1	Title
2	Are there mortality improvements with newer interventions in adult cardiac surgery? Evidence
3	from 73 meta-analyses
4	
5	Short Title
6	Mortality improvements in adult cardiac surgery
7	
8	Austin Parish, MD, George Tolis, Jr., MD, John P.A. Ioannidis, MD, DSc
9	
10	Department of Emergency Medicine, Brookdale Hospital Medical Center, Brooklyn, New York,
11	11212, USA (AP)
12	
13	Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
14	02115 (GT)
15	
16	Meta-Research Innovation Center at Stanford (METRICS), Stanford University, and Departments of
17	Medicine and of Epidemiology and Population Health, Stanford University School of Medicine,
18	Stanford, CA 94305, USA (JPAI)
19	
20	Address for Correspondence
21	George Tolis, Jr. MD, Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard
22	Medical School, 75 Francis Street, Boston MA 02115 Email : gtolis@bwh.harvard.edu
23	
24	Funding: none

- 25 Disclosure statement: The authors have no conflicts of interest.
- 26 Data sharing statement: All data are available from the authors upon request.
- 27 Independent data access and analysis: The corresponding author as well as the remaining two authors
- had full access to all the data in the study. The corresponding author takes responsibility for its
- 29 integrity and the data analysis.

31 ABSTRACT

Background In the last two decades, many new interventions have been introduced with the ultimate goal of improving overall postoperative outcomes after cardiac operations in adults. We aimed to assess how often randomized controlled trials (RCTs) in adult cardiac surgery found significant mortality benefits for newer interventions versus older ones, whether observed treatment effect estimates changed over time and whether RCTs and non-randomized observational studies gave similar results.

Methods We searched journals likely to publish systematic reviews on adult cardiac surgery for
 meta-analyses of mortality outcomes and that included at least one RCT, with or without
 observational studies. Relative treatment effect sizes were evaluated overall, over time, and per study

41 design.

Results 73 meta-analysis comparisons (824 study outcomes on mortality, 519 from RCTs, 305 from 42 observational studies) were eligible. The median mortality effect size was 1.00, IQR 0.54-1.30 (1.00 43 among RCTs, 0.91 among observational studies, p=0.039). 4 RCTs and 6 observational studies 44 reached p<0.005 favoring newer interventions. 2/73 meta-analyses reached p<0.005 favoring the 45 newer interventions. Effect size for experimental interventions relative to controls did not change 46 47 over time overall (p=0.64) or for RCTs (p=0.30), and there was a trend for increase in observational studies (p=0.027). In 34 meta-analyses with both RCTs (n=95) and observational studies (n=305), the 48 median relative summary effect (summary effect in observational studies divided by summary effect 49 50 in RCTs) was 0.87 (IQR, 0.55-1.29); meta-analysis of the relative summary effects yielded a summary of 0.93 (95% CI, 0.74-1.18). 51

52 Conclusions The vast majority of newer interventions had no mortality differences over older ones 53 both overall and in RCTs in particular, while benefits for newer interventions were reported more 54 frequently in observational studies.

55 Keywords

56 cardiac surgery, mortality, death, meta-analysis, bias

57

58 Abbreviations

- 59 HR: hazard ratio
- 60 OR: odds ratio
- 61 RCT: randomized controlled trial
- 62 RR: risk ratio
- 63 SRMA: systematic review and meta-analysis
- 64

65 **INTRODUCTION**

Although adult cardiac surgery was officially introduced as a subspecialty of thoracic surgery 66 67 100 years ago with the first closed mitral commissurotomy (1), it did not become widely clinically applicable until more than three decades later, with the development of cardiopulmonary bypass (2). 68 The expanded treatment options afforded by cardiopulmonary bypass transformed the initial scattered 69 70 heroic interventions by a handful of surgeons into a surgical discipline with a strong clinical and 71 research record. Adult cardiac surgery has been shown to offer very effective interventions for 72 common conditions such as coronary artery disease, various valvulopathies and diseases of the great 73 vessels (3-6), and for some less common ones, e.g. intracardiac and thoracic tumors or abdominal 74 tumors with vascular extension into cardiac chambers (7,8). Many well-established effective 75 interventions are reproducible by a variety of academic and community-based surgeons. Nevertheless, there is also a large and rapidly growing literature in the field attempting to assess 76 77 newer interventions or modifications of established interventions. Benefits and advantages could come in different forms. A newer intervention may represent an invasive procedure treating a 78

79 previously medically observed, non-intervenable condition, or may involve a more

invasive/aggressive approach than the older procedure which has historically represented the gold
standard. Typically, the goal would be to show that the new intervention affords a mortality benefit in
order to justify it. Alternatively, a new intervention may not aim to improve mortality, but may be
considered to have less invasiveness (and hence perhaps fewer complications and/or lesser cost),
therefore rendering it preferable to the established standard-of-care if non-inferiority regarding
mortality could be demonstrated.

The gold standard for testing and evaluating treatment interventions is afforded by 86 87 randomized controlled trials (RCTs), especially when expected effects are likely to be modest and risk-benefit ratios need careful examination. Moreover, it is widely established that when many 88 RCTs exist, careful systematic review and meta-analysis may help examine the overall evidence to 89 hape guidance for eventual clinical decision-making. Many non-randomized studies are also 90 91 conducted and published. This is even more true for surgical specialties where RCTs may be difficult to conduct (9-11). These non-randomized (henceforth called observational) studies can also be 92 examined in meta-analyses and may also influence eventual guidance and decision-making. The 93 relative merits and comparative outcomes of observational versus randomized evidence has been 94 95 heavily contested and debated across diverse clinical areas across medicine. Some meta-research 96 evaluations have combined data from multiple meta-analyses where both RCTs and observational studies are available on the same topic (12-14). Some evaluations suggest that, on average, RCTs and 97 98 observational studies yield similar estimates of the treatment effect (12). Others have found that observational studies tend to have exaggerated estimates of benefit compared with RCTs (13,14). To 99 our knowledge, no such systematic evaluation has been performed including diverse topics in the 100 101 field of adult cardiac surgery, a field where many observational studies publish estimates of intervention effectiveness. 102

Here, we undertook a meta-research evaluation that systematically identified and analyzed meta-analyses of adult cardiac surgery interventions where the outcome was mortality and where at least one RCT was available. We aimed to assess how often RCTs in the field found significant benefits for newer interventions versus older ones or doing nothing; whether treatment effect estimates changed over time in the last several decades; and whether RCTs and observational studies on the same intervention comparison give similar results.

109 METHODS

110 Search strategy and eligibility criteria

This is a meta-research project (15) reported following the PRISMA 2020 checklist for 111 systematic reviews and meta-analyses (16), adapted to our specific meta-research design. 112 We considered as eligible all systematic reviews and meta-analyses (SRMAs) related to adult 113 cardiac surgery that contained randomized controlled trials (RCTs) (regardless of whether 114 observational non-randomized studies were also included or not) and summarized all-cause mortality 115 outcomes. We searched in publication venues likely to publish most of these adult cardiac surgery 116 SRMAs. Specifically, the search strategy captured for further screening all SRMAs published in the 117 Journal of Thoracic and Cardiovascular Surgery and Annals of Thoracic Surgery (the two primary 118 119 journals specializing in the field of interest) and all SRMAs that were likely to address cardiac 120 surgery in any of the 4 highest impact factor surgical journals, the 4 highest impact factor general medical journals, and the comprehensive Cochrane Database of Systematic Reviews. The complete 121 122 search string was ((Annals of Surgery [SO] OR Surgery [SO] OR JAMA Surgery [SO] OR British Journal of Surgery [SO] OR New England Journal of Medicine [SO] OR JAMA [SO] OR Lancet 123 [SO] OR BMJ [SO] OR Cochrane Database of Systematic Reviews [SO]) AND ('cardiac surgery' OR 124 125 'heart surgery' OR 'coronary bypass' OR CABG OR 'valve surgery')) OR (ann thorac surg[Journal]

126 OR j thorac cardiovasc surg[Journal]) AND (systematic[sb] OR meta-analysis[sb]). The search was

127 last updated on August 1^{st} , 2023.

128 Two authors (GT/AP) screened the abstracts of all retrieved items for eligibility. Items were 129 excluded if they were not SRMAs, not studying the effect of interventions on all-cause mortality, 130 contained no RCTs, or were studying topics unrelated to current adult cardiac surgery. When 131 SRMAs on the same comparison and outcomes (duplicates) were identified, the SRMA with most RCTs was included; with ties, we included the one that had more observational studies. 132 133 Data extraction from eligible meta-analyses 134 For all included eligible SRMAs, we extracted journal, year of publication, and data for allcause mortality outcomes, including the specific outcome, effect metric (odds ratio [OR], risk ratio 135 [RR], hazard ratio [HR], or incident rate ratio [IRR]), specific comparison (experimental and control 136 groups), the overall reported meta-analysis summary effect and effects from individual studies 137 (summarized in tables or forest plots). For each individual study, we extracted the effect size, 95% 138 confidence interval (CI), and the 2x2 table whenever available. When SRMAs presented all-cause 139 mortality outcomes for different timepoints, all timepoints were extracted. 140 The summary estimate presented by the authors in the SRMA was extracted. When both 141 142 adjusted and unadjusted study results were synthesized, we preferred the latter. For 22 SRMAs and a 143 total of 221 individual studies, a summary estimate was not available, but we could calculate OR from 2x2 tables of the individual studies and obtain the summary OR thereof. 144 145 For each comparison, we recorded whether the comparison was between an active experimental group and usual care, placebo (sham) or an active control group. We also assessed and 146 recorded the direction of each eligible comparison. Whenever an older intervention was the 147

experimental group and a newer intervention was the control group, we inverted the effect sizes (e.g.

149 3 became 1/3=0.33), so that eventually all comparisons in our analysis reflect the comparison of a

150	newer intervention versus an older one (or nothing/placebo/sham). Accordingly, effect sizes (relative
151	risks) <1.0 represent a reduction in mortality favoring the newer intervention. Whether such coining
152	(inversion) was needed was determined by consensus between all authors (AP/GT/JPAI) regarding
153	which intervention is newer.
154	Validation of data from primary studies
155	We randomly selected 30 individual studies from the 34 SRMAs that contained both RCTs
156	and observational studies (from a total of 400 individual studies, n=95 RCTs and n=305
157	observational studies) and re-calculated the study effect to confirm the numerical effect reported by
158	the SRMA authors.
159	Statistical techniques
160	Random effects meta-analysis was carried out using the Sidik-Jonkman estimator (17). All
161	effects were log-transformed before meta-analysis. Heterogeneity was estimated with the Higgins and
162	Thompson's I ² statistic and Cochran's Q test (18,19). Meta-analysis calculations were performed
163	using the meta package in R (20). Continuous data was also summarized using medians and
164	interquartile ranges (IQR); the Spearman correlation coefficient was calculated between continuous
165	variables (21).
166	All comparisons of interventions were classified into two types, type A (comparing a newer
167	less invasive method versus an older more invasive method looking at non-inferiority) and type B
168	(comparing a newer more invasive method versus an older less invasive method looking at
169	superiority). Type B includes also all comparisons against doing nothing (or giving placebo/sham).
170	Sensitivity analyses were performed where the summary effect was inverted for all type A
171	comparisons.

For those SRMAs that included also observational studies, we compared the results of RCTs
versus observational studies in each topic by obtaining the relative summary effect, i.e. the fixed

174	effects summary effect across observational studies divided by fixed effects summary effect across
175	RCTs) (22). We then synthesized the relative summary effects across all topics that included the
176	RCTs and observational studies. A relative summary effect <1.0 suggests that the observational
177	studies show better results for the newer intervention regarding mortality than RCTs.
178	Statistical significance was assessed at two levels, $\alpha = 0.05$ (suggestive significance) and $\alpha =$
179	0.005 (formal statistical significance), as proposed by Benjamin et al. (23).
180	R version 4.1.0 was used for all calculations (R Core Team 2021).
181	RESULTS
182	Eligible SRMAs and single studies
183	Our literature search identified 927 items. Of these, 531 (57%) were unrelated to cardiac
184	surgery, 170 (18%) included no RCTs (18%), 50 (5%) did not include mortality outcomes, 26 (3%)
185	were not SRMAs presenting extractable data, 23 (2%) were not studies of interventions, 31 (3.3%)
186	were repeat topics, and 1 was withdrawn. Of the 95 remaining publications of SRMAs, 61 (64%)
187	were found to have extractable data on mortality from forest plots and were included (Figure 1). For
188	the other 34 that had no clearly extractable data per study in forest plots, the corresponding authors
189	were contacted, but none offered usable data. Of the 61 publications, 25 (41%) were published in the
190	Journal of Thoracic and Cardiovascular Surgery, 22 (36%) in Annals of Thoracic Surgery, 12 (20%)
191	in the Cochrane Database of Systematic Reviews, and 2 (3%) in Annals of Surgery.
192	10 of the 61 papers contained two or more different eligible comparisons (n=2 papers) or
193	timepoints for the comparison of the same intervention (n=8 papers). Overall, 73 different
194	comparisons were eligible for our analyses; of them, 6 (8%) were inverted to consistently have the

newer (experimental) intervention compared against the older (control) intervention. The 73

196 comparisons are shown in **Supplementary Table 1.** They included a total of 824 mortality study

outcomes, 519 RCTs and 305 observational ones. Of the 824, 490 were presented as OR, 242 RR, 55

HR, and 37 IRR metrics. Across the 73 meta-analyses, each contained a median of 10 studies (IQR 6
to 17). Of the 73 meta-analyses, 29 (416 study outcomes) were type A comparisons and 44 (408

- study outcomes) were type B comparisons.
- 201 *Effect sizes and statistical significance in single studies*
- The median mortality effect size across 824 individual study outcomes was 1.00 (IQR, 0.54-

1.30), suggesting no difference in mortality, on average, between experimental and control

interventions. Across 519 RCTs, the median effect size was also 1.00 (IQR, 0.58-1.32), whereas

across 305 observational studies it was 0.91 (IQR, 0.50-1.26). The difference between RCTs and

206 observational studies suggested statistical significance (Wilcoxon rank sum p=0.039).

Across the 519 RCTs, 36 (6%) had suggestive significance (p<0.05), but only 11 (2%) were

formally statistically significant with p=0.005. Suggestive and formal significance was seen in 18

and 4 RCTs in favor of the newer (experimental) intervention and in 18 and 7 RCTs in favor of the

210 control intervention. When limited to the 277 RCTs of type B (presumably superiority) comparisons,

211 16 (6%) and 5 (2%) had suggestive and formal significance and almost always this favored the newer

212 intervention (**Table 1**).

Across the 305 observational studies, there were 38 (13%) and 10 (3%) with suggestive and formal statistical significance. Most of those favored the newer (experimental) intervention (27 and 6, respectively) and fewer favored the control intervention (11 and 4, respectively). When limited to 131 type B (presumably superiority) comparisons, 25 (19%) and 4 (3%) showed suggestive and formal

significance, almost always favoring the newer intervention (**Table 1**).

218 *Treatment effects over time*

A total of 122 RCTs and 125 observational studies had been published in the last decade

220 (2012 or later). The median effect size of these 247 studies was 1.00 (IQR, 0.50-1.26) overall (1.00,

IQR, 0.60-1.36 in RCTs and 0.86, IQR, 0.46-1.05 in observational studies). The majority of

statistically significant RCTs with p<0.005 (8/11, 73%) were published in the last decade and of
these, 6/8 (75%) were in favor of the control intervention. Conversely, among observational studies
with p<0.005, 6/10 (60%) had been published in the last decade and 5/6 (83%) were in favor of the
newer (experimental) intervention (**Table 1**).
There was no significant change in the effect size for newer versus control interventions over
time (p=0.56, p=0.55 after controlling for specific comparisons). For RCTs, there was no significant

time effect (p=0.42; after adjusting for specific comparisons, p=0.40). For observational studies, there

229 was a suggestion of a time association with a trend for increasing effects over time (p=0.049; after

adjusting for specific comparisons, p=0.065) (**Figure 2**).

231 Treatment effects in meta-analyses

As reported by the authors, the median meta-analysis summary effect across 73 comparisons was 0.90 (IQR, 0.69-1.12). Of the 73 meta-analyses, as reported by the authors, 15 (21%) had summary effects with suggestive significance with p<0.05 and 4 (5%) had summary effects that were statistically significant with p<0.005 level in favor of the experimental arm, while 6 (8%) and 3 (4%) meta-analyses had effects at these significance levels favoring the control arm. When we re-analyzed the data with random effects and the SJ method, the respective numbers were 5, 2, 3 and 1.

When limited to data from the 519 RCTs outcomes, the median meta-analysis summary effect was 0.94 (IQR, 0.74 to 1.19); of the 73 meta-analyses based on RCT data, only 2 were statistically significant (p<0.005) in favor of the experimental arm and 2 in favor of the control arm.

When limited to type B (presumably superiority) comparisons (44 meta-analyses total), 14 meta-analyses had summary effects with suggestive significance with p<0.05 and 4 had summary effects that were statistically significant with p<0.005 in favor of the experimental arm; conversely, only 1 and 0 meta-analyses had effects at these significance levels favoring the control arm. When limited to data from the RCTs, the respective numbers were 7, 2, 0, and 0.

246 Clinical topics with statistically significant differences

247	Table 2 shows the 7 clinical topics where there were statistically significant differences in
248	mortality at the p<0.005 level in the meta-analyses, as originally reported by the systematic review
249	authors, 3 of which retained p<0.005 in our re-calculated SJ random effects estimates.
250	Relative effects in RCTs and observational studies
251	Of 73 meta-analyses, 34 (47%) contained at least one RCT and at least one observational
252	study; across these 34 meta-analyses there were 400 individual studies (95 were RCTs (24%) and 305
253	observational studies). The median observational summary effect was 0.81 (IQR, 0.68-1.05) vs 0.93
254	(IQR, 0.77-1.22) in the respective RCTs (paired Wilcoxon p=0.17). The Spearman correlation
255	between RCT and observational summary effect sizes was -0.023 (p=0.90).
256	The relative summary effect (summary effect in observational studies divided by summary
257	effect in RCTs) had a median of 0.87 (IQR, 0.55-1.29); meta-analysis of the relative summary effects
258	yielded a summary of 0.93 (95% CI 0.74-1.18, p=0.57, I ² =0%, 0-39%) (Figure 3). Respective results
259	were 0.86 (IQR, 0.41-1.04) and 0.85 (95% CI, 0.55-1.34, p=0.85, $I^2 = 0\%$, 0%-57%) for type A
260	comparisons and 1.08 (IQR, 0.78-1.44) and 0.98 (95% CI, 0.75-1.27, p=0.85, I ² =0%, 0%-47%) for
261	type B comparisons.
262	Sensitivity analyses yielded similar results (see Supplementary Results).
263	Validation of primary data
264	In the 30 randomly selected studies (from 22 SRMAs), our re-calculated study effect was
265	always the same or very similar (maximum deviation 0.04 in relative risk scale) to the effect reported
266	by the SRMA authors.

267 **DISCUSSION**

268 Our analysis of 73 comparisons of newer interventions versus control management in adult 269 cardiac surgery shows that mortality benefits of new interventions versus older approaches were

uncommon. The median effect size of 1.00 suggests no difference in mortality between the compared 270 271 groups. The same picture was seen when examining strictly the data from RCTs. Conversely, on 272 average, observational data suggested some benefit for the experimental intervention groups. 273 Evidence from RCTs rarely suggested statistically significant benefits of the experimental 274 intervention at the level of single studies or meta-analyses thereof. Conversely, a modest fraction of 275 non-randomized observational data suggested significant benefits for the experimental arm. Effect 276 sizes in RCTs have been steady over time, while effect sizes for non-randomized observational data 277 may tend to become larger in more recent years. 278 Only about half of the 73 topics that we examined included both RCTs and observational data 279 in their meta-analyses. Moreover, very few RCTs were included in these topics where a direct comparison of effect sizes RCTs versus observational studies would be feasible within the same 280

topic. Therefore, the results from these direct comparisons have large CIs and are underpowered to

detect clear differences between the two designs. Nevertheless, the picture in this subset is

compatible with the overall picture across all 73 comparisons.

There is debate about the merits and uses of non-randomized observational studies to evaluate comparative effectiveness (24,25). Our findings suggest caution in making definitive inferences and formulating guidelines about comparative effectiveness based on observational data in adult cardiac surgery. Observational data have more degrees of freedom and this may result in higher chances of selective reporting that fits some expected narrative. RCTs certainly have their own biases and they are not infallible gold standards. Nevertheless, the effort to promote the use of RCTs in surgery is welcome (26).

The dearth of well-documented benefits in mortality with newer, experimental interventions in adult cardiac surgery does not mean that the field does not make progress. Half of the data that we analyzed pertained to type A comparisons, where the newer intervention was a less invasive one and

294 thus the goal would probably not be to show necessarily better survival, but other comparative 295 benefits, e.g. fewer complications, better convenience or lesser cost. Moreover, among the 296 comparisons that had a superiority outlook with the newer intervention being more aggressive than 297 the control, we could identify two where the newer intervention did significantly better in mortality 298 outcomes than the control at p<0.005. Both of them reflected classic, widely-used interventions 299 where the magnitude of the survival benefit was very large, i.e. use of intra-aortic balloon pump and 300 surgery for asymptomatic severe aortic stenosis. For new and future interventions, one may need to 301 be prepared to detect much smaller but still clinically meaningful survival benefits. This would

require larger studies to have sufficient power to detect such benefits with certitude.

We evaluated results both at the level of effect sizes and at the level of statistical significance. 303 Effect sizes are preferable to convey the magnitude of the potential benefit (27). Nevertheless, we 304 305 should caution that the data are typically presented in relative effect metrics. Clinical decisionmaking should also examine carefully the absolute magnitude of benefits. Also for statistical 306 significance, some authors argue that dichotomizing p-values may be spurious and misleading and 307 308 have even urged to abandon the notion of statistical significance (28). Nevertheless, for clinical trials and their SRMAs (as analyzed here), the notion of statistical significance still has relevance: its 309 310 abandonment may open the door to even more spurious practices, where investigators may move the 311 goalposts without any statistical rules (29). The use of p<0.005 instead of p<0.05 is recommended to avoid false-positive results (23). This suggestion has also empirical grounding in RCTs and meta-312 313 analyses thereof (30).

Our study has some limitations. First, we only focused on SRMAs published in the key journals that are likely to publish SRMAs in this specialty, as it would have been inconvenient and low-yield to screen hundreds of thousands of SRMAs published across the entire medical literature. Second, SRMAs may not have been performed yet on some interesting topics and this may affect

more prominently recent developments in the field with very recent data. Third, while most of the 318 319 included data used OR metrics, some used other relative effect metrics and these are not identical. 320 Nevertheless, for the mostly small effects analyzed here, differences between OR and HR, RR, or 321 IRR are probably small. Fourth, while we took meticulous care with data, we depended in existing 322 published SRMAs and these evidence syntheses may include their own biases and errors. There are 323 many efforts to improve the methodological rigor of conduct and the quality of reporting of both 324 primary studies and of SRMAs (31). The importance of enhanced attention to these matters cannot be 325 overstated. Fifth, we could not evaluate whether improved outcomes with new interventions may 326 exist specifically for subgroups of patients, e.g. in recent years there has been an expansion of the pool of surgical candidates. Patients who were considered inoperable in the past due to advanced age 327 or underlying conditions are routinely offered surgery in the current era. Finally, no single study and 328 329 no single SRMA can be taken as perfect evidence, no matter how well it is done. Therefore, 330 uncertainty about the comparative effects of different interventions may be larger than actually observed. 331

Allowing for these caveats, our meta-research analysis offers a bird's eye view of over 800 study effect size estimates from comparisons involving adult cardiac surgery These data can be used as a benchmark for what might be reasonable expectations for future RCT and comparative effectiveness research and SRMAs in the field.

336

337 **References**

- (1) Cutler EC, Levine SA. Cardiotomy and valvulotomy for mitral stenosis. Boston Med Surg J
 1923;188:1023-7.
- 340 (2) Gibbon JH Jr. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn
 341 Med 1954;37(3):171-185.
- 342 (3) Coronary Artery Surgery Study (CASS): a randomized trial of coronary artery bypass
 343 surgery. Survival data. Circulation 1983;68(5):939-950.
- (4) Carabello BA. Clinical practice. Aortic stenosis. N Engl J Med 2002:346-677.
- 345 (5) David TE. Aortic valve repair and aortic valve-sparing operations J Thorac Cardiovasc Surg
 346 2015;149:9.
- 347 (6) Carpentier A. Cardiac valve surgery: the "grench correction." J Thorac Cardiovasc Surg
 348 1983;86:323.
- 349 (7) Dein JR, Frist WH, Stinson EF, et al: Primary cardiac neoplastms: early and late results of
 350 surgical treatment in 42 patients. J Thorac Cardiovasc Surg 1987;93:502.
- (8) Bossert Torsten B, Gummert JF, Battellini, et al. Surgical experience with 77 primary cardiac
 tumors. Interact Cardiovasc Thorac Surg 2005;4:311-315.
- (9) Barkun JS, Aronson JK, Feldman LS, Maddern GJ, Strasberg SM, Balliol Collaboration, et al.
 Evaluation and stages of surgical innovations. Lancet. 2009;374:1089–96.
- 355 (10) Gelijns AC, Ascheim DD, Parides MK, Kent KC, Moskowitz AJ. Randomized trials
 356 in surgery. 2009;145:581–7.
- 357 (11) Ergina PL, Cook JA, Blazeby JM, Boutron I, Clavien P-A, Reeves BC, et al.
- 358 Challenges in evaluating surgical innovation. Lancet. 2009;374:1097–104.

359	(12)	Anglemyer A, Horvath HT, Bero L. Healthcare outcomes assessed with observational
360	study	designs compared with those assessed in randomized trials. Cochrane Database Syst
361	Rev.	2014 Apr 29:2014(4):MR000034.

- 362 (13) Hemkens LG, Contopoulos-Ioannidis DG, Ioannidis JP. Agreement of treatment
 363 effects for mortality from routinely collected data and subsequent randomized trials: meta 364 epidemiological survey. BMJ. 2016 Feb 8;352:i493.
- 365 (14) Ioannidis JP, Haidich AB, Pappa M, Pantazis N, Kokori SI, Tektonidou MG,

366 Contopoulos-Ioannidis DG, Lau J. Comparison of evidence of treatment effects in

randomized and nonrandomized studies. JAMA. 2001 Aug 15;286(7):821-30.

368 (15) Lozada-Martinez ID, Ealo-Cardona CI, Marrugo-Ortiz AC, Picón-Jaimes YA,

369 Cabrera-Vargas LF, Narvaez-Rojas AR. Meta-research studies in surgery: a field that should

be encouraged to assess and improve the quality of surgical evidence. Int J Surg. 2023 Jun
1;109(6):1823-1824.

IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014 Feb 18;14:25.

375 (17) Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD,

376 Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM,

- 377 Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA,
- 378 Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020
- 379statement: An updated guideline for reporting systematic reviews. Int J Surg. 2021
- 380 Apr;88:105906.
- 381 (18) Sedgwick P. Meta-analyses: what is heterogeneity? BMJ. 2015 Mar 16;350:h1435.

382 (19) von Hippel PT. The heterogeneity statistic I(2) can be biased in small meta-analyses.

383 BMC Med Res Methodol. 2015 Apr 14;15:35.

- 384 (20) Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a
- practical tutorial. Evid Based Ment Health. 2019 Nov;22(4):153-160.
- 386 (21) de Winter JCF, Gosling SD, Potter J. Comparing the Pearson and Spearman
- 387 correlation coefficients across distributions and sample sizes: A tutorial using simulations and
- empirical data. Psychological Methods 2016;21(3):273–290.
- 389 (22) Kjaergard LL, Villumsen J, Gluud C. Reported methodologic quality and
- discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med.
- 391 2001 Dec 4;135(11):982-9.
- 392 (23) Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers EJ, Berk R, et al.
 393 Redefine statistical significance. Nat Hum Behav. 2018 Jan;2(1):6-10.
- 394 (24) Gerstein HC, McMurray J, Holman RR. Real-world studies no substitute for RCTs in
 395 establishing efficacy. Lancet. 2019 Jan 19;393(10168):210-211.
- 396 (25) Djulbegovic B, Glasziou P, Chalmers I. The importance of randomised vs non
 397 randomised trials. Lancet. 2019 Aug 24;394(10199):634-635.
- 398(26)McCulloch P, Altman DG, Campbell WB, Flum DR, Glasziou P, Marshall JC, et al.

No surgical innovation without evaluation: the IDEAL recommendations. Lancet.

400 2009;374:1105–12.

401 (27)

- 402 Ioannidis JPA. Options for publishing research without any P-values. Eur Heart J. 2019 Aug
 403 14;40(31):2555-2556.
- 404 (28) Amrhein V, Greenland S, McShane B. Scientists rise up against statistical
 405 significance. Nature. 2019 Mar;567(7748):305-307.

406	(29)	Ioannidis JPA. Retiring statistical significance would give bias a free pass. Nature.
407	2019	Mar;567(7749):461.
408	(30)	Koletsi D, Solmi M, Pandis N, Fleming PS, Correll CU, Ioannidis JPA. Most
409	reco	mmended medical interventions reach $P < 0.005$ for their primary outcomes in meta-
410	analy	yses. Int J Epidemiol. 2020 Jun 1;49(3):885-893.
411	(31)	Kolaski K, Logan LR, Ioannidis JPA. Guidance to best tools and practices for
412	syste	ematic reviews. JBI Evid Synth. 2023;21(9):1699-1731.
413		

- **Table 1.** RCTs and non-randomized observational studies with suggestive (p<0.05) and formally
- statistically significant (p<0.005) results according to type of comparison and year of publication.

	p < 0.05,	p < 0.005,	p < 0.05,	p < 0.005,
	favoring	favoring	favoring	favoring
	experimental	experimental	control	control
	intervention	intervention	intervention	intervention
PER TYPE OF				
COMPARISON				
RCT, type A	3 (1%)	0 (0%)	17 (7%)	6 (2%)
(n=242)				
RCT, type B	15 (5%)	4 (1%)	1 (0.4%)	1 (0.4%)
(n=277)				
Observational, type	7 (4%)	3 (2%)	6 (3%)	3 (2%)
A (n=174)				
Observational, type	20 (15%)	3 (2%)	5 (4%)	1 (1%)
B (n=131)				
PER YEAR OF				
PUBLICATION				
RCT	7 (5.7%)	2 (1.6%)	14 (11.5%)	6 (4.9%)
2012-21 (n = 122)				
RCT	11 (2.8%)	2 (0.5%)	4 (1.0%)	1 (0.3%)
pre-2012 (n = 397)				
Observational	14 (11.2%)	5 (4.0%)	2 (1.6%)	1 (0.8%)
2012-21 (n = 125)				

Observational	13 (7.2%)	1 (0.6%)	9 (5.0%)	3 (1.7%)
pre-2012 (n = 180)				

416

417	Type A comparisons involve comparing a newer less invasive method versus an older more invasive
418	method, thus presumably demonstration of non-inferiority might be sufficient to make the newer
419	approach attractive. Type B comparisons involve comparing a newer more invasive method versus
420	an older less invasive method, thus presumably demonstration of superiority would be needed to
421	show that the added invasiveness is worthwhile. Type B includes also all comparisons against doing
422	nothing (or giving placebo/sham).
423	

Table 2. Clinical topics with statistically significant survival differences at p<0.005 in meta-analyses

426

Intervention (type A or B)	Condition/ Setting	Metric	Author reported meta- analysis effect	SJ random effects meta-analysis effect	RCTs only random effects meta-analysis effect	Mortality follow-up
Loading dose vs regular dose of statins (B)	Prophylactic after CABG	OR	0.74 (0.60-0.91)	0.78 (0.57-1.06)	0.78 (0.57-1.06)	1 to 10 years
Off-pump vs on-pump (A)	CABG	HR	1.07 (1.03-1.11)	1.04 (0.95-1.14)	1.20 (0.81-1.76)	5 year
IABP vs No IABP (B)	Pre-op prophylactic before CABG	OR	0.35 (0.23-0.53)	0.36 (0.20-0.65)	0.25 (0.11-0.56)	In-hospital or 30-day
Radial artery versus saphenous vein as the second conduit (B)	CABG	IRR	0.74 (0.63-0.87)	0.72 (0.54-0.95)	0.94 (0.61-1.44)	0.7 to 11.9 years
Early surgery vs conservative management (B)	Asymptomatic severe AS	HR	0.49 (0.36-0.68)	0.48 (0.32-0.72)	0.33 (0.12-0.91)	1.8 to 6.2 years
TAVR PCI vs SAVR CABG (A)	CABG	HR	1.35 (1.11-1.65)	1.34 (1.05-1.71)	1.34 (1.05-1.71)	1 to 3 years
PCI vs CABG (A)	Diabetic patients	OR	1.64 (1.30-2.08)	1.63 (1.23-2.17)	1.63 (1.23-2.17)	5 year

427

- 428 AS: aortic stenosis, CABG: Coronary artery bypass graft, CI: confidence interval, IABP: Intra-aortic
- 429 balloon pump, PCI: percutaneous coronary intervention
- 430 Follow-up shows the time of mortality assessment.

- 432
- 433
- 434
- 435
- 436

437 Figure legends

- 438 **Figure 1.** Flow chart for eligible meta-analyses
- 439 Figure 2. Study effect size vs year of publication, with associated line of best fit, for observational
- 440 studies (n = 305) and RCTs (n = 519)
- 441 Figure 3. Forest plot of relative summary effect (summary effect in observational studies divided by
- summary effect in RCTs).
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450

FIGURE 2

491 FIGURE 3

Comparison	Risk Ratio	RR	95%-CI
1		0.45	[0.21; 0.92]
2		0.46	[0.15; 1.37]
3	- 1	1.31	[0.73; 2.32]
4		0.82	[0.38; 1.74]
5		2.74 [0.22; 34.74]
6	÷.	0.93	[0.68; 1.27]
7 —		0.24	[0.01; 6.22]
8		0.54	[0.09; 3.32]
9		1.16	[0.36; 3.75]
10	<u>+</u> *	1.63	[0.66; 4.01]
11		0.79	[0.52; 1.21]
12		1.44	[0.36; 5.76]
13		1.08	[0.21; 5.50]
14		1.18	[0.48; 2.93]
15		1.25	[0.17; 9.16]
10		0.02	[0.20, 0.30]
17		0.41	[0.37, 2.95]
10	1	1.04	[0.02, 9.24]
20	.	0.78	[0.11: 5.41]
20	L	1.69	[0.97 2.96]
21		0.41	[0.04, 4.53]
23		1.62	[0.58 4.59]
24		0.48	[0.06: 3.72]
25		0.86	[0.26; 2.87]
26	— <u> </u> + — —	2.87	0.34; 23.95]
27		0.61	[0.32; 1.19]
28		0.86	[0.30; 2.50]
29		0.87	[0.46; 1.65]
30		0.17	[0.01; 3.93]
31	- <u>+</u> +	1.65	[0.46; 5.97]
32		0.31	[0.07; 1.45]
33		0.60	[0.17; 2.15]
34		4.20	0.48; 36.86]
Common effect model	ļ	0.04	0 04. 4 001
Random effects model	l	0.94	[0.61, 1.09]
Γ		0.93	[0.74; 1.18]
0.01	0.1 1 10	100	

Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0.1574$, p = 0.75

492

493

- 495 **Supplementary Table 1**. 73 comparisons (comparison-outcome pairs) across 61 SRMAs.
- 496 *Abbreviations*: ECMO: Extra Corporeal Membrane Oxygenation. PCI: Percutaneous Coronary
- 497 Intervention. CABG: Coronary Artery Bypass Grafting. ARDS: Acute Respiratory Distress
- 498 Syndrome. DAPT: Dual Anti-Platelet Therapy. SAPT: Single Anti-Platelet Therapy. TAVR:
- 499 Transcatheter Aortic Valve Replacement. AVR: Aortic Valve Replacement. IABP: Intra-Aortic
- 500 Balloon Pump. TVA: Tricuspid Valve Annuloplasty. OPCAB: Off Pump Coronary Artery Bypass.
- 501 SAVR: Surgical Aortic Valve Replacement (same as AVR). MIDCAB: Minimally Invasive Direct
- 502 Coronary Artery Bypass.
- 503

Comparison			
Number			Outcome
From Fig 3	Title of SRMA	Comparison	Name
		Surgical ablation	
		vs No ablation,	
	Expert consensus guidelines: Examining	just index	30 day
1	surgical ablation for atrial fibrillation	operation	mortality
			Death at latest
	Percutaneous coronary invervention versus		available
	coronary artery bypass grafting: a meta-		follow-up time
	analysis	PCI vs CABG	point
	Contemporary extracorporeal membrane	ECMO vs	
	oxygenation therapy in adults:	"Endotracheal	Death at
	Fundamental principles and systematic	ventilation +/-	primary
	review of the evidence	mechanical assist	endpoint

		devices" for	
		ARDS patients	
	N-acetylcysteine in cardiovascular-	NAC vs no	
	surgery-associated renal failure: a meta-	adjunct	
	analysis	medication	Mortality
		Chlorhexidine	
		mouthwash vs No	
	Preoperative chlorhexidine mouthwash to	preop skin prep	
	reduce pneumonia after cardiac surgery: A	(outside of	In-hospital
	systematic review and meta-analysis	operating room)	mortality
	Comparing Single- and Dual-Antiplatelet		Short-term all-
	Therapies After Transcatheter Aortic Valve	DAPT vs SAPT	cause
2	Implantation	after TAVR	mortality
	Comparing Single- and Dual-Antiplatelet		Long-term all-
	Therapies After Transcatheter Aortic Valve	DAPT vs SAPT	cause
3	Implantation	after TAVR	mortality
	Ring or suture annuloplasty for tricuspid	RING vs NO	Early mortality
4	regurgitation? A meta-analysis review	RING	after surgery
	A Meta-Analysis of Miniaturized Versus		
	Conventional Extracorporeal Circulation in		
5	Valve Surgery	MECC vs CECC	Mortality
	Closure of the sternum with anchoring of		
	the steel wires: Systematic review and	Anchoring vs no	
	meta-analysis	anchoring	Death

	Meta-Analysis of Medium and Long-Term	Loading dose of	
	Meta-Analysis of Metalum and Long-Term	Loading dose of	
	Efficacy of Loading Statins After Coronary	statins vs regular	
	Artery Bypass Grafting	dose of statins	Mortality
	Worse long-term survival after off-pump		5 year all-
	than on-pump coronary artery bypass	Off-pump vs on-	cause
6	grafting	pump CABG	mortality
	Beating-Heart Versus Conventional On-		
	Pump Coronary Artery Bypass Grafting: A	BH-ONCAB vs	
7	Meta-Analysis of Clinical Outcomes	C-ONCAB	Early mortality
	Mitral valve surgery: right lateral		All-cause
	minithoracotomy or sternotomy? A		mortality up to
8	systematic review and meta-analysis	MIV vs Conv	30 days
	Outcomes of Coronary Artery Bypass and		
	Stents for Unprotected Left Main Coronary	Stenting vs	Medium-term
	Stenosis	CABG	death
		Coated vs	
	A systematic review of biocompatible	Standard	
	cardiopulmonary bypass circuits and	cardiopulmonary	
	clinical outcome	bypass tubing	Death
	Gentamicin-collagen sponge reduces the	Gentamycin	
	risk of sternal wound infections after heart	sponge vs No	
9	surgery: Meta-analysis	prophylaxis	Mortality
	Volatile anesthetics in preventing acute		All-cause
	kidney injury after cardiac surgery: a	Volatile vs TIVA	mortality

	systematic review and meta-analysis		
	Preoperative Prophylactic Intraaortic		
	Balloon Pump Reduces the Incidence of		Short-term
	Postoperative Acute Kidney Injury and		death in high-
	Short-Term Death of High-Risk Patients		risk patients
	Undergoing Coronary Artery Bypass		undergoing
	Grafting: A Meta-Analysis of 17 Studies	IABP vs No IABP	CABG
		Radial artery	
		versus saphenous	
		vein as the second	
	Radial artery versus saphenous vein as the	conduit for	
	second conduit for coronary artery bypass	coronary artery	Long-term
11	surgery: A meta-analysis	bypass surgery	mortality
	Treatment options for ischemic mitral	MitraCLIP +	
12	regurgitation: A meta-analysis	OMT vs OMT	Mortality
	Treatment options for ischemic mitral	CABG + RMA vs	
	regurgitation: A meta-analysis	CABG	Mortality
		RMA +	
	Treatment options for ischemic mitral	subvalvular vs	
13	regurgitation: A meta-analysis	subvalvular	Mortality
	Antithrombotic Strategies After	Dual antiplatelet	
	Bioprosthetic Aortic Valve Replacement:	therapy vs AVA	30-day
	A Systematic Review	after TAVR	mortality
	Antithrombotic Strategies After	Warfarin vs ASA	90-day

	Bioprosthetic Aortic Valve Replacement:	after surgical	mortality
	A Systematic Review	bioprosthetic	
		AVR	
	Biatrial Versus Bicaval Orthotopic Heart		
	Transplantation: A Systematic Review and		
14	Meta-Analysis	Bicaval vs biatrial	Early mortality
	Supplemental Cardioplegia During Donor	Supplemental	
	Heart Implantation: A Systematic Review	cardioplegia vs	Perioperative
15	and Meta-Analysis	not	mortality
	Skeletonized internal thoracic artery		
	harvest improves prognosis in high-risk	Skeletonized vs	
	population after coronary artery bypass	pedicled	
16	surgery for good quality grafts	harvesting	Mortality
	Single- versus multidose cardioplegia in		
	adult cardiac surgery patients: A meta-	Single vs multi-	Operative
17	analysis	dose cardioplegia	mortality
	Automated Fastener vs Hand-tied Knots in		
	Heart Valve Surgery: A Systematic	COR-KNOT vs	
18	Review and Meta-analysis	Hand-tie	Mortality rates
	Drug-eluting stents versus coronary artery		
	bypass grafting for the treatment of		All-cause
	coronary artery disease: a meta-analysis of	Drug eluting	mortality at 12
19	randomized and nonrandomized studies	strent vs CABG	months
	A meta-analysis of transcatheter aortic	TAVI vs surgical	Early all-cause

	· · · · · · · · ·		. 1.
	valve implantation versus surgical aortic	AVR for aortic	mortality
	valve replacement	stenosis	
		Concomitant	
		tricuspid valve	
		repair vs non-	
		repair during left	
		sided valve	
		surgery for mild	
	Repair of Less Than Severe Tricuspid	or moderate	
	Regurgitation During Left-Sided Valve	tricuspid valve	
20	Surgery: A Meta-Analysis	regurgitation	Early mortality
		Concomitant	
		tricuspid valve	
		repair vs non-	
		repair during left	
		sided valve	
		surgery for mild	
	Repair of Less Than Severe Tricuspid	or moderate	
	Regurgitation During Left-Sided Valve	tricuspid valve	Late, all-cause
21	Surgery: A Meta-Analysis	regurgitation	mortality
	Difference in spontaneous myocardial		
	infarction and mortality in percutaneous		
	versus surgical revascularization trials: A		All-cause
	systematic review and meta-analysis	PCI vs CABG	mortality

			Early death
			(this study also
			reports HR of
			all-cause
	Rapid deployment or sutureless versus		mortality
	conventional bioprosthetic aortic valve	RDAVR vs	during follow-
22	replacement: A meta-analysis	CAVR	up period)
		Early surgery vs	
		conservative	
		management for	
	Early surgery versus conservative	asymptomatic,	
	management of asymptomatic severe aortic	severe aortic	All-cause
23	stenosis: A meta-analysis	stenosis	mortality
		Rigid plate	
		fixation vs wire	
	Rigid Plate Fixation Versus Wire Cerclage	cerclage in	
	for Sternotomy After Cardiac Surgery: A	cardiac surgery	30-day
24	Meta-Analysis	pts	mortality
			Perioperative
			mortality in
			patients
	A meta-analysis of minimally invasive		undergoing
	versus conventional sternotomy for aortic	MIAVR vs	minimally
25	valve replacement	CAVR	invasive aortic

			valve
			varve
			replacement
		Levosimendan vs	
	Meta-Analysis of Trials on Prophylactic	No additional	
	Use of Levosimendan in Patients	medication	Mortality at 30
	Undergoing Cardiac Surgery	administration	days
	Adjunct retrograde cerebral perfusion	Aortic arch	
	provides superior outcomes compared with	surgery with HCA	30 day or in-
	hypothermic circulatory arrest alone: A	alone versus HCA	hospital
26	meta-analysis	with RCP	mortality
	Off-pump versus on-pump coronary	Off-pump versus	Long-term
	revascularization: meta-analysis of mid-	on-pump coronary	mortality (N=3
27	and long-term outcomes	revascularization	RCTs)
	Complete transcatheter versus surgical		
	approach to aortic stenosis with coronary		
	artery disease: A systematic review and	TAVR PCI vs	30-day
28	meta-analysis	SAVR CABG	mortality
	Complete transcatheter versus surgical		
	approach to aortic stenosis with coronary		All-cause
	artery disease: A systematic review and	TAVR PCI vs	mortality
	meta-analysis	SAVR CABG	follow-up
	A systematic review and meta-analysis of		
	in situ versus composite bilateral internal	In situ vs	All-cause
29	thoracic artery grafting	composite BITA	mortality

	Systematic review and meta-analysis of	Chordal	
	chordal replacement versus leaflet	replacement vs	
	resection for posterior mitral leaflet	leaflet resection	Perioperative
30	prolapse	techniques	mortality
	Mitral valve surgery and coronary artery		
	bypass grafting for moderate-to-severe		
	ischemic mitral regurgitation: Meta-	CABG + mital	
	analysis of clinical and echocardiographic	valve surgery vs	Perioperative
31	outcomes	CABG alone	mortality
		Intervention vs	
	Systematic review and meta-analysis of	No additional	
	randomized controlled trials assessing	posterior	
	safety and efficacy of posterior pericardial	pericardial	
	drainage in patients undergoing heart	drainage tube	Death after
	surgery	placement	heart surgery
	Meta-analysis of valve hemodynamics and	Stentless vs	
	left ventricular mass regression for	stented aortic	Mortality at 1
	stentless versus stented aortic valves	valves	year followup
	Effects of dipyridamole in combination		
	with anticoagulant therapy on survival and		
	thromboembolic events in patients with	Warfarin +	
	prosthetic heart valves. A meta-analysis of	dipyrimadole vs	
	the randomized trials	warfarin alone	Total mortality
	Minimally invasive direct coronary artery	MIDCAB vs PCI	Early mortality

	bypass graft surgery or percutaneous	for proximal left	
	coronary intervention for proximal left	anterior	
	anterior descending artery stenosis: a meta-	descending artery	
	analysis	stenosis	
	Minimally invasive direct coronary artery	MIDCAB vs PCI	
	bypass graft surgery or percutaneous	for proximal left	
	coronary intervention for proximal left	anterior	
	anterior descending artery stenosis: a meta-	descending artery	
	analysis	stenosis	Late mortality
	Stenting versus coronary artery bypass	PCI-S vs CABG	
	grafting for unprotected left main coronary	for unprotected	
	artery disease: a meta-analysis of	left main coronary	
34	comparative studies	artery disease	Death
	Pexelizumab in ischemic heart disease: a	Pexelizumab vs	
	systematic review and meta-analysis on	Placebo for	
	15,196 patients	CABG	Death
		Preoperative	
		physical therapy	
		versus no	Post-operative
	Preoperative physical therapy for elective	preoperative	death all
	cardiac surgery patients	physical therapy	causes
	Remote ischaemic preconditioning for	RIPC versus no	All-cause
	coronary artery bypass grafting (with or	RIPC (sham	mortality at 30
	without valve surgery)	interventino) in	days

 		-
	people	
	undergoing	
	CABG (with or	
	without valve	
	surgery)	
Prophylactic corticosteroids for	Corticosteroids vs	
cardiopulmonary bypass in adults	control	Mortality
Epidural analgesia for adults undergoing	Epidural analgesia	
cardiac surgery with or without	vs systemic	30 day
cardiopulmonary bypass	analgesia	mortality
	Low-dose opioids	
	vs high-dose	
	opioids in opioid	Death at any
Fast-track cardiac care for adult cardiac	based cardiac	time after
surgical patients	anesthesia	surgery
	Early extubation	Death at any
Fast-track cardiac care for adult cardiac	after surgery vs	time after
surgical patients	usual care	surgery
	Statin vs	
HMG CoA reductase inhibitors (statins)	placebo/no	
for preventing acute kidney injury after	treatment after	
surgical procedures requiring cardiac	cardiac bypass	
bypass	procedures	Mortality
Transcatheter aortic valve implantation	Transcatheter	Short-term all

versus surgical aortic valve replacement for	aortic valve	cause
severe aortic stenosis in people with low	implantation	mortality
surgical risk	versus surgical	
	aortic valve	
	replacement for	
	severe aortic	
	stenosis in people	
	with low surgical	
	risk	
	Transcatheter	
	aortic valve	
	implantation	
	versus surgical	
	aortic valve	
	replacement for	
Transcatheter aortic valve implantation	severe aortic	
versus surgical aortic valve replacement for	stenosis in people	Long-term all
severe aortic stenosis in people with low	with low surgical	cause
surgical risk	risk	mortality
Coronary Revascularization for Patients		
with Diabetes Mellitus: A Contemporary		30 day
Systematic Review and Meta-Analysis	PCI vs CABG	mortality
Coronary Revascularization for Patients		1 year
with Diabetes Mellitus: A Contemporary	PCI vs CABG	mortality

Systematic Review and Meta-Analysis		
Coronary Revascularization for Patients		
with Diabetes Mellitus: A Contemporary		5 year
Systematic Review and Meta-Analysis	PCI vs CABG	mortality
	Off-pump CABG	All cause
Off-pump versus on-pump coronary artery	vs on-pump	mortality, any
bypass grafting for ischaemic heart disease	CABG	follow up
	Transmyocardial	
	laser	
	revascularization	
Transmyocardial laser revascularization	versus medical	
versus medical therapy for refractory	treatment for	Overall
angina	refractory angina	mortality
	Psychological	
Psychological interventions for coronary	intervention vs	
heart disease	usual care	Total mortality
	Fresh frozen	Short term
Fresh frozen plasma for cardiovascular	plasma vs no	mortality (30
surgery	plasma	days)
Long-term and Temporal Outcomes of		
Transcatheter Versus Surgical Aortic-valve		5 year all
Replacement in Severe Aortic Stenosis: A		cause
Meta-analysis	TAVR vs SAVR	mortality
Perioperative beta-blockers for preventing	Perioperative	Early all-cause

surgery-related mortality and morbidity in	beta-blockers vs	mortality
adults undergoing cardiac surgery	control	
Perioperative beta-blockers for preventing	Perioperative	Long term all-
surgery-related mortality and morbidity in	beta-blockers vs	cause
adults undergoing cardiac surgery	control	mortality

504 Supplementary Results: Sensitivity analyses

In the 34 meta-analyses containing both RCTs and observational studies, the earliest 505 published study was an RCT in 8 (24%). In the 26 meta-analyses where observational studies were 506 published first, the median years until an RCT was published was 3 (IQR 1 to 6). Across these meta-507 analyses, comparing only the observational studies published before the first RCT appeared, the 508 summary of the relative summary effects was 0.93 (95% CI, 0.67-1.28), p=0.64, $I^2=4\%$ (0 to 34%). 509 Of 6 meta-analyses where the observational effect was statistically significant (p<0.005), only 510 511 1 also showed the RCT effect to be statistically significant. Of 2 meta-analyses where the RCT effect was statistically significant (p < 0.005), 1 also showed a significant observational effect. 512 Of the 824 studies, 416 (50%) were type A comparisons (comparing a newer less invasive 513 514 method versus an older more invasive method looking at non-inferiority). In sensitivity analysis flipping the coining of type A comparisons, the median observational summary effect across the 34 515

516 comparisons with both RCTs and observational studies was 0.89 (IQR, 0.1 to 1.16) versus an RCT

effect of 0.86 (IQR, 0.59 to 1.03) (p=0.47). The median relative summary effect was 1.16 (IQR, 0.80

to 1.63) and the summary of the relative summary effects 1.03 (0.82 to 1.31, p=0.79).