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Abstract 37 

Neurodegenerative and neuropsychiatric diseases impose a significant societal and public health burden. 38 
However, our understanding of the molecular mechanisms underlying these highly complex conditions remains 39 
limited. To gain deeper insights into the etiology of different brain diseases, we used specimens from 1,494 40 
unique donors to generate a population-scale single-cell transcriptomic atlas of the human dorsolateral 41 
prefrontal cortex (DLPFC), comprising over 6.3 million individual nuclei. The cohort includes neurotypical 42 
controls as well as donors affected by eight common and complex brain disorders: Alzheimer’s disease (AD), 43 
diffuse Lewy body disease (DLBD), vascular dementia (Vas), Parkinson’s disease (PD), tauopathy, 44 
frontotemporal dementia, schizophrenia, and bipolar disorder. We show that inter-individual variation accounts 45 
for a substantial portion of gene expression variation in the DLPFC. By comparing transcriptomic variation 46 
across diseases, we reveal universal signatures enriched in basic cellular functions such as mRNA splicing 47 
and protein localization. After discounting these cross-disease signatures, we show strong genetic and 48 
transcriptomic concordance among AD, DLBD, Vas, and PD, largely driven by alteration of synaptic signaling 49 
functions in neurons. Furthermore, we characterize transcriptomic variation among different AD phenotypes 50 
that were distinct from healthy aging. We uncover mitigating effects of interneurons and aggravating effects of 51 
immune and vascular cells in AD dementia. Further exploring the effect of the neuropsychiatric symptoms 52 
frequently accompanying AD, we identify a link to deep layer excitatory neurons. By constructing transcriptome 53 
trajectories that capture AD progression, we show cell-type specific responses implicated in early and late 54 
stages of AD. Our atlas provides an unprecedented perspective of the transcriptomic landscape in 55 
neurodegenerative and neuropsychiatric diseases, shedding light on shared and distinct processes involving 56 
the neuro-immune-vascular systems, and identifying potential targets for therapeutic intervention.  57 
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Main 58 

The human brain is a highly complex organ composed of billions of functionally diverse cells. Under 59 
pathogenic stress, cellular and molecular responses are often convoluted and contextual, so understanding 60 
their dysfunction in disease is challenging. Recent work has begun to unravel the molecular changes that 61 
occur at the single-cell level, which has been particularly helpful in understanding the vulnerability of specific 62 
cell types in various disease contexts, as well as the complex interplay between different cell types. In 63 
Alzheimer’s disease (AD), it has been shown that a thorough exposition of cellular heterogeneity in the brain, 64 
the coordinated interactions between neurons and glia, and the selective depletion of vulnerable inhibitory 65 
neuronal subtypes are critical for understanding AD pathology1,2. 66 

Building a large-scale disease atlas at single-cell resolution creates an unprecedented opportunity to 67 
understand molecular responses at the cellular level and estimate population-level variation in the brain 68 
transcriptome. A large sample size provides the resolution needed to establish robust basal-level conditions 69 
and to sufficiently capture the full spectrum of disease pathology. By leveraging cross-disease atlases, studies 70 
have revealed shared and distinct patterns of gene-expression perturbations in major psychiatric diseases as 71 
well as shared genetic factors leading to molecular convergence3,4. As such, characterizing shared 72 
transcriptomic vulnerabilities and pathophysiology together has significant implications for early treatment and 73 
the development of effective therapeutics. 74 

Here, we introduce the PsychAD cohort, which consists of 1,494 unique brain donors affected by various 75 
neurodegenerative and neuropsychiatric diseases in addition to neurotypical controls. The resulting single-76 
nucleus RNA sequencing (snRNA-seq) dataset in the dorsolateral prefrontal cortex (DLPFC) of those donors, 77 
comprising over 6.3 million nuclei representing 27 distinct subclasses of cells, is sufficiently-powered to identify 78 
molecular signatures from multiple traits while accounting for individual variation. We utilize this dataset to 79 
uncover shared transcriptomic vulnerability across these diseases and, in so doing, to better understand 80 
specific transcriptional patterns and regulatory drivers underpinning each trait. By characterizing putative 81 
disease-driving molecular changes across multiple traits, we differentiate shared and novel disease- and cell 82 
type-specific associations. Concordance between heritability estimates and transcriptomic similarity identifies 83 
shared genetic factors underlying cross-disorder traits. Deep phenotyping of AD trajectories using Tau 84 
pathology and clinical dementia status suggests a potential link between immune and brain vasculature 85 
dysfunctions. In summary, our study provides a rich and comprehensive resource for exploring the cellular and 86 
molecular mechanisms of brain function and dysfunction across multiple neurodegenerative and 87 
neuropsychiatric diseases. 88 

The PsychAD cohort represents diverse neurodegenerative and 89 

neuropsychiatric diseases across the lifespan 90 

The PsychAD cohort comprises 1,494 unique brain donors (Fig. 1a, Supplementary Table 1). Brain tissue 91 
specimens were obtained from three sources: 1,042 donors from Mount Sinai NIH Neurobiobank (MSSM), 300 92 
from Human Brain Collection Core (HBCC), and 152 from Rush Alzheimer’s Disease Center (RADC). The 93 
cohort covers the whole lifespan of postnatal ages between 0 and 108, roughly equal numbers of males and 94 
females, and represents a diverse range of disease phenotypes, including Alzheimer’s disease (AD), diffuse 95 
Lewy body disease (DLBD), vascular dementia (Vas), tauopathy (Tau), frontotemporal dementia (FTD), 96 
Parkinson’s disease (PD), schizophrenia (SCZ), and bipolar disorder (BD). The cohort covers a diverse genetic 97 
background and over 30% of the donors were of non-European (EUR) ancestry. 98 

We streamlined the unified processing of the data as well as the harmonization of clinical, and technical 99 
metadata (Fig. 1b, Supplementary Fig. 1a, Methods). Frozen brain specimens were randomized and 100 
processed in batches of 6. Equal numbers of nuclei from each sample were pooled together and each pool 101 
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was subjected to snRNA-seq twice to generate a technical replicate. Following quality control (Supplementary 102 
Figs. 1c-i), the final data sets consisted of 6,320,459 nuclei. To characterize transcriptomic vulnerability across 103 
multiple neuropsychiatric and neurodegenerative diseases, we organized the analysis into three tiers. 104 

First, we focused on the cross-disorder analyses (Fig. 1c). We targeted six neurodegenerative diseases 105 
(NDDs, including AD, DLBD, Vas, Tau, FTD, and PD) and two neuropsychiatric diseases (NPDs, including 106 
SCZ and BD), using a subset of 1,160 donors with minimal comorbidity aged ≥ 17. To estimate the sharing of 107 
transcriptomic vulnerability, we compared donors affected with NDDs and NPDs against the baseline of 319 108 
neurotypical controls. 109 

The second-tier analysis focused on the stage of AD progression based on pathological and cognitive 110 
impairment measures using a subset of 696 individuals (Fig. 1d). To uncover cell-type-specific roles in disease 111 
onset and disease trajectory, we compared two characteristic neuropathological abnormalities of the AD brain: 112 
the accumulation of amyloid-β (Aβ) plaques measured using CERAD plaque density score and tau-based 113 
neurofibrillary tangle (NFT) pathology measured using Braak staging, along with cognitive impairment. 114 

In the third tier, we surveyed neuropsychiatric symptoms (NPS) within 234 individuals affected by AD 115 
pathology (Fig. 1e, Supplementary Fig. 1b). NPS are core features of AD and are common in patients with 116 
dementia5. We broadly categorized NPS into three groups, (1) depression or mood-related, (2) weight loss or 117 
psychomotor agitation (PMA), and (3) weight gain, insomnia, or suicidal ideation, based on co-occurrence 118 
estimates, sharing molecular mechanisms that lead to increased prevalence with disease severity. 119 
 120 
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Fig. 1. Overview of the PsychAD cohort and study design. (a) Breakdown of donors by tissue source, 122 
number of diagnoses, genetic ancestry, distribution of age at death, sex, and % availability of genotype data. 123 
(b) Data generation and analysis workflow. (c) A subset of the PsychAD cohort (n=1,160 donors) focused on 124 
cross-disorder contrasts. This subset includes a group of neurotypical controls that were used to compare 125 
against 8 neurodegenerative and neuropsychiatric disorders. UpSet plot describing available disease 126 
phenotypes and number of unique donors by brain bank. (d) A subset of the PsychAD cohort (n=696 donors) 127 
focused on AD phenotype contrasts. Comparison of different measures of AD severity, including neuritic 128 
plaque density (CERAD), neurofibrillary tangle (NFT) pathology, and cognitive impairments. *n=54 donors with 129 
incomplete pathology or cognitive status were omitted from the figure. (e) A subset of the PsychAD cohort 130 
(n=234 donors) was used to characterize single-cell transcriptomic changes underlying NPS in AD. AFR: 131 
African, AMR: Ad Mixed American, EAS: East Asian, SAS: South Asian, EUR: European, NPS: 132 
Neuropsychiatric Symptom, PMA: Psychomotor Agitation, PMR: Psychomotor Retardation. 133 

Unified processing and hierarchical cellular taxonomy of the human 134 

prefrontal cortex uncovers 27 distinct subclasses of cells 135 

To understand heterogeneous human cortical tissues in disease contexts, we require a cell type taxonomy 136 
that is robust to aging, disease phenotypes, and various sampling and technical biases. Following unified 137 
computational processing, quality controls, and batch normalization of snRNA-seq libraries representing 1,494 138 
dissections, processed in duplicate (Methods), we annotated cell types of the human DLPFC using the cell 139 
taxonomy of the primate DLPFC6 and human primary motor cortex7 as a baseline reference. The resulting 140 
human DLPFC cellular taxonomy was organized using three levels of hierarchy, identifying 8 broad cell 141 
classes, 27 subclasses, and 65 functionally distinct subtypes (Fig. 2a, Supplementary Table 2). Each level of 142 
the annotation hierarchy represents a slice in the clustering dendrogram. At the top, the “class level” of the 143 
annotation hierarchy defines 8 major cell types, including two broad neuronal cell types: glutamatergic 144 
excitatory (EN) and GABAergic inhibitory neurons (IN), three glial: astrocytes (Astro), oligodendrocytes (Oligo), 145 
and oligodendrocyte progenitor cells (OPC), and three non-neuronal cell types: immune cells (Immune), mural 146 
and vascular cells (Mural), and endothelial cells (Endo). Subsequent levels of the annotation hierarchy, 147 
subclasses and subtypes, were derived by iteratively re-clustering the subset of cells by gene matrix using a 148 
new set of variable genes relevant to the particular cell type (see iterative clustering in Methods). The subclass 149 
level distinguished the EN class into 10 subclasses and the IN class into 7 subclasses (Supplementary Figs. 150 
2c,d). Different types of neurons, especially ENs, are organized into six horizontal layers (L1-L6) that are 151 
distinct in both cytoarchitecture and function8. In situ spatial transcriptomics data was used to confirm that the 152 
EN subclasses were spatially distinct and found in their respective neocortical layers (Fig. 2b). The EN 153 
subclasses were denoted by their laminar organization (L2-6) and axon projection characteristics (IT: intra-154 
telencephalic, ET: extra-telencephalic, NP: near projecting, CT: corticothalamic, and L6B). IN subclasses were 155 
determined using their characteristic marker genes (Figs. 2c,d); Ivy cells (IN_LAMP5_LHX6), neurogliaform 156 
cells (IN_LAMP5_RELN), basket cells (IN_PVALB), chandelier cells (IN_PVALB_CHC), Martinotti and non-157 
Martinotti cells (IN_SST), VIP (IN_VIP), and homologs of mouse Sncg inhibitory neurons6 (IN_ADARB2). 158 
Unlike laminar organization of EN, IN subclasses were distributed randomly throughout the gray matter, except 159 
for IN_ADARB2, which was predominantly found in the superficial layer of the neocortex (Supplementary Fig. 160 
2e). Some previously annotated rare inhibitory neuron types, like SST NPY or SST HGF, were not 161 
distinguished at the subclass level, but were identified at the subtype level. The cellular taxonomy was 162 
relatively consistent, and the subtypes were well represented across all three brain sources (Supplementary 163 
Figs. 2a,b). Neuronal cells made up 38.4% (EN 23.0% and IN 15.4%), with oligodendrocytes being the next 164 
most abundant, at 36.1%. Major cell types matched well when compared to the previous cellular taxonomy of 165 
DLPFC1,6, and subtypes were relatively concordant (Supplementary Figs. 2f-h). Neuronal subclasses exhibit 166 
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distinct functional characteristics from non-neuronal subclasses (Fig. 2e). ENs are enriched in pathways 167 
associated with synaptic vesicle priming and neurotransmitter secretion, whereas INs are enriched with 168 
functions related to receptor signaling and ion transport. Immune cell types show unique enrichments in 169 
functions related to cytotoxic immune responses, while mural cells are involved in vessel morphogenesis. It 170 
has been shown cell types are differentially implicated in mediating disease risks9,10. Therefore, we further 171 
annotated cell types with disease GWASs using the single-cell disease-relevance score (scDRS) and found 172 
that neurological diseases largely involve immune and glial cell types, whereas psychiatric diseases are 173 
predominantly associated with neuronal cell types (Fig. 2f, Supplementary Fig. 2i). 174 
 175 
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Fig. 2. Unified processing of the single-cell transcriptomics atlas and hierarchical cellular taxonomy. 177 
(a) Hierarchical structure of transcriptome-based cellular taxonomy. Taxonomic annotation at three levels of 178 
granularity; class (n=8), subclass (n=27), and subtype (n=65). (b) Spatial distribution of major cell classes. (c) 179 
Spatial distribution of EN subclasses. (d) Markers defining neuronal subclasses. (e) Functional enrichment of 180 
cellular subclasses using Gene Ontology Biological Process (GO BP). (f) Enrichment of heritable traits for 181 
cellular subclasses using previous GWAS studies (scDRS). AD11, MS: multiple sclerosis12, PD13, Epilepsy: 182 
epilepsy focal14, Migraines15, Stroke16, ALS: amyotrophic lateral sclerosis17, SCZ18, BD19, MDD: major 183 
depressive disorder20, ASD: autism spectrum disorder21, ADHD: attention deficit hyperactivity disorder22, 184 
Insomnia23, Education: educational attainment24, IQ: intelligence25, Alcoholism26, OCD: obsessive compulsive 185 
disorder27, Tourettes: Tourette Syndrome28, Obesity29, T2D: type 2 diabetes mellitus30, Cholesterol: cholesterol 186 
total31, RArthritis: rheumatoid arthritis32, IBD: inflammatory bowel disease33, UC: ulcerative colitis34. 187 

Inter-individual variation of the human cortical transcriptome 188 

Population-level transcriptomic variation is influenced by genetic differences among individuals, 189 
phenotypes such as age, sex, and disease status, as well as technical factors such as tissue source, 190 
dissection bias, and single-cell library preparation. We first set out to explore the determinants of the overall 191 
transcriptome variation in our sample cohort. Population-scale snRNA-seq data allowed partitioning of the 192 
gene expression variance by cellular variables (including cell type and fraction of mitochondrial and ribosomal 193 
genes), donor-level variables (including subject ID, age, sex, genetic ancestry, and diagnosis), and technical 194 
variables (including source of the tissue specimen, post-mortem interval, technical replicates, and sequencing 195 
depth) (Fig. 3a). Across all genes, a mean of 49.8% of the total expression variance can be attributed to 196 
variation across cell type, while inter-individual variation explains 9.8%, and unexplained residual variation 197 
accounts for 38.9%. The remaining variables explained less than 1% of the total variance on average. We 198 
prioritized several drivers of expression variation (Fig. 3b). Several genes with high cell type variation 199 
(including ATP8A2, GABRB3, and DOCK3) are dominated by genes differentially expressed between neuronal 200 
and non-neuronal cell types (Fig. 3c). As expected, genes varying across sexes were located in sex 201 
chromosomes (Supplementary Fig. 3c). Interestingly, genes with high variation across tissue sources were 202 
mostly mitochondrial genes (Supplementary Fig. 3d), possibly due to technical differences in physiological 203 
and environmental factors from dissection and handling at the respective tissue sources35,36. Top 3 genes with 204 
the highest variation across diagnosis (CIRBP, FGF1, and WSB1) were implicated in stress response and 205 
hypoxia. CIRBP, which also had a high variation across PMI (ranked 4th), was a gene induced in response to 206 
low temperature and hypoxia, and its expression was inversely associated with patient survival in cancer37. 207 
FGF1 was another gene linked to temperature stress and hypoxia38, and WSB1 was a neuroprotective protein 208 
and regulator of many genes associated with the cellular response to hypoxia39. Top variable gene in PMI, 209 
HP1BP3, was chromatin organizing protein induced in hypoxic conditions40. This analysis examines expression 210 
variation shared across cell types, so the low variance fraction explained by diagnosis indicates the need for 211 
cell type specific analysis. 212 

We observed that inter-individual differences explained 80.9% of the variation in ARL17B gene expression 213 
(Fig. 3b,d). Several adjacent genes, such as ARL17A and KANSL1, also have high inter-individual variation 214 
and are localized on the disease-associated MAPT locus (17q21.31) (Fig. 3b). ARL17B and KANSL1 are often 215 
found as a fusion transcript (KANSL1::ARL17B) and frequently undergo polymorphic translocation41,42, and 216 
they have been implicated in neurological disorders such as ALS, PD, and MS43–45. To interrogate possible 217 
genetic causes for variation in expression, we examined normalized gene expression at the donor level, 218 
stratified by MAPT haplotypes (Fig. 3e, Methods). We observed two distinct patterns of ARL17B expression 219 
that could be potentially linked to H1 and H2 MAPT haplotypes, with lower expression linked to the H1H1 220 
genotype. We observed stratification of haplotypes by genetic ancestry, where the H2H2 genotype was almost 221 
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exclusively found within EUR ancestry, consistent with previous reports46 (Supplementary Fig. 3f). We 222 
replicated a previous finding that the H1 haplotype is associated with PD susceptibility, and observed that the 223 
H1H1 genotype increases PD risk with an odds ratio (OR) of 4.125 (Supplementary Fig. 3g; P ≤ 0.0273), 224 
much higher than previously reported (1.4247 or 1.4648). In addition, we tested the contribution of the H1 225 
haplotype to AD among non-ApoE4 carriers49 but did not find a significant association (P ≤ 0.302). The 226 
variation in inter-individual expression is inversely correlated with genetic constraints, as measured by the 227 
gnomAD Loss-of-function Observed/Expected Upper-bound Fraction (LOEUF) score (Fig. 3f, Supplementary 228 
Fig. 3h). Genes with high inter-individual variability tend to be less constrained and are often associated with 229 
the maintenance of basal cellular functions (i.e., housekeeping genes), including translation, RNA processing, 230 
metabolism, signal transduction, and structural maintenance, consistent with previous findings50,51 (Fig. 3g).  231 
 232 
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Fig. 3. Sources of transcriptomic variation. (a) Variance partition of the transcriptome. (b) Top genes for 234 
each technical and clinical covariate category. (c) ATP8A2 gene expression across cell types. (d) ARL17B 235 
gene expression across donors. (e) Stratification of ARL17B expression by MAPT haplotypes. (f) Genetic 236 
constraints of gene groups measured by average LOEUF score (upper bound of 90% confidence interval for 237 
o/e ratio for high confidence pLoF variants; lower values indicate more constrained). “Low”, indicates the 238 
bottom 2,000 genes with the lowest brain donor variance. “High”, indicates the top 2,000 genes with the 239 
highest brain donor variance. “Random”, indicates 2,000 random genes that are in neither the “Low” nor “High” 240 
category. (g) Functional enrichment for genes with high or low inter-individual variation. 241 

Cross-disorder variation of cell type composition across 8 different 242 

neurodegenerative and neuropsychiatric diseases 243 

Utilizing 318 neurotypical donors as a baseline, we systematically evaluated variation in the cellular 244 
composition of the DLPFC across eight different neurodegenerative (NDDs, including AD, DLBD, Vas, Tau, 245 
PD, and FTD) and neuropsychiatric diseases (NPDs, including SCZ and BD). Using all subclass-level cell 246 
types, we found the overall cell type composition changes were broadly stratified by NDDs and NPDs, and that 247 
they form distinct clusters (Fig. 4a). Notably, we observed a higher degree of similarity among AD, DLBD, and 248 
Vas. Focusing solely on neurons, we saw equal or greater correlations among the same class of diseases, 249 
underscoring the critical role of neurons in the etiology of neurological diseases. Additionally, similarities 250 
between FTD-AD (all cells) and FTD-Tau (neurons) were observed. Exploring each subclass further, we 251 
identified a notable overlap in the prevalence of neuronal and glial cell types within the same class of diseases 252 
(Fig. 4b, Supplementary Table 3). Specifically, we observed that NDDs were characterized by a higher 253 
abundance of non-neuronal cells, particularly vascular cell types (Supplementary Fig. 4c), as well as 254 
elevation of a specific IN, namely IN_LAMP5_RELN, IN_LAMP5_LHX6, and IN_ADARB2 subclasses. In 255 
contrast, NPDs were predominantly associated with an increase in neuronal cells, particularly deep layer ENs 256 
in L5-6. To further identify specific subtypes responsible for driving the compositional changes in vascular cell 257 
types, we used subtype-level annotation to analyze compositional variation in 8 NDDs and NPDs (Fig. 4c, 258 
Supplementary Fig. 4d). From this, we identified dominant subtypes of each subclass that further 259 
differentiated NDDs and NPDs. For example, vascular leptomeningeal cells (VLMCs) are barrier-forming 260 
fibroblasts of the brain52, and they are transcriptionally segregated into three subtypes; two meningeal VLMCs 261 
(VLMC_DCDC2 and VLMC_SLC4A4) and one perivascular VLMC (VLMC_ABCA6). Our subtype-level 262 
analysis indicates a polarized response of meningeal VLMC_DCDC2 where their increased proportions are 263 
specifically associated with most NDDs. 264 
 265 
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Fig. 4. Cross-disorder variation of cell type composition comparing 8 different NDDs (AD, DLBD, Vas, 267 
Tau, PD, and FTD) and NPDs (SCZ and BD) against common neurotypical controls. (a) Correlation of cell 268 
type composition using all cell types (bottom-left triangle) or limited to neuronal cell types (upper-right triangle). 269 
(b) Variation in cell type composition for each subclass in 8 different diseases. NDDs and NPDs indicate meta-270 
analysis using broad disease categories. (c) Variation of subtype-level composition in the vascular cell class. 271 
Color intensity indicates effect size and dot size reflects the statistical significance of correlations. 272 

Cross-disorder variation of gene expression and genetic concordance 273 

Cross-disorder gene expression analysis has the potential to identify shared biological pathways and 274 
mechanisms, improve diagnostic accuracy, and help develop targeted treatments. To assess the extent of 275 
sharing between NDDs and NPDs, we performed a comprehensive analysis of differentially expressed genes 276 
(DEGs) by decomposing the total disease signatures into shared and distinct components. Using Dreamlet 277 
followed by Mashr53, we performed composite tests to evaluate the specificity of disease effect (Methods), 278 
leading to the identification of shared disease signatures that are invariant across cell subclasses (Fig. 5a, 279 
Supplementary Figs. 5a,b). Genes sharing cross-disorder signatures encompassed crucial transcriptional 280 
processes, such as mRNA splicing and processing, and protein localization to mitochondria. The observed 281 
cross-disorder signatures, affecting genes, which are critical for the proper functioning of cellular processes, 282 
align with the omnigenic model54, and further support the pleiotropy of those genes influencing multiple 283 
disorders, both genetically and transcriptionally. After discounting the shared cross-disorder signatures from 284 
the overall DEG expression profiles, we used the residual effects to quantify the pair-wise transcriptomic 285 
similarity between traits (Fig. 5b, Supplementary Table 4). Similarities between pairs of NDDs or NPDs were 286 
greater compared to the NDD-NPD contrast, with AD, DLBD, Vas, and PD being the most similar. Meta-287 
analysis using disease-specific effects of these four transcriptomically similar traits (AD, DLBD, Vas, and PD) 288 
implicated neuronal development and synaptic signaling pathways involving interneurons (IN_LAMP5_RELN, 289 
IN_ADARB2, and IN_PVALB) as well as vasculature development from the VLMC subclass (Fig. 5c, 290 
Supplementary Fig. 5c). 291 

Comparison of pairwise trait co-heritability against pairwise transcriptome similarity can identify shared 292 
genetic influences and underlying biological mechanisms, leading to better insights into disease etiology and 293 
potential therapeutic targets. We first used GWAS summary statistics to estimate the shared heritability (r𝑔) 294 
among NDDs and NPDs, revealing disease pairs (i.e., SCZ-BD, DLBD-PD) with a high degree of heritability 295 
overlap (Fig. 5d). This analysis differentiates between NDDs and NPDs, revealing lower shared heritability 296 
between NDDs and NPDs. We then quantified the pairwise transcriptome similarity (ρs) across NDDs and 297 
NPDs (Fig. 5e). Our findings revealed varying degrees of transcriptomic overlap, with some exhibiting high 298 
similarity, particularly in disease pairs such as AD and DLBD. We calculated the pair-wise trait heritability-299 
transcriptome concordance (rg-ρs) by comparing the shared heritability against the average transcriptome 300 
similarity across cell types. We observed a positive correlation between genetic and transcriptomic similarities 301 
(Spearman’s ρ=0.56), indicating that diseases with higher shared genetic risk also tend to have more similar 302 
gene expression profiles (Fig. 5f). We extended the rg-ρs comparison by considering the transcriptional 303 
concordance for each cell type (Fig. 5g, Supplementary Fig. 5d). Among all cell types, the transcriptional 304 
concordance of Chandelier cells (IN_PVALB_CHC) had the highest similarity with the pairwise trait heritability. 305 
In summary, our approach allowed us to dissect disease signatures into shared and distinct components, 306 
revealing significant overlap in gene expression and genetic risk across NDDs and NPDs. These findings 307 
bolster our understanding of common and unique disease mechanisms, paving the way for novel therapeutic 308 
strategies targeting shared or distinct pathways. 309 
 310 
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 311 
Fig. 5. Cross-disorder variation of gene expression. (a) Pathways implicated by shared gene expression 312 
changes across 8 disorders. Hypergeometric test with FDR ≤ 0.01 shown. (b) Transcriptome similarities 313 
between disease pairs. Correlation is measured using Spearman correlation. Cross-disease shared genes are 314 
discounted from the comparison. (c) Pathways implicated by shared signatures from AD, DLBD, Vas, and PD. 315 
Hypergeometric test with FDR ≤ 0.001 shown. (d) Shared heritability estimates for disease pairs. LD Score 316 
Regression (LDSC). (e) Transcriptome similarity measured by Spearman correlation. (f) Correlation between 317 
shared heritability and median of transcriptome similarity. (g) Correlation between shared heritability and 318 
transcriptome similarity per cell subclass. 319 

Transcriptomic variation with AD pathology 320 

Next, we focused on characterizing the transcriptomic variation in AD using case-control comparison, and 321 
analysis of different phenotypes that capture disease severity, including plaque density using CERAD scores, 322 
neurofibrillary tangle progression using Braak stage, and level of cognitive impairment. The analysis of 323 
variation in cell type composition reveals distinct patterns associated with AD pathology compared to normal 324 
aging (Fig. 6a, Supplementary Fig. 6a, Supplementary Table 5). Notably, changes unique to AD pathology, 325 
such as the observed increase in Micro and IN_LAMP5_LHX6 with higher CERAD scores, indicate a potential 326 
association between this neuronal subtype and Aβ pathology. Additionally, the loss of EN_L2_3_IT in AD 327 
(based on case-control and CERAD comparisons), which is not evident in normal aging, suggests a specific 328 
vulnerability for this neuronal subtype to AD. Placing subclasses based on compositional shifts of normal aging 329 
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and AD (Fig. 6b), we identified one of the vascular cell types, SMC, was having the opposite effect, suggesting 330 
an AD-specific vulnerability in SMC. Likewise, changes in most ENs were discordant suggesting the 331 
mechanisms that lead to neuronal loss are AD-specific. Taken together, our findings highlight the cell type-332 
specificity of vulnerability associated with AD. 333 

To better understand transcriptomic variation under AD pathology and to identify subclass most affected, 334 
we also analyzed the changes in AD cases due to co-occurring conditions. It is estimated that more than 80% 335 
of AD patients will exhibit at least one NPS over the course of their illness that significantly impacts their clinical 336 
outcomes5,55 which suggests at least some shared molecular mechanisms between serious mental illness and 337 
AD. To evaluate cell type associations with the prevalence of NPS, we applied compositional variation analysis 338 
to three categories of NPS based on co-occurrence estimates. Notably, using age-matched groups of AD 339 
patients with or without NPS (Supplementary Fig. 6b), we found AD patients experiencing weight loss and 340 
PMA have an increased ratio of EN cell types, especially in deep layer neurons in L6 (Fig. 6a, Supplementary 341 
Fig. 6a). Our results support previous findings56 that the deeper PFC layers (L5-6) are involved with certain 342 
types of NPS. 343 

Upon identification of vulnerable cell subclasses in AD, we questioned their roles in AD pathology whether 344 
their changes are damaging, protective, causal, or derived. As demonstrated in previous studies57, we 345 
employed mediation analysis to decipher the causal relationships between various cascades of events leading 346 
to disease onset and progression of AD pathology. We performed the analysis on the base hypothesis that 347 
polygenic risk (AD PRS; Methods) contributes to plaque accumulation (mean density of neuritic plaques), 348 
which in turn affects tau progression (Braak), leading to varying degrees of dementia. We tested 14 subclasses 349 
that were significantly altered in any of the contrasts and observed significant average causal mediation effects 350 
(ACME, P < 0.05) involving Microglia, VLMC, IN_SST, and IN_LAMP5_LHX6 (Fig. 6c). Initially, we showed 351 
PRS affects both plaque and tau pathology, but tau is also significantly affected by plaque accumulation 352 
(ACME = 0.0903, P < 2e-16). Then, tau progression results in more VLMC cells mediated by an increase in 353 
Microglia (ACME = 0.00477, P = 0.005). Conversely, an increase in microglia leads to a decrease 354 
IN_LAMP5_LHX6. Such changes in the levels of both VLMC (ACME = 0.00515, P = 0.0002) and 355 
IN_LAMP5_LHX6 (ACME = -0.00269, P = 0.031) appear to exacerbate dementia. Furthermore, plaque 356 
accumulation is mitigated by IN_SST cells (ACME = 0.1475, P < 2e-16). Increased microglia lowers IN_SST 357 
(coef = -0.18, P = 5.04e-07), as does increased tau (coef = -0.06, P = 1.82e-04), contributing to more plaque 358 
accumulation (coef = -2.01, P = 7.47e-06). 359 

To determine how gene programs change in response to increasing severity of AD pathology, we 360 
characterized the DEGs in 27 subclasses (Fig. 6d, Supplementary Fig. 6d, Supplementary Table 6). DEGs 361 
in general have high concordance across different AD pathology variables, consistent with previous reports1. 362 
Overall, DEGs in AD (FDR < 0.05) can be summarized as up-regulation of genes in vascular cell classes 363 
(Mural and Endo) while down-regulation of genes in neurons (Supplementary Fig. 6c). We discovered genes 364 
differentially expressed in microglia were not observed in other subclasses, and these genes generally 365 
exhibited higher effect sizes. These include previously characterized up-regulated genes in Microglia, including 366 
DPYD, IL15, and PTPRG53,58,59. Further characterizing microglia-associated gene signatures, we found they 367 
are specifically enriched with pathways involved in negative regulation of cell motility and migration as well as 368 
response to lipoprotein particle (Fig. 6e, Supplementary Fig. 6e). Gene expression changes in neurons were 369 
largely affecting synaptic functions including synapse assembly, development, signaling, and membrane 370 
transport. Lastly, genes affecting VLMCs were implicated in muscle tissue development. 371 
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Fig. 6. Transcriptome changes across AD neuropathology. (a) Compositional variation analysis using 374 
normal aging, different measures of AD pathology (binary AD diagnosis (dx_AD), CERAD score, Braak 375 
staging, and ordinal dementia scale), and 3 categories of NPS within AD. (b) Comparison of compositional 376 
changes between aging and AD. Green indicates changes are concordant. Red indicates changes are 377 
discordant. Only subclasses with at least one FDR significant contrast shown. (c) Causal mediation analysis 378 
using PRS, mean plaque, Braak staging, and dementia scale. CLR-transformed subclass fractions were used 379 
for modeling. Statistical significances are shown above the arrow (P < 0.001 ***, < 0.01 **, and < 0.05 *), and 380 
numbers below indicate coefficients. Mediation effects of SST interneurons on Aβ plaque accumulation shown 381 
separately. (d) DEGs in AD phenotypes. Meta-analysis between brain banks. Top genes with FDR < 0.01 and 382 
effect size ≥ 0.35. (e) Functional enrichment analysis of DEGs by subclass using Gene Ontology Biological 383 
Process. Hypergeometric test with FDR ≤ 0.01 shown. GO terms were reduced using rrvgo. 384 

Nonlinear dynamics of the AD pathological trajectory 385 

To understand AD dementia mediated by tau proteinopathy, we modeled the transcriptome using 386 
variational autoencoder (VAE)-based latent manifold mapping (Fig. 7a, Methods). We inferred two 387 
independent cell-type-specific disease trajectories from semi-quantitative measures of AD progression (tau 388 
proteinopathy and severity of cognitive decline) and explored the dynamics of two paths leading to the onset 389 
and early stage of AD pathogenesis. To decorrelate Braak and dementia model predictions, we equally 390 
sampled all combinations of Braak stage and dementia status during model training (Supplementary Fig. 7). 391 
The accuracy of the Braak and dementia model predictions were significantly above chance for all eight cell 392 
classes (P < 1e-4, bootstrap) (Fig. 7b, top). We built a disease trajectory using the predicted Braak staging as 393 
a pseudo-temporal axis (Supplementary Figs. 8a,b) and calculated a dementia resilience score that 394 
measured how gene expression is correlated with predicted dementia, conditioned on the predicted Braak 395 
staging (Methods). Specifically, a gene is considered protective (i.e., resilient against dementia), if increased 396 
expression is associated with a decrease in predicted dementia, and vice versa (damaging if increased 397 
expression is associated with an increase in predicted dementia). Many past studies have suggested that gene 398 
expression can evolve nonlinearly with disease progression60. Thus, we measured the degree of nonlinearity 399 
for each gene trajectory (Supplementary Fig. 8c) and revealed that those within the immune and neuronal cell 400 
class were the most nonlinear and linear, respectively (both Ps < 1e-4, bootstrap) (Fig. 7b, bottom). 401 

To further characterize the nonlinear evolution of gene expression, we defined an "early" and "late" disease 402 
stage (Supplementary Fig. 8c) and determined the top 32 GO BP pathways that best summarize the 403 
biological changes associated with early and late stages of tau proteinopathy and dementia resilience (Fig. 7c, 404 
Supplementary Figs. 9-11, Supplementary Table 7). A semantic clustering of the pathways identified five 405 
functional clusters. The first cluster was primarily related to synaptic function, which were characterized by 406 
down-regulation in OPCs in the early stages of AD, and then up-regulation in neurons in later stages. For both 407 
cell types, increased expression was associated with diminished resilience (i.e., damaging). The late increase 408 
of genes implicated in these pathways could be linked to compensatory mechanisms following synaptic loss61. 409 
The second cluster was related to cell metabolism pathways implicated in protein translation2,62, mitochondrial 410 
function2,63, and acidification64, which showed strong downregulation in neurons with increasing Braak, 411 
consistent with past studies65. Decreased expression in these metabolic pathways implied damaging 412 
association with decreased resilience (increase in metabolism was protective). The third cluster was related to 413 
cell stress, including pathways related to chaperone-mediated protein assembly, folding, and tau-kinase 414 
activity. In non-neuronal cells, increased cell stress was strongly associated with cognitive decline in both the 415 
early and late stages. The fourth cluster was related to immune response and inflammation. In immune cells, 416 
early increase in pathways such as microglial activation, phagocytosis, and B cell proliferation was observed, 417 
while late increase was involved with pathways implicated in adaptive immune responses such as antigen 418 
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presentation and T-cell response, all of which were associated with dementia resilience. Lastly, vascular cells 419 
were implicated in damaging changes such as reduced lipid transport and vascular permeability, response to 420 
interleukin-17 (IL-17), glycolysis, endothelial cell differentiation, and nitric oxide synthesis. 421 

As previous studies have highlighted the importance of the immune response in AD58,66–72, we examined 422 
this cell class in more detail (Figs. 7d-g); We also extended the analysis to EN, IN and OPC cells classes 423 
(Supplementary Figs. 12-15). To help visualize the non-linear dynamics of the immune response to AD, we 424 
categorized gene expression trajectories into four modules based on their response to increasing tau 425 
proteinopathy: early increasing, early decreasing, late increasing, and late decreasing (Fig. 7d). Gene 426 
enrichment of these four trajectory modules showed that pathways involved in macrophage colony stimulation 427 
and metal transport were all upregulated in the early stage (Fig. 7e), whereas migration, purinergic signaling, 428 
and negative regulation of inclusion body assembly were downregulated. In the later stage, lipid-related 429 
pathways such as adipose tissue development, and triglyceride metabolism increased, while synapse-related 430 
pathways were downregulated. Gene-set enrichment analysis using GWAS summary statistics for the top 250 431 
genes in each trajectory module revealed that late increasing genes were the most strongly associated with AD 432 
(FDR ≤ 4.1e-6), although the other three modules were also significantly associated (FDR early increase ≤ 433 
0.005, early decrease ≤ 0.048, late decrease ≤ 0.040 (Fig. 7f, Supplementary Table 8, Supplementary Fig. 434 
12b). Interestingly, the late increasing trajectory module was also significantly correlated with other NDDs, 435 
including MS and PD. We further examined the genes associated with trajectory modules (Fig. 7g, list of top 436 
genes for all cell classes are found in Supplementary Table 9). Markers for homeostatic microglia73, such as 437 
CX3CR1, NAV2 and P2RY12 were among the top 10 early decreasing genes with increasing proteinopathy 438 
(FRMD4A ranked 26th out 17,265 coding genes, Supplementary Table 9). Conversely, some of the early 439 
increasing genes, such as ACSL1, DPYD, and CD163 were recently implicated in a pathogenic lipid-droplet 440 
accumulation phenotype in individuals with AD who carry the APOE4/4 genotype (another implicated gene, 441 
NAMPT, ranked 54th. Supplementary Table 9)70. These genes, along with the later upregulation in lipid-442 
related pathways such as adipose tissue development and triglyceride metabolism, lend support to the 443 
hypothesis that microglia develop a lipid-droplet accumulating state that potentially exacerbates disease 444 
progression70–72. 445 
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Fig. 7. Modeling of AD using disease trajectory analysis. (a) Overview of the trajectory inference model. (b) 448 
Accuracy of the model (above) and nonlinearity index by class (below). (c) Pathway enrichment by early (upper 449 
left triangles) and late (lower right triangles) phases of the AD trajectory, as predicted by Braak and dementia 450 
resilience. A gene is considered protective if increased expression is associated with a decrease in predicted 451 
dementia, and vice versa. Hue indicates the z-score (clipped between -10 and 10), and stars indicate FDR < 452 
0.05. (d) Four representative disease trajectory modules for immune cell class. The mean normalized 453 
expression of the 250 genes with greatest early increasing (blue curve), early decreasing (orange), late 454 
increasing (green) and late decreasing (red) slopes based on Braak trajectories. (e) Pathway enrichment of 455 
disease trajectory modules. Text colored by the four trajectory modules. Hue indicates the number of genes in 456 
the pathway. (f) Enrichment of heritability estimates (MAGMA) for each disease trajectory module. Text color 457 
indicates neurological traits (red) and psychiatric traits (blue). Hue indicates negative log10(FDR) (clipped at 458 
5), asterisk indicates FDR < 0.05. (g) Top 12 genes for each trajectory module. Hue indicates the rate of 459 
normalized expression change (slope) based on the predicted Braak staging. For visualization, we only show 460 
each gene once even if it appears in more than one module. 461 

Discussion 462 

We report a comprehensive disease atlas of the human DLPFC using 1,494 donors affected with various 463 
complex neurological and psychiatric conditions. Our single-nucleus transcriptomic analyses provide novel 464 
insights about cellular heterogeneity and variability in the human brain, including the observation that about 465 
10% of total transcriptomic variation can be attributed to inter-individual differences. Intriguingly, we find genes 466 
with higher inter-individual variability and lower genetic constraints that were implicated in certain 467 
housekeeping roles51. This is in contrast to the idea that, due to their essential nature, housekeeping genes are 468 
more likely to be conserved74,75. They are among the most universal genes in the cell, and cells adapt their 469 
protein synthesis machinery in response to physiological needs76. This flexibility is crucial for processes such 470 
as differentiation, proliferation, and response to stress. A higher degree of regulatory flexibility suggests a 471 
tolerance for variation within certain constraints. 472 

We used the disease atlas to characterize cellular and disease-specific responses to pathologic conditions. 473 
Our findings reveal shared and distinct cellular composition profiles among NDDs and NPDs, furthering our 474 
understanding of their underlying pathophysiological mechanisms. Disease signatures shared across NDDs 475 
and NPDs are enriched with genes critical for the proper functioning of cellular processes, such as RNA 476 
splicing. This observation aligns with the omnigenic model54, where most heritability in complex traits can be 477 
explained by effects on peripheral genes that often play indirect, subtle, and cumulative roles in disease. Thus, 478 
discounting cross-disease effects could facilitate identification of core disease-relevant functional genes. Using 479 
this approach, we found that disease pairs with higher genetic risk overlap tend to have greater transcriptomic 480 
concordance, in a cell-type-dependent manner, suggesting that genetic factors contributing to disease 481 
susceptibility can also influence transcriptomic alterations in similar ways3.  482 

In addition, we revealed that the brain vascular system is intricately linked to immune dysfunction in NDDs. 483 
In general, we saw a relative increase in vascular cell types in most NDDs and demonstrate that, in a 484 
seemingly protective role, levels of VLMCs rise in individuals who experience exacerbated cognitive 485 
impairment in AD. It has previously been shown that the meningeal lymphatic system plays multiple roles in the 486 
brain, including waste removal77–79 and the adaptive immune response52,80. Given the role of VLMCs in these 487 
processes81–84, they warrant further investigation in the context of NDDs. 488 

Our analysis of the pathological trajectory of AD aligns with various proposed hypotheses65,85–89, 489 
particularly for pathways affected in the earliest stages of the disease. Neuronal, immune, and vascular cells 490 
exhibit distinct vulnerabilities, with shared alterations across correlated pathways. In neurons, we observed a 491 
decrease in metabolic functions (cyclic nucleotide catabolic process, cytoplasmic translation, and ATP 492 
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synthesis) that have been closely linked to synaptic dysfunction and cognitive decline65. The immune response 493 
was generally protective against cognitive decline: an early innate immune activation85 followed by an adaptive 494 
immune response67–69 was associated with dementia resilience. The one exception was the response to IL-17, 495 
which was damaging in the early stages of AD for the Immune, Mural, and Endo classes. IL-17 has been 496 
associated with cognitive decline90,91 and disruption of the blood-brain barrier92, with anti-IL-17 treatment 497 
restoring cognitive function in mice90,91. In addition, chaperones have been closely associated with a number of 498 
disease related processes, including tau misfolding and aggregation, and neurotoxicity86–89,93,94, however, their 499 
precise roles in AD pathogenesis remains unclear. Our results suggest that chaperones can play opposing 500 
roles; protective for neurons but damaging for glia and immune cells. Lastly, vascular cells are associated with 501 
negative regulation of vascular permeability and lipid transport, which are detrimental to the infiltration of 502 
perivascular immune cells95 and the clearance of protein aggregates. Taken together, these insights deepen 503 
our understanding of AD pathogenesis and implicate cellular responses that warrant further investigation. 504 
Overall, the PsychAD single-cell disease atlas serves as a unique and foundational resource to further our 505 
understanding of population-level disease-associated transcriptomic variation in the human brain. 506 

Methods 507 

Collection and harmonization of clinical, pathological, and demographic metadata 508 
Brain tissue specimens were sourced from two brain banks: the Mount Sinai NIH Neurobiobank (MSSM; 509 

1,042 samples) and the NIMH-IRP Human Brain Collection Core (HBCC; 300 samples). Additionally, samples 510 
were obtained from five prospective cohort studies conducted at the Rush Alzheimer’s Disease Center (RADC; 511 
152 samples)96,97. As such, the available clinical data varied as a function of source (Supplementary Fig. 4a). 512 
We used the following scheme to harmonize available clinical, pathological, and demographic metadata: the 513 
CERAD scoring scheme for neuritic plaque density98 was harmonized for consistency across multiple brain 514 
banks, where the scores range from 1 to 4, with increasing CERAD number corresponding to an increase in 515 
AD burden; 1=no neuritic plaque (normal brain), 2=sparse (possible AD), 3=moderate (probable AD), 516 
4=frequent (definite AD). Samples from RADC used consensus summary diagnosis of no cognitive impairment 517 
(NCI), mild cognitive impairment (MCI), and dementia and its principal cause, Alzheimer’s dementia99–101. 518 
MSSM samples used clinical dementia rating (CDR), which was based on a scale of 0-5; 0=no dementia, 519 
0.5=questionable dementia (very mild), 1=mild dementia, 2=moderate dementia, 3=severe dementia, 520 
4=profound dementia, 5=terminal dementia. After consulting with clinicians, we created a harmonized ordinal 521 
variable where dementia is categorized into three levels of cognitive decline, independent of AD diagnosis; 522 
0=no cognitive impairment, 0.5=MCI (mild cognitive impairment), and 1-5=dementia. In addition to AD 523 
phenotype, we collected comprehensive demographic (age, sex, and genetic ancestry) and technical variables 524 
(tissue source, technician, sample batch, postmortem interval (PMI; measured in minutes), ApoE genotype) to 525 
describe each cohort (Supplementary Table 1). We briefly describe the process for assigning genetic 526 
ancestry102. In particular, we leveraged quadratic discriminant analysis (QDA) to infer genetic ancestry by 527 
training our model using data from the 1000 Genomes Project. We utilized 10-fold stratified cross validation to 528 
optimize the regularization parameter within QDA103 as well as forward selection to identify the optimal number 529 
of principal components for genetic ancestry assignments. For samples without genotypic data we utilized 530 
race/ethnicity as a proxy for inferring genetic ancestry. We emphasize that while genetic ancestry is a distinct 531 
concept from the social constructs of race and ethnicity104, we leveraged the correlated race/ethnicity variables 532 
as proxies to retain those samples in the analyses. Values for superpopulations included: EAS, SAS, AFR, 533 
AMR, EUR, and EAS_SAS, where the category "EAS_SAS" was assigned for samples with unavailable 534 
genotypes with an “Asian” value for race/ethnicity, which can potentially correspond to both EAS and SAS. 535 
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Clinical diagnosis of AD 537 
For analysis comparing donors with AD cases and neurotypical controls, a binary clinical diagnosis variable 538 

for AD, dx_AD, was defined, as follows: Individuals with CERAD 2, 3, or 4, Braak ≥ 3, and CDR ≥ 1 for MSSM 539 
or Alzheimer’s dementia for RADC were classified as AD cases. Controls were defined as individuals in 540 
controls_neuropathological_clinical category where CERAD={1}, Braak={0,1,2,3}, and secondary diagnosis 541 
(including dementia) is not allowed except for MCI. 542 

 543 
Measuring AD neuropathology 544 

For analysis comparing donors with pathologic AD, the following variables were used to measure the 545 
severity of AD neuropathology: CERAD score98. A quantitative measure of Aβ plaque density where 1 is 546 
normal, 2 is possible AD, 3 is probable AD, and 4 is definite AD99. Braak AD-staging score measuring 547 
progression of neurofibrillary tangle neuropathology (Braak & Braak-score, or BBScore). A quantitative 548 
measure of the regional patterns of neurofibrillary tangle (NFT) density across the brain, where 0 is normal and 549 
asymptomatic, 1-2 indicate initial stages where NFT begins to appear in the locus coeruleus and the 550 
transentorhinal region, 3-4 indicate progression to limbic regions, such as the hippocampus and amygdala, and 551 
5-6 indicate NFT are widespread, affecting multiple cortical regions105–107. 552 

 553 
Measuring cognitive impairment 554 

For analysis comparing donors with AD-related dementia, the following variable was used to measure the 555 
severity of cognitive impairment: Clinical assessment of dementia. A harmonized variable of cognitive status 556 
based on the CDR scale for MSSM or NCI, MCI, and Alzheimer’s dementia for RADC. We used the three-level 557 
ordinal categories of clinical dementia to measure the severity of dementia, in which 0 indicates no dementia, 558 
0.5 indicates minor cognitive impairment, and 1.0 indicates definite clinical dementia. 559 
 560 
Definition of cross-disorder contrasts 561 

For cross-disorder contrasts, we limited the analysis to any individual with Age ≥ 17. Neurotypical controls 562 
are defined as any individual CERAD={1}, Braak={0,1,2,3}, and secondary diagnosis is not allowed. AD is any 563 
individual with CERAD={2,3,4}, Braak={3,4,5,6}, clinically diagnosed as dementia, and secondary diagnosis 564 
not allowed. SCZ is any individual with SCZ diagnosis (SCZ | Schizoaffective_bipolar | 565 
Schizoaffective_depressive) and secondary diagnosis not allowed, except for metabolic and eating disorders. 566 
DLBD is any individual with DLBD diagnosis (DLBD) and secondary diagnosis can be only AD. Vascular is any 567 
individual with Vascular diagnosis (Vascular) and secondary diagnosis can be only AD. BD is any individual 568 
with BD diagnosis (BD_unspecific | BD_I | BD_II | Schizoaffective_bipolar) and secondary diagnosis not 569 
allowed except for metabolic and eating disorders. Tauopathy is any individual with CERAD={1}, Braak={4,5,6} 570 
and secondary diagnosis allowed. PD is any individual with PD diagnosis (PD | 571 
PD_uncertain_plus_encephalitic) and secondary diagnosis can be only AD. FTD is any individual with FTD 572 
diagnosis (FTD) and secondary diagnosis can be only AD. All disease contrasts used in the study can be 573 
found in Supplementary Table 1. 574 
 575 
Isolation and fluorescence-activated nuclear sorting (FANS) of nuclei from frozen brain 576 
specimens with hashing 577 

All buffers were supplemented with RNAse inhibitors (Takara). 25mg of frozen postmortem human brain 578 
tissue was homogenized in cold lysis buffer (0.32M Sucrose, 5 mM CaCl2, 3 mM Magnesium acetate, 0.1 mM, 579 
EDTA, 10 mM Tris-HCl, pH8, 1 mM DTT, 0.1% Triton X-100) and filtered through a 40 µm cell strainer. The 580 
flow-through was underlaid with sucrose solution (1.8 M Sucrose, 3 mM Magnesium acetate, 1 mM DTT, 10 581 
mM Tris-HCl, pH8) and centrifuged at 107,000 xg for 1 hour at 4˚C. Pellets were resuspended in PBS 582 
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supplemented with 0.5% bovine serum albumin (BSA). 6 samples were processed in parallel. Up to 2M nuclei 583 
from each sample were pelleted at 500 xg for 5 minutes at 4˚C. Nuclei were re-suspended in 100 µl staining 584 
buffer (2% BSA, 0.02% Tween-20 in PBS) and incubated with 1 µg of a uniuqe TotalSeq-A nuclear hashing 585 
antibody (Biolegend) for 30 min at 4˚C. Prior to FANS, volumes were brought up to 250 µl with PBS and 7-586 
Aminoactinomycin D (7-AAD) (Invitrogen) added according to the manufacturer’s instructions. 7-AAD positive 587 
nuclei were sorted into tubes pre-coated with 5% BSA using a FACSAria flow cytometer (BD Biosciences). 588 

 589 
snRNA-seq and hashing library preparation 590 

Following FANS, nuclei were subjected to 2 washes in 200 µl staining buffer, after which they were re-591 
suspended in 15 µl PBS and quantified (Countess II, Life Technologies). Concentrations were normalized and 592 
equal amounts of differentially hash-tagged nuclei were pooled. Using 10x Genomics single cell 3’ v3.1 593 
reagents (10x Genomics), 60,000 (10,000 per donor) nuclei were run in each of x2 10x Genomics lanes to 594 
create a technical replicate. At the cDNA amplification step (step 2.2) during library preparation, 1 µl of 2 µm 595 
HTO cDNA PCR “additive” primer was added108. After cDNA amplification, supernatant from 0.6x SPRI 596 
selection was retained for HTO library generation. cDNA libraries were prepared according to the 10x 597 
Genomics protocol. HTO libraries were prepared as previously described108. cDNA and HTO libraries were 598 
sequenced at NYGC using the Novaseq platform (Illumina). 599 

 600 
Processing of snRNA-seq data 601 

Alignment. Paired-end snRNA-seq library reads were aligned to the hg38 reference genome using STAR 602 
solo109,110 and sample pools were demultiplexed using genotype matching via vireoSNP111. After per-library 603 
count matrices were generated, the downstream processing was performed using Pegasus v1.7.0112 and 604 
scanpy v1.9.1113. QC. We applied rigorous three-step QC to remove ambient RNA and retain high quality 605 
nuclei for subsequent downstream analysis. First, QC was applied at the cell level. Poor-quality nuclei were 606 
detected by thresholding based on UMI counts, gene counts, and mitochondrial content. We also checked for 607 
possible contamination from ambient RNA, fraction of reads mapped to non-mRNAs, like rRNA, sRNA, and 608 
pseudogenes, as well as known confounding features such as lncRNA MALAT1. Second, QC was applied at 609 
the feature level by removing features that were not robustly expressed by at least 0.05% of the nuclei. Lastly, 610 
QC was applied at the donor level by removing donors with very low nuclei counts, which can introduce noise 611 
to downstream analyses. We also removed donors with low genotype concordance. Further filtering was 612 
carried out by removing doublets using the Scrublet method114. Batch correction. We assessed the 613 
correlation between all pairs of technical variables using Canonical Correlation Analysis and used the Harmony 614 
method115 to regress out unwanted variables such as the effect of brain tissue source. 615 
 616 
Defining cellular taxonomy using iterative clustering 617 

Cellular taxonomy was defined using a divide-and-conquer strategy. From the full dataset containing over 6 618 
million nuclei, 8 major cell classes were defined using the following steps. We selected 6,000 highly variable 619 
genes (HVGs) from mean and dispersions trends116 using the default parameters (min_mean=0.0125, 620 
max_mean=3, min_disp=0.5) and brain sources as batch variable after manually excluding sex and 621 
mitochondrial chromosomes and MT. We used the k-nearest-neighbor (kNN) graph calculated on the basis of 622 
harmony-corrected PCA embedding space to cluster nuclei of the same cell type using Leiden117 clustering 623 
algorithms. We used UMAP118 to visualize the resulting clusters. From the class-level clusters, we subsetted 624 
the data by each class. Re-calculating HVGs among cells in the same class allowed us to re-focus on a feature 625 
space that is more relevant for the same class of cells. We then calculated kNN graph on the basis of the 626 
harmony-corrected PCA of the selected HVGs. Leiden-clustering was used to annotate subclass-level 627 
annotations. We iterated to the second level of taxonomy yielding 67 subtypes of human brain cells. 628 
 629 
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Spatial validation of cellular taxonomy 630 

Xenium in situ panel selection and custom panel design. Xenium Human Brain Gene Expression Panel 631 
(1000599, 10x Genomics) and a custom panel of 100 genes (Supplementary Table 10) were selected for the 632 
Xenium experiment. The 100 gene custom panel consisted mainly of subclass markers selected based on 633 
specificity and gene expression level. The custom gene list was sent to 10X genomics and the probe design 634 
was performed using their in-house pipeline. 635 

Tissue preparation. Fresh frozen tissue specimens of DLPFC were dissected into small blocks on ice. Tissue 636 
blocks were snap frozen by submerging in an isopentane (320404-1L, Sigma-Aldrich) bath chilled with dry ice 637 
and stored in -80 °C. Before cryosectioning, tissue blocks were allowed to equilibrate to the cryostat (HM505, 638 
Microm) chamber temperature, and were mounted with OCT (Tissue-Tek® O.C.T. Compound, 4583, Sakura 639 
Finetek USA). After trimming, good quality 10 µm sections were flattened on the cryostat stage and placed on 640 
pre-equilibrated Xenium slides (Xenium Slides & Sample Prep Reagents, 1000460, 10x Genomics). 2-3 641 
sections were placed on each slide. Sections were further adhered by placing a finger on the backside of the 642 
slide for a few seconds and were then refrozen in the cryostat chamber. Slides were sealed in 50 ml tubes and 643 
stored at -80 °C until Xenium sample preparation. 644 

Sample preparation. Xenium sample preparation was performed according to the manufacturer's protocol; 645 
“Xenium In Situ for Fresh Frozen Tissues – Fixation & Permeabilization, CG000581, Rev C” and “Xenium In 646 
Situ Gene Expression - Probe Hybridization, Ligation & Amplification, User Guide, CG000582, Rev C''. Briefly, 647 
fresh frozen sections mounted on Xenium slides from the previous step were removed from -80 °C storage on 648 
dry ice prior to incubation at 37 °C for 1 min. Samples were then fixed in 4% paraformaldehyde (Formaldehyde 649 
16% in aqueous solution, 100503-917, VWR) in PBS for 30 min. After rinsing in PBS, the samples were 650 
permeabilized in 1% SDS (sodium dodecyl sulfate solution) for 2 min, and then rinsed in PBS before being 651 
immersed in the pre-chilled 70% methanol and incubated for 60 min on ice. After rinsing the samples in PBS, 652 
the Xenium Cassettes were assembled on the slides. Samples were incubated with a probe hybridization mix 653 
containing both the Xenium Human Brain Gene Expression Panel (1000599, 10x Genomics) and a 100 custom 654 
gene panel at 50°C overnight to allow the probes to hybridize to targeted mRNAs. After probe hybridization, 655 
samples were rinsed with PBST, and incubated with Xenium Post Hybridization Wash Buffer at 37°C for 30 656 
min. Samples were then rinsed with PBST and ligation mix was added. Ligation was performed at 37°C for 2 657 
hrs to circularize the hybridized probes. After rinsing the samples with PBST, Amplification Master Mix was 658 
added to enzymatically amplify the circularized probes at 30 °C for 2 hrs. After washing with TE buffer, auto-659 
fluorescence was quenched according to the manufacturer’s protocol and nuclei stained with DAPI prior to 660 
Xenium in situ analysis. 661 

Data processing. The prepared samples were loaded into the Xenium analyzer and run according to 662 
manufacturer’s instructions “Xenium Analyzer User Guide CG000584 Rev B”. After the Xenium analyzer was 663 
initiated, the correct gene panel was chosen, and decoding consumables (Xenium Decoding Consumables, 664 
PN-1000487, 10x Genomics) and reagents (Xenium Decoding Reagents, PN-1000461, 10x Genomics) were 665 
loaded. The bottom of the slides were carefully cleaned with ethanol prior to loading. Once the samples were 666 
loaded and the run was initiated, the instrument scanned the whole sample area of the slides using the DAPI 667 
channel, and regions of interest were selected to maximize the capture area. Results were generated by the 668 
instrument using default settings. By default, the Xenium analyzer uses 15 µm nuclei expansion distance for 669 
segmentation of cells. To test the idea of nuclei only segmentation, we resegment the results with 0 µm nuclei 670 
expansion, by using the Xenium ranger and the following scripts: 671 
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xeniumranger resegment --id=demo --xenium-bundle=/path/to/xenium/files --672 
expansion-distance=0 --resegment-nuclei=True 673 

Major cell type identification. After nuclei were segmented, cell x gene matrices were generated from the 674 
overlap of each segmented nuclear boundary with detected transcripts in the Xenium experiment. Nuclei were 675 
subsequently filtered by the number of detected transcripts, and only those containing at least 40 nuclear 676 
transcripts were retained for downstream analysis. Gene expression data from each sample was then log-677 
normalized and normalized data were used for PCA, kNN graph calculation and Leiden clustering. Clusters 678 
were then assigned to one of 8 major cell types based on marker gene expression. 679 
 680 
Label prediction from snRNA-seq data using scANVI. As an alternative to marker-based annotation, we 681 
used scANVI119 to perform reference-based label transfer from the RADC dataset. Briefly, we followed the 682 
following steps. First, snRNA-seq gene expression data was subset to the genes shared with the Xenium gene 683 
panel. Next, we used the scvi-tools package120,121 to train machine learning models for dimensionality reduction 684 
based on the reference dataset and its assigned labels (e.g., class and subclass). Models were run with 5 685 
layers and 30 latent variables, and the scANVI model was trained for 20 epochs with a minimal sample of 100 686 
cells per cluster per epoch. Lastly, a transfer model was trained for 100 epochs and applied to query data to 687 
assign labels based on those the model was trained on from the reference. To assess the performance of each 688 
transfer model, we asked the model to predict labels in the reference data (using the subset gene pool) and 689 
evaluated the rate of correct prediction and biases in label misassignment for each predicted label. 690 
 691 
Subclass label transfer for EN (IN) cells. To assign subclass labels for EN and IN nuclei, nuclei from all 692 
samples were filtered to EN (IN) based on two alternative methods for major cell type prediction - that 693 
described above, and label transfer using scANVI (with the RADC dataset as a reference). After subsetting to 694 
nuclei labeled as EN (IN) by both methods, these were then used as a query for a second scANVI label 695 
transfer - this one trained on subclass labels. Accuracy for both major cell type and subclass models assessed 696 
by predicted labels in the RADC dataset based only on the Xenium gene panel was estimated at > 98%. 697 
 698 
Processing of genotypes 699 

DNA extraction and genotyping was performed as described previously122. In brief, genomic DNA was 700 
extracted from frozen brain tissue using the QIAamp DNA Mini Kit (Qiagen), according to the manufacturer's 701 
instructions. Samples were genotyped using the Infinium Psych Chip Array (Illumina) at the Mount Sinai 702 
Sequencing Core. Pre-imputation processing consisted of running the quality control script HRC-1000G-check-703 
bim.pl from the McCarthy Lab Group (https://www.well.ox.ac.uk/~wrayner/tools/), using the Trans-Omics for 704 
Precision Medicine (TOPMed)123. Genotypes were then phased and imputed on the TOPMed Imputation 705 
Server (https://imputation.biodatacatalyst.nhlbi.nih.gov). Samples with a mismatch between one’s self-reported 706 
and genetically inferred sex, suspected sex chromosome aneuploidies, high relatedness as defined by the 707 
KING kinship coefficient124 (KING > 0.177), and outlier heterozygosity (+/- 3SD from mean) were removed. 708 
Additionally, samples with a sample-level missingness > 0.05 were removed and calculated within a subset of 709 
high-quality variants (variant-level missingness ≤ 0.02).  710 

For ancestry assignment, genotypes were first merged with GRCh38 v2a 1000 Genomes Project data 711 
(https://wellcomeopenresearch.org/articles/4-50)125 using BCFtools version 1.9126. PLINK 2.0127 was then used 712 
to calculate the merged genotypes’ principal components (PCs), following filtering (minor allele frequency 713 
(MAF) ≥ 0.01, Hardy-Weinberg equilibrium (HWE) P ≥ 1 × 10−10, variant-level missingness ≤ 0.01, regions with 714 
high linkage disequilibrium (LD) removed) and LD pruning (window size = 1000 kb, step size = 10, r2 = 0.2) 715 
steps. For the samples of EUR ancestry assigned using the QDA method, autosomal bi-allelic variants with an 716 
imputation R2 > 0.8, HWE P ≥ 1 × 10−6, and variant-level missingness ≤ 0.02 were retained. Genotypes were 717 
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then annotated with ancestry-specific MAF values from the National Center for Biotechnology Information’s 718 
Allele Frequency Aggregator (ALFA) (https://ftp.ncbi.nih.gov/snp/population_frequency/latest_release/). Only 719 
variants with an ancestry-specific ALFA MAF ≥ 0.01 were retained. 720 

 721 
Polygenic risk score calculation 722 

Polygenic risk scores (PRS) were computed for the PsychAD cohort using summary statistics from AD 723 
GWAS11. The PRS-CS-auto method128 was employed, which incorporates continuous shrinkage priors to 724 
adjust the effect sizes from these summary statistics. An LD reference panel from the developers of PRS-CS, 725 
based on data from the 1000 Genomes Project125, was used (https://github.com/getian107/PRScs). The 726 
default settings for PRS-CS were applied, including parameters a = 1 and b = 0.5 for the γ-γ prior, 1000 727 
Markov Chain Monte Carlo (MCMC) iterations, 500 burn-in iterations, and a thinning factor of 5. The global 728 
shrinkage parameter phi was determined using a fully Bayesian method. PLINK 2.0127 was utilized to calculate 729 
the individual-level PRS. 730 
 731 
Genetic heritability analysis of polygenic risk 732 

We established a standardized pipeline for Multi-marker Analysis of GenoMic Annotation (MAGMA) 733 
followed by single-cell Disease-Relevance Scoring (scDRS). MAGMA incorporates the association P-values of 734 
genetic variants from the latest genome-wide association study (GWAS). We used the following GWAS 735 
summary stats in scDRS/MAGMA pipeline: AD11, MS12, PD13, Epilepsy14, Migraines15, Stroke16, ALS17, SCZ18, 736 
BD19, MDD20, ASD21, ADHD22, Insomnia23, Education24, IQ25, Alcoholism26, OCD27, Tourettes28, Obesity29, 737 
T2D30, Cholesterol31, RArthritis32, IBD33, UC34. We applied MAGMA using a standard window of 35 kbp 738 
upstream and 10 kbp downstream around the gene body. We executed scDRS using the top 1000 gene 739 
weights, sorted by Z score. The MAGMA and scDRS pipeline was run using the following parameters. MAGMA 740 
was run using -snp-loc g1000_eur.bim (SNP location file corresponding to the Phase 3 1000 Genome 741 
Project) and --gene-loc NCBI38.gene.loc (gene location file from NCBI build 38). Both files were 742 
obtained from https://ctg.cncr.nl/software/magma. For scDRS, default setting was applied. 743 

 744 
Variance partition analysis of gene expression 745 

After aggregating pseudobulk by library, assays (cell types) were stacked using the StackedAssay function 746 
of Dreamlet. The resulting pseudobulk allowed us to perform analysis across cell types. Variance partition 747 
analysis was performed on the resulting stacked pseudobulk. We used the following regression formula: 748 

 749 
Gene expression ~ (1|stackedAssay) + (1|Channel) + (1|SubID) + (1|Source) + 750 

(1|Ethnicity) + dx_bit + scale(Age) + Sex + scale(PMI) + log(n_genes) + 751 
percent_mito + mito_genes + ribo_genes + mito_ribo 752 

 753 
where dx_bit indicates binary disease status excluding metabolic and eating disorders. Technical covariates 754 
log(n_genes), percent_mito, mito_genes, ribo_genes, and mito_ribo were removed from the plotting and 755 
subsequent analysis because they explained less than 1e-4 percent of overall gene expression variation. 756 

 757 
MAPT locus haplotyping 758 

From our harmonized genotype calls, we selected common variants in 17q21.31 locus (chr17:45307631-759 
46836264), performed PCA analysis of genotypes using 10 PCs, and used K-means clustering with k=3 to call 760 
three genotype clusters, H1H1, H1H2, and H2H2. We additionally confirmed the H1 haplotype using two 761 
published SNPs, rs17763050 and rs8070723, known to associate129. Haplotypes were estimated using Beagle 762 
v5.4130 on the selected genotypes of the 17q21.31 region. The estimation of the initial haplotype frequency 763 
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model converged after one burn-in iteration, and the estimate of the genotype phase converged after 23 764 
phasing iterations. For testing association with PD diagnosis, we used logistic regression with age, sex, 10 765 
genotype PCs, and H1H1 status: 766 

 767 
PD ~ Age + Sex + Source + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 + PC9 + 768 
PC10 + H1H1 769 
 770 
In addition, we tested the contribution of the H1 haplotype to AD among non-ApoE4 carriers49 but did not find a 771 
significant association (P ≤ 0.302). For testing association with AD diagnosis, we first subsetted for individuals 772 
who are not carriers of the ApoE4 allele and tested for AD association using logistic regression with the 773 
formula: 774 
 775 
AD ~ Age + Sex + Source + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 + PC9 + 776 
PC10 + H1H1 777 

 778 
Compositional variation analysis using Crumblr 779 

We applied the Crumblr method (https://diseaseneurogenomics.github.io/crumblr) for testing the variation 780 
of cell type composition131. In summary, Crumblr scales the cell count ratio (i.e., fractions) data using centered 781 
log-ratio (CLR) transformation and applies linear models. Since CLR-transformed data is still highly 782 
heteroskedastic, the precision of measurements varies widely. Crumblr uses a fast asymptotic normal 783 
approximation of CLR-transformed counts from a Dirichlet-multinomial distribution to model the sampling 784 
variance of the transformed counts. Crumblr enables incorporating the sampling variance as precision weights 785 
to linear (mixed) models in order to increase power and control the false positive rate. Crumblr also uses a 786 
variance stabilizing transform based on the precision weights to improve the performance of PCA and 787 
clustering. Hypothesis testing was computed using the following formula:  788 

 789 
Cell composition ~ scale(Age) + Sex + (phenotype of interest) 790 

 791 
By including these variables, we account for potential confounders and improve the accuracy and reliability of 792 
our hypothesis testing (Supplementary Fig. 4b). 793 

 794 
Differential gene expression analysis using Dreamlet 795 

Due to the increased variable complexity in a large-scale disease atlas, scaling single-cell based 796 
approaches to millions of cells across a wide range of phenotypes presents computational challenges132 and 797 
can be suboptimal133–136. To account for the scale of these data, complex study designs with repeated 798 
measures, and low read count per cell, we applied Dreamlet for differential expression analysis, which applies 799 
a pseudobulk approach. Building from the previously developed statistical tool Dream137, it applies linear mixed 800 
models to the differential expression problem in single-cell omics data. It starts by aggregating cells by the 801 
donor using a pseudobulk approach133,134 and fits a regression model and cell. For each feature and cell 802 
cluster, the following mixed model was applied:  803 

 804 
Gene expression ~ scale(Age) + Sex + scale(PMI) + log(n_genes) + percent_mito + 805 
mito_genes + mito_ribo + ribo_genes + (phenotype of interest) 806 

 807 
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where categorical and numerical variables were modeled as random and fixed effects, respectively. If the 808 
phenotype of interest was a categorical variable, we set the intercept as 0 and used pre-defined contrasts 809 
between two factors. We ran a gene set analysis using the full spectrum of gene-level t-statistics138. 810 

 811 
Meta-Analysis (between brain sources): 812 

We conducted a meta-analysis to integrate results from different brain banks for the same disorder. Data 813 
tables from multiple brain banks were combined into a single list for each disorder and annotated with their 814 
respective sources. The meta_analysis function was used to perform the meta-analysis, which involved 815 
combining data tables into a single data frame, grouping the data by assay, and calculating standard errors 816 
using the formula abs(logFC / t). The meta-analysis was performed using the rma function from the 817 
metafor package with a fixed effects model. P-values were adjusted using the False Discovery Rate (FDR) 818 
method, and the negative log10 of the FDR values were calculated. This method was applied to datasets of 819 
AD, DLBD, Vas, PD, Tau, FTD, SCZ, and BD. 820 

 821 
Meta-Analysis (across the same disease category) 822 

To further synthesize findings across multiple disorders, a meta-of-meta analysis was conducted, 823 
grouping the disorders into neurodegenerative and neuropsychiatric categories. Results from the initial meta-824 
analyses for each disorder were combined into lists based on their categories. The meta-of-meta function 825 
was used to perform this higher-level analysis. This function combined the meta-analysis results into a single 826 
data frame, grouped the data by assay, and calculated standard errors using the formula abs(estimate / 827 
statistic). This approach was applied to create meta-of-meta analyses for all disorders, 828 
neurodegenerative disorders, and neuropsychiatric disorders. 829 
 830 
Evaluation of shared disease signatures using Mashr 831 

Suppose the total disease signature can be written as the sum of shared and distinct components of DEGs 832 
for that disease: 833 
 834 

 835 
where  denotes the total disease signature for a disease ,  denotes the set of DEGs that are 836 
shared among the diseases,  denotes the set of DEGs that are distinct for diseases. This notation 837 
highlights that the total differential gene expression for each disease is composed of contributions from both 838 
shared genes (common to all diseases) and distinct genes (specific to each disease). To define shared 839 
disease signatures, we performed composite tests on Dreamlet results using Mashr to evaluate the specificity 840 
of an effect. We evaluated the posterior probability of a non-zero effect present in all 8 cross-disorder 841 
contrasts. We categorized a gene as part of the shared component if it had Mashr posterior probability greater 842 
than 0.01. 843 
 844 
Construction of Correlation Matrix 845 

To calculate the correlation matrix, we used a systematic approach to quantify the relationships between 846 
genetic estimates across different neuropsychiatric and neurodegenerative disorders. Spearman correlation 847 
coefficients were calculated to assess the strength and direction of association between genetic estimates 848 
across different disorders. The calculation was performed for the common to each pair of disorders, grouped 849 
by assay, after the exclusion of the shared disease signatures.  850 

The wide-format correlation matrix was converted to a matrix suitable for heatmap visualization. Missing 851 
values were replaced with zeros. Annotations indicating the number of significant genes were added to the 852 
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rows and columns using the rowAnnotation and HeatmapAnnotation functions from the 853 
ComplexHeatmap package. The heatmap was generated with hierarchical clustering of both rows and 854 
columns, and colored based on the Spearman correlation values using a gradient from blue (negative 855 
correlation) to red (positive correlation). 856 
 857 
Co-heritability analysis 858 

We employed cross-trait LD score regression using the LDSC tool139 to estimate the genetic correlation 859 
between a pair of traits. We used summary stats for the following GWAS traits (AD11, DLBD140, PD13, FTD141, 860 
SCZ18, BD19) and calculated heritability for each of the traits and the genetic covariance and correlation 861 
between each of the pair of traits (in total 15 pairs of traits). The size of the cohort was provided to the function 862 
munge_sumstats.py for heritability estimates. Precomputed LD scores for 1000 Genomes EUR data were 863 
downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2. The SNP list for 864 
munge_sumstats.py was downloaded from 865 
https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2. Standard error was obtained from the 866 
LDSC output. Script munge_sumstats.py was modified to include the parameter: --chunksize 5e5. 867 

For each of the 15 possible combinations of traits, we calculated the level of correlation of gene expression 868 
using the Spearman rank correlation test. Genes were selected by applying the following criteria: logFC ≥ 0.5, 869 
FDR ≥ 0.05. Co-expression coefficient was calculated for the overall dataset and for each of the cell types. 870 
Next, to correlate co-expression and co-heritability, we calculated Spearman rank correlation coefficient 871 
between LDSC genetic correlation score and co-expression coefficient using 15 possible combinations of traits 872 
as data points for the Spearman rank correlation. Spearman was calculated for the overall dataset providing 873 
the genetic estimates of the expression similarities in the PsychAD cohort, and also per cell type to obtain the 874 
ranking of the cell types that contribute the most to the genetic to transcriptomic similarity in PsychAD. 875 
 876 
Mediation analysis 877 

Causal Mediation Analysis was performed using two R packages; mediation and psych. Results were 878 
cross-validated between the two methods (identical within a threshold) to ensure the estimated coefficients, 879 
and the mediation effects are statistically robust. From 696 individuals in AD contrast, we subsetted 645 880 
individuals with European ancestry who have PRS calculations from the latest AD GWAS11. For each 881 
regression, we used the following covariates: 882 

 883 
Age + Sex + PMI + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 + PC9 + PC10 884 
 885 
where PC1-10 indicate genotype PCs. For subclass proportion, we used CLR-transformed cell count fractions 886 
from crumblr analysis. For bootstrapping, we used 10,000 simulations with 50th percentile of the treatment 887 
variable used as the control condition and 90th percentile of the treatment variable used as the treatment 888 
condition. 889 
 890 
Trajectory analysis using VAE model 891 
 892 
Rationale. Traditionally, changes in gene expression as a function of disease state are measured using linear-893 
based models. This approach has proven highly valuable and has enhanced our understanding of the 894 
biological mechanisms underlying many diseases. However, it is increasingly recognized that changes in gene 895 
expression can be highly nonlinear60; the interaction among numerous signaling pathways, many involving 896 
multiple feedback loops, can lead to complex dynamics that linear models may fail to capture. One approach to 897 
capturing potentially nonlinear changes in gene expression is pseudotime analysis (i.e., trajectory 898 
inference)142,143. In this approach, cells are assigned a relative pseudotime based on a metric that measures 899 
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the distance between gene expression vectors, coupled with specific assumptions about how trajectories can 900 
evolve. However, this approach requires prior assumptions that might obscure informative aspects of disease 901 
progression. For example, most methods require a dimensionality reduction operation (e.g., PCA or UMAP) 902 
before calculating each cell's nearest neighbors. The variance of lowly expressed genes, regardless of their 903 
importance to the disease, can be overshadowed by the variance of genes with greater expression but less 904 
relevance, or by the variance inherent in a sample from a highly diverse demographic. Furthermore, in the 905 
case of AD, it is known that the spread of neurofibrillary tangles and Aβ plaques is strongly, but not perfectly, 906 
correlated with dementia. Of special interest is understanding cases where individuals are resilient to dementia 907 
despite a high neurofibrillary tangle or Aβ plaque burden. Thus, we aimed to disentangle changes in gene 908 
expression associated with disease burden from those associated with the onset of dementia. Standard 909 
pseudotime analysis does not allow us to separate these two covariates effectively. To capture the potentially 910 
nonlinear gene expression dynamics during the course of AD progression and to disentangle the effects of 911 
disease burden and dementia, we used an alternative approach. As detailed below, we employed a VAE to 912 
predict the Braak stage and dementia status from the raw transcript counts of single cells. The model's 913 
predictions of the Braak stage and dementia status were then used as two independent pseudotime axes. 914 
Importantly, we trained the model by equally sampling all combinations of Braak stage and dementia status, 915 
thereby discouraging the model from learning spurious correlations between the two target variables. 916 
 917 
Model architecture. We used a VAE, based on the scVI model144, to predict the Braak stage and dementia 918 
status from single-cell gene counts. Both the gene encoder and decoder contained two 512-dimensional 919 
hidden layers. All hidden layers applied the ReLU activation function before a LayerNorm operation. Model 920 
predictions for Braak and dementia were generated using linear functions from the 32-dimensional latent layer.  921 
Model training. Single-cell gene counts were log1p transformed in the input layer, and top 25,000 genes for 922 
each cell class, based on the percentage of cells the gene was expressed, were used for training. Genes found 923 
in the X or Y chromosomes were excluded to discourage the model from learning sex specific differences. The 924 
network was trained to minimize 1) the gene reconstruction loss, 2) the Kullback-Leiber divergence, and 3) the 925 
disease target prediction (Braak and dementia) loss: 926 

. 927 
The scalar  was calibrated to properly weigh the contribution of the standard VAE loss terms (i.e., the gene 928 
reconstructions and KL losses) and the target and covariate prediction loss (see below). The gene 929 
reconstruction loss, , was the zero-inflated negative binomial144. For the binary target dementia, the 930 
softmax function was applied to the output, and the loss was the cross-entropy. For Braak, target values were 931 
first normalized to zero mean and unit standard deviation, and the mean-squared error loss was used. All loss 932 
terms were trained simultaneously. To prevent the model from overfitting the data, we applied a dropout with 933 
0.25 probability in the input layer (after the log1p transform) and with probability of 0.5 to all hidden layers (after 934 
the ReLU and LayerNorm operations). For each cell class, we divided the cells into 10 splits. In each split, 90% 935 
of the cells were used for training, and the remaining 10% were used for inference. Within each split, cells from 936 
a single donor exclusively belonged to either the training set or the inference set, but never both. Thus, model 937 
predictions were always based on cross-validated data from different donors. We trained one model for each of 938 
the ten splits to generate predictions for all donors for that cell class. Models were trained using all donors from 939 
the MSSM and RADC brain sources, and then ran inference on only the 696 donors that focused on the AD 940 
phenotype contrast (Fig. 1d). There existed different numbers of cells for each cell class, thus the amount of 941 
training differed between classes. For neurons, astrocytes, oligodendrocytes and the immune cell class, we 942 
trained for 5 epochs, and then calculated the Braak and dementia model predictions by averaging the 943 
inference outputs generated from the last two epochs. For mural and endothelial cells, which contained less 944 
data, we trained for 15 and 20 epochs, respectively, and calculated the Braak and dementia model predictions 945 
by averaging the outputs generated from the last five epochs. Model accuracy for the OPC cell class evolved 946 
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more slowly over model training; thus, we also trained this cell class for 15 epochs, and calculated the Braak 947 
and dementia model predictions by averaging the outputs generated from the last five epochs. We used 948 
empirical testing to determine which values of  generated accurate Braak and dementia model predictions. 949 
Immune cells typically have reduced mean gene counts compared to the other cell classes, and we found that 950 
setting . For all other cell classes, in which mean gene counts were on average greater, we set 951 

. Network parameters were trained using the AdamW optimizer145 with parameters , 952 
, ) and weight decay of 0.05 applied to all layers before the latent layer. We used a 953 

batch size of 512, and a learning rate schedule with a warmup and decay period using the formula 954 
, where we set , , while  is the 955 

current training step. Finally, we clipped the gradient norm to 0.25 to stabilize training. 956 
 957 
Model accuracy. We averaged the cell-level Braak and dementia model predictions to obtain donor-averaged 958 
scores. For dementia, we calculated the balanced classification score by determining the percentage of donors 959 
without dementia with a prediction score ≤ 0.5, the percentage of donors with dementia with a prediction score 960 
> 0.5, and then averaging these two values. For Braak, we calculated the Pearson R value between the actual 961 
Braak stage and the Braak predictions. Error bars were generated using a bootstrap procedure, in which we 962 
randomly sampled donors (with replacement), calculated the Braak and dementia prediction accuracy, and 963 
repeated this process 20,000 times. For each cell class, we included all donors with at least 5 cells. 964 
 965 
Disentangling Braak and dementia. Braak stage and dementia status are significantly correlated (Pearson R 966 
= 0.582, P < 1e-60). This strong correlation between target variables implies that input features (i.e., changes 967 
in gene expression) associated with the two target variables are also likely to be correlated, which makes it 968 
challenging for the model to learn which input feature is predictive of which target variable. The result is when 969 
the model is trained in a standard fashion, the correlation between the Braak and dementia model predictions 970 
are close to 1 (Supplementary Fig. 7a, Immune class shown), suggesting that the model has learned spurious 971 
correlations between the input features and target variables. Fully removing spurious correlation in machine 972 
learning models is still an unresolved question. However, balancing the training data, such that each of the 14 973 
combinations of Braak and Dementia (7 Braak values X 2 Dementia values) are equally sampled, can 974 
effectively reduce spurious correlations learned during training146. In practice, we equally sampled from 15 975 
groups, in which the extra group consisted of donors whose Braak stage or dementia status had not been 976 
determined. Training with group balancing reduced the correlation between the predicted Braak and dementia 977 
values (Supplementary Fig. 7b), did not adversely affect the model accuracy at the donor-level 978 
(Supplementary Fig. 7c). 979 

 980 
Calculating gene trajectories. We wished to measure how gene expression varied as a function of the 981 
predicted Braak stage. First, gene counts were normalized so that each cell's total count was 10,000, followed 982 
by the log1p transformation. Second, for each cell class and each donor, we calculated the mean predicted 983 
Braak stage, and the mean normalized expression for each gene. Averaging within each donor reduced 984 
variability and ensured that donors with greater cell counts did not contribute disproportionately in downstream 985 
analysis. Third, we smoothed both the predicted donor-averaged Braak scores, and the donor-averaged gene 986 
expression with a Gaussian kernel (Supplementary Fig. 8). Specifically, for each donor , we weighted all 987 
other donors  as  988 

 989 
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where  is the predicted Braak score of donor ,  was set to half the variance of the predicted Braak 990 
distribution, and the normalization term  was set such that . This allowed us to calculate 991 
smoothed Braak,  and gene expression, , values 992 

, 993 

 994 
where  is the gene expression vector of log1p normalized counts for donor . After ordering the smoothed 995 
Braak scores, Braak gene trajectories are now represented as the tuple 996 

. 997 
We only included donors with at least 5 cells for the cell class. We also removed the 10 donors with the least 998 
and greatest smoothed predicted Braak scores after smoothing to minimize the edge effects from smoothing.  999 
 1000 
Resilience against dementia. Since tau proteinopathy and dementia status are highly correlated, gene 1001 
expression as a function of the two variables is also correlated, and thus partially redundant. Therefore, we 1002 
aimed to measure how gene expression covaried with predicted dementia given the predicted Braak staging. 1003 
To do so, we first calculated the expected predicted dementia and expected gene expression for donors with 1004 
similar Braak staging. Specifically, we defined the expected dementia given Braak, , and the expected gene 1005 
expression given Braak, , 1006 

, 1007 

. 1008 
The only modification to the kernel was that we set  so that each donor doesn't contribute to its own 1009 
expected value. We then calculated the residuals between the donor's predicted dementia status and gene 1010 
expression with its expected values: 1011 

, 1012 
. 1013 

The dementia resilience score for each donor was then the product of these two terms. When calculating early 1014 
and late resilience, donors were separated into early and late groups based on their predicted Braak staging 1015 
before averaging within each group. Using this metric, we define genes as protective if gene expression 1016 
increases as predicted dementia decreases, given the predicted Braak staging (i.e., the product of the terms 1017 
defined above is negative). Conversely, we define genes as damaging if gene expression increases as 1018 
predicted dementia increases, given the predicted Braak staging. 1019 
 1020 
Trajectory nonlinearity. We were interested in measuring how gene expression potentially changes in a 1021 
nonlinear manner as a function of Braak or dementia. As an initial step, we first wished to quantify the degree 1022 
of nonlinearity in gene trajectories across the different cell classes. As outlined in Supplementary Fig. 8, this 1023 
calculation was performed across a series of steps. Starting with the gene trajectories for each gene and each 1024 
cell class as described above, in which smoothed gene expression varied as a function of predicted Braak, we 1025 
fit each one with a linear fit, and then calculated its explained variance. We calculated the mean explained 1026 
variance using all genes within each cell class with mean normalized expression above 0.01 and used this 1027 
value as a baseline. Next, we fit each trajectory with a piecewise linear fit consisting of two consecutive linear 1028 
segments, separated at some predicted Braak score . For each cell class, we determined the optimal  1029 
that maximized the explained variance of the piecewise fits for all genes within that cell class. The nonlinearity 1030 
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index (Fig. 7b, bottom) was then defined as the difference in explained variance between the piecewise linear 1031 
fit and the linear fit. Error bars were determined by bootstrapping the model fits, in which we randomly sampled 1032 
genes from donors (with replacement), calculating the nonlinearity index, and repeating the process 100 times. 1033 
Significance between different cell classes was calculated by comparing the 100 x 100 bootstrapped nonlinear 1034 
index values. We used the optimal time t was then used to define an "early" and "late" period. For the Immune 1035 
cell class, which had the greatest nonlinearity index, the early period was defined as the first 140 donors with 1036 
the lowest Braak model predictions (after the first 10 donors were removed to account for edge effects, see 1037 
above). For the other cell classes, we adjusted 140 proportionally based on the number of donors for that cell 1038 
class and defined this number as N; the early period for each cell class was then defined as the N donors with 1039 
the lowest Braak model predictions. Since the rank ordering of donor-averaged Braak scores varies between 1040 
cell classes, donors may be classified as early stage for some cell classes and late stage for others. 1041 
 1042 
Trajectory gene enrichment. We wished to determine which genetic pathways were most significantly up or 1043 
down-regulated during the progression of AD. To do so, we first extracted the slopes of the "early" and "late" 1044 
linear fits for the Braak trajectories, and the mean early and late resilience scores (defined above). We used 1045 
these slopes input to Zenith (https://bioconductor.org/packages/release/bioc/html/zenith.html) to calculate the 1046 
changes across all GO BP pathways across the eight cell classes. For each GO BP pathway, we calculated 1047 
the maximum - log10(FDR) score across the eight cell classes and across early and late Braak and Dementia 1048 
stages. The score of each pathway was assigned this maximum value. 1049 
To obtain a condensed list of the most significantly genetic pathways, we first selected all pathways with FDR ≤ 1050 
0.05. Next, since we were only interested in pathways that could be informative of the mechanisms underlying 1051 
AD progression, we excluded pathways containing words referring to overly broad behaviors or cognitive 1052 
functions ("learning", "memory", "vocalization", "social", "auditory", "startle response", "behavior", "locomotor", 1053 
"startle", "prepulse inhibition"), terms referring to anatomical structures other than the cortex ( "substantia nigra 1054 
development", "cardiac", "coronary", "aortic", "ventricular", "kidney", "metanephric", "retina", "optic", "bone", 1055 
"respiratory", "pulmonary", "olfactory", "sperm", "placenta", "egg", "embryonic", "ovulation", "estrous", 1056 
"placenta", "sperm", "mamary", "germ layer", "outflow tract septum", "adrenal", "epithelial", "skeletal", "otic", 1057 
"head") or overly broad neural terms ("nervous system process", "cerebral cortex", "recognition", "host", 1058 
"organ", "developmental growth"). To condense the remaining pathways into a more manageable size, we 1059 
used rrvgo (https://www.bioconductor.org/packages/release/bioc/html/rrvgo.html). We selected the Wang 1060 
semantic similarity metric147, and set the threshold at 0.9 to obtain 56 GO BP pathways (Supplementary Fig. 1061 
9). For easier visualization, we selected 32 representative pathways from this set for Fig 7c. We also 1062 
performed similar steps (pathways with minimum FDR < 0.05 included, Wang metric with threshold at 0.9) to 1063 
obtain the top GO Molecular Function and Cellular Component (Supplementary Figs. 10, 11) pathways. In all 1064 
cases, we only included pathways with at least 10 genes to ensure that results were statistically robust, and no 1065 
more than 250 genes to ensure that pathways were not overly broad. 1066 
 1067 
Mean trajectories and MAGMA enrichment. For both the mean normalized expression (Fig. 7d) and Magma 1068 
enrichment analysis (Fig. 7f), we used the top 250 coding genes based upon the early and late slopes of the 1069 
Braak trajectories. Late decreasing genes tend to also appear to contain an early increase (Fig. 7d). However, 1070 
we cannot say whether this is biologically meaningful or the result of selection bias, as a strong late decrease 1071 
must be preceded by a high baseline. For both the mean expression and Magma enrichment calculations, 1072 
results were qualitatively similar if we used the top 500 or 1000 genes instead (data not shown). 1073 
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Data availability 1074 

All data are available via the AD Knowledge Portal (https://adknowledgeportal.org). The AD Knowledge Portal 1075 
is a platform for accessing data, analyses, and tools generated by the Accelerating Medicines Partnership 1076 
(AMP-AD) Target Discovery Program and other National Institute on Aging (NIA)-supported programs to 1077 
enable open-science practices and accelerate translational learning. The data, analyses and tools are shared 1078 
early in the research cycle without a publication embargo on secondary use. Data is available for general 1079 
research use according to the following requirements for data access and data attribution 1080 
(https://adknowledgeportal.synapse.org/Data%20Access). The data are available under controlled use 1081 
conditions set by human privacy regulations. To access the data, a data use agreement is needed. The 1082 
registration is in place solely to ensure the anonymity of the study participants. In addition, we have a data 1083 
descriptor manuscript102 detailing the data processing and data collection. 1084 

Code availability 1085 

All the source codes used in this study are available via GitHub 1086 
https://github.com/DiseaseNeuroGenomics/PsychADxD. 1087 
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Supplementary Figures 1171 

 1172 
Supplementary Fig. 1. (a) Extended schematic overview of snRNA-seq experiments leading to unified 1173 
taxonomy. (b) Donor breakdown by NPS categories and sex. (c) Distribution of gene counts by UMI counts 1174 
after QC of 6M nuclei. (d) Cumulative nuclei count by percent mitochondrial genes. (e) Histogram of nuclei 1175 
counts per sample. (f) Distribution of UMI counts per sample. (g) Distribution of gene counts per sample. (h) 1176 
Distribution of nuclei count per sample. (i) Distribution of nuclei count per donor. (j) Treemap showing the color 1177 
scheme of the unified taxonomy. 1178 
 1179 
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 1180 
Supplementary Fig. 2. (a) Composition of cell types in each brain bank using class and subclass-level cellular 1181 
taxonomy. (b) Composition of subtype in each brain bank. (c) Clustering of EN lineage. A UMAP focusing on 1182 
the diversity of 10 subclasses of excitatory neurons. (d) Clustering of IN lineage. A UMAP focusing on the 1183 
diversity of 7 subclasses of inhibitory neurons (IN). (e) Spatial distribution of IN subclass. (f) Expression and 1184 
fraction of marker gene expression in 27 subclasses. Expression z-scaled and averaged across nuclei. (g) 1185 
Comparison of subclass-level cellular taxonomy with Ma et al 2022. (h) Comparison of subtype-level cellular 1186 
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taxonomy with Mathys et al 2023. (i) Disease enrichment scores based on GWAS (scDRS) for AD, PD, SCZ, 1187 
and BD. 1188 
 1189 

 1190 
Supplementary Fig. 3. (a) Example of a gene with the highest variation across age. (b) Example of a gene 1191 
with the highest variation across genetic ancestry. (c) Example of a gene with the highest variation across sex. 1192 
(d) Example of a gene with the highest variation across brain banks. (e) Example of a gene with the highest 1193 
variation across diagnosis. (f) Normalized expression of ARL17B gene within EN_L2_3_IT subclass stratified 1194 
by genetic ancestry. (g) The logistic regression coefficient for PD risk using the haplotype of MAPT locus. (h) 1195 
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Spearman correlation test between variance explained by inter-individual variation and average LOEUF 1196 
conservation score. 1197 
 1198 

 1199 
Supplementary Fig. 4. Cross-disorder variation of cell type composition comparing 8 different NDDs and 1200 
NPDs against common neurotypical controls. (a) Correlation matrix showing the relationships between various 1201 
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clinical and demographic variables for the selection of the covariates. The color intensity indicates the strength 1202 
of the correlation, with red representing positive correlations and blue negative correlations. (b) Variance 1203 
partition of cell type composition, displaying the variance captured by different covariates in the formula. (c) 1204 
Bar plot depicting the absolute logFC values of the 8 different NDDs and NPDs across the cell types. (d) 1205 
Variation in cell type composition for each subtype in 8 different diseases. NDDs and NPDs indicate meta-1206 
analysis using broad disease categories. Color intensity indicates effect size and dot size reflects the statistical 1207 
significance of correlations. 1208 
 1209 

 1210 
Supplementary Fig. 5. Cross-disorder gene expression signature. (a) GO BP pathways implicated by shared 1211 
gene expression changes across 8 disorders using Zenith. T-statistic values indicate the direction and 1212 
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magnitude of the gene set enrichment. (b) Extended data for Fig. 5a with all 27 subclasses and without 1213 
reduction in similar GO terms. (c) Pathways implicated by shared signatures from AD, DLBD, Vas, and PD. (d) 1214 
Correlation between shared heritability and transcriptome similarity per cell subclass. 1215 
 1216 
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Supplementary Fig. 6. Transcriptomic changes across AD neuropathology. (a) Extended data for Fig. 6a. 1218 
Compositional variation analysis using normal aging, different measures of AD pathology (binary AD diagnosis 1219 
(dx_AD), CERAD score, Braak staging, and ordinal dementia scale), and 3 categories of NPS within AD. (b) 1220 
Age distribution of AD cases with or without three NPS categories. (c) Mean effect sizes aggregated by 1221 
direction of effect per cell class. (d) Extended data for Fig. 6d. DEGs in AD phenotypes. Meta-analysis 1222 
between brain banks. Top genes with FDR < 0.01 and effect size ≥ 0.35. (e) Functional enrichment analysis of 1223 
DEGs by subclass using Gene Ontology Biological Process. Hypergeometric test with FDR ≤ 0.01 shown. 1224 
 1225 

 1226 
Supplementary Fig. 7. The effect of different training methods on model prediction correlations and accuracy 1227 
for the Immune cell class. (a) Correlation between Braak (x-axis) and dementia (y-axis) model predictions at 1228 
the cell-level (left panel) and donor-averaged level (right panel) when all cells are equally sampled. To reduce 1229 
the figure size, only 1 out of 20 cells shown in the left panel. (b) Same as (a), except that all combinations of 1230 
Braak stage and dementia status are equally sampled during training. This has the effect of reducing the 1231 
correlation between the predicted Braak and dementia values. (c) The correlation between the actual and 1232 
predicted Braak values (left panel) and dementia classification accuracy (right panel), both measured at the 1233 
donor-averaged level, are shown for the two training methods. 1234 
 1235 

 1236 
Supplementary Fig. 8. The steps involved in calculating the Braak trajectory for an example gene - NAV2 1237 
from the Immune cell class. (a) Given cell-based model predictions along with normalized gene counts, we can 1238 
calculate the donor-averaged predicted Braak (x-axis), predicted dementia (y-axis), and normalized gene 1239 
counts (hue). Predicted Braak and dementia values are normalized between 0 and 1. We then smooth the 1240 
predicted Braak scores along with the gene counts with a Gaussian kernel (black curve, width is shown at 1241 
scale). (b) After smoothing, we obtain the Braak trajectory for this gene, relating gene expression to the 1242 
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predicted Braak value. (c) We then compare how well we can fit this trajectory with a single linear model (blue 1243 
dashed line) and a piecewise linear model (green dashed line). The piecewise linear model consists of two 1244 
consecutive linear fits, in which the transition point has been optimized to maximize the explained variance. 1245 
This transition point is then used to define an "early" and "late" disease stages (Methods). 1246 
 1247 
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Supplementary Fig. 9. Extended data for Fig. 7c. Expanded list of all 56 GO BP pathways. Upper left 1249 
triangles indicate the early phases, and lower right triangles indicate the late phases of the AD trajectory 1250 
predicted by Braak and dementia resilience. Hue indicates the z-score, and stars indicate FDR < 0.05.  1251 
 1252 

 1253 
Supplementary Fig. 10. Pathway enrichment using the top GO Cellular Components pathways. Upper left 1254 
triangles indicate the early phases, and lower right triangles indicate the late phases of the AD trajectory 1255 
predicted by Braak and dementia resilience. Hue indicates the z-score, and stars indicate FDR < 0.05. 1256 
 1257 
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 1258 
Supplementary Fig. 11. Pathway enrichment using the top GO Molecular Function pathways. Upper left 1259 
triangles indicate the early phases, and lower right triangles indicate the late phases of the AD trajectory 1260 
predicted by Braak and dementia resilience. Hue indicates the z-score, and stars indicate FDR < 0.05. 1261 
 1262 
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 1263 
Supplementary Fig. 12. GO BP pathways and GWAS enrichment results for dementia resilience. (a) Top 1264 
early protective pathways (i.e. resilience against dementia, blue), early damaging (i.e. associated with 1265 
dementia, orange), late protective (green) and late damaging (red). Hue indicates the number of genes in the 1266 
pathway. Negative log FDR clipped at 10. (b) Enrichment of heritability estimates (MAGMA) for each disease 1267 
trajectory module. Text color indicates neurological traits (light red) and psychiatric traits (cyan). Hue indicates 1268 
negative log10(FDR), asterisk indicates FDR < 0.05. Negative log FDR clipped at 5. 1269 
 1270 
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 1271 
Supplementary Fig. 13. GO BP pathways and GWAS enrichment results for the EN cell class based on their 1272 
response to Braak (a,b) and dementia resilience (c,d). (a) Pathway enrichment of genes with early increasing 1273 
response to increasing tau proteinopathy (blue), early decreasing (orange), late increasing (green) and late 1274 
decreasing (red). Hue indicates the number of genes in the pathway. Negative log FDR clipped at 10. (b) 1275 
Enrichment of heritability estimates (MAGMA) for each disease trajectory module. Text color indicates 1276 
neurological traits (light red) and psychiatric traits (cyan). Hue indicates negative log10(FDR), asterisk 1277 
indicates FDR < 0.05. Negative log FDR clipped at 5. (c) Pathway enrichment of genes with early protective 1278 
resilience against dementia (blue), early damaging associated with dementia (orange), late protective (green), 1279 
and late damaging (red). (d) Enrichment of heritability estimates (MAGMA) for each disease trajectory module. 1280 
 1281 
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 1282 
Supplementary Fig. 14. GO BP pathways and GWAS enrichment results for the IN cell class based on their 1283 
response to Braak (a,b) and dementia resilience (c,d). (a) Pathway enrichment of genes with early increasing 1284 
response to increasing tau proteinopathy (blue), early decreasing (orange), late increasing (green) and late 1285 
decreasing (red). Hue indicates the number of genes in the pathway. Negative log FDR clipped at 10. (b) 1286 
Enrichment of heritability estimates (MAGMA) for each disease trajectory module. Text color indicates 1287 
neurological traits (light red) and psychiatric traits (cyan). Hue indicates negative log10(FDR), asterisk 1288 
indicates FDR < 0.05. Negative log FDR clipped at 5. (c) Pathway enrichment of genes with early protective 1289 
resilience against dementia (blue), early damaging associated with dementia (orange), late protective (green), 1290 
and late damaging (red). (d) Enrichment of heritability estimates (MAGMA) for each disease trajectory module. 1291 
 1292 
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 1293 
Supplementary Fig. 15. GO BP pathways and GWAS enrichment results for the OPC cell class based on 1294 
their response to Braak (a,b) and dementia resilience (c,d). (a) Pathway enrichment of genes with early 1295 
increasing response to increasing tau proteinopathy (blue), early decreasing (orange), late increasing (green) 1296 
and late decreasing (red). Hue indicates the number of genes in the pathway. Negative log FDR clipped at 10. 1297 
(b) Enrichment of heritability estimates (MAGMA) for each disease trajectory module. Text color indicates 1298 
neurological traits (light red) and psychiatric traits (cyan). Hue indicates negative log10(FDR), asterisk 1299 
indicates FDR < 0.05. Negative log FDR clipped at 5. (c) Pathway enrichment of genes with early protective 1300 
resilience against dementia (blue), early damaging associated with dementia (orange), late protective (green), 1301 
and late damaging (red). (d) Enrichment of heritability estimates (MAGMA) for each disease trajectory module.  1302 
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Supplementary Tables 1303 

Supplementary Table 1. Clinical and technical metadata of 1,494 donors in the PsychAD cohort. Metadata 1304 
includes binary contrasts and continuous variables used in the study. 1305 
 1306 
Supplementary Table 2. Hierarchical cellular taxonomy of the PsychAD snRNA-seq data. Metadata including 1307 
parent-child relationships, color hex codes, and number of nuclei per subtype. 1308 
 1309 
Supplementary Table 3. Compositional variation analysis across 8 cross-disorder traits. 1310 
 1311 
Supplementary Table 4. Differentially expressed genes across 8 cross-disorder traits. 1312 
 1313 
Supplementary Table 5. Compositional variation analysis across AD phenotypes. 1314 
 1315 
Supplementary Table 6. Differentially expressed genes across AD phenotypes. 1316 
 1317 
Supplementary Table 7. The top 50 GO BP pathways for each cell class relative to early/late 1318 
increases/decreases in predicted Braak staging, and relative to early/late dementia resilience 1319 
 1320 
Supplementary Table 8. Gene-set enrichment analysis using GWAS summary data for each cell class. 1321 
GWAS scores are calculated using the top 250 coding genes with the greatest slopes measured relative to 1322 
early/late increases/decreases in predicted Braak staging, and the top 250 early/late protective/damaging 1323 
coding genes. 1324 
 1325 
Supplementary Table 9. The top 250 coding genes with the greatest slopes measured relative to early/late 1326 
increases/decreases in predicted Braak staging, and the top 250 early/late protective/damaging coding genes. 1327 
 1328 
Supplementary Table 10. List of gene markers used from Xenium human brain custom panel. 1329 

Supplementary Data 1330 

Supplementary Data 1. Metadata and model predictions for each cell. Each cell class contains a table that 1331 
includes the cell barcode, donor information, the cell subclass, and both the actual Braak and dementia status 1332 
along with the model predictions.  1333 
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