TITLE PAGE

Executive Functioning and Processing Speed as Predictors of Global Cognitive Decline in Alzheimer Disease

Authors:

John P. Haran^{1,2,3}, A M Barrett⁴, YuShuan Lai, MD, PhD^{2,3}, Samuel N. Odjidja¹, Protiva Dutta¹, Patrick M McGrath¹, Imane Samari¹, Lethycia Romeiro¹, Abigail Lopes¹, Vanni Bucci^{2,3}, and Beth A. McCormick ^{2,3}

Affiliations:

 ¹Department of Emergency Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
 ²Department of Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
 ³Program in Microbiome Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
 ⁴Department of Neurology, UMass Chan Medical School and UMass Memorial Healthcare, Worcester, Massachusetts.

Corresponding Author: John P. Haran, MD, Ph.D., 55 Lake Avenue North, Worcester, MA 01655; Phone: 508-450-8688; email: john.haran@umassmed.edu; fax: 508-421-1490

2 ABSTRACT

INTRODUCTION: There is a lack of cognitive tools to predict disease progression in mild
cognitive impairment (MCI) and Alzheimer's disease (AD).
METHODS: We assessed patients with MCI, AD, and cognitively healthy controls (cHC) using
NIH toolbox assessments for attention/concentration and executive functioning and overall
cognitive decline by the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-Cog).
RESULTS: Among 183 participants over a median follow-up of 540 days, both between- and
within-subjects variance in NIH toolbox and ADAS-Cog assessments increased from cHC to
MCI to AD patients. Among patients with AD, pattern comparison processing speed (PCPS) and
dimensional change card sort tests (DCCS) declined at 3 and 6 months prior to global cognitive
decline (p=0.008 & 0.0012). A 5-point decrease in either PCPS or DCCS increased risk of global
cognitive decline (HR 1.32 (1.08-1.60) and 1.62 (1.16-2.26)).
DISCUSSION: Testing for cognitive domains of attention/concentration and executive
functioning may predict subsequent global cognitive, and functional decline.
Keywords: Alzheimer's disease, mild cognitive impairment, cognitive testing, NIH toolbox,
ADAS-Cog

25 INTRODUCTION

26 Today there are nearly 6.9 million older Americans living with Alzheimer's disease (AD) (1). 27 AD is a progressive neurodegenerative disorder, however, there is much variability in the 28 observed rates of cognitive decline across the spectrum of AD (2-4). The average duration of the 29 disease varies between 4 and 8 years, with some upwards of 20 years (5). There are known 30 demographic and clinical characteristics as well as radiological and genetic features that 31 associate with the rate of cognitive decline (6, 7). More recently both central and peripheral 32 biomarkers have been identified as predicting long-term cognitive decline (8-10). However, 33 these risk factors do not provide short-term predictions of AD disease trajectory. The ability to 34 predict the timing of when a patient will become completely dependent on others would be a 35 powerful tool, enabling patients and families to optimize care and, with newer disease-modifying 36 therapeutics, possibly optimize timing of therapeutic interventions.

37

38 The sequence of deficits affecting different cognitive domains in AD commonly starts with an 39 individual's executive functioning and processing speed (11). Executive functioning defines the 40 higher-level cognitive skills used to control other cognitive abilities (12, 13) while processing 41 speed is the time it takes to execute multi-step information processing in a mental task (14). Both 42 executive functioning and processing speed support other cognitive processes (15, 16) and may 43 serve as a useful cognitive markers for the early trajectory of AD symptoms, being potentially 44 predictive of a more rapid decline (17, 18). Thus, both of these domains may serve as predictors 45 of an inflection point in AD symptoms, when the individual might begin a period of more rapid 46 global cognitive decline, losing function and freedom.

47

48 In current clinical practice, there are no established guidelines or tools for monitoring cognitive 49 function after diagnosis for the sole purpose of predicting decline. We reasoned that given that 50 deficits in executive function and processing speed often precede more severe cognitive deficits. 51 standardized testing of these two domains may hold value in clinical practice. While not 52 specifically developed for older populations, the U.S. National Institutes of Health Toolbox for 53 the Assessment of Neurological and Behavioral Function (NIH toolbox) includes a Cognition 54 Battery (CB) that includes brief, comprehensive tests for these functions (19). This CB contains a 55 Dimensional Change Card Sort (DCCS) test that is a sensitive and reliable measure of executive 56 functioning and cognitive flexibility (20), and a Pattern Comparison Processing Speed Test 57 (PCPS), which can also evaluate attention and concentration (21). These NIH toolbox 58 assessments are easy to administer and offer standardized, non-invasive measures which can be 59 compared across studies (19).

60

61 The aim of this interim analysis of the Gut-brain Alzheimer's disease Inflammation and 62 Neurocognitive Study (GAINS) cohort was to evaluate early cognitive data as potential 63 predictors of AD-associated global cognitive decline as measured by the modified Alzheimer's 64 Disease Assessment Scale-Cognitive Subscale 13 (ADAS-Cog13). ADAS-Cog is a well-65 established standard for the assessment of cognitive function in patients with AD with moderate 66 to severe disease and is routinely used to help diagnose patients as having MCI, AD, or normal 67 cognition (22) as well as to measure clinically relevant changes (23, 24). The addition of 68 executive functioning and functional ability items to create ADAS-Cog13 (25) from the original 69 11 question set (ADAS-Cog11) has improved the test's sensitivity in milder disease (26), but the 70 test still lacks an assessment of processing speed and skews towards language and verbal

71	memory tasks. While greater changes in ADAS-Cog and ADAS-Cog13 scores over time have
72	been associated with AD versus MCI (27), both tests remain in essence, a measure of cognitive
73	ability at a given point in time.
74	
75	We followed participants in the GAINS cohort at 3-month intervals and assessed their NIH
76	toolbox DCCS and PCPS and ADAS-Cog13 scores. In this longitudinal cohort, a 5-point

- 77 decrease in the cognitive domains of DCCS or PCPS was predictive of global cognitive and
- functional decline as measured by the ADAS-Cog13.

79 METHODS

80 Study Setting and Population

81 Older adults, ≥60 years of age, living independently, were recruited into the Gut-brain

- 82 Alzheimer's disease Inflammation and Neurocognitive Study (GAINS) and included those
- 83 diagnosed with Alzheimer's disease (AD), amnestic mild cognitive impairment (MCI), or had no
- 84 cognitive issues, serving as healthy controls (cHC). Subjects were included in this sub-group
- analysis if they had completed 4 study visits (270 days). This prospective cohort study was
- 86 approved by the institutional review board at the University of Massachusetts Chan Medical

87 School.

88

89 Data Collection

We collected demographic measures at enrollment, which included age, sex, race, ethnicity, level of education, and past medical history. At enrollment and at each subsequent visit, we collected information on nutritional status, frailty, and any hospitalizations or changes in medication. We assessed nutritional status using the Mini Nutritional Assessment (MNA) tool (28-30). Subjects were categorized as normal, at risk, or malnourished based on the MNA. Frailty was categorized according to the validated and widely-utilized Canadian Study of Health and Aging's (CSHA) 7point Clinical Frailty Scale (31).

97

During each visit, cognitive testing was performed. We used the modified Alzheimer's Disease
Assessment Scale-Cognitive Subscale 13 (ADAS-Cog13). ADAS-Cog was developed to
measure cognitive dysfunction in AD, but is now used for assessment of cognition in other
dementia or pre-dementia populations, and is one of the most widely-used cognitive scales in

102	clinical trials (27, 32). We also utilized the NIH toolbox to assess changes in cognition under the
103	subdomains of attention/concentration, using the Pattern Comparison Processing Speed Test
104	(PCPS), and executive functioning using the Dimensional Change Card Sort (DCCS) (33). The
105	Toolbox PCPS provides a reliable measurement of complex processing speed over the lifespan
106	that is sensitive to neurological insults (34).
107	
108	For our measure of global cognition, we chose to use the ADAS-Cog13 due to its improved
109	responsiveness as compared with the original ADAS-Cog among people with MCI and early
110	disease course AD, as well as its ability to distinguish different stages of AD (22, 26).
111	Longitudinally, we used a 4-point change in the ADAS-Cog13 score from the day 0 visit as
112	clinically meaningful, either as an improvement (\leq -4 points) or as a decline \geq +4 points) (35-
113	37). Those that remained within 4 points of their initial visit ADAS-Cog13 scores were
114	categorized as stable, while those with improvement were categorized as improved, and
115	declining as decline. We chose the first timepoint where a subject had a change in ADAS-Cog13
116	score of \leq -4 points as the point of decline and the previous visit as the 3 months prior, and the
117	visit before that as 6 months prior to decline. All other previous timepoints were labeled as
118	baseline for analysis.
119	
120	Determination of AD diagnosis was made by previous cognitive testing coupled with various
121	neuroimaging techniques performed by the subjects' own physician.
122	Polypharmacy was defined using the most commonly reported definition of five or more daily

123 medications (38). We subdivided our cohort into 4 age categories for analysis: 1) 65 to 74; 2) 75

to 84; 3) 85 to 94; and 4) \geq 95 years of age. This has been previously validated in demonstrating

signatures of frailty in the gut microbiota (39-41). All survey data was collected by trained
research staff or study physicians. Study data were collected and managed using REDCap
electronic data capture tools hosted at the University of Massachusetts Chan Medical School.(42)

129 Data Analysis

130 We used chi-square tests to compare categorical variables, and the student's independent-

131 samples t-test for continuous variables between patient groups with different outcomes from their

132 baseline data. To test the equality of standard deviations (variance) we used the sdtest package in

133 Stata. Cox proportional hazards models were used to evaluate the NIH neuropsychological

134 measures that predicted time to significant global cognitive decline, as defined by a greater than

135 4-point increase in ADAS-Cog13 testing, as described above. The hazard ratio indicates the

136 change in risk per 5-unit change in the predictor. For instance, if the hazard ratio for PCPS is

137 1.57, each 5-point change in PCPS equates to an increases risk by 57%. Two sets of adjusted

138 Cox models were completed each for PCPS and DCCS, where these neuropsychological

139 measures were adjusted for age (in years), sex, education level, frailty, malnutrition, and

140 polypharmacy. The software used for the analyses was Stata, Release 13.1 (StataCorp LLC,

141 College Station, TX) and Prism Release 10 (GraphPad by Dotmatics, Ltd., United Kingdom).

143 **RESULTS**

144 Clinical and cognitive scores differed among GAINS cohort patient groups

- 145 We enrolled 243 older adults, and at the time of this analysis, 183 (75.3%) completed 4 study
- 146 visits for a longitudinal length of 270 days and were eligible for the analysis. Of these 183 adults
- 147 in the GAINS cohort, 131 (71.2%) were cHC while 24 (13.0%) had AD and 29 (15.8%) had
- 148 MCI. This cohort was predominately white (95.1%) and non-Hispanic (91.8%). Unsurprisingly,
- adults with AD and MCI were older, with higher frailty and malnutrition scores as well as taking
- 150 more daily medications as defined by polypharmacy (**Table 1**). This is consistent with what is
- 151 known about frailty and malnutrition in relation to AD and mild cognitive impairment (43-46).
- 152 Both frail and pre-frail elders usually have poorer cognitive status (47), and frailty has been
- 153 linked to the extent of AD pathophysiology (44). Malnutrition is also closely linked to decreased
- 154 cognitive functioning (43). Not surprisingly, mean score on the ADAS-Cog13 increased from
- 155 cHC, to MCI and AD subjects, and NIH Toolbox module mean scores decreased from cHC, to
- 156 MCI and AD subjects (Table 1). These results further validate the ADAS-Cog13 in
- 157 responsiveness between cognitively healthy individuals and those with MCI versus AD. They
- also demonstrate the utility of the NIH toolbox cognitive modules in distinguishing these
- 159 populations.
- 160
- 161

Table 1: Clinical characteristics of the GAINS cohort					
	HC	MCI	AD	p-value	
Age *	70.2 (7.6)	75.4 (7.2)	74.3 (5.6)	< 0.001	
Male	39 (29.8)	15 (51.7)	11 (45.8)	0.042	
Education level	6.0 (1.5)	5.8 (1.2)	5.7 (1.7)	0.43	
Malnutrition Score*	1.2 (0.5)	1.3 (0.5)	1.8 (0.7)	< 0.001	
CFS *	2.1 (1.0)	2.6 (1.0)	3.8 (1.4)	< 0.001	
Polypharmacy	34 (26.0)	10 (34.5)	16 (66.7)	< 0.001	

BMI	27.7 (6.0)	26.7 (4.9)	26.1 (6.3)	0.44		
ADAS-Cog13	8.9 (4.6)	19.4 (9.2)	36.8 (22.5)	< 0.001		
PCPS	93.5 (14.2)	83.6 (16.4)	66.2 (20.1)	< 0.001		
DCCS	101.2 (10.0)	96.8 (12.5)	84.0 (18.3)	< 0.001		
Data presented as n (%) unless marked with * then presented means (sd). CFS – Clinical Frailty Score; BMI – body mass index; ADAS-Cog13 - Alzheimer's Disease Assessment Scale-Cognitive Subscale 13; PCPS – NIH Toolbox Pattern Comparison Processing Speed Test; DCCS - NIH Toolbox Dimensional Change Card Sort						

162

163 Cognitive Outcomes in AD was not correlated with initial cognitive scores

164	Among the GAINS cohort we noted	13 cognitive	trajectory patterns	s on longitudinal	ADAS-Cog13

- 165 testing. Using a change in score of +/- 4 in ADAS-Cog testing for 2 or more timepoints to
- 166 categorize outcomes, 48 patients improved their scores over time (26.1%), 119 patients remained
- stable (64.7), and 17 patients experienced cognitive decline (9.2%). Of those with AD, 14 had
- 168 cognitive decline (58.3%) while 8 remained stable (33.3%) and 2 improved (8.3%). Among AD
- 169 patients, there were no significant differences among the 3 cognitive outcomes observed (Table
- 170 2). Importantly, there were no differences in the day 0 cognitive scores using the ADAS-Cog or
- 171 NIH toolbox among the AD subjects by cognitive trajectory outcome. In the cHC and MCI
- 172 patient groups, there were a combined n=5 patients with decline (3.1%), who were older and had
- 173 worse initial ADAS-Cog testing scores (**Supplemental Table 1**).

Table 2: Baseline Characteristics of Alzheimer's disease patients by cognitive						
outcomes						
	Improve (2)	Stable (8)	Decline (14)	p-value		
Age (years/SD)*	76.0 (4.2)	76.5 (4.3)	72.7 (6.2)	0.30		
Male	0 (0.1)	4 (50.0)	7 (50.0)	0.40		
Education level*	5.0 (2.8)	6.1 (1.7)	5.6 (1.7)	0.52		
Malnutrition Score*	1.5 (0.7)	2.0 (0.9)	1.8 (0.6)	0.64		
CFS*	3.0 (1.4)	3.8 (1.8)	3.9 (1.3)	0.71		
Polypharmacy	1 (50.0)	6 (75.0)	9 (64.3)	0.77		
BMI*	29.8 (4.9)	26.0 (5.8)	25.7 (7.0)	0.70		
ADAS-Cog13*	31.3 (25.0)	38.8 (29.9)	38.3 (19.2)	0.92		
PCPS *	59.0 (14.1)	74.3 (19.3)	60.7 (19.4)	0.35		

DCCS*	79.0 (19.8)	94.2 (16.1)	80.5 (19.3)	0.33			
Data presented as n (%)	unless marked with	* then presented mea	ns (sd). CFS – Clinical	Frailty Score; BMI			
– body mass index; ADAS-Cog13 - Alzheimer's Disease Assessment Scale-Cognitive Subscale 13; PCPS –							
NIH Toolbox Pattern Comparison Processing Speed Test; DCCS - NIH Toolbox Dimensional Change Card							
Sort							

175

Supplemental Table 1: Characteristics of cHC and MCI patients by cognitive outcomes

outcomes							
	Improve (45)	Stable (110)	Decline (5)	p-value			
Age (years/SD)*	73.1 (6.5)	70.1 (8.0)	75.4 (9.8)	0.042			
Male	19 (42.2)	33 (46.0)	2 (40.0)	0.33			
Education level*	5.9 (1.6)	6.0 (1.4)	5.6 (2.1)	0.76			
Malnutrition Score*	1.2 (0.5)	1.2 (0.5)	1.3 (0.5)	0.98			
CFS*	2.3 (0.9)	2.1 (1.1)	2.0 (0.8)	0.73			
Polypharmacy	13 (28.9)	29 (26.4)	2 (40.0)	0.78			
BMI*	28.0 (6.3)	27.3 (5.7)	27.2 (3.6)	0.82			
ADAS-Cog13*	14.0 (5.2)	9.2 (5.9)	22.1 (18.0)	< 0.001			
PCPS *	87.7 (13.0)	93.4 (15.6)	86.3 (18.4)	0.08			
DCCS*	101.1 (6.9)	100.2 (11.8)	96.0 (6.6)	0.64			
Data presented as n (%) unless marked with * then presented means (sd). CFS – Clinical Frailty Score; BMI							
– body mass index; ADAS-Cog13 - Alzheimer's Disease Assessment Scale-Cognitive Subscale 13; PCPS –							
NIH Toolbox Pattern Comparison Processing Speed Test; DCCS - NIH Toolbox Dimensional Change Card							
Sort							

176

177 Significant variance in cognitive testing exists between cognitively healthy older adults and

178 those with MCI and AD

179 To further characterize the baseline characteristics of our study groups (cHC, MCI, AD), we

180 examined the variance between individuals (between) as well as within-person variance (within)

181 (**Table 3**) as standard deviations are not easy to interpret without a frame of reference (48). Both

182 the between- and within- variance increased from cHC to MCI to AD patients for ADAS-Cog13

183 testing (**Table 3**). For both the NIH toolbox assessment of PCPS and DCCS, we did not observe

- 184 differences in within-group variance across groups. This is reflected in the increasing intraclass
- 185 correlation coefficient as one goes from cHC to MCI to AD among all cognitive tests
- 186 (Supplemental Table 2, all p<0.01). The values in Table 3 indicate that there is considerable
- 187 within-person variability in each of the measures of cognitive functioning. Moreover, the within-

188	person to between-person variability ratios were somewhat larger for the cHC patients compared
189	to those with MCI or AD mostly due to the near doubling of between variance as we move from
190	HC to MCI to AD across all cognitive testing types. The variance for the cHC and MCI groups
191	indicate that the variation for a given individual from one test occasion to the next is more than
192	half as much as the variation from one person to the next. This was the opposite tendency for AD
193	patients where variation for the individual was one quarter to one third of the variation from one

194 person to the next across cognitive tests.

Table 3: Variance among different cognitive group types						
	HC	MCI	AD			
ADAS-Cog13						
Mean (SD)	7.5 (4.5)	17.0 (10.4)	37.8 (23.3)			
Between variance	3.9	10.7	23.4			
Within variance	2.5	3.1	5.7			
Within/Between	0.64	0.29	0.24			
PCPS						
Mean (SD)	99.6 (14.8)	89.9 (17.8)	70.6 (20.5)			
Between variance	12.5	16.7	21.4			
Within variance	8.1	8.0	8.1			
Within/Between	0.65	0.50	0.38			
DCCS						
Mean (SD)	103.0 (8.8)	99.7 (10.8)	87.7 (17.1)			
Between variance	7.2	10.1	19.4			
Within variance	5.3	5.5	6.1			
Within/Between	0.74	0.54	0.31			
P-value < 0.01 < 0.01 < 0.01						
HC – Healthy Control; MCI – Mild Cognitive Impairment; AD – Alzheimer's disease; ADAS-Cog13 - Alzheimer's Disease Assessment Scale-Cognitive Subscale 13; PCPS – NIH Toolbox Pattern Comparison Processing Speed Test; DCCS - NIH Toolbox Dimensional Change Card Sort						

195

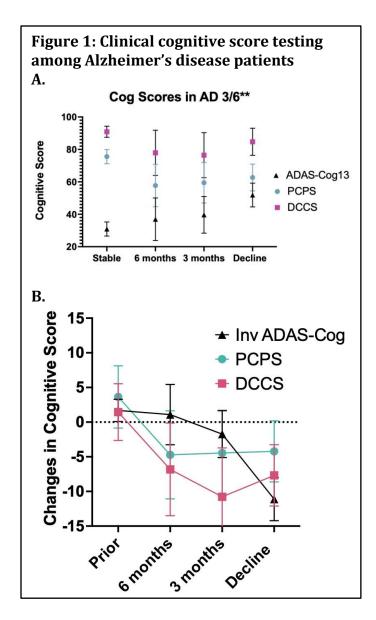
196

197

Supplemental Table 2: Intraclass correlation coefficients among different cognitive group types

	HC		MCI		AD	
	0.50		0.00		0.00	
ADAS-	0.63	(0.56-0.70)	0.90	(0.84-0.95)	0.93	(0.89-0.98)
Cog13						
PCPS	0.65	(0.58-0.72)	0.76	(0.65-0.88)	0.82	(0.71-0.93)
DCCS	0.56	(0.48-0.64)	0.69	(0.55-0.84)	0.86	(0.76-0.95)
Data presenred as means (95% confidence intervals). HC – Healthy Control; MCI – Mild Cognitive Impairment; AD – Alzheimer's disease; ADAS-Cog13 - Alzheimer's Disease Assessment Scale-Cognitive Subscale 13; PCPS – NIH Toolbox Pattern Comparison Processing Speed Test; DCCS - NIH Toolbox Dimensional Change Card Sort						

198


199

200 NIH Toolbox assessments of executive functioning decline as early as 6 months prior to

201 cognitive decline measured by ADAS-Cog13

202 In light of the differences in variances between tests among patients, we next sought to determine 203 whether longitudinal patterns between cognitive outcomes (declined, stable, improved) were 204 correlated with cognitive testing trends. Among the AD patients within the GAINS cohort, we 205 first explored differences between those who experienced a decline in cognition versus those 206 who did not (both stable and improved patients). We did not observe any differences in 207 demographic or clinical characteristics, including in the medications taken by the subjects during 208 the study period (Supplemental Table 3). We did, however, notice a significant decline in 209 executive functioning testing, in both NIH toolbox PCPS and DCCS, at the 3- and 6-month visits 210 before a decline in cognition measured by the ADAS-Cog13 compared to all other timepoints 211 where the ADAS-Cog13 testing was stable (Figure 1a). There were no significant differences in 212 ADAS-Cog13 testing scores at these same time points. The differences from baseline score tests 213 are visualized in Figure 1b. 214

Supplemental Table 3: Clinical Characteristics between Alzheimer's disease patients with and without cognitive decline			
Aizheinier 5 uiseast	Stable (10)	Decline (14)	p-value
Age (years/SD)*	76.4 (4.0)	72.7 (6.2)	0.12
Male	4 (40.0)	7 (50.0)	0.63
Education level*	5.9 (1.9)	5.6 (1.7)	0.38
Malnutrition Score*	1.9 (0.9)	1.8 (0.6)	0.59
CFS*	3.6 (1.7)	3.9 (1.3)	0.59
Polypharmacy	7 (70.0)	9 (64.3)	0.77
BMI*	26.8 (5.6)	25.7 (7.0)	0.70
Data presented as n (%) Clinical Frailty Score; BM		then presented mear	is (sd). CFS –

We next performed univariate cox models predicting cognitive decline by ADAS-Cog for both NIH toolbox domains for PCPS and DCCS among AD patients. We used a 5-point decline in both NIH CB tests as predictor of general cognitive decline given the mean change at both 3 and 6 months prior in each test was about 5 points. Both in the crude and adjusted models, a 5-point change in PCPS or DCCS was associated with a 24% to 32% or 44% to 62% increased risk of cognitive decline respectively (**Table 4**). In the modeling, adjustments were made for age, sex, education, frailty, malnutrition and polypharmacy.

227

	Cr	Crude		Adjusted +	
	Hazard Ratio	P value	Hazard Ratio	P value	
	(95% CI)		(95% CI)		
PCPS delta	1.24 (1.08-1.43)	0.002	1.32 (1.08-1.60)	0.006	
DCCS delta	1.44 (1.16-1.77)	0.001	1.62 (1.16-2.26)	0.005	

228

229

230 **DISCUSSION**

In this study we found that as early as 6 months prior to a global cognitive decline, there were

significant decreases in processing speed and executive functioning among AD patients using the

233 NIH toolbox CB assessments for PCPS and DCCS. There was also a noted increase in the

between-person variability from cHC to MIC to AD subjects using either the ADAS-Cog or NIH

toolbox modules, however the within-group variability only increased between these groups in

the ADAS-Cog assessments, with the greatest variability in among AD patients. A 5-point

237 decrease in either PCPS and DCCS resulted in a greater than 30% increased risk of subsequent

238 global cognitive decline. We propose here that these NIH toolbox assessments for executive

functioning and processing speed may serve as a monitoring tool to predict which AD patients

will go on to experience clinically significant cognitive decline.

241

243 Executive function comprises the higher-level cognitive skills used to control and 244 coordinate other cognitive abilities and behaviors (12, 13). Deficits in executive functioning have 245 been shown as one of the most useful cognitive markers for the early detection of AD (17), and 246 declining performance can be detected 2-3 years before the diagnosis of AD (49). Executive 247 dysfunction occurs in all stages of AD and has been linked to functional decline in activities of 248 daily living (50, 51). Executive functioning is also one of the cognitive domains in AD that 249 shows the greatest decline and can indicate a faster disease progression (52-54). The ADAS-Cog 250 test does a poor job of testing for executive functioning. It was built based on the original 251 ADAS-Cog (55), and the ADAS-Cog13 or ADAS-Cog-Modified had delayed word recall or 252 number cancellation added in order to improve the tests responsiveness, to cover the range of 253 mild to moderate AD (25). Others tried adding additional testing domains to the ADAS-Cog test 254 to better cover executive functioning testing such as the ADAS-Cog-Exec (56) and ADAS-Cog-255 Plus (26). These additional testing modules are not universally used, with the ADAS-Cog still 256 considered the gold standard (27) especially for assessing efficacy of AD treatments. 257 258 As we age, both executive functioning and processing speed decline, and this decline is linked to 259 performance in learning and memory (57). The processing speed theory states that the age-260 related decline in processing speed is the fundamental mechanism with which memory declines 261 with normal aging (58). However, executive functions and processing speed can differentially 262 influence memory decline (57). Processing speed is thought to serve as the foundation for other 263 cognitive processes (15) and it is associated with subsequent deficits in other cognitive domains 264 such as working memory (59), attention (60) and memory (61). Disproportionate slowing of 265

17

processing speed has been shown to be related to a faster decline in AD (18). Our finding is

consistent with a predictive role of processing speed change: the NIH toolbox CB Comparison
Processing Speed Test to assess processing speed in GAINS participants was sensitive to early
cognitive change, with decreases in processing speed preceding global cognitive decline, with a
5 point drop in score increasing the risk of cognitive decline by greater than 30%, after
adjustment.

271

272 Instead of expanding the ADAS-Cog to improve its sensitivity, it might be of greater benefit to 273 predict cognitive decline by periodically test executive functioning with other standard measures. 274 The NIH toolbox CB is a set of brief measures assessing cognitive domains including executive 275 functioning studies (19). Subjects that are part of a clinical trial could self-administer these tests 276 as an alternative to the ADAS-Cog, which takes upwards of 45 minutes to administer and needs 277 to be done in-person by trained staff (27). Remote digital cognitive testing is now being shown to 278 be an accurate method to detect cognitive impairment (62-64). A robust tool with a 3 to 6-month 279 predictive window would offer patients and families a reasonable timeframe to make practical 280 care arrangements such as changing living situation, finding caretakers, or applying for elder 281 care benefits and services.

282

This study does have limitations. First, the majority of the GAINS cohort was without AD, which influences the within-group variance in the AD group. Testing NIH toolbox assessments for their ability to predict cognitive decline in a larger longitudinal cohort would strengthen the findings. Additionally, the GAINS cohort was mostly white and non-Hispanic, limiting the generalizability of our data. These limitations are balanced by the frequent in-person model to assess both ADAS-Cog and the NIH toolbox CB domains.

Conclusion 289

290	Based on our findings, we would suggest that brief assessments of both executive functioning
291	and processing speed may serve as a marker of subsequent global cognitive decline. This can be
292	helpful clinically for planning the timing of treatments, interventions, or life management,
293	especially if executive function and processing speed testing is potentially more rapid than a
294	comprehensive cognitive testing session, and more feasibly performed frequently. Tools such as
295	PCPS and DCCS could also help researchers as well as clinicians with monitoring efficacy of
296	AD treatments as part of clinical trials of disease-modifying therapy.
297	
298	AUTHOR CONTRIBUTIONS
299	JPH (Data curation; Conceptualization; Formal analysis; Investigation; Project administration;
300	Funding acquisition; Writing – original draft); AMB (Methodology; Writing – review & editing);
301	SNO (Supervision; Data curation; Writing – review & editing); PD (Supervision; Data curation;
302	Writing – review & editing); PMM (Data acquisition; Data curation; Writing – review &
303	editing); IS (Data acquisition; Writing – review & editing); LR (Data acquisition; Writing –
304	review & editing); YSL (Resources; Writing – review & editing); VB (Conceptualization;
305	Formal analysis; Methodology; Writing – review & editing); BAM (Conceptualization; Writing
306	– review & editing).
307	

308 ACKNOWLEDEMENTS

309 We would like to thank the administration and staff from the Clinical Research Center here at

310 UMass Medical Center and the Center for Clinical and Translational Sciences at UMass Chan

Medical School for clinical facilities that supported the GAINS cohort. 311

313 FUNDING

- 314 This study was designed and carried out at the University of Massachusetts Chan Medical
- 315 School. JPH was supported by an Alzheimer's Association Grant (2019-AARG-NTF-641955)
- and NIH grants from the National Institute on Aging (grant numbers: 2019-AARG-NTF-641955,
- 317 R01AG067483-01). This prospective cohort study was approved by the institutional review
- board at the University of Massachusetts Chan Medical School (IRB docket H00021745).

319

320 CONFLICT OF INTEREST

321 The authors have no conflict of interest to report.

322

323 DATA AVAILABILITY

324 The data supporting the findings of this study are available on request from the corresponding

author. The data are not publicly available due to privacy or ethical restrictions.

327 **REFERENCES**

328	1.	Rajan KB, Weuve J, Barnes LL, McAninch EA, Wilson RS, Evans DA. 2021. Popu	ulation
-----	----	--	---------

329 estimate of people with clinical Alzheimer's disease and mild cognitive impairment in the

330 United States (2020-2060). Alzheimers Dement 17:1966-1975.

- 331 2. Schindler SE, Li Y, Buckles VD, Gordon BA, Benzinger TLS, Wang G, Coble D, Klunk
- 332 WE, Fagan AM, Holtzman DM, Bateman RJ, Morris JC, Xiong C. 2021. Predicting
- 333 Symptom Onset in Sporadic Alzheimer Disease With Amyloid PET. Neurology
- 334 97:e1823-e1834.
- 335 3. Koscik RL, Betthauser TJ, Jonaitis EM, Allison SL, Clark LR, Hermann BP, Cody KA,
- Engle JW, Barnhart TE, Stone CK, Chin NA, Carlsson CM, Asthana S, Christian BT,
- Johnson SC. 2020. Amyloid duration is associated with preclinical cognitive decline and

tau PET. Alzheimers Dement (Amst) 12:e12007.

- 4. Insel PS, Donohue MC, Berron D, Hansson O, Mattsson-Carlgren N. 2021. Time
- between milestone events in the Alzheimer's disease amyloid cascade. Neuroimage227:117676.
- 342 5. Xie J, Brayne C, Matthews FE. 2008. Survival times in people with dementia: analysis
 343 from population based cohort study with 14 year follow-up. Bmj 336:258-62.
- 344 6. Adak S, Illouz K, Gorman W, Tandon R, Zimmerman EA, Guariglia R, Moore MM,
- Kaye JA. 2004. Predicting the rate of cognitive decline in aging and early Alzheimer
 disease. Neurology 63:108-14.
- 347 7. Cosentino S, Scarmeas N, Helzner E, Glymour MM, Brandt J, Albert M, Blacker D,
- 348 Stern Y. 2008. APOE epsilon 4 allele predicts faster cognitive decline in mild Alzheimer
- 349 disease. Neurology 70:1842-9.

350	8.	Steenland K, Zhao L, Goldstein F, Cellar J, Lah J. 2014. Biomarkers for predicting
351		cognitive decline in those with normal cognition. J Alzheimers Dis 40:587-94.
352	9.	Gunes S, Aizawa Y, Sugashi T, Sugimoto M, Rodrigues PP. 2022. Biomarkers for
353		Alzheimer's Disease in the Current State: A Narrative Review. Int J Mol Sci 23.
354	10.	Wang H, Sun M, Li W, Liu X, Zhu M, Qin H. 2023. Biomarkers associated with the
355		pathogenesis of Alzheimer's disease. Front Cell Neurosci 17:1279046.
356	11.	Henneges C, Reed C, Chen YF, Dell'Agnello G, Lebrec J. 2016. Describing the Sequence
357		of Cognitive Decline in Alzheimer's Disease Patients: Results from an Observational
358		Study. J Alzheimers Dis 52:1065-80.
359	12.	Memory. Aging Centerand Aging Center, UCSF Weill Institute for Neurosciences.
360		Executive functions. Available at: https://memory.ucsf.edu/symptoms/executive-
361		functions. Accessed June 6, 2024.
362	13.	Guarino A, Favieri F, Boncompagni I, Agostini F, Cantone M, Casagrande M. 2018.
363		Executive Functions in Alzheimer Disease: A Systematic Review. Front Aging Neurosci
364		10:437.
365	14.	Ebaid D, Crewther SG, MacCalman K, Brown A, Crewther DP. 2017. Cognitive
366		Processing Speed across the Lifespan: Beyond the Influence of Motor Speed. Front
367		Aging Neurosci 9:62.
368	15.	Sliwinski M, Buschke H. 1999. Cross-sectional and longitudinal relationships among age,
369		cognition, and processing speed. Psychol Aging 14:18-33.
370	16.	Rabinovici GD, Stephens ML, Possin KL. 2015. Executive dysfunction. Continuum
371		(Minneap Minn) 21:646-59.

- 372 17. Crowell TA, Luis CA, Vanderploeg RD, Schinka JA, Mullan M. 2002. Memory Patterns
- and Executive Functioning in Mild Cognitive Impairment and Alzheimer's Disease.
- Aging, Neuropsychology, and Cognition 9:288-297.
- 375 18. Parikh M, Hynan LS, Weiner MF, Lacritz L, Ringe W, Cullum CM. 2014. Single
- 376 neuropsychological test scores associated with rate of cognitive decline in early
- 377 Alzheimer disease. Clin Neuropsychol 28:926-40.
- 378 19. Weintraub S, Dikmen SS, Heaton RK, Tulsky DS, Zelazo PD, Slotkin J, Carlozzi NE,
- Bauer PJ, Wallner-Allen K, Fox N, Havlik R, Beaumont JL, Mungas D, Manly JJ, Moy
- 380 C, Conway K, Edwards E, Nowinski CJ, Gershon R. 2014. The cognition battery of the
- 381 NIH toolbox for assessment of neurological and behavioral function: validation in an
- adult sample. J Int Neuropsychol Soc 20:567-78.
- 383 20. Zelazo PD, Anderson JE, Richler J, Wallner-Allen K, Beaumont JL, Conway KP,
- 384 Gershon R, Weintraub S. 2014. NIH Toolbox Cognition Battery (CB): validation of

385 executive function measures in adults. J Int Neuropsychol Soc 20:620-9.

- 21. Carlozzi NE, Beaumont JL, Tulsky DS, Gershon RC. 2015. The NIH Toolbox Pattern
- 387 Comparison Processing Speed Test: Normative Data. Archives of Clinical
- 388 Neuropsychology 30:359-368.
- 389 22. Warren SL, Reid E, Whitfield P, Helal AM, Abo Hamza EG, Tindle R, Moustafa AA,
- Hamid MS. 2024. Cognitive and behavioral abnormalities in individuals with
- 391 Alzheimer's disease, mild cognitive impairment, and subjective memory complaints.
- Current Psychology 43:800-810.
- 393 23. Schrag A, Schott JM. 2012. What is the clinically relevant change on the ADAS-Cog? J
 394 Neurol Neurosurg Psychiatry 83:171-3.

395	24.	Karcher H, Savelieva M, Qi L, Hummel N, Caputo A, Risson V, Capkun G, Alzheimer's
396		Disease Neuroimaging I. 2020. Modelling Decline in Cognition to Decline in Function in
397		Alzheimer's Disease. Curr Alzheimer Res 17:635-657.
398	25.	Mohs RC, Knopman D, Petersen RC, Ferris SH, Ernesto C, Grundman M, Sano M,
399		Bieliauskas L, Geldmacher D, Clark C, Thal LJ. 1997. Development of cognitive
400		instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer's
401		Disease Assessment Scale that broaden its scope. The Alzheimer's Disease Cooperative
402		Study. Alzheimer Dis Assoc Disord 11 Suppl 2:S13-21.
403	26.	Skinner J, Carvalho JO, Potter GG, Thames A, Zelinski E, Crane PK, Gibbons LE. 2012.
404		The Alzheimer's Disease Assessment Scale-Cognitive-Plus (ADAS-Cog-Plus): an
405		expansion of the ADAS-Cog to improve responsiveness in MCI. Brain Imaging Behav
406		6:489-501.
407	27.	Kueper JK, Speechley M, Montero-Odasso M. 2018. The Alzheimer's Disease
408		Assessment Scale-Cognitive Subscale (ADAS-Cog): Modifications and Responsiveness
409		in Pre-Dementia Populations. A Narrative Review. J Alzheimers Dis 63:423-444.
410	28.	Rubenstein LZ, Harker JO, Salvà A, Guigoz Y, Bruno Vellas B. 2001. Screening for
411		Undernutrition in Geriatric Practice: Developing the Short-Form Mini-Nutritional
412		Assessment (MNA-SF). J Gerontol A Biol Sci Med Sci 56A:M366-72.
413	29.	Saarela RK, Lindroos E, Soini H, Hiltunen K, Muurinen S, Suominen MH, Pitkala KH.
414		2016. Dentition, nutritional status and adequacy of dietary intake among older residents
415		in assisted living facilities. Gerodontology doi:10.1111/ger.12144.
416	30.	Guigoz Y. 2006. The Mini Nutritional Assessment (MNA) review of the literatureWhat
417		does it tell us? J Nutr Health Aging 10:485-7.

418	31.	Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, Mitnitski A.
419		2005. A global clinical measure of fitness and frailty in elderly people. CMAJ 173:489-
420		95.
421	32.	Connor DJ, Sabbagh MN. 2008. Administration and scoring variance on the ADAS-Cog.
422		J Alzheimers Dis 15:461-4.
423	33.	Gershon RC, Wagster MV, Hendrie HC, Fox NA, Cook KF, Nowinski CJ. 2013. NIH
424		Toolbox for Assessment of Neurological and Behavioral Function. Neurology 80:S2-6.
425	34.	Anonymous. NIH Toolbox Cognitive Battery (NIHTB-CB): The NIHTB Pattern
426		Comparison Processing Speed Test. doi:10.1017/S1355617714000319.
427	35.	Matthews HP, Korbey J, Wilkinson DG, Rowden J. 2000. Donepezil in Alzheimer's
428		disease: eighteen month results from Southampton Memory Clinic. Int J Geriatr
429		Psychiatry 15:713-20.
430	36.	Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL, Farlow MR, Jin S,
431		Thomas RG, Thal LJ. 2003. Effects of rofecoxib or naproxen vs placebo on Alzheimer
432		disease progression: a randomized controlled trial. Jama 289:2819-26.
433	37.	Le Bars PL, Kieser M, Itil KZ. 2000. A 26-week analysis of a double-blind, placebo-
434		controlled trial of the ginkgo biloba extract EGb 761 in dementia. Dement Geriatr Cogn
435		Disord 11:230-7.
436	38.	Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE. 2017. What is polypharmacy? A
437		systematic review of definitions. BMC Geriatr 17:230.
438	39.	Jackson MA, Jeffery IB, Beaumont M, Bell JT, Clark AG, Ley RE, O'Toole PW, Spector
439		TD, Steves CJ. 2016. Signatures of early frailty in the gut microbiota. Genome Med 8:8.

440	40.	Milani C, Ticinesi A, Gerritsen J, Nouvenne A, Lugli GA, Mancabelli L, Turroni F,
441		Duranti S, Mangifesta M, Viappiani A, Ferrario C, Maggio M, Lauretani F, De Vos W,
442		van Sinderen D, Meschi T, Ventura M. 2016. Gut microbiota composition and
443		Clostridium difficile infection in hospitalized elderly individuals: a metagenomic study.
444		Sci Rep 6:25945.
445	41.	Haran JP, Bucci V, Dutta P, Ward D, McCormick B. 2018. The nursing home elder
446		microbiome stability and associations with age, frailty, nutrition, and physical location. J
447		Med Microbiol 67:40-51.
448	42.	Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. 2009, Apr. Research
449		electronic data capture (REDCap) - A metadata-driven methodology and workflow
450		process for providing translational research informatics support. J Biomed 42:377-81.
451	43.	Guerin O, Soto ME, Brocker P, Robert PH, Benoit M, Vellas B, Group. RF. 2005.
452		Nutritional status assessment during Alzheimer's disease: results after one year (the
453		REAL French Study Group). J Nutr Health Aging 9:81-4.
454	44.	Buchman AS, Schneider JA, Leurgans S, Bennett DA. 2008. Physical frailty in older
455		persons is associated with Alzheimer disease pathology. Neurology 71:499-504.
456	45.	Buchman AS, Boyle PA, Wilson RS, Tang Y, Bennett DA. 2007. Frailty is associated
457		with incident Alzheimer's disease and cognitive decline in the elderly. Psychosom Med
458		69:483-9.
459	46.	Meijers JM, Schols JM, Halfens RJ. 2014. Malnutrition in care home residents with
460		dementia. J Nutr Health Aging 18:595-600.
461	47.	Boulos C, Salameh P, Barberger-Gateau P. 2016. Malnutrition and frailty in community
462		dwelling older adults living in a rural setting. Clin Nutr 35:138-43.

463	48.	Salthouse TA. 2007. Implications of within-person variability in cognitive and
464		neuropsychological functioning for the interpretation of change. Neuropsychology
465		21:401-11.
466	49.	Grober E, Hall CB, Lipton RB, Zonderman AB, Resnick SM, Kawas C. 2008. Memory
467		impairment, executive dysfunction, and intellectual decline in preclinical Alzheimer's
468		disease. J Int Neuropsychol Soc 14:266-78.
469	50.	Tekin S, Fairbanks LA, O'Connor S, Rosenberg S, Cummings JL. 2001. Activities of
470		daily living in Alzheimer's disease: neuropsychiatric, cognitive, and medical illness
471		influences. Am J Geriatr Psychiatry 9:81-6.
472	51.	Skurla E, Rogers JC, Sunderland T. 1988. Direct assessment of activities of daily living
473		in Alzheimer's disease. A controlled study. J Am Geriatr Soc 36:97-103.
474	52.	Chen P, Ratcliff G, Belle SH, Cauley JA, DeKosky ST, Ganguli M. 2001. Patterns of
475		cognitive decline in presymptomatic Alzheimer disease: a prospective community study.
476		Arch Gen Psychiatry 58:853-8.
477	53.	Tosto G, Gasparini M, Brickman AM, Letteri F, Renie R, Piscopo P, Talarico G,
478		Canevelli M, Confaloni A, Bruno G. 2015. Neuropsychological predictors of rapidly
479		progressive Alzheimer's disease. Acta Neurol Scand 132:417-22.
480	54.	Zhao Q, Zhou B, Ding D, Teramukai S, Guo Q, Fukushima M, Hong Z. 2014. Cognitive
481		decline in patients with Alzheimer's disease and its related factors in a memory clinic
482		setting, Shanghai, China. PLoS One 9:e95755.
483	55.	Rosen WG, Mohs RC, Davis KL. 1984. A new rating scale for Alzheimer's disease. Am J
484		Psychiatry 141:1356-64.

485	56.	Jacobs DM, Thomas RG, Salmon DP, Jin S, Feldman HH, Cotman CW, Baker LD. 2020.
486		Development of a novel cognitive composite outcome to assess therapeutic effects of
487		exercise in the EXERT trial for adults with MCI: The ADAS-Cog-Exec. Alzheimers
488		Dement (N Y) 6:e12059.
489	57.	Saikia B, Tripathi R. 2024. Executive Functions, Processing Speed, and Memory
490		Performance: Untangling the Age-related Effects. Journal of Psychiatry Spectrum 3:12-
491		19.
492	58.	Salthouse TA. 1996. The processing-speed theory of adult age differences in cognition.
493		Psychol Rev 103:403-28.
494	59.	Chiaravalloti ND, Christodoulou C, Demaree HA, DeLuca J. 2003. Differentiating
495		simple versus complex processing speed: influence on new learning and memory
496		performance. J Clin Exp Neuropsychol 25:489-501.
497	60.	Mayes SD, Calhoun SL. 2007. Learning, attention, writing, and processing speed in
498		typical children and children with ADHD, autism, anxiety, depression, and oppositional-
499		defiant disorder. Child Neuropsychol 13:469-93.
500	61.	Baudouin A, Clarys D, Vanneste S, Isingrini M. 2009. Executive functioning and
501		processing speed in age-related differences in memory: contribution of a coding task.
502		Brain Cogn 71:240-5.
503	62.	Berron D, Olsson E, Andersson F, Janelidze S, Tideman P, Düzel E, Palmqvist S,
504		Stomrud E, Hansson O. 2024. Remote and unsupervised digital memory assessments can
505		reliably detect cognitive impairment in Alzheimer's disease. Alzheimers Dement
506		20:4775-4791.

507	63.	Boots EA, Frank RD, Fan WZ, Christianson TJ, Kremers WK, Stricker JL, Machulda
508		MM, Fields JA, Hassenstab J, Graff-Radford J, Vemuri P, Jack CR, Knopman DS,
509		Petersen RC, Stricker NH. 2024. Continuous Associations between Remote Self-
510		Administered Cognitive Measures and Imaging Biomarkers of Alzheimer's Disease. The
511		Journal of Prevention of Alzheimer's Disease doi:10.14283/jpad.2024.99.
512	64.	Butler J, Watermeyer TJ, Matterson E, Harper EG, Parra-Rodriguez M. 2024. The
513		development and validation of a digital biomarker for remote assessment of Alzheimer's
514		diseases risk. DIGITAL HEALTH 10:20552076241228416.
515		