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29 Abstract 

30 Introduction: Zinc is an essential micronutrient used in many biological functions 

31 including maintaining the gut microbial diversity. Many environmental factors, such as 
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32 lead exposure, have been shown to disrupt diversity. The purpose of this study was to 

33 determine whether zinc serves as a protective factor against elevated blood lead levels 

34 (BLL) on gut microbiome diversity.   

35 Methods: The 2007-2008 and 2009-2010 NHANES datasets were utilized to conduct a 

36 cross-sectional complex survey analysis aimed at determining whether zinc intake acts as 

37 a protective factor against changes in microbiome diversity associated with BLL, using 

38 enterolactone (ENL) as a biomarker. A multiple linear regression was conducted to 

39 evaluate whether an interaction between BLL and zinc intake could predict ENL. The 

40 model included BLL, zinc intake and their interaction, along with additional covariates 

41 such as gender, fiber intake and BMI. 

42  Results: BMI, fiber intake, and gender were identified as covariates through diagnostic 

43 analysis and stepwise regression and were included in the final model. Sequential 

44 variable selection revealed that fiber intake was a confounding variable in the relationship 

45 between zinc and ENL levels (p = 0.543), while gender was identified as a confounding 

46 factor between BLL and ENL levels (p = 0.173). After controlling for fiber intake, zinc 

47 intake was not significantly associated with predicting microbiome diversity (p = 0.101). 

48 Additionally, no significant interaction between zinc and BLL was observed in predicting 

49 ENL levels (p = 0.079). 

50 Conclusion: Zinc intake did not play a crucial role in mitigating the toxicity of BLL 

51 exposure on gut microbiome diversity. However, the model did reveal important 

52 confounding variables, such as gender and fiber intake, which should be considered when 

53 using ENL as a biomarker. The public health implications suggest that dietary 
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54 interventions focusing on fiber intake and managing BMI could be key in maintaining a 

55 diverse microbiome.  

56

57 1. Introduction

58 1.1 Measuring Biodiversity 

59  ENL is derived from plant lignans and have been proposed as a biomarker for measuring 

60 microbiome diversity.1 Ligands are metabolized by the gut microbiome into derivatives such as 

61 ENL and can be measured in the urine.1 Higher concentrations of ENL implies a more diverse 

62 gut microbial community. This is because their synthesis is only possible after the conversion of 

63 several other metabolites that require many species of bacteria in the gut microbiome to be 

64 present. 1

65 1.2 Microbiome

66 The gut is home to trillions of microorganisms that include bacteria, fungi, archaea, 

67 yeasts, protozoa, and viruses.2 Approximately 1014 organisms inhabit the microbiota and exist in 

68 a symbiotic relationship with the host.2 Each individual is colonized with a varying microbial 

69 ecosystem. A diverse population of microbiota is associated with a stable microbial environment 

70 and positive health outcomes for the host.3 Decreases in commensal bacteria diversity has been 

71 found in an array of medical conditions such as inflammatory bowel diseases,3 cognitive decline, 

72 emotional health issues,4 as well as metabolic and chronic diseases.3 

73 This interaction with the host has a systemic impact on health status which is why 

74 research into the complex relationship between the gut microbiota and external stressors, such as 

75 environmental pollutants, is actively under investigation.  Environmental pollutants, chemicals 

76 that cause disruption to biological pathways through the exposure of air, water, food, or soil, are 
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77 one factor that has been identified as a cause of gut dysbiosis and inflammation.5 One group of 

78 environmental toxicants that have raised concerns of environmental and health experts are heavy 

79 metals. 

80 1.3 Heavy metals

81 Heavy metals are chemically active in biological pathways.6 The absorption of toxic 

82 heavy metals, such as lead, can work to derail immunological functions and cause systemic 

83 oxidative stress in tissue. This can result in devastating impairment of physiological functions, 

84 including the gut. Toxic heavy metals that stay in the microenvironment of the gut disrupt the 

85 complex metal-microbe-host interplay.6 This disruption to homeostasis has been linked to 

86 alterations in the gut microbiome community and its diversity.7 

87 Yet not all heavy metals are toxic. With a specific density of 7.14 g/cm3, zinc is 

88 considered a heavy metal.8 Unlike noxious heavy metals, zinc functions as an essential 

89 micronutrient in living organisms ranging from complex animal species to simplistic microbes.9 

90 Twenty percent of the dietary intake of zinc is utilized by microbial bacteria.10 Zincs’ role in 

91 maintaining diversity is most likely linked to its ubiquitous nature. Bacteria utilize multiple zinc 

92 dependent mechanisms including modulating host defense, antioxidant systems, gene expression, 

93 and inhibiting transport of growth-promoting factors.11 Zinc has been shown to be essential in 

94 DNA repair, enzymatic reactions, responses to oxidative stress, four different transport systems, 

95 and regulatory roles in other physiological processes within the microbiome.12  Based on the 

96 harmful effects that lead has on the gut, including its disruption of bacterial communities, and 

97 zinc's involvement in critical pathways within the microbiome, it is plausible that zinc may 

98 protect against lead’s detrimental effects on gut diversity.

99 1.4 Significance
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100 Understanding the functionality of the gut microbiome is critical due to its systemic 

101 impact on health. Laboratory studies have confirmed that heavy metal exposure, including lead, 

102 reduces gut microbiome diversity.13 The present population study is the first to explore the 

103 potential protective role of zinc in maintaining this diversity at BLL found in the American 

104 population. Zinc may act as an effect modifier, mitigating lead's negative impact on microbiome 

105 diversity due to its essential role in numerous biological pathways and its involvement in many 

106 taxa of gut bacteria. Additionally, using ENL as a biomarker for microbiome health in this 

107 context adds a novel layer to the research, providing a new avenue for understanding the 

108 interaction between zinc and lead in relation to gut health.

109 Research Methods

110 4.1 Data

111 Data from the CDC’s NHANES 2007 - 2008 and 2009 - 2010 cycles were used to 

112 conduct a cross-sectional analysis. The NHANES datasets, which are based on a cross-

113 sectional study design, employ a multistage, stratified, and clustered sampling approach with 

114 survey weights to ensure accurate representation of the American population. These methods 

115 were accounted for in the data analysis of this study.  Zinc intake was assessed through 24-

116 hour dietary recall interviews, where participants provided detailed reports of their food and 

117 beverage consumption. The USDA's Food and Nutrient Database for Dietary Studies was 

118 used to calculate the nutrient content, including daily zinc intake, based on these records. 

119 Blood lead levels (BLL) were measured using inductively coupled plasma mass spectrometry 

120 (ICP-MS), a highly accurate method for detecting lead concentrations in whole blood. 

121 Microbiome diversity was indirectly assessed through the measurement of ENL, a metabolite 

122 produced by gut bacteria, which was collected via urine samples. These data collection 
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123 methods allowed for a robust analysis of the relationship between zinc intake, BLL, and gut 

124 microbiome diversity. 

125 Zinc intake, fiber intake, BLL, BMI ENL, age, gender, and creatinine were merged and 

126 uploaded into SPSS. ENL was collected in cycles between 1999 – 2010 and supplement 

127 intake was collected starting in the 2007-08 cycle. Including supplement intake was deemed 

128 important to capture accurate zinc and fiber intakes. This limited the study to the 2 cycles. 

129 The two 24-hour recalls for zinc food and supplement intake were both added and averaged 

130 to determine total zinc intake. Missing data from food intake was replaced by the means for 

131 each cycle. Carry over imputation was used to avoid non-response bias for missing data for 

132 supplements because not every participant used supplements. The same was done for fiber 

133 intake. Individuals below the age of 18 and older than 50 were removed due to the changes in 

134 microbiome diversity at these stages of life.14 ENL was adjusted for creatinine levels by 

135 dividing ENL, measured in ng/dL, by creatinine, measured in mg/dL, resulting in units of 

136 ng/mg/dL. This adjustment corrects for differences in urine dilution among individuals.1, 15 

137 ENL was also common log transformed to account for its non-normal distribution. Lead 

138 levels were measured in the blood in µg/dL.

139 2.2 Complex Survey Analysis

140 A complex survey design was accounted for using RStudio’s Survey Package in the 

141 analysis. Descriptive statistics were run for all variables. Following diagnostic testing, a forward 

142 stepwise regression approach was employed to assess the relationships between the covariates 

143 and independent variables, focusing on their predictive capacity for ENL levels. An interaction 

144 term was incorporated to evaluate whether varying levels of zinc and BLL can predict ENL 

145 levels. The final model included BLL and zinc as independent variables, and accounted for fiber 
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146 intake, BMI, and gender as covariates as well the zinc and BLL interaction term. All statistical 

147 analyses and visualizations were performed using RStudio (Version 2023.09.1+494) accessed 

148 through Anaconda. 

149 3. Results

150 3.1 Descriptive 

151 After removing missing values, the study included a total of 1,887 participants, with an 

152 even distribution of females (51%) and males (49%) (Table 1). Continuous variables revealed all 

153 participants had BLL in their system, with BLL concentrations ranging from a minimum of 0.18 

154 µg/dL to a maximum of 11.8 µg/dL and an average of 1.24 µg/dL. Participants' ages ranged from 

155 18 to 48 years, with a mean age of 33.47 years (Table 2). The analysis revealed significant 

156 gender differences in several variables. Females had significantly higher levels of ENL than 

157 males, with a mean difference of 0.25 (p-value = <0.001). This suggests that females may exhibit 

158 greater gut microbiome diversity compared to males. The analysis also found a substantial 

159 gender difference in  BLL, where males had significantly higher BLL than females, with a mean 

160 difference of 0.59 µg/dL (p-value = <0.001). Although there was a significant difference in zinc, 

161 this is logical as women’s RDA is 8 mg/day and men’s is 11 mg/day. Similarly, males consumed 

162 significantly more fiber than females, with a mean difference of 2.82 grams (p-value = 2.00e-06). 

163 Unlike zinc, fiber intake was below the RDA for both men and women (38 grams/day for men 

164 and 25 grams/day for women), with average intakes of 17.81 grams/day for men and 14.99 

165 grams/day for women. Both men and women’s average BMI was considered overweight and did 

166 not show a significant difference between genders (Table 3). 

167
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Table 1: Study Participants 
Gender Proportion n

Male 0.49 925
Female 0.51 962

Total 1.0 1887
168

Table 2:Descrritive statistics
Variable Weighted Mean Weighted SD Max Min

Log10_ENL 2.28 0.81 4.47 -0.93
BMI (kg/m²) 28.16 7.03 68.63 15.49
AGE (years) 33.47 8.99 48 18

Total Fiber (g/day) 16.36 8.09 68.75 1.1
Total Zinc (mg/day) 16.08 9.79 113.02 1.05

BLL (µg/dL) 1.24 0.99 11.8 0.18
169

170

Table 3: Gender specific descriptive statistics 
Variable t-statistic df p-value Male: Mean (SE) Female: Mean (SE)

Log10_ENL 5.1724 31 < 0.0001 2.147084 (0.0354) 2.400567 (0.030)
Total Fiber 

(g/day)
-5.829 31 < 0.0001 17.80844 (0.488) 14.98591 (0.307)

Total Zinc 
(g/day)

-4.0465 31   0.0003 17.23821 (0.534) 14.98044 (0.410)

BMI (kg/m²) -0.2622 31   0.7949 28.26989 (0.295) 28.17684 (0.278)
BLL -11.838 31 < 0.0001 1.55433 (0.053) 0.965175 (0.022)

171

172 3.2 Multiple Linear Regression

173 Table 3 shows a total of 6 regression models were created in the forward stepwise 

174 process. The initial model only considered zinc intake’s ability to predict ENL. Zinc showed a 

175 statistically significant positive relationship with ENL (p = 0.025). This indicates that higher 

176 levels of zinc are associated with increased ENL levels, albeit the effect is modest. The second 

177 model included lead and zinc. Model 2 identified a significant negative relationship between 
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178 BLL (p = 0.0135). This suggests that higher BLL are associated with lower ENL levels, 

179 supporting the hypothesis that lead exposure may adversely affect microbiome diversity. In 

180 Model 3, BMI emerged as a significant predictor (p < 0.001), indicating that higher BMI is 

181 associated with lower ENL levels. The inclusion of gender in Model 4 revealed a significant 

182 positive relationship (p = <0.001). However, the addition of gender resulted in the loss of 

183 significance in BLL. In model 5 fiber replaced the addition of gender as a covariate. Upon its 

184 addition zinc lost its significance. Finally in model 6, the interaction term between BLL and zinc 

185 was included in the model with all of the covariates. The interaction term between BLL and zinc 

186 exhibited a p-value of 0.079, indicating that while it did not reach conventional significance, it is 

187 close to the threshold. 

188 Akaike Information Criterion (AIC) was used to determine how well the model explains 

189 variation in ENL because of the studies complex survey design. Unlike R², which can 

190 misleadingly increase with additional variables and does not adequately account for the design 

191 effects associated with sampling methods and stratification, AIC helps identify the most effective 

192 predictors by penalizing overfitting. In this study, the AIC values ranged from 4226.40 to 

193 4340.13. The decreasing AIC values across models suggest that adding variables improves the 

194 model's fit. With the exception of the addition a fiber. However, since AIC is used to compare 

195 models rather than measure explained variance, it does not indicate how much of the variation in 

196 ENL levels is accounted for. This suggests that other unmeasured factors may still influence 

197 ENL levels, warranting further investigation. 

198

199
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200

 Table 4: Forward Stepwise Regression Model Selection with AIC

Step Variable Coefficient SE t-value p-value AIC

1 Intercept
Total Zinc

2.200588
0.00527

0.039038
0.002232

56.37
2.361

< 0.001
0.025

4340.13

2 Intercept
Total Zinc
Lead

2.266742
0.005365
-0.05464

0.041158
0.002232
0.020815

55.075
2.403
-2.625

< 0.001
0.023
0.014

4334.26

3 Intercept
Total Zinc
Lead
BMI

2.853902
0.004558
-0.06095
-0.02012

0.098997
0.002305
0.019025
0.002849

28.828
1.978
-3.203
-7.061

< 0.001
0.056
0.003
< 0.001

4279.94

4 Intercept
Total Zinc
Lead
BMI
GENDER2

2.660036
0.00595
-0.0275
-0.01989
0.241185

0.0938
0.002354
0.019667
0.002789
0.050048

28.359
2.527
-1.398
-7.132
4.819

< 0.001
0.017
0.173
< 0.001
< 0.001

4244.87

5 Intercept
Total Zinc
Lead
BMI
Total Fiber

2.740478
0.001632
-0.06335
-0.01957
0.009044

0.098501
0.002653
0.018641
0.002779
0.003342

27.822
0.615
-3.399
-7.042
2.706

< 0.001
0.543
0.002
< 0.001
0.011

4270.35
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6 Intercept
BMI
GENDER2
Total Fiber
Lead
Total Zinc
Zinc: Lead

2.42935
-0.019
0.266067
0.01139
0.023971
0.006034
-0.00293

0.104723
0.002656
0.052903
0.003406
0.03494
0.00355
0.001604

23.198
-7.152
5.029
3.344
0.686
1.7
-1.826

< 0.001
<0.001
<0.001
0.003
0.499
0.101
0.079

4226.4

201

202 4. Discussion

203 4.1 Enterolactone as a biomarker 

204 ENL has been used as a biomarker in research but not as a standard protocol in clinical 

205 settings. However, both human and population studies have found reliability with this biomarker. 

206 A human study published by (Hullar et al, 2015) investigated the association between the 

207 diversity of the microbiome and presence of ENL in premenopausal women.1 Urine samples 

208 were used to quantify ENL and stool samples were obtained to measure diversity in the gut 

209 microbiome using 16S rRNA.1 They concluded metabolism of lignans in the gut is dependent on 

210 the presence of a diverse community of microorganisms to perform the series of reactions.1  A 

211 review published by (Lampe, 2003) even predicted that advancements in methodologies for 

212 measuring lignans will result in the use of their derivatives as biomarkers in large population-

213 based studies.16

214 The analysis from this current population study supports that ENL is a reliable biomarker 

215 for gut microbiome diversity. The regression model found a positive correlation between fiber 

216 and ENL. Fiber intake has shown to increase diversity in the gut microbiome.17   Inversely, 

217 increased BMI, related to obesity, has been associated with decreased diversity in the gut 
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218 microbiome.18 BMI was found to have a significantly negative correlation with ENL in the 

219 regression model. 

220 4.3 Confounding factors

221 When total fiber was added to the model, the significance of zinc was lost, with the 

222 coefficient estimate for zinc changing from 0.004558 to 0.001632. This represents a percentage 

223 change of approximately 64.25%, indicating that zinc may not have a meaningful impact on ENL 

224 levels when fiber is accounted for. The substantial change in the estimate suggests that zinc's 

225 apparent influence on ENL was likely an overestimation prior to including fiber in the model, 

226 highlighting the importance of considering confounding factors like dietary fiber in future 

227 analyses. 

228 When gender was incorporated into model the estimate for lead changed from -0.06095 

229 to -0.02750, a 54.9% increase, and its significance diminished from (p = 003) to (p = 0.1730). 

230 The adjustment for gender revealed a need to account for it as a confounding factor in 

231 understanding its influence on ENL levels. Diagnostic tests found that men have significantly 

232 higher BLL and lower ENL compared to women. While neither men or women met their fiber 

233 intake needs on average, it is possible men’s higher exposure to lead  coupled with low fiber 

234 intake could also contribute to reduced ENL levels. This highlights a complex relationship 

235 between the covariate, independent and dependent variables.

236 4.2 Zincs’ role in protecting diversity

237 In a linear regression, an interaction between zinc intake and BLL would have suggested 

238 that the effect of lead on the outcome (e.g., ENL levels) depended on the level of intake zinc. 

239 Specifically, if zinc mitigated the harmful effects of lead, the interaction term would reflect that 
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240 zinc alters the relationship between lead and the outcome. Although the data did not support a 

241 significant interaction between zinc and BLL in their effect on ENL, further investigation may 

242 still be warranted. The interaction term was estimated at 0.079, close to the threshold of 

243 significance. Future studies could explore other models, such as an ANCOVA, by categorizing 

244 zinc and BLL. Additionally, a sensitivity analysis may help identify the biological thresholds at 

245 which changes in ENL occur, particularly in response to specific levels of zinc intake or lead 

246 toxicity. 

247 4.4 Weakness 

248 There were several weaknesses of this study to consider. Firstly, this study used self-

249 reported 24-h recalls which may not be as accurate as direct reporting. Also, diversity is 

250 influenced by many variables that were not included in this model such as genetics, disease, 

251 mode of delivery, infant feeding, medication, exposure to other pollutants and dietary factors.19  

252 The current study included only three covariates and had a high AIC. This supports that other 

253 unmeasured factors may significantly influence the outcomes, warranting further exploration.

254 Literature supports that low intake of zinc causes a decrease in diversity through 

255 deficiency and high intake causes a decrease in diversity related to toxicity.20  A review 

256 published by (Cheng et al., 2023) found a decrease in α-diversity in rat, mice, pigs, and broiler 

257 chicken models following zinc deficiency and overload.21 The majority of the participants in the 

258 present study had optimal zinc intake, meaning these extreme zinc intakes were rare in the data. 

259 Also, lead toxicity is low America. This prevented the true relationship of a dose response curve 

260 to be fully analyzed and helps to explain the opposing results from other studies. One way to 

261 address this would be to utilize data from a population that has higher lead exposure and zinc 

262 deficiency rates. 
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263 Diversity was measured by the concentration of the ENL metabolite which is synthesized 

264 after a series of reactions requiring many species of bacteria. This gives a snapshot into the 

265 changes in diversity. However, measuring changes in diversity is complex. For a more 

266 comprehensive understanding of changes in diversity, bacteria populations are identified through 

267 16s rRNA sequencing and analyzed through alpha and beta diversity analysis. Alpha diversity 

268 considers richness, evenness, and phylogenic diversity and beta diversity uses distant metrics to 

269 measure communal changes at different taxological levels. ENL is limited to representing only a 

270 subset of the microbial community dynamics and may not be accurately capturing the changes in 

271 bacterial populations. This is important because the removal of heavy metals from the gut seems 

272 to rely on the presence of specific bacteria species.22, 23

273 5. Conclusion 

274 It was hypothesized that effect modification would be caused by zinc in the relationship 

275 between BLL and ENL, however this was not supported in the current analysis, as the interaction 

276 between zinc and BLL was not statistically significant. In fact, due to confounding relationships 

277 neither zinc nor BLL were found to significantly predict ENL levels in the model. Zinc’s 

278 potential impact on bacterial diversity may not have been fully captured in this design, and future 

279 studies should explore different models, such as ANCOVA and sensitivity analysis, from data 

280 with a case control design to better understand these interactions. The data did support that 

281 including factors like gender and fiber intake when using ENL as a biomarker is important, as 

282 they may confound the relationship between independent and dependent variables.  Given 

283 discovery that lead may be more toxic than once thought, and the gut microbiome’s influence on 

284 immune function, nutrient absorption, and inflammation regulation, further investigation is 

285 recommended.28, 29
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