rosen, W.G.J.J.o.c. and e. neuropsychology, Verbal fluency in aging and dementia. 1980. 2(2): p. neuropsychological test battery. 2011. 3: p. 1-9. neuropsychological test battery. 2011. **3**: p. 1-9.
 Example 10.
 Example 10. neuropsychological test battery. 2011. $\frac{1}{2}$

-
-
-
-
-
- amyloid positivity and memory impairment. 2020. **85**: p. 11-21.

25. Owen, D.R., et al., An 18-kDa translocator protein (TSPO) polymorphism explains differences

binding affinity of the PET radioligand PBR28. 2012. **32**(1) amyloid in an amyloid in a simple to the plane and positive in the positive of the PET radioligand PBR28. 2012. 32(1): p. 1-1.
Hammers, A., et al., Three-dimensional maximum probability at
particular reference to the tempo inding affinity of the PET radioligand PBR28. 2012. 32(1): p. 1-5.

26. Hammers, A., et al., Three-dimensional maximum probability atlas of the human brain, with

particular reference to the temporal lobe. Hum Brain Mapp, binding affinition and maximum probability atlas

Hammers, A., et al., Three-dimensional maximum probability atlas

particular reference to the temporal lobe. Hum Brain Mapp, 2003.

Thomas, B.A., et al., The importance of particular reference to the temporal lobe. Hum Brain Mapp, 2003. 19(4): p. 224-47.

27. Thomas, B.A., et al., The importance of appropriate partial volume correction for PET

quantification in Alzheimer's disease. 2011. 38 Thomas, B.A., et al., *The importance of appropriate partial volume correction for PE*
quantification in Alzheimer's disease. 2011. **38**: p. 1104-1119.
Sabri, O., et al., *Beta-amyloid imaging with florbetaben.* 2015. **3**: 27. Thomas, B.A., Effects of age, B.M. and sex on the glial cell marker TSPO—A multicem
29. Tuisku, J., et al., Effects of age, B.M.
-
-
-
- Sabri, O., et al., *Beta-amyloid imaging with florbetaben.* 2015.
Tuisku, J., et al., *Effects of age, BMI and sex on the glial cell ma*
PBR28 HRRT PET study. 2019. **46**: p. 2329-2338.
Coll, R.C. and K.J.N.R.I. Schroder, 29. Tuisku, J., et al., Effects of age, BMI and sex on the glial cell marker TSPO—

29. Tuisku, J., et al., Effects of age, BMI and sex on the glial cell marker TSPO—

2018. BR28 HRRT PET study. 2019. 46: p. 2329-2338.

20 29. Tuis Hammar Considers of Alzheimer's and the process of alzheimer's and the income and the incident of alzheimer's disease. 2024: p. 1-20.

29. Turns, M., et al., Microglial activation correlates in vivo with both tau Coll, R.C. and K.J.N.R.I. Schroder, *Inflammasome*
inflammatory disease. 2024: p. 1-20.
Dani, M., et al., *Microglial activation correlates i*
disease. 2018. **141**(9): p. 2740-2754.
Qureshi, Y.H., et al., *The neuronal ret* 31. Collary of Singlet and K.J. R.C. 2024: p. 1-20.

31. Coll, M., et al., Microglial activation correlates in vivo with both tau and amyloid in Alzhein

32. Cureshi, Y.H., et al., The neuronal retromer can regulate both n Dani, M., et al., *Microglial activation*
disease. 2018. **141**(9): p. 2740-2754.
Qureshi, Y.H., et al., *The neuronal retr*
phenotypes of Alzheimer's disease. 2(
Kaji, S., et al., *Apolipoprotein E aggreg*
by seeding 6-amy disease. 2018. **141**(9): p. 2740-2754.

32. Qureshi, Y.H., et al., *The neuronal retromer can regulate both neuronal and microglial

phenotypes of Alzheimer's disease. 2022. 38(3).

83. Kaji, S., et al., <i>Apolipoprotein* Qureshi, Y.H., et al., *The neuronal rettiphenotypes of Alzheimer's disease.* 2
Kaji, S., et al., Apolipoprotein E aggre by seeding 6-amyloidosis. 2024.
Asai, H., et al., *Depletion of microglia*
2015. **18**(11): p. 1584 23. Contribution of *Alzheimer's disease.* 2022. **38**(3).

33. Kaji, S., et al., *Apolipoprotein E aggregation in microglia initiates Alzheimer's disease p*

by seeding 6-amyloidosis. 2024.

34. Asai, H., et al., *Depletio* phenotypes of Alzheimer's disease. 2022. **38**(3).
Kaji, S., et al., Apolipoprotein E aggregation in m
by seeding 6-amyloidosis. 2024.
Asai, H., et al., Depletion of microglia and inhibit
2015. **18**(11): p. 1584-1593.
Hansl
- Asai, H., et al., *Depletion of micro*
2015. **18**(11): p. 1584-1593.
Hanslik, K.L. and T.K.J.F.i.N. Ullan
Alzheimer's disease. 2020. **11**: p.
Krance, S.H., et al., *The complem*
meta-analysis. 2021. **26**(10): p. 5
Mars
-
- 2015. **18**(11): p. 1584-1593.
Hanslik, K.L. and T.K.J.F.i.N. Ulland, *The role of microglia and the Nlrp3 inflammasome in*
Alzheimer's disease. 2020. **11**: p. 570711.
Krance, S.H., et al., *The complement cascade in Alzhei* Alzheimer's disease. 2020. 11: p. 570711.

36. Krance, S.H., et al., *The complement cascade in Alzheimer's disease: a systematic review*
 meta-analysis. 2021. **26**(10): p. 5532-5541.

37. Marschallinger, J., et al., *Li* Alzheimer's disease. 2020. **11**: p. 570711.
Krance, S.H., et al., *The complement casca*
meta-analysis. 2021. **26**(10): p. 5532-5541
Marschallinger, J., et al., *Lipid-droplet-acci*
proinflammatory state in the aging brain
-
- by seeding 6-amyloidosis. 2024.

34. Asai, H., et al., Depletion of microglia and inhibition of exosome synthesis halt tau propagation.

2015. **18**(11): p. 1584-1593.

35. Hanslik, K.L. and T.K.J.F.i.N. Ulland, The role of
- 2015. **18**(11): p. 1584-1593.

35. Hanslik, K.L. and T.K.J.F.i.N. Ulland, *The role of microglia and the Nlrp3 inflammasome in*
 Alzheimer's disease. 2020. **11**: p. 570711.

86. Krance, S.H., et al., *The complement casc*
-
- meta-analysis. 2021. **26**(10): p. 5532-5541.

37. Marschallinger, J., et al., *Lipid-droplet-accumulating microglia represent a dysfunctional and*

proinflammatory state in the aging brain. 2020. **23**(2): p. 194-208.

38. meta-manystic allegation Marschallinger, J., et al., *Lipid-droplet-accun*
proinflammatory state in the aging brain. 2
Wood, H.J.N.R.N., *Microglial senescence is d*
2024: p. 1-1.
Paolicelli, R.C., et al., *Microglia state* proinflammatory state in the aging brain. 2020. 23(2): p. 194-208.

38. Wood, H.J.N.R.N., Microglial senescence is a potential therapeutic target for Alzheimer disea

2024: p. 1-1.

39. Paolicelli, R.C., et al., Microglia promation. H.J.N.R.N., Microglial senescence is a potential therapeutic is
2024: p. 1-1.
2024: p. 1-1.
Paolicelli, R.C., et al., Microglia states and nomenclature: A field at
p. 3458-3483.
Johnson, E.C., et al., Cerebrospi 2024: p. 1-1.

39. Paolicelli, R.C., et al., Microglia states and nomenclature: A field at its crossroads. 2022. 110(21)

p. 3458-3483.

40. Iohnson, E.C., et al., Cerebrospinal fluid proteomics define the natural history 2024: p. 1-1.
Paolicelli, R.C., et al., Microglia states and nomenclature: A field at its crossroads. 2022. **110**(21):
p. 3458-3483.
Johnson, E.C., et al., Cerebrospinal fluid proteomics define the natural history of autos 39. Paolinical states and non-term in the member of parameters and non-term in the member of autosomal

39. Bohnson, E.C., et al., Cerebrospinal fluid proteomics define the natural history of autosomal

39. Moni, F., et al Pohnson, E.C.,
dominant Alzh
Moni, F., et al.,
Alzheimer's-re.
1744-1753.
Gabitto, M.I., e
Kreisl, W.C., et dominant Alzheimer's disease. 2023. 29(8): p. 1979-1988.

41. Moni, F., et al., *Probing the proteome to explore potential correlates of increased*
 Alzheimer's-related cerebrovascular disease in adults with Down syndrome Moni, F., et al., *Probing the proteome to explore potential*
Alzheimer's-related cerebrovascular disease in adults with
1744-1753.
Gabitto, M.I., et al., *Integrated multimodal cell atlas of Alz*
Kreisl, W.C., et al., *Di* Alzheimer's-related cerebrovascular disease in adults with Down syndrome. 2022

1744-1753.

42. Gabitto, M.I., et al., *Distinct patterns of increased translocator protein in posterior*

43. Kreisl, W.C., et al., *Distinct*
-
- Alzheimer's-related cerebrovascular disease in adults with Down syndrome. 2022. 18(10): p.
1744-1753.
Gabitto, M.I., et al., Integrated multimodal cell atlas of Alzheimer's disease. 2024: p. 1-18.
Kreisl, W.C., et al., Dis Gabitto, M.I
Kreisl, W.C.,
and amnest.
Simoes, S., e
retromer-me
Bellaver, B.,
Alzheimer's Kreisl, W.C., et al., *Distinct patterns of increased translocator protein in posterior cortical as* and amnestic Alzheimer's disease. 2017. **51**: p. 132-140.

44. Simoes, S., et al., *Tau and other proteins found in Alzhe*
- and amnestic Alzheimer's disease. 2017. **51**: p. 132-140.
Simoes, S., et al., Tau and other proteins found in Alzhein
retromer-mediated endosomal traffic in mice and humar
Bellaver, B., et al., Astrocyte reactivity influen
- and amnestic Alzheimer's disease. 2017. 51: p. 132-140.

44. Simoes, S., et al., Tau and other proteins found in Alzheimer's disease spinal fluid are linked to

retromer-mediated endosomal traffic in mice and humans. 2020. retromer-mediated endosomal traffic in mice and humans. 2020. 12(571): p. eaba6334.

45. Bellaver, B., et al., Astrocyte reactivity influences amyloid-6 effects on tau pathology in preclini

41/alzheimer's disease. 2023: p Bellaver, B., et al., Astrocyte reactivity influences amyloid-6 effects on tau pathology in p
Alzheimer's disease. 2023: p. 1-7.
Van Dyck, C.H., et al., Lecanemab in early Alzheimer's disease. 2023. **388**(1): p. 9-21.
Sims
-
- Alzheimer's disease. 2023: p. 1-7.

46. Van Dyck, C.H., et al., *Lecanemab in early Alzheimer's disease.* 2023. **388**(1): p. 9-21.

47. Sims, J.R., et al., *Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER* Van Dyck, C.H., et al., *Lecanemab*
Van Dyck, C.H., et al., *Lecanemab*
Sims, J.R., et al., *Donanemab in ea
randomized clinical trial*. 2023. **33**
Barkhof, F. and D.S.J.N. Knopman,
Neurodegeneration or Pseudoatro 47. Sims, J.R., et al., Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZ
randomized clinical trial. 2023. **330**(6): p. 512-527.
Barkhof, F. and D.S.J.N. Knopman, *Brain Shrinkage in Anti-6-Amyloid Alzheimer*
- Fundomized clinical trial. 2023. **330**(6): p. 512-527.

Barkhof, F. and D.S.J.N. Knopman, *Brain Shrinkage in Anti*-6-Amyloid Alzheimer Trials:

Neurodegeneration or Pseudoatrophy? 2023, AAN Enterprises. p. 941-942. randomized clinical trial. 2023.
Barkhof, F. and D.S.J.N. Knopman, *Brain Shrinkage i*
Neurodegeneration or Pseudoatrophy? 2023, AAN
Therefore the Sand Neurodegeneration or Pseudoatrophy? 2023, AAN Enterprises. p. 941-942.
Neurodegeneration or Pseudoatrophy? 2023, AAN Enterprises. p. 941-942. Neurodegeneration or Pseudoatrophy? 2023, AAN Enterprises. p. 941-942.