medRxiv preprint doi: https://doi.org/10.1101/2024.10.31.24316535; this version posted November 4, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Predicting Frequent Emergency Department Visitors using Adaptive Ensemble
Learning Model

Mehdi Neshat!, Nikhil Jha%, Michael Phippsl, Chris A. Browne?, Walter P. Abhayaratna“’5

LCEO, Canberra Health Service, Canberra Hospital, Canberra, 2605, ACT, Australia
mehdi.neshat@ieee.org; michael.phipps@act.gov.au

2Research Operations and Clinical Trials, Canberra Health Service, Canberra Hospital, Canberra, 2605, ACT, Australia
nikhil. jha@act. gov.au

3ANU College of Science, The Australian National University, Canberra, 2605, ACT, Australia
chris.browne@anu. edu. au

4Division of Medicine, Canberra Hospital, Canberra, 2605, ACT, Australia
Walter.P.Abhayaratna@act.gov. au

5The Australian National University, Canberra Hospital, Canberra, 2605, ACT, Australia
Walter.P.Abhayaratna@anu. edu. au

Abstract

Background: Predicting accurately the frequent Emergency Department (ED) visitors is critical for hospitals because
they often consume significant ED resources, including staff time, equipment, and medical supplies. Furthermore,
frequent ED visitors may contribute to increased wait times for all patients. Therefore, by accurately predicting and
identifying these individuals, hospitals can help reduce the burden on the ED and decrease wait times for all patients,
improving the overall quality of care.

Objective: This study proposed an effective and adaptive ensemble learning prediction model to identify frequent
visitors in the emergency department.

Methods: This was a retrospective population-based study of patients and utilised medical and administrative databases
at Canberra Hospital, a tertiary public hospital in ACT, Australia, between January 1997 and December 2022. The
study focuses on a wide age range of the population with 20 viral chronic diseases. The definition of frequent ED
use is considered as having at least three visits within a year. This study developed an Adaptive ensemble learn-
ing—based prediction model and compared the performance with 16 popular machine learning models. In addition,
three techniques are compared to handle the imbalanced data issue, and we also proposed a hybrid feature selection
composed of Elastic-Net and local search to find the best combination of features. In order to hyper-parameter tuning,
two techniques were compared: a population-based evolutionary algorithm and a local search.

Results: The study included 535,474 patient visits and 1.6 million episodes, with 25% overall frequent visitors. We
compared the performance of the proposed prediction model with that of the other 16 popular classifiers. According to
the prediction results, the proposed model considerably outperformed other models in terms of five metrics: accuracy,
Recall, Fl-score, Area under the ROC curve (AUC), and Log loss at 0.78 (95% CI 0.78-0.79), 0.68 (95% CI 0.68-
0.68), 0.68 (95% CI 0.68-0.69), 0.69 (95% CI 0.69-0.70), and 7.4 (95% CI 7.2-7.5), respectively.

Conclusions: We proposed an adaptive ensemble learning model combining XGBoost Elastic-net with local search
and Differential evolution to address the imbalanced nature of the frequent ED visitors’ data. Our approach aimed
to enhance the prediction capability of the classifier substantially. To tackle the class imbalance, we employed both
under-sampling and adjusted weights for the positive class. Through extensive testing and evaluation, we demon-
strated that these strategies effectively improved the model’s performance. Further, we emphasised the importance of
employing a robust feature selection method and a fast hyper-parameter optimiser. These elements were essential for
enhancing the identification of frequent ED visitors. By incorporating these techniques, our study contributes to de-
veloping more accurate and reliable models for predicting frequent ED visitors, thereby assisting hospitals in resource
allocation and patient care management.
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1. Introduction

The Emergency Department (ED) is an essential component of hospitals as it fulfils multiple crucial roles [1]]. It
serves as a primary point of contact for immediate and life-saving care, ensuring round-the-clock availability to ad-
dress emergent healthcare needs. The ED utilises a triage system to prioritize patient needs, facilitating efficient and
timely care delivery. Definitions may vary, yet individuals who visit the ED at least thrice a year are categorised as
“frequent users” [2]. These frequent ED visitors demonstrate a diverse array of characteristics, encompassing mental
health issues, physical comorbidities, and disadvantaged socioeconomic status [3]]. The requirements of these individ-
uals are often too intricate to be adequately catered to within the confines of the ED environment [4]]. Many of these
recurrent ED visitors grapple with several chronic ailments, such as coronary artery disease or chronic obstructive
pulmonary disease, conditions that could potentially be better managed in a primary care setting, thus averting acute
deteriorations that necessitate ED visits [5]. The use of the ED to address complex needs points towards a less-than-
optimal scenario where these needs have not been satisfactorily addressed within the realm of primary care. This
form of ED use is linked with unfavourable outcomes for patients, including heightened rates of hospital admissions
and mortality [6]. Additionally, the costs associated with ED services tend to be elevated in comparison to those in
primary care, thereby imposing a socioeconomic strain on the healthcare system [7]. As an illustration, a particular
study conducted in the province of Quebec, Canada, [2] revealed that individuals classified as frequent ED users with
chronic diseases constituted approximately 9.2% of the total ED user population. Surprisingly, these frequent users
were regarded as a significantly higher proportion, around 28.8%, of all ED visits. Another research [8]] endeavour
focused on defining frequent users as those with four or more ED visits annually. The findings indicated that this
subset of patients represented approximately 4.5% to 8% of the overall ED patient population. Strikingly, they con-
tributed to a substantial 21% to 28% of all ED visits. These statistics highlight frequent users’ significant impact
and disproportionate utilisation of ED resources, emphasising the need for targeted interventions and alternative care
strategies to address their specific needs and reduce the strain on the ED system.

Accurately identifying high-rate visitors among normal visitors is a crucial step in mitigating unnecessary ED
visits. Extensive research has been conducted to tackle this challenge using statistical models [9]. Logistic regression
(LR) has emerged as a standard and widely employed statistical model for this purpose [10]]. Although LR is known
for its effectiveness in prediction tasks, it encounters limitations when applied to predict frequent ED visitors. Its
linear nature assumes a linear relationship between predictor variables and the target, which may not hold true for this
case study. The relationship between predictors, such as demographic factors and medical history, and the target of
being a frequent visitor often exhibit complexity and nonlinearity [L1]. LR may struggle to accurately capture and
model these intricate nonlinear associations, potentially compromising its predictive performance in this context.

Traditional statistical models face limitations in identifying highly visited ED patients due to their reliance on
predetermined rules centred around specific clinical predictors. On the other hand, machine learning (ML) prediction
models present a more adaptable approach through the utilisation of nonparametric algorithms that can encompass a
broad spectrum of intricate predictors while upholding robust predictive capacities. The ML-based techniques appli-
cation brings about advantages such as learning error reduction, runtime and cost savings, as well as an enhancement
in the quality of care services provided [[12]]. Prior studies have focused on applying ML models in predicting frequent
visitors, with numerous research works disseminating their discoveries in this domain [13l]. This exploration has
showcased the potential of ML in revolutionising the identification and management of frequent ED patients, marking
a significant leap in the realm of healthcare analytics.

When predicting frequent visitors in the Emergency Department (ED), neural networks have gained significant
attention among the various machine learning (ML) models utilised. This popularity can be attributed to their remark-
able ability to learn and model intricate patterns and relationships within both small and large-scale datasets. Neural
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networks (NNs) encompass a range of architectures, including feed-forward backpropagation (FFNN) [2]], multilayer
perceptron (MLP) [14]], deep neural networks (DNN) [15] and hybrid deep learning models [16]. These architectures
enable neural networks to effectively capture the complexity of the data, making them well-suited for tasks involving
frequent ED visitor prediction. Despite their remarkable capabilities, NNs are subject to various constraints. A signif-
icant drawback is the lack of interpretability. Moreover, NNs demand substantial computational power and resources,
resulting in elevated computational and resource demands. Overfitting presents another issue: NNs may excessively
specialise in the training data, leading to subpar generalisation. Lastly, identifying optimal hyper-parameters for NNs
can be intricate, necessitating meticulous adjustments.

Recently, a notable surge of interest has been in utilising tree-based and ensemble learning models to predict
frequent ED visitors. The Random Forest (RF) [2] [17, 18] model is one popular choice in related studies and is
known for its robust classification capabilities [19]]. Another extensively employed model is XGB [20], which excels
in handling small datasets with complex patterns. Among the commonly utilised models, XGB often exhibits superior
predictive performance [21]. However, it is not without its limitations, such as the need for hyperparameter tuning.
To strike a favourable balance, some studies have adopted ensemble models like the voting classifier [14], which
combines multiple models with specific weighting ratios. This approach allows for a more comprehensive and nuanced
prediction by leveraging the strengths of different models within the ensemble.

In this study, we build upon previous research by developing a series of binary classifiers using a dataset consisting
of 535,474 patient visits spanning 25 years at the ED of Canberra Hospital in ACT, Australia. For each visit, we
extracted 18 variables, including patient demographics, primary diagnosis, up to 20 secondary diagnoses coded in
ICD-10, admission and release dates, triage category, and patient disposition. To predict frequent ED visitors, we
establish a comprehensive comparative framework employing 16 machine learning models. These models encompass
linear and logistic regression, various types of neural networks, popular ensemble learning models, and deep learning
models, enabling us to capture the nonlinear relationships among the variables. Furthermore, we introduce an adaptive
feature selection approach by combining Elastic-Net and a local search technique to optimise the performance of our
feature set. To fine-tune the best-performing model, we implement an effective hyper-parameter optimisation method
utilising Differential Evolution (DE). Through this research, we aim to provide insights into predicting frequent ED
visitors and enhance the overall understanding of patient visit patterns in the healthcare system.

2. Study design and data sources

In this population-based retrospective cohort study, data was collected from the Emergency Department of Can-
berra Hospital, which serves as the largest and oldest public hospital in Canberra, Australia’s ACT province. The
collected period spans 25 years, from January 1997 to December 2022. The dataset encompasses various compo-
nents, including the patient demographic register, which provides information such as sex, date of birth, and place
of residence. Additionally, features extracted from the hospital register include the primary diagnosis based on the
International Classification of Diseases, tenth revision (ICD-9), as well as up to 20 secondary diagnoses coded using
ICD-10. Other relevant details encompass admission and release dates, triage category, and patient disposition. For
further insights into the specific features utilised in this study, Supplementary Table 1 can be referred to.

Two exclusion criteria were applied in this study, as depicted in Figure[I] The first criterion involved excluding
patients with missing information, which accounted for a negligible rate of 0.004%. The second criterion entailed ex-
cluding patients who had more than three Emergency Department (ED) visits per year, which constituted a substantial
portion of 89% of the total number of patients. By implementing these exclusion criteria, the study aimed to ensure
data completeness and focus on individuals with a higher frequency of ED visits for a more comprehensive analysis.
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Figure 1: Flowchart of the study cohorts. The number of patients with > 3 visits is 59,599, and the episode number is 374,555.

As reported, the number of ED visitors at Canberra Hospital has increased by an average of 4% over the years (See
Figure [2). However, a notable dip was observed in 2020, reflecting a substantial decrease in ED visitors due to the
implementation of the COVID-19 lockdown situation. Based on predictive analysis, it is estimated that the monthly
average of ED episodes will reach 11,000 in 2032 and subsequently rise to 13,000 in 2042. These projections indicate
a steady upward trend in ED visits over the next two decades, with the exception of the temporary decline observed
in 2020.

MO0 —T T T T T T T T 7T 7T T T 7T T T T T T T T T T T 171

—+—Monthly Average Episodes
--@-=Yearly Average Episodes
12000 - Predicted Yearly Average Episodes

10000 [~ 1

8000

6000

ED episode

4000 [N

2000} .
0 | N IS S Y N [N N N [ S (N [ I [N N IS (N N (N N SN I |
I I N A R R R W TR IR I SR A T R IR IR I TR W N B o >
P S O O R R R RN AN N P o

Figure 2: The monthly and annual average of ED visitors episodes in the Canberra Hospital from 1997 to 2022, as well as the predicted increase in
the visitors for the next 20 years.

2.1. Characteristics of participants

Descriptive statistics for various populations, including whole ED visitors and frequent visitors (3+ visits per year),
as well as information on triage category, patient location (state and suburb), and patient disposition, are presented in
Table[T] The table highlights a significant finding: the largest proportion of non-visitors and frequent visitors is among
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individuals under 18 years of age, accounting for 29.15% and 23.78% of their respective populations. Furthermore,
among frequent visitors, approximately half of the patients were discharged to their homes, indicating a common
disposition. Additionally, it is notable that the triage category labelled as “green” exhibits the highest rate at 36.70%
among the different triage categories, indicating a relatively lower level of urgency or severity in those cases.

Table 1: Descriptive statistics for the different populations of whole visitors and frequent visitors (3+ visits per Year) from 1997 to 2022. Percent-
ages in brackets are relative to the column base.

Variable Total (%) Non-frequent users 3 (%) | Frequent users 3 (%)
Total population 535474 (100) 475875 (100) 59599 (100)
Female 255869 (47.78) | 226885 (47.68) 28984 (48.63)
<=18 152901 (28.55) | 138727 (29.15) 14174 (23.78)
18-25 60875 (11.37) 54691 (11.49) 6184 (10.38)
26-35 78560 (14.67) 70272 (14.77) 8288 (13.91)
Age 36-45 61351 (11.46) 54832 (11.52) 6519 (10.94)
46-55 54136 (10.11) 48602 (10.21) 5534 (9.29)
56-65 45966 (8.58) 41083 (8.63) 4883 (8.19)
66-75 36749 (6.86) 31858 (6.69) 4891 (8.21)
>75 44861 (8.38) 35735 (7.51) 9126 (15.31)
1 (Red) 7243 (1.35) 6545 (1.38) 698 (1.17)
2 (Orange) 57188 (10.68) 49256 (10.35) 7932 (13.31)
Triage 3 (Yellow) 170228 (31.79) | 148645 (31.24) 21583 (36.21)
4 (Green) 216441 (40.41) | 194565 (40.89) 21876 (36.70)
5 (Blue) 84281 (15.74) 76774 (16.13) 7507 (12.60)
State ACT 391095 (73.04) | 338412 (71.11) 52683 (88.40)
NSwW 121374 (22.67) | 114901 (24.15) 6473 (10.86)
Kambah (8.6 Km) 20765 (5.31) 17310 (5.12) 3455 (6.56)
Wanniassa (9.2 Km) 10496 (2.68) 8684 (2.57) 1812 (3.44)
Suburb Narrabundah (5.5 Km) 9862 (2.52) 8080 (2.39) 1782 (3.38)
Monash (9.5 Km) 7803 (1.96) 6296 (1.86) 1507 (2.86)
Gordon (15 Km) 10250 (1.91) 8494 (2.51) 1756 (3.33)
Admit 184381 (34.43) | 159271 (33.47) 25110 (42.13)
Home 307159 (57.36) | 277290 (58.27) 29869 (50.12)
Did not wait (DNW) 30209 (5.64) 27053 (5.68) 3156 (5.30)
Left at own risk (LOR) before | 1525 (0.28) 1270 (0.27) 255 (0.43)
Disposition treatment completed
Discharged to DHR 40 (0.007) 27 (0.01) 13 (0.02)
Referred to other TCH service 8079 (1.51) 7422 (1.56) 657 (1.10)
Transferred to other hospital 2333 (0.44) 2039 (0.43) 294 (0.49)
Went to GP 435 (0.44) 423 (0.09) 12 (0.02)
Died in ED 972 (0.18) 790 (0.17) 182 (0.31)

A comprehensive statistical analysis was conducted on the monthly (Table [2)) and weekday (Table [3) data of
whole, non-, and frequent visitors at Canberra Hospital. The findings indicate that October and November emerge as
the busiest months, accounting for 10.81% and 9.88% of the total high-frequency visitors, respectively. These peaks
could be attributed to various factors, including the coinciding spring season in Australia, which brings about an
allergy season, increased prevalence of respiratory infections, and a higher risk of seasonal asthma [22]] exacerbations.
Additional contributing factors may also play a role in the observed patterns. The distribution of non- and frequent ED
visitors across the seven weekdays is presented in Table[3] The analysis reveals that Monday experiences the highest
overload in the Canberra Hospital’s ED, accounting for 15.76% of the total visits. This finding suggests that Mondays
exhibit a greater demand for emergency services compared to other weekdays.
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Table 2: Monthly statistical analysis of whole ED visitors and frequent visitors (3+ visits per Year) from 1997 to 2022.

Variable Total (%) Non-frequent Frequent users
users 3 (%) 3 (%)
Population | 535474 (100) | 475875 (100) 59599 (100)
January 41120 (7.68) | 37643 (7.91) 3477 (5.83)
February 39126 (7.31) | 35539 (7.47) 3587 (6.01)

March 44725 (8.35) | 40557 (8.52) 4168 (6.99)
April 42423 (7.92) | 38236 (8.03) 4187 (7.03)
May 45365 (8.47) | 40074 (8.42) 5291 (8.88)
June 43441 (8.11) | 38510 (8.09) 4931 (8.27)
July 46012 (8.59) | 40736 (8.56) 5276 (8.85)
August 47744 (8.92) | 42058 (8.83) 5686 (9.54)

September | 46518 (8.69) | 40855 (8.58) 5663 (9.50)
October 48593 (9.07) | 42149 (8.85) 6444 (10.81)
November | 45493 (8.50) | 39603 (8.32) 5890 (9.88)
December | 44914 (8.39) | 39915 (8.39) 4999 (8.39)

Table 3: Weekday statistical analysis of whole ED visitors and frequent visitors (3+ visits per Year) from 1997 to 2022.

Variable Total (%) Non-frequent Frequent users
users 3 (%) 3 (%)
Population | 535474 (100) | 475875 (100) 59599 (100)
Saturday 79049 (14.76) | 71265 (14.98) 7784 (13.06)
Sunday 80105 (14.84) | 71925 (15.11) 8180 (13.73)
Monday 79484 (13.99) | 70094 (14.73) 9390 (15.76)
Tuesday 74903 (13.99) | 66093 (13.89) 8810 (14.78)
Wednesday | 73576 (13.74) | 64990 (13.66) 8586 (14.41)
Thursday 73673 (13.76) | 65113 (13.68) 8560 (14.36)
Friday 74684 (13.95) | 66395 (13.95) 8289 (13.91)

In order to gain insights into the primary reasons for ED visits, we conducted an analysis of viral diagnoses
among both non- and highly frequent visitors. Table 4] presents a compilation of the top 25 viral diagnoses, sorted in
descending order. Notably, Chest pain (R07.4), Abdominal Pain (T79.4), and Pain in the abdomen (including colic)
(R10.4) emerged as the most prevalent diagnoses, accounting for rates of 3.9%, 3.44%, and 3.44%, respectively.
These findings highlight the significance of these conditions and underscore the need for appropriate management and
attention to these specific health concerns.
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Table 4: Statistical analysis of most common causes to visit ED based on whole visitors and frequent visitors (3+ visits per Year) from 1997 to
2022.

Variable Total (%) Non-frequent Frequent users
users 3 (%) 3 (%)
Population 535474 (100) | 475875 (100) 59599 (100)
Did not wait for treatment (Z253.1) 22480 (4.2) 20832 (4.38) 1648 (2.77)
Chest pain, unspecified (R07.4) 19011 (3.11) | 16698 (3.51) 2313 (3.88)
Abdominal pain (T79.4) 3649 (0.68) 1601 (0.34) 2048 (3.44)
Suicidal ideation (R45.81) 3027 (0.56) 2336 (0.49) 691 (1.16)
Pain in abdomen, other (includes colic) (R10.4) 16651 (3.11) 14603 (3.07) 2048 (3.44)
Viral infection, unspecified (B34.9) 9465 (1.77) 8485 (1.78) 980 (1.64)
For review (Z09.9) 9109 (1.70) 7933 (1.67) 1176 (1.97)
Injury, unspecified or suspected of head (S09.9) 6125 (1.14) 5630 (1.18) 495 (0.83)
Open wounds, lacerations - finger - uncomplicated (S61.0) | 5345 (1.0) 4992 (1.05) 353 (0.59)
Urinary tract infection (N39.0) 5068 (0.95) 4768 (1.00) 300 (0.50)
Syncope or collapse (except heat syncope) (R55) 4882 (0.91) 4412 (0.93) 470 (0.79)
Sprain and strain of ankle, part unspecified (S93.40) 4803 (0.90) 4446 (0.93) 357 (0.60)
Nausea and vomiting (except in pregnancy) (R11) 4679 (0.87) 4021 (0.84) 658 (1.10)
Asthma, Acute (J45.9) 4595 (0.86) 3885 (0.82) 710 (1.19)
Low back pain (M54.5) 4241 (0.8) 3726 (0.78) 515 (0.86)
Headache (R51) 3983 (0.74) 3471 (0.73) 512 (0.86)
Fever (R50.9) 3947 (0.74) 3430 (0.72) 517 (0.87)
Pneumonia, unspecified (J18.9) 3695 (0.69) 2967 (0.62) 728 (1.22)
Multiple trauma (T79.4) 3649 (0.68) 3586 (0.75) 63 (0.10)
Upper respiratory tract infection (URTI), acute (J06.9) 3548 (0.66) 3111 (0.65) 437 (0.73)
Gastroenteritis and colitis of unspecified origin (A09.9) 3546 (0.66) 3054 (0.64) 492 (0.83)
Tonsillitis (J03.9) 3354 (0.63) 3005 (0.63) 349 (0.59)
Stroke, not specified as haemorrhage or infarction (164) 1843 (0.34) 1581 (0.33) 262 (0.44)
Migraine (G43.9) 1806 (0.34) 1561 (0.33) 245 (0.41)
Sepsis (except with notifiable agent) (A41.9) 1904 (0.36) 1419 (0.30) 485 (0.81)

A comprehensive analysis of all 1.6 million episodes in the ED at Canberra Hospital from 1997 to 2022, including
frequent visitors with more than 3 and 5 visits per year, was conducted to identify the top 20 reasons for attending.
Figure [3] showcases these findings, and remarkably, the most prevalent reason for seeking ED services was visitors
who did not wait for medical attention, encompassing roughly 6% of the total episodes across all three groups. Subse-
quently, the second and third most common reasons were identified as Abdominal Pain and Chest Pain, respectively.
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Figure 3: ED visits comparison by all episodes, frequent visitors with more than 3 and 5 visits per year sorted within 20 viral reason categories.

To gain a deeper understanding of the relationship between the age of frequent visitors and the 20 most common
viral reasons for ED visits, we divided the patients into five age groups, as depicted in Figure f[a). The analysis
revealed distinct age patterns associated with viral reasons. Notably, patients aged < 14 represented the highest
proportion of ED visitors for Viral infection (B34.9), Asthma (J45.9), Head Injury (S09.9), Fever (R50.9), and Upper
respiratory tract infection (J06.9), accounting for 60%, 59%, 49%, 58%, and 70% of the total episodes, respectively.
Conversely, senior visitors (age > 64 years) exhibited a different pattern, with Pneumonia (J18.9), Syncope (R55),
Urinary tract infection (N39.0), and Constipation (K59.0) being the prominent viral reasons. These conditions were
observed at rates of 50%, 50%, 39%, and 35%, respectively, among the other population. Having insights into the
age-specific trends in viral reasons for ED visits can be helpful for healthcare professionals to tailor their approaches
to meet the unique needs of different age groups. The seasonality analysis of the most common disorders among
highly-frequent visitors is presented in Figure[d{(b). The findings indicate that, apart from viral infection, pneumonia,
and respiratory tract infection, which exhibit a notable pattern of being more prevalent during winter, no specific
seasonal trend was observed for the other disorders. These three conditions demonstrate a higher frequency during the
winter months, potentially influenced by factors such as increased viral circulation, colder temperatures, and reduced
immunity.

In Figure[5] a noteworthy pattern is evident concerning the gender distribution of frequent visitors in the 20 most
prevalent reasons for ED visits. Specifically, there are significant gender differences in the contribution percentages
for certain conditions. Among the identified conditions, it is observed that females account for a higher proportion
in several categories. For instance, in Urinary tract infections, females contribute to ED visits at a rate of 137%
compared to males. Similarly, for Abdominal pain, Headache, Suicidal ideation, Nausea and vomiting, and Low
back pain, the female contribution percentages are 108.71%, 74.68%, 65.11%, 56.92%, and 24.77%, respectively.
On the other hand, there is a noticeable trend of increased representation among males for specific disorders when
compared to females. Conditions such as dressing changes, Head injuries, Psychotic episodes, Fever, and Pneumonia
exhibit higher contribution rates among males, with percentages of 51.77%, 40.02%, 41.63%, 25.31%, and 34.66%,
respectively.
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Figure 4: Age groups (a) and Seasonal ED visits(b) for frequent visitors with more than 3 visits per year sorted within 20 viral reason categories.
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Figure 5: Gender groups for frequent visitors with more than 3 visits per year sorted within 20 viral reason categories.

3. Methods

3.1. Ensemble Machine learning models

In opposition to conventional data-centric modelling strategies that entail fitting a single predictive model, ensemble-
based models amalgamate the forecasts of numerous base estimators to amplify resilience [23]]. The ensemble learning
techniques at the core encompass bagging [24]], boosting [23]], and stacking [26]. Bagging entails the random selec-
tion, with replacement, of multiple subsets of training data to train an identical model. The training of these models
operates independently of one another and can be executed concurrently. The ultimate forecast is the mean of pre-
dictions generated by all models. Bagging enhances generalisation and mitigates overfitting. In contradistinction to
bagging, the boosting methodology involves the sequential training of models, where each fresh model strives to refine
predictions by concentrating on the feeble forecasts of preceding models within the ensemble. Boosting stands out
as one of the most potent learning methodologies unveiled in the realm of machine learning [27]. Stacking emerges
as a more intricate ensemble technique. Instead of directly averaging or sequentially amalgamating base model pre-
dictions, akin to bagging and boosting, stacking harnesses these individual base models’ predictions as input for a
superior-level model. This meta-model is schooled on these varied base model predictions to craft precise final pre-
dictions. The essence of stacking lies in its ability to leverage the diversity among the base models to enhance the
overall predictive accuracy.

3.2. Gradient Boosting Machine (GBM)

This innovative method follows a forward-thinking, gradual procedure where new cutting-edge predictive models
are integrated into the group one by one. The process typically relies on regression trees (RTs) as the basic weak
learners. These RTs are generated sequentially, aiming to capture any prediction mistakes left by the preceding RTs.
The Gradient Boosting Machine [28] (GBM) begins by creating a differentiable loss function, often using the squared
error as the loss function, which can be symbolized as a mathematical expression. The GBM then iterates through
the ensemble, emphasising correcting the errors made by the previous models by adjusting the weights of each model
based on the loss function’s gradient. This iterative process continues until a specified stopping criterion is met,
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producing a powerful ensemble model that combines the strengths of individual weak learners to make accurate
predictions.

1
Ly, F() = 50/ - F(x))? (1

Within the domain of mathematical symbolism, the symbols y and F carry a unique and profound meaning,
representing the actual output results and the forecasts produced by the less powerful learner. One search through the
commencement phase involves reflecting on a fixed forecast value attributed to each individual data point, a particular
computation that is executed in a subsequent manner:

n
Fo(x) = argmin, " L(yi,¥) @)

i=1
Suppose the decision is made to utilise Equation [T] as the designated loss function; the effects of Equation [2] will
materialise in the form of a direct calculation representing the mean of the actual results associated with the training
dataset. Following this, the subsequent steps entail performing calculations to determine pseudo-residuals for every
single data point, a process that is executed by following a specific approach and methodology. This systematic
approach involves analysing each data point to accurately compute the residual values, which is crucial in further

refining the model’s performance and optimising the training process.

um BF(XZ) F(x)=F-1(x)

Delving deeper into the realm of advanced algorithms, the powerful and sophisticated GBM embarks on the
challenging task of training a base learner, which can take the form of a tree or any other type of model, and then
adjusts it in accordance with the pseudo-residuals meticulously crafted during the process. This particular base learner
is symbolically represented as F,(x), with the training dataset {(x;, r;,)}_; laying the essential groundwork for this
intricate journey towards optimisation. As the journey progresses to the next phase, the GBM meticulously computes
the multiplier p,, by carefully addressing the optimisation problem that is elegantly presented in a structured manner.
The interplay between the base learners and the pseudo-residuals within the GBM framework showcases a harmonious
blend of mathematical precision and algorithmic finesse, resulting in a dynamic and adaptive learning process that
continually refines the model’s predictive capabilities. Each step in the GBM’s iterative process unfolds like a careful
control, where each base learner contributes unique insights while guided by the significant objective of minimising
the loss function. Through this intricate interplay of components and calculations, the GBM methodically enhances the
model’s predictive power, unlocking new possibilities and insights in the realm of machine learning that is presented
in the following manner:

Jfori=1,....,n 3

pm = argmin > L(yi, Fu1(x) + pha(x1) @
-
therefore, the model is updated as below:
Fm(x) = Fm—l(x) + Ym> where Ym = pmhm(x) (5)

3.3. Extreme Gradient Boosting (XGBoost)

This innovative technique significantly improves the Gradient Boosting Machine (GBM) by incorporating novel
regularization methods that effectively reduce the chances of overfitting and complex modeling [29]. The main objec-
tive of this advanced approach, as demonstrated in Equation [f] is to balance the training loss and model complexity,
resulting in the development of streamlined prediction models with exceptional predictive accuracy.

n

Objective(F) = Z (i, F(x) + Q(f)] ©)

i=1
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In this function, the initial portion accurately calculates the loss function (denoted as I(y;, F(x;))), effectively mea-
suring the difference between the actual and predicted values of the output variable. Furthermore, the regularization
penalty term (Q(f;)) plays a crucial role in promoting a more simplified model. It is worth mentioning that this penalty
term often incorporates a combination of L1 and L2 regularization techniques, as illustrated below:

Q(f,):yT+%a/Z|wj|+%/lZw§ )
j=1 =1

Within this mathematical expression, it is imperative to acknowledge the presence of three distinct regularisation
parameters denoted as y, @, and A. The parameter y, when multiplied by the number of leaf nodes represented by
T, plays a pivotal role in regulating the complexity of the model. Moreover, both @ and A act as penalty coefficients
pertaining to the L1 and L2 regularisation terms, respectively. These coeflicients hold significant importance in
attaining optimal regularisation outcomes, further amplifying the model’s simplicity and resilience.

The XGBoost algorithm possesses a remarkable advantage due to its capability to effectively manage a variety of
data preprocessing tasks, which encompass activities like feature engineering, data normalization, and feature scaling.
Consequently, this ability diminishes the necessity for extensive manual preprocessing, consequently saving valuable
time and effort throughout the feature engineering phase as indicated by [30]]. Furthermore, XGBoost integrates built-
in functionalities designed to address missing values within the dataset, thus obviating the requirement for imputation
techniques.

Simultaneously, XGBoost garners acclaim for its rapid processing speed and scalability, rendering it highly suit-
able for efficiently handling extensive datasets. It outshines numerous other machine learning algorithms in terms of
both processing speed and predictive accuracy. Another notable attribute of XGBoost is its capacity to avert over-
fitting, thereby ensuring the generalization of unseen data instances. Nevertheless, XGBoost does confront certain
constraints. One such limitation pertains to the substantial number of hyper-parameters it encompasses, which can
pose challenges during the parameter tuning process, as highlighted in the study by [31]]. Discovering the optimum
combination of hyper-parameter values necessitates meticulous experimentation and can prove to be a time-intensive
endeavour.

3.4. Proposed Hybrid Boosting Prediction Model

We devised an adaptive ensemble learning model to enhance the accuracy and reliability of predicting frequent
ED visitors. The model incorporates an XGBoost algorithm as the foundation, augmented with a feature selection
method that combines Elastic-Net and Local search techniques. To optimise the performance of XGBoost, we im-
plemented a competitive approach using Differential Evolution (DE) and Nelder-Mead optimisation algorithms for
hyper-parameter tuning. Besides, we evaluated three strategies for handling imbalanced data: under-sampling, over-
sampling (SMOTE), and adjusting class weights. By employing this comprehensive approach, we aimed to develop
a robust prediction model that effectively identifies frequent ED visitors with improved precision and generalisability.
Various components of the proposed prediction model are described as follows.

3.4.1. Solutions for addressing imbalanced data

During our investigation, we encountered the challenge of imbalanced data, where the class distribution within the
dataset exhibited a substantial disparity. This issue [32] arises when one class is represented by only a limited number
of samples, referred to as the minority class. At the same time, the remaining samples belong to the other class,
known as the majority class. Imbalanced data classification poses a predicament for classifiers as they tend to exhibit
a bias towards the majority class, leading to imbalanced performance. This bias manifests in solutions favouring
accuracy for the majority class but resulting in poor accuracy for the minority class. To address this issue, we explored
and compared three techniques: over-sampling (employing synthetic samples through methods like SMOTE [33]),
under-sampling [34] (randomly selecting a subset of samples from the majority class to achieve class balance while
disregarding the remaining samples), and adjusting class weights [35]] (assigning higher weights to samples from the
minority class). Through our testing and analysis, we assessed the effectiveness of these techniques in mitigating the
challenges posed by imbalanced data.

12


https://doi.org/10.1101/2024.10.31.24316535
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.10.31.24316535; this version posted November 4, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

3.4.2. Adaptive Elastic Net feature selection

With regard to selecting the most compelling features, we proposed a hybrid feature selection technique consisting
of Elastic-net [36] combined with a fast local search called hill-climbing (HC) [37]. The role of HC is tuning the
control parameters of Elastic-net during the feature selection to improve the performance of the most frequent visitor
prediction model.

Elastic Net (as proposed by Zou and Hastie in 2005 [36]) is a sophisticated linear regression approach that cleverly
marries the L1 regularisation technique of Lasso with the L2 regularisation method of Ridge regression. This unique
fusion of regularisation methods allows Elastic Net to offer a balanced solution that benefits from the strengths of
both Lasso and Ridge regression. The L1 regularization component in Elastic Net plays a crucial role in promoting
sparsity within the solutions it generates, making it a valuable tool for feature selection as it can effectively drive
numerous coefficients to zero. On the other hand, the L2 regularisation element in Elastic Net serves to combat
overfitting by gently pulling the coefficients closer to zero, thus enhancing the model’s generalisation capabilities.
Moving on to the scenario where P represents the count of predictors denoted by xi, x3, ..., xp, the predicted value
of the response variable Y can be expressed as Y’ = wy + wiX] + wyxy + ... + wpxp in line with the fundamental
definition of linear regression. To determine the coefficients vector w’ = [wy, W1, ..., wp], the objective is to minimise
the sum of squared errors of residuals (SSE), which is represented as SSE = ||Y — X«/'||. In cases where the number
of observations surpasses the dimension of features, the optimisation process involves minimising the loss function L
to compute the coefficients in the following manner effectively:

L=SSE+fplleli + A1 = p)lle| ®
P P

l/lh = > lol and |l =} w) where B>0.0<p<1 ©
p=0 p=0

The penalty amount in Elastic Net is determined by adjusting weights and the parameter p. Fine-tuning both g and
p is crucial for optimal results. Elastic Net has two special cases: p = 1 transforms it into LASSO, creating a sparse
model with zero coefficients. p = 0 makes Elastic Net similar to ridge regression, allowing correlated predictors
without restriction on the number of selected predictors.

Although Elastic Net’s capability shines in handling high-dimensional data, conducting feature selection, and
managing correlated features [38]], fine-tuning its control parameters presents a tough challenge. To address this
issue, the current research introduces an efficient local search strategy designed to adjust the parameters of Elastic
Net, encompassing L1-ratio, alpha, and selection methods (‘cyclic’, ‘random’). This optimisation technique adopts
a heuristic search approach known as Hill climbing, which focuses on enhancing the Elastic Net’s configuration by
incrementally refining it based on neighbouring solutions. The iterative nature of this method ensures that the Elastic
Net gradually converges towards the most optimal configuration, striving to achieve the best possible solution. This
iterative process persists until a local optimum is attained, signifying that no further enhancements can be achieved
by transitioning to neighbouring solutions. The detailed steps of this adaptive Elastic Net approach are meticulously
outlined in Algorithm 1, providing a comprehensive guide for implementing this sophisticated optimisation method.

3.4.3. Hyper-parameters tuning

Tuning hyper-parameters in machine learning is of utmost importance due to its direct influence on the model’s
performance and generalisation capabilities. The impact of hyper-parameter tuning is profound and multifaceted, as
it directly affects how well a model can learn from data and make predictions. Indeed, this optimisation process aims
to enhance the model’s accuracy, reduce error rates, and improve other relevant metrics, ultimately leading to better
predictive performance. The ability to properly tune hyper-parameters enables the model to effectively capture the
underlying patterns in the data, thereby enhancing its overall efficacy. Moreover, hyper-parameter tuning ensures that
a machine learning model can generalise well to unseen data. Generalisation is critical to model performance, as it
determines how well a model can predict new, unseen instances. Through hyper-parameter tuning, one can strike the
right balance between under-fitting and overfitting.

In this study, we employed an effective optimisation method, Differential Evolution [39]] (DE) and Nelder-mead [40]]
(NM), to fine-tune four hyper-parameters of the XGBoost model, which exhibited the best performance. The hyper-
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Algorithm 1 Adaptive Elastic Net feature selection

1: procedure ADAPTIVE ELASTIC NET FEATURE SELECTION (AEN)
2: Initialization

3: Initialize UpperB; ,LowerB; > Initialise the Upper and Lower bounds parameters
4 Stephyper = (Minpyper + Maxpyper)/ 10, > Compute the search step size
5: Hyper;.,={S, C} > Initial configuration
6: (features)=Eval(ElasticNet(Hypers,)) > Evaluate Elastic Net performance using the configuration
7 (Performance)=Eval(XGBoost(features)) > Evaluate XGBoost performance using the features
8 for iter < Max;;,, do
9 while r < N + M do

10: Temp = Hyperi,,

11: if < N then

12: Temp, = Temp, + Step; > Neighborhood search
13: end if

14: if Hyperi., > UpperB || Hyperi,, < LowerB then > Configuration is not feasible
15: Hyper;= UpperB; || Hyperi,= LowerB;¥Yi =1, ....m > Forced to be within boundaries
16: else

17: features=Eval(ElasticNet(Temp,))

18: (Performance;)=Eval(XGBoost(features))

19: end if

20: t=t+1

21: end while

22: index,,.x=Max(Performance;)

23: Hyperie,=Hyperindex,,. > Select the best feasible solution and update the parameters

24: Stepuyper = StePuyper — ( M';r, —S1ePpyper) + 1 > S tePnyper linearly decreased

25: end for

26: return Hyperie,

27: end procedure

parameters under consideration were the tree depth, number of estimators, learning rate, and sub-sample rate. We
utilised both accuracy and AUC as metrics to adjust the XGBoost parameters effectively.

DE is a groundbreaking concept in evolutionary algorithms that incorporates differential vectors into a triangle
search and has emerged as a highly favoured population-based optimisation technique, widely adopted for tackling a
diverse array of real problems characterised by noise, dynamics, and multimodality. Among the various components of
DE, the mutation operator stands out as a crucial element driving the algorithm’s success. Several mutation operators
have been proposed within the realm of DE, each offering distinct convergence rates and exploration capabilities. One
of the well-known mutation strategies is DE/best/1/bin, renowned for its ability to converge swiftly, particularly in
handling unimodal problems. However, its efficacy diminishes when faced with challenges posed by local optima,
often culminating in premature convergence while navigating through multi-modal problem landscapes. Equation (8)
mathematically defines this mutation scheme, encapsulating its operational essence within DE.

DE/best/1/bin : fk,g = §best gt g (§r1,g - §r2,g) (10)

where fk,g is a vector of differential of three solutions, including Y bests S > and S r,- In the meantime, { is the mutation
factor which can adjust the step size and speed of exploration ability. Moving on to another evolutionary operator
within DE, we encounter the pivotal role of crossover. The predominant form of crossover method employed is the
binomial approach, characterised by a formulation that involves the trial vector, denoted as U , and the crossover rate,
symbolised as C,, ranging from zero to one as follows.

j=1,2,...D (11)

e { f,ij, if (rand < C,) or (j = sn),
kj —

=4 .
S¥ i otherwise.
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During the crossover process, a specific number of candidates, represented by sn, are selected. This culminates in
the creation of a novel solution through a reasonable combination of the parent and offspring elements, perpetuating
the evolutionary cycle of optimisation as follows.

et _ {z?,f . if (£(UF) < £(T¥)) - Minimisation 1)
k - =2,

T{, otherwise.

4. Experimental results and discussions

In this section, to identify the most effective classification model for predicting frequent ED visitors, we conducted
a comparative analysis of 16 popular machine-learning algorithms. These models encompassed logistic regression
(LR), Stochastic gradient descent (SGD), k-nearest neighbours (KNN), three neural networks (MLP, Perceptron, and
DNN), Decision trees (DT), Extra trees [41] (ET), Random forests [42] (RF), and six ensemble boosting models
(XGBoost [29], AdaBoost [43]], CatBoost [44]], GBM [28]], LightGBM [45], and HGBM [46])).

The prediction results of these models are detailed in Section[4.1} Subsequently, we explored the impact of two
optimisation techniques, DE and Nelder-Mead, on tuning the hyper-parameters of the best-performing classifier, XG-
Boost. The landscape analysis and AUC convergence results are provided in Sectiond.3] Furthermore, we extensively
discussed the performance of the proposed feature selection method in Section[d.4] Lastly, we presented a compara-
tive evaluation of three approaches for addressing imbalanced data in Section 4. 1] These comprehensive analyses and
comparisons shed light on the most accurate and robust techniques for predicting frequent ED visitors, contributing
to developing an effective classification model.

4.1. Fundamental prediction results

The performance of nine ensemble learning models and seven ML methods was assessed, and the statistical results
are presented in Figure [6] Due to utilising 10-fold cross-validation for classifier validation, each box plot represents
the minimum, maximum, and median metrics, with outliers indicated by a plus sign. Analysis of Figure [6(a), (b),
(c), and (d) reveals that XGBoost consistently outperforms other models, except for precision, where LightGBM and
GBM exhibit superior performance. However, all nine ensemble models demonstrate competitive performance, with
accuracy ranging from 76.6% to 78.2%. On average, ensemble models outperform other ML models, including LR,
NNs, and KNN. Supplementary Table provides the formulation of evaluation metrics employed in this study.
Table [5|and Supplementary Table present detailed classification results for eight ensemble and eight ML models,
respectively, with six evaluation metrics. Regarding accuracy, XGBoost is the top-performing model, with an average
of 78%. Notably, LightGBM demonstrates high precision at 85.7% and outperforms other models in this regard.

We employed the Friedman test, a ranked-based statistical test, to determine the best-performing classifier among
the 16 models utilised. This test extends the Wilcoxon signed-rank test and is the nonparametric equivalent of one-way
repeated measures. We calculated the rank of each model based on all evaluation metrics and presented the results of
the Friedman test in Table[6] Particularly, XGBoost achieved the highest rank compared to other models in terms of
accuracy, F1 score, and log loss. While our models have demonstrated high accuracy and precision, the AUC metric
presents an area for improvement, as noted in Table[5] The AUC reflects the trade-off between the true positive rate
and the false positive rate, and achieving a higher AUC value is desirable. To address this concern and enhance the
AUC performance, we have explored three methods, which are discussed in the subsequent section. These methods
aim to rectify the issue and optimise the balance between true positive and false positive rates, ultimately improving
the AUC metric.
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Figure 6: Statistical results of nine ensemble learning models and seven popular ML methods in predicting the frequent ED visitor (+3). 10-
fold cross-validation was used to evaluate the performance of the models. For accuracy, precision and Fl-score, higher values indicate better
performance; however, a low value for Log loss shows that the model is performing well in terms of its predictive accuracy.

Table 5: Statistical results of eight ensemble learning models with six performance evaluation metrics for predicting the frequent ED visitors (;=3
visits per year)

AdaBoost CatBoost
Accuracy  Precision Recall F1_score AUC log_loss Accuracy  Precision Recall F1_score AUC log_loss
Min 0.766 0.556 0.003 0.007 0.501 7.983 Min 0.773 0.633 0.065 0.118 0.527 7.730
Max 0.769 0.661 0.004 0.008 0.502 8.071 Max 0.776 0.653 0.071 0.128 0.529 7.838
Mean 0.768 0.585 0.004 0.008 0.502 8.024 Mean 0.774 0.642 0.068 0.123 0.528 7.790
Median | 0.768 0.573 0.004 0.008 0.502 8.029 Median | 0.775 0.640 0.069 0.124 0.528 7.786
STD 8.76E-04 3.67E-02 3.09E-04 6.11E-04 1.52E-04 3.02E-02 | STD 1.04E-03  6.66E-03 2.03E-03 3.36E-03 9.21E-04 3.61E-02
XGBoost HGBM
Accuracy Precision  Recall FI1_score AUC log_loss Accuracy Precision  Recall F1_score AUC log_loss
Min 0.779 0.620 0.131 0.216 0.553 7.534 Min 0.770 0.658 0.030 0.058 0.513 7.848
Max 0.782 0.638 0.139 0.228 0.557 7.632 Max 0.773 0.674 0.036 0.069 0.515 7.947
Mean 0.780 0.630 0.134 0.221 0.555 7.586 Mean 0.771 0.666 0.034 0.064 0.514 7.898
Median | 0.780 0.630 0.135 0.222 0.556 7.594 Median | 0.771 0.666 0.034 0.064 0.514 7.902
STD 1.02E-03  5.34E-03 3.03E-03 4.37E-03 1.46E-03 3.54E-02 | STD 1.06E-03  5.03E-03 1.82E-03 3.31E-03 7.95E-04 3.65E-02
LightGBM Extra Tree
Accuracy  Precision Recall F1_score AUC log_loss Accuracy Precision Recall F1_score AUC log_loss
Min 0.766 0.814 0.000 0.001 0.500 7.985 Min 0.767 0.688 0.011 0.021 0.505 7.934
Max 0.769 0.917 0.001 0.003 0.501 8.072 Max 0.770 0.739 0.012 0.025 0.505 8.031
Mean 0.768 0.857 0.001 0.002 0.500 8.026 Mean 0.769 0.705 0.012 0.023 0.505 7.979
Median | 0.768 0.845 0.001 0.002 0.501 8.029 Median | 0.769 0.703 0.011 0.022 0.505 7.981
STD 9.37E-04 3.63E-02 3.09E-04 6.18E-04 148E-04 3.23E-02 | STD 9.52E-04 1.59E-02 5.89E-04 1.14E-03 2.58E-04 3.29E-02
Random Forest Decsion Tree
Accuracy Precision  Recall ~ Fl_score AUC log_loss Accuracy Precision  Recall F1_score AUC log_loss
Min 0.769 0.738 0.020 0.039 0.509 7.876 Min 0.767 0.537 0.027 0.052 0.510 7.944
Max 0.772 0.791 0.022 0.043 0.510 7.969 Max 0.770 0.571 0.035 0.066 0.513 8.036
Mean 0.771 0.756 0.021 0.041 0.509 7918 Mean 0.769 0.551 0.030 0.057 0.511 7.988
Median | 0.771 0.747 0.021 0.041 0.509 7918 Median | 0.769 0.551 0.029 0.055 0.511 7.991
STD 8.98E-04 1.78E-02 7.85E-04 1.49E-03 3.91E-04 3.10E-02 | STD 8.78E-04 1.02E-02 2.76E-03 4.93E-03 9.90E-04 3.03E-02
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Table 6: Mean ranks and p — value computed by Friedman test for 16 machine learning models with four performance evaluation metrics for
predicting the frequent ED visitors (;=3 visits per year)

Metric XGBoost AdaBoost CatBoost HGBM  LightGBM Extra Tree Random Forest Decsion Tree
Accuracy 1.0 10.5 2.0 3.0 10.5 5.1 4.0 6.4
Precision 7.1 8.8 6.3 5.1 14 4.1 3.1 10.5

F1 Score 3.0 13.6 4.7 6.6 14.7 11.6 9.1 7.5

Log loss 1.0 10.5 2.0 3.0 10.5 5.1 4.0 6.4
Average Rank 3.0 10.9 3.8 44 9.3 6.5 5.1 7.7
P-value 0.0E+00 1.1E-39 7.8E-28 8.1E-35 9.9E-39 1.8E-37 2.6E-35 6.6E-40
Metric GBM SGD Passive AC  Logestic KNN MLP Perceptron DNN
Accuracy 8.6 14.1 14.6 12.3 14.3 8.0 14.7 7.0
Precision 1.8 14.0 14.2 13.4 12.8 9.5 14.5 9.4

F1 Score 12.6 3.6 5.7 15.7 32 10.3 52 8.9
Log loss 8.5 14.1 14.6 12.3 14.3 8.0 14.7 7.0
Average Rank 7.9 11.5 12.3 13.4 11.2 8.9 12.3 8.1
P-value 1.8E-36 1.5E-04 9.5E-05 1.7E-39  1.4E-48 1.7E-38 5.2E-06 7.8E-40

4.2. The results of handling imbalanced data

To address the challenge of imbalanced data and improve the classifier’s AUC performance, we conducted com-
parative experiments using three methods: over-sampling (SMOTE), under-sampling, and adjusting class weights.
Initially, we identified the best-performing model among the 16 ML models: XGBoost. Subsequently, we examined
the impact of different weights assigned to the minority (positive) class, ranging from two to five. Figure[/|illustrates
the performance of XGBoost with weighted class in terms of AUC and accuracy. Interestingly, we observed a direct
relationship between increasing the class weight and AUC. However, there was a decrease in accuracy when raising
the class weight from 80% to 67%. Therefore, it is crucial to identify an optimal weight that strikes a balance between
AUC and accuracy. In this particular case study, the optimal weight was determined to be 3, representing a suitable
trade-off between AUC performance and accuracy.
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Figure 7: A trade-off between the Accuracy and AUC using adjusted class weight for XGBoost.

Figure [§] presents a comparison of three imbalanced data handling techniques, along with the original XGBoost
model, using four evaluation metrics. When considering AUC, the methods of adjusting class weight and under-
sampling emerge as the best performers, achieving rates of 68% and 67%, respectively. Notably, these two methods
have substantially improved the recall rate from 21% to 55% and 68%. Enhancing recall is of paramount importance as
it enables the model to more accurately identify positive instances, thereby reducing the occurrence of false negatives.
This is particularly significant in domains where the repercussions of missing positive instances, such as in medical
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diagnoses or fraud detection, can be severe. A higher recall rate signifies a reduced number of missed positive
instances, resulting in heightened sensitivity and a more reliable identification of true positives.
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Figure 8: Compared techniques to mitigate the problem of imbalanced data using XGBoost in predicting the frequent ED visitors (+3).

4.3. Hyper-parameters tuning

Figure [9) illustrates the landscape of hyper-parameter tuning for XGBoost. The results indicate that increasing
the depth of trees enhances accuracy; however, for achieving a high AUC, the optimal range appears to be around
10. Moreover, we observed that a larger number of estimators yielded better performance. Interestingly, utilising the
entire training dataset (subsample=1.0) for training the trees demonstrated the highest accuracy and AUC. Finally,
based on Figure[9](d), the optimal learning rate value was found to be approximately 0.4.
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Figure 9: The landscape of Hyper-parameters tuning using Grid search for a number of estimators, depth of trees, sub-sample rate and learning
rate. Higher values indicate better performance for accuracy and AUC.

In order to demonstrate the convergence speed of both DE and Nelder-Mead in optimising the hyper-parameters
of XGBoost, we conducted ten independent runs for each optimiser with randomly initialised parameters. Figure
indicates the convergence pattern of the two optimisers. Nelder-Mead exhibits rapid initial convergence within the first
few evaluations (less than 200); however, it becomes trapped in a local optimum and fails to improve the AUC further.
Conversely, although DE has a slower convergence rate compared to Nelder-Mead, it maintains an upward trend
throughout the optimisation process and ultimately surpasses Nelder-Mead’s performance. Therefore, if the training
runtime is not a constraint, we recommend utilising DE for hyper-parameters tuning as it demonstrates better overall
performance. Conversely, if runtime is a crucial factor, Nelder-Mead can be a more suitable choice for fine-tuning the
hyper-parameters.
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Figure 10: Hyper-parameters tuning using DE and Nelder-mead based on AUC.

4.4. Feature selection results

The effectiveness of the proposed adaptive method for optimal feature selection, as outlined in Section 3:4.2]
is demonstrated in Figure The graph showcases the efficiency achieved when utilising the optimal subset of
features. It is observed that increasing the number of optimal features from five to seven leads to improvements in
both accuracy and AUC, with gains of approximately 6% and 4%, respectively. However, beyond seven features, both
accuracy and AUC experienced a decline. Consequently, the optimal number of features for this particular scenario
is seven. These seven features comprise Age, Sex, ICD10, Disposition, Year (arrival time in ED), State, and Suburb,
which collectively offer the best performance in terms of accuracy and AUC for the given dataset and classification
task.
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Figure 11: Feature selection impact on the performance of XGBoost in predicting the frequent ED visitors (+3). The best feature number and
configuration is seven, including Age, Sex, ICD10, Disposition, Year (arrival time in ED), State, and Suburb.

5. Conclusions

Frequent ED visitors are a significant concern within primary and emergency care settings. Machine learning
models have gained popularity in medicine and healthcare and are being increasingly utilised. ML models continu-
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ously advance, present novel possibilities, and witness notable theoretical advancements. These advancements have
led to improved accuracy and enhanced reliability of ML models.

In this research, an Adaptive ensemble learning—based prediction model was devised and evaluated against 16
prominent machine learning models using a large-scale dataset collected from Canberra Hospital, a tertiary public
hospital in ACT, Australia, between 1997 and 2022 with 1.6 million records of patients’ episodes. Also, three ways
of adjusting were examined to deal with the challenge of imbalanced data. At the same time, a combination of
two feature selection approaches incorporating Elastic-Net and local search was proposed to identify the best feature
combination. Hyper-parameter tuning was managed and done using a population-based set of computer instructions
and a local search. The performance of these ways of doing things was compared to determine their effectiveness in
optimising the model’s abilities.

The experimental modelling results revealed that the proposed model considerably outperformed other models in
terms of five metrics: accuracy, Recall, F1-score, Area under the ROC curve (AUC), and Log loss at 0.78 (95% CI
0.78-0.79), 0.68 (95% CI 0.68-0.68), 0.68 (95% CI 0.68-0.69), 0.68 (95% CI 0.69-0.70), and 7.4 (95% CI 7.2-7.5),
respectively.

Our future research aims to explore the potential impact of additional features on enhancing prediction results.
Specifically, we plan to investigate the inclusion of weather parameters and pollen count levels, as these factors have
been found to influence various health conditions. Furthermore, we aim to expand our analysis to encompass a higher
rate of ED visits, such as ten visits per year, to gain a deeper understanding of the predictive capabilities of our model.
Additionally, we intend to explore time-series forecasting machine learning models as part of our methodology. By
incorporating these advancements, we anticipate further improving the accuracy and reliability of our predictions in
the context of frequent ED visits.
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Data and Code availability

For information regarding the availability of data used in this study, interested individuals can obtain access by
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central role in supplying a wide range of machine learning models employed in this research. Furthermore, ensemble
models such as XGBoostEl, LightGBMEl, and CatBoostEl, accessible open-source platforms were utilized. TensorFlow
E], an open-source machine learning framework developed by Google, was specifically employed for implementing
deep neural networks (DNN) and convolutional deep neural networks (CDNN). In order to tune the hyper-parameters,
we applied a well-known optimisation method, Differential Evolution (DEﬂ from the Scipy[]library. By combining
these libraries and frameworks, a comprehensive array of tools and algorithms were utilized to develop and analyze
machine learning models effectively.
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Appendix A. Supplementary materials

Table A.1: Descriptions of the features considered in this study

Num | Features name Description
1 MRN Patient ID
2 Episode Unique ID of the episode
3 Treat-Doc-Date The time a junior doctor sees a patient
4 SNR-Doc-Date The time a senior doctor sees a patient
5 Dep-Ready-Date The time a patient is ready to depart. For patients who are
admitted, this is the end of clinical care and the start of
bed block. For patients going home, this is the time that
clinical care ends
6 Admit-Date For admitted patients, the time that they are admitted
7 Sex Female or male
8 Age Age at episode commencement
9 Suberb suburb
10 State State NSW/ACT etc.)
11 Diag-ICD The ICD9 and ICD10 code
12 Diag-Desc Description of the ICD9 and 10 code
13 DS-Desc the disposition of the patient (Admit / Did Not Wait
(DNW) / Left Own Risk (LOR), Home, transferred to an-
other hospital, died
14 DS-Extract-Code Non-admitted patient emergency department service
episode—episode end status, code N (https://
meteor.aihw.gov.au/content/746709)
15 UN-Code Ward the patient was admitted to (if admitted)
16 SP-Code The speciality a patient was admitted to
17 Earliest DTTM The arrival time for the patient in ED
18 Triage Priority Triage category
Table A.4: The performance evaluation metrics.
Abbreviation | full name formula
TPR True Positive Rate = %
FPR False Positive Rate = T{EFP
PPV Positive Predictive Value = W’#
ACC ACCl.ll‘ficy = TPF;N:%
PRE Precision = TR P
REC Recall = TP];W
SPF Specificity = FPT +NTN
AUC Area Under the ROC Curve = J(;l TPR(FPR™\(t)),dt
Fl-score Harmonic mean of PPV and recall | = z;l;ﬁ‘iml = 5oz ,,2:;}’; vt
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Table A.2: The technical review of the Deep and Machine learning methods in predicting frequent ED visitors

Ref | Title Dataset features Case study | Daterange | Sample | Al models Best- Accuracy
size performed
method

12 ML to improve fre- | Demographic: sex, age, birth | Quebec Jan 2012 | 43K Gradient boost- | GBM AUC=814,
quent ED use predic- | and death date, patient resi- | (Canada), until  the | and ing  machines SEN=69.9,
tion: a retrospective co- | dence place; Physician reim- | age>18 Dec 2013, | 15K (GBM), Naive SPE=78.9,
hort study bursement: service date, place ED visit Bayes (NB), PPV=9.3,

of service place (emergency, frequency>4 Neural net- NPV=98.8
medical clinic, etc.), physician works  (NN),
speciality, diagnosis (ICD-9). Random forests
A medical act done by the (RF)
physician: The hospital reg-

ister, which contains informa-

tion about the reasons for hos-

pitalisation (main diagnosis and

up to 25 secondary diagnoses

coded in ICD-10), dates of ad-

mission and release from the

hospital, and all medical pro-

cedures performed during the

hospitalisation.

151 Frequent ED use by | age, presence of chronic ob- | Quebec 2012 and | 17K Multivariate Focused on | reported odd
older adults with am- | structive pulmonary disorder | (Canada) 2013, logistic regres- | one method | ratios (OR)
bulatory care sensitive | or diabetes, higher comor- | age>65 ED visit sion with the as-
conditions bidity index, common mental | years frequency>4 sociated 99%

health disorders, polypharmacy, confidence
higher number of past ED and intervals
specialist visits, rural residence, (CI).

and higher material and social

deprivation

[47] | Comparative analysis | demographics (i.e. age, gen- | Korea between 9K Logistic re- | Random Classification
of ML approaches for | der, type of insurance, residen- | Institute 2008 and gression, SVM, | forest error= 3.77,
predicting frequent ED | tial region); (ii) reason for visit; | for Health | 2015, ED Random forest, %  Sensitiv-
visits (iii) access to ED (i.e. sea- | and Social | visit fre- Bagging, and ity= 095,

son of visit, day of the visit, | Affairs quency >4 Voting PPV= 098,
type of transportation visited AUC= 0.96,
ED (private vs public); and Calibration
(iv) hospitalization (i.e. admit- error= 10.3.
ted/discharged after initial ED %

visit).

[18] | Risk Prediction of ED | Demographics, Visit history, | Seoul Jan 2010 | 7K logistic regres- | LGBM Sensitivity=0.76,
Visits in Patients With | Clinical information, Labora- | National and  Dec sion, random Specificity=
Lung Cancer Using ML | tory Test, Vital Signs University 2017 forest, XGB, 0.58, AU-

Bundang and light ROC= 0.73,

Hospital, gradient boost- PRAUC=

age>18 ing  machine 0.24
(LGBM)

148 Predicting frequent | Demographics (age, 3-digit zip | NYCLIX 2009 to | 8K Logistic regres- | AdaBoost Classification
ED use by people with | code), visit history (ED, inpa- | (New York | 2012 sion, Lasso, error= 5.32,
epilepsy tient, and outpatient), radiology | Clinical In- Elastic net, AUC= 0.88

encounters, and comorbidities | formation CART, Ran- Sensitivity=

(ICD-9 codes collapsed into 33 | Exchange) dom  Forests, 30, PPV=63,

comorbidities) AdaBoost, Calibra-
SVM tion=>5

149 A ML approach to pre- | demographic information (in- | children’s Jan 1,2012, | 29K Decision trees, | GBM AUC= 84
dicting need for hospi- | cluding patient sex, age, race, | hospital and Dec 31, LASSO, ran-
talization for pediatric | and ethnicity), patient acuity at | UK(2 < | 2015 dom  forests,
asthma exacerbation at | triage (measured by the Emer- | age < 18) and GBM

the time of ED triage

gency Severity Index [ESI]),
and the first recorded measure-
ment of (weight, oxygen satura-
tion, heart rate, and respiratory
rate).
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Table A.3: Multivariable analysis to examine the association between frequent ED visits and various age groups, including odds ratio (OR) with
95% confidence intervals (CIs). The analysis included 253K female and 276K male patients, with a total of 787K and 822K visits, respectively,
spanning from 1997 to 2022. The results revealed a significant association between frequent ED visits and male patients over the age of 64, with
an OR identified at 1.02. The statistical significance of the interaction between frequent ED visitors (3+ visits per year) and age was established
across all age groups, as indicated by the p-value being less than 0.05.

Covariate Odds Ratio | CI Lower | CI Upper | P-value
Sex (female) * (age < 14) 0.485 0.480 0.490 0

Sex (female) * (14 < age < 24) | 0.869 0.860 0.879 1.20E-135
Sex (female) * (24 < age < 48) | 0.733 0.727 0.739 0

Sex (female) * (48 < age < 64) | 0.607 0.600 0.615 0

Sex (female) * (age > 64) 0.886 0.877 0.895 1.39E-114
Sex (male) * (age < 14) 0.485 0.481 0.490 0

Sex (male) * (14 < age < 24) 0.508 0.502 0.514 0

Sex (male) * (24 < age < 48) 0.583 0.578 0.588 0

Sex (male) * (48 < age < 64) 0.624 0.617 0.632 0

Sex (male) * (age > 64) 1.022 1.011 1.033 8.46E-05

Table A.5: Statistical results of eight machine learning models with six performance evaluation metrics for predicting the frequent ED visitors (;=3
visits per year)

MLP DNN
Accuracy  Precision Recall F1_score AUC log_loss Accuracy Precision Recall F1_score AUC log_loss
Min 0.767 0.539 0.013 0.026 0.505 7.953 Min 0.767 0.534 0.014 0.027 0.506 7.947
Max 0.770 0.611 0.022 0.043 0.509 8.048 Max 0.770 0.622 0.036 0.068 0.513 8.035
Mean 0.768 0.570 0.017 0.033 0.507 8.000 Mean 0.769 0.572 0.022 0.042 0.508 7.993
Median | 0.768 0.569 0.015 0.029 0.506 8.003 Median | 0.768 0.560 0.022 0.042 0.508 8.001
STD 8.78E-04 2.11E-02 3.57E-03 6.70E-03 1.32E-03 3.03E-02 | STD 9.21E-04 3.11E-02 7.60E-03 1.39E-02 2.64E-03 3.18E-02
SGD Perceptron NN
Accuracy Precision  Recall F1_score AUC log_loss Accuracy  Precision Recall F1_score AUC log_loss
Min 0.311 0.000 0.000 0.000 0.500 7.996 Min 0.289 0.000 0.000 0.000 0.500 8.020
Max 0.768 0.333 0.951 0.392 0.538 23.813 Max 0.768 0.328 0.945 0.387 0.548 24.573
Mean 0.645 0.222 0.275 0.178 0.516 12.255 Mean 0.605 0.236 0.369 0.230 0.523 13.645
Median | 0.721 0.262 0.119 0.152 0.512 9.623 Median | 0.687 0.264 0.232 0.256 0.527 10.815
STD 1.76E-01  1.20E-01 3.62E-01 1.52E-01 1.47E-02 6.08E+00 | STD 1.79E-01 9.65E-02 3.61E-01 1.57E-01 1.67E-02 6.20E+00
Passive Aggressive Classifier Logistic Classifier
Accuracy  Precision Recall F1_score AUC log_loss Accuracy Precision Recall F1_score AUC log_loss
Min 0.275 0.238 0.000 0.000 0.500 8.006 Min 0.766 0.000 0.00E+00  0.00E+00  0.500 7.989
Max 0.768 0.500 0.959 0.390 0.538 25.047 Max 0.769 1.000 2.68E-05 5.36E-05 0.500 8.080
Mean 0.617 0.307 0.324 0.181 0.515 13.230 Mean 0.767 0.237 1.33E-05  2.67E-05  0.500 8.033
Median | 0.731 0.278 0.087 0.129 0.509 9.300 Median | 0.767 0.100 1.33E-05  2.65E-05  0.500 8.037
STD 2.05E-01 8.02E-02 4.15E-01 1.62E-01 1.51E-02 7.09E+00 | STD 9.29E-04 3.25E-01 141E-05 2.81E-05 9.88E-06 3.21E-02
KNN Extreme Learning Machine (ELM)
Accuracy  Precision  Recall Fl1_score AUC log_loss Accuracy  Precision Recall F1_score AUC log_loss
Min 0.724 0.315 0.161 0.213 0.528 9.399 Min 0.766 0.288 1.59E-04  3.18E-04  0.500 7.990
Max 0.728 0.334 0.168 0.223 0.533 9.528 Max 0.769 0.667 1.44E-03  2.87E-03  0.501 8.081
Mean 0.726 0.324 0.164 0.218 0.530 9.462 Mean 0.767 0.472 6.01E-04  1.20E-03  0.500 8.033
Median | 0.726 0.323 0.164 0.217 0.530 9.460 Median | 0.767 0.500 4.67E-04  9.33E-04  0.500 8.036
STD 1.10E-03  4.94E-03 2.06E-03 2.86E-03 1.36E-03 3.81E-02 | STD 9.23E-04 1.10E-01 4.56E-04 9.09E-04 1.70E-04 3.19E-02
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