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ABSTRACT11

Pathogen genomic data is increasingly being used to investigate transmission dynamics in12

infectious disease outbreaks. Combining genomic data with epidemiological data should13

substantially increase our understanding of outbreaks, but this is highly challenging when the14

outbreak under study is only partially sampled, so that both genomic and epidemiological data15

are missing for intermediate links in the transmission chains. Here we present a new dynamic16

programming algorithm to perform this task e�ciently. We implement this methodology into17

the well-established TransPhylo framework to reconstruct partially sampled outbreaks using a18

combination of genomic and epidemiological data. We use simulated datasets to show that19

including epidemiological data can improve the accuracy of the inferred transmission links20

compared to inference based on genomic data only. This also allows us to estimate parameters21

specific to the epidemiological data (such as transmission rates between particular groups) which22

would otherwise not be possible. We then apply these methods to two real-world examples.23

Firstly, we use genomic data from an outbreak of tuberculosis in Argentina, for which data was24

also available on the HIV status of sampled individuals, in order to investigate the role of HIV co-25

infection in the spread of this tuberculosis outbreak. Second, we use genomic and geographical26

data from the 2003 epidemic of avian influenza H7N7 in the Netherlands to reconstruct its27

spatial epidemiology. In both cases we show that incorporating epidemiological data into the28

genomic analysis allows us to investigate the role of epidemiological properties in the spread of29

infectious diseases.30
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INTRODUCTION31

Over the past decade there has been considerable research interest and methodological32

development in the analysis of pathogen genomic sequences to reconstruct the transmission33

events that occurred during an infectious disease outbreak (Jombart et al., 2014; Croucher and34

Didelot, 2015; Campbell et al., 2018; Duault et al., 2022). Additional epidemiological data about35

the infected hosts is often available, and it can be useful to integrate such data into the genomic36

analysis for two complementary reasons. Firstly, it should allow the transmission trees to be37

reconstructed more precisely when using genomic and epidemiological data compared to using38

genomic data alone. An example of this was provided by the reconstruction of a tuberculosis39

outbreak in British Columbia, in which the matrix of who-infected-whom probabilities contained40

less uncertainty when geographic data and measures of infectiousness (provided by smear and41

skin tests) were used as additional input (Didelot et al., 2014; Biek et al., 2015; Hatherell42

et al., 2016). Secondly, using data on epidemiological properties can enable inference on the43

correlation between transmission and these epidemiological properties. For example, individuals44

with high-risk behaviours contribute disproportionately to the spread of sexual diseases such45

as gonorrhoea (Chan et al., 2012; Fingerhuth et al., 2016; Whittles et al., 2019). Integrating46

behavioural data into a transmission analysis could help quantify this e↵ect, which could be47

used in predictive models for example to inform the design of control measures such as targeted48

vaccination (Craig et al., 2015; Whittles et al., 2020, 2022).49

Previous attempts have been made to integrate epidemiological and genomic data into outbreak50

reconstructions. The simplest case occurs if we assume that all cases of the outbreak have been51

sampled and are therefore present in the transmission tree. In this case the likelihood of the52

genomic data can simply be multiplied by the likelihood of the epidemiological data (Ypma et al.,53

2012; Morelli et al., 2012; Didelot et al., 2014; Hall et al., 2015). The epidemiological component54

of the likelihood is easy to compute as a product over all links in the transmission tree (Ypma55

et al., 2012). Each link represents an infection from a sampled infector to a sampled infectee,56

and as epidemiological data are available for both hosts, the contribution to the likelihood57

is analytically tractable. However, the vast majority of infectious disease outbreaks are only58

partially observed, with the proportion of missing cases being typically unknown as well (O’Neill59

and Roberts, 1999; Jewell et al., 2009; Chis Ster et al., 2009). These missing intermediates in60

the transmission trees represent a challenge for the integration of epidemiological data, since by61

definition there is no epidemiological data available on unknown putative hosts. This di�culty62

was noted, for example, when a spatial-genetic framework assuming complete sampling (Morelli63

et al., 2012) was extended to handle incomplete sampling, with two extreme scenarios proposed64

as bounds on the probability of spatial dispersion for unknown cases (Mollentze et al., 2014).65

A naive approach to incorporate epidemiological data into the transmission analysis of a66

partially sampled outbreak is to consider all possible combinations for the epidemiological67

data of the unsampled cases along with their associated probabilities. For each combination68

the epidemiological component of the likelihood can be calculated as previously described in69

the case of a fully sampled outbreak (Ypma et al., 2012; Morelli et al., 2012; Didelot et al.,70

2014; Hall et al., 2015). The unconditioned likelihood is then be obtained as the average of71

these conditioned likelihoods, weighted according to their probabilities, using the law of total72

probability. However, the number of combinations scales exponentially with the number of73

unsampled cases in the transmission tree, and is only be computationally feasible for very small74

outbreaks. Another approach is to rely on data augmentation techniques within a Markov Chain75
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Monte-Carlo (MCMC) framework, in order to treat the epidemiological data of unsampled cases76

as additional parameters (van Dyk and Meng, 2001; O’Neill, 2002). Again this may not scale77

well to larger outbreaks, especially since the number of unsampled cases is unknown, so that78

e�cient reversible jump proposals are required to deal with the transdimensional parameter79

space (Green, 1995; Sisson, 2005). Instead, we present a computationally e�cient approach to80

calculate the epidemiological component of the likelihood. We show that this computation can81

be used to incorporate epidemiological data into the transmission analysis, boosting the accuracy82

of the analysis and generating the type of who-acquires-infection-from-whom matrices that are83

the cornerstone of predictive modelling. We illustrate our method on simulated datasets, before84

considering real-world examples of tuberculosis and H7N7 outbreaks.85

NEW APPROACHES86

We take as our starting point the TransPhylo methodology (Didelot et al., 2014), which87

represents the transmission tree by colouring the branches of an input dated phylogeny (Rieux88

and Balloux, 2016). The first version of TransPhylo considered only fully sampled outbreaks,89

so that it was possible to incorporate epidemiological data (Didelot et al., 2014). With the90

extension of TransPhylo to the more generally useful situation of a partially sampled outbreak,91

this possibility to integrate epidemiological data was lost (Didelot et al., 2017, 2021). More92

recently, TransPhylo was further extended to allow some hosts to be sampled more than once93

and to remove the assumption of complete transmission bottleneck (Carson et al., 2024), and94

this is the version that we use as our starting point for the incorporation of epidemiological95

data.96

We extend the TransPhylo framework to incorporate known discrete epidemiological data on97

the sampled hosts, or a subset of them. Note that we use the term ‘deme’ to represent data that98

could be any discrete property of the hosts, for example geographical location in di↵erent towns99

or hospital wards, age or gender categories, classification based on behavioural data, infectious100

status from other infectious diseases, etc. We let S denote the number of demes (number101

of discrete epidemiological states). The transmission model within TransPhylo is a continuous102

time branching process (Farrington et al., 2003), in which each infected host generates a number103

of o↵spring k from an o↵spring distribution function ↵(k), and their infection times ⌧ relative104

to the infection time of the infector are sampled from a generation time distribution �(⌧).105

The mean of the o↵spring distribution is the basic reproduction number R. We extend this106

branching process so that a deme is sampled for each o↵spring conditional on the deme of the107

infector. Specifically, the probability that a newly infected host belongs to deme j given that108

their infector belongs to deme i is denoted Pij . This matrix may take any form, as long as each109

of the rows sums up to one, and may include some parameters that we wish to infer jointly with110

the transmission tree.111

We consider two complementary cases. In the first case, hosts in every deme have the same112

o↵spring distribution function and probability of being sampled. In this case the likelihood113

can be decomposed as the product of the transmission tree and of the epidemiological data,114

with the latter being calculated e�ciently using a dynamic programming algorithm similar to115

the Felsenstein pruning algorithm (Felsenstein, 1973, 1981). In the second case, the o↵spring116

distribution function and probability of being sampled depend on the deme. This dependency117

may once again involve some parameters that we wish to estimate, for example di↵erent values118
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R1, ..., RS for the basic reproduction number within each of the demes. In this case the119

likelihood can no longer be decomposed as previously, but we show that it can still be calculated120

analytically using a more complicated dynamic programming algorithm.121

RESULTS122

Exemplary analysis of a simulated dataset where all demes have the same123

o↵spring distribution and sampling probabilities124

We simulate an outbreak with 250 observed infected hosts across five demes, with each observed125

host being sampled once. The observation cut-o↵ time T is determined by the simulation in126

order to return the correct number of observed infected hosts. The generation time and primary127

observation time are both Gamma-distributed with shape and scale parameters equal to 2 and 1,128

respectively. For the transmission model, the o↵spring distribution follows a Negative Binomial129

distribution with r = 2 and p = 0.5, so the basic reproduction number R = r = 2, and the130

sampling proportion is ⇡ = 0.8. The within-host pathogen population size is + �⌧ at time ⌧131

after infection, with  = 0.1 and � = 0.2. The probability of an o↵spring having the same deme132

as their infector is ⇢ = 0.8, otherwise one of the other four demes is sampled uniformly. The133

resulting simulation contains 302 infected hosts (of which 250 are sampled). The transmission134

and phylogenetic trees are shown in Figure 1, which is coloured according to the demes of the135

hosts. Note that only the deme data for the observed hosts is used in the analysis.136
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2000 2005 2010 2015

Figure 1: Combined transmission and phylogenetic tree coloured by host deme used in the first
simulation study. The tree contains 302 infected hosts, of which 250 are sampled. The red stars
correspond to transmission events.

Our goals are to estimate the five parameters R, ⇡, ⇢,  and �, and to correctly identify137

transmission links between sampled hosts. We performed four separate MCMC runs of 100,000138

iterations, which each took approximately 36 hours on a 3 GHz processor core. Mixing was139

relatively slow for the coalescent parameters  and �, with e↵ective sample sizes of 300-600 in140

each run. This is in part due to these parameters being highly correlated to the transmission141

tree, which is updated separately within the MCMC algorithm, and in part due to having142

only one sample per host, leading to a wide posterior to explore for these parameters (Carson143

et al., 2024). The e↵ective sample size was between 1300-1900 in each chain for ⇡, 6000-144

7000 for R, and 6000-10000 for ⇢. The multivariate Gelman-Rubin statistic comparing runs145

was 1.01 (Brooks and Gelman, 1998). The inferred means (95% credible intervals) for each146

parameter are R : 1.94 (1.68, 2.22), ⇡ : 0.78 (0.63, 0.93), ⇢ : 0.78 (0.73, 0.83),  : 0.09 (0.00, 0.21),147

� : 0.20 (0.02, 0.41). This shows that we are able to recover the simulated parameter values148

e↵ectively, since the posterior means are close to the correct values and the credible intervals149

cover the correct values.150

In order to evaluate our ability to reconstruct transmission links, we focus on transmissions151

between observed hosts. Out of the 250 observed hosts, 184 are infected by another observed152

host. The posterior probability estimates for the transmission links are summarised in Figure 2.153

If we define 0.5 as the posterior probability threshold for a transmission event being identified,154

we correctly identify 71 transmission links including the direction of transmission, giving a155

directional sensitivity of 39%. With only one observation per host it is common to identify a156

transmission link between two hosts, but be unsure of the direction of transmission (Didelot157

6
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et al., 2014, 2017; Carson et al., 2024). If we ignore the direction of transmission we identify158

104 transmission links, giving a bidirectional sensitivity of 57%. We incorrectly establish 30159

directional transmission links, and 37 bidirectional transmission links. However, as there are160

62,250 possible host combinations, specificity is high (> 99.9%) in both cases. The resulting161

precision is 70% when including the direction of transmission, and 74% when ignoring the162

direction of transmission.163
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Figure 2: Posterior probability estimates for the transmission links in the first simulation
study. The red lines correspond to correct transmission links, and the blue lines correspond to
incorrect transmission links. In each case the posterior probability estimates are binned in 0.1
width intervals, and the vertical height indicates the proportion of transmission links contained
within each bin. The left plots show estimates with deme information, and the right plots
show estimates without deme information. The top plots show bidirectional transmission link
estimates, and the bottom plots show directional transmission link estimates.

If inference is undertaken without the deme data we obtain similar parameter estimates for R,164

⇡, , and �, but no longer obtain an estimate for ⇢ as we assume that all hosts belong to a single165

deme. We correctly identify fewer transmission links, with 61 correct links being established if we166

consider direction (directional sensitivity of 33%) and 86 if we do not (bidirectional sensitivity of167

47%). However, we also obtain a slightly smaller number of false positives: 25 in the directional168

case and 32 in the bidirectional case. The resulting precision changes very little, with a precision169

of 71% when including the direction of transmission, and 73% otherwise.170
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Exemplary analysis of a simulated dataset where demes have di↵erent171

o↵spring distributions and sampling probabilities172

We simulate a second outbreak with 250 observed hosts. The hosts belong to two demes, with173

each deme having its own R, ⇡, and ⇢ parameters. Specifically we set R1 = 1.2, R2 = 2.2,174

⇡1 = 0.4, ⇡2 = 0.9, ⇢1 = 0.9, ⇢2 = 0.7, whilst maintaining  = 0.1 and � = 0.2. Consequently,175

deme 1 has a low transmission rate and is poorly surveyed, whilst deme 2 has a high transmission176

rate and is well surveyed. O↵spring are more likely than not to be in the same deme as the177

infecting host, but transmissions from deme 2 to deme 1 are more likely than transmissions178

from deme 1 to deme 2. The resulting simulation contains 325 hosts, and the transmission and179

phylogenetic trees are shown in Figure 3, which is coloured according to the demes.180

2000 2005 2010 2015 2020 2025

Figure 3: Combined transmission and phylogenetic tree coloured by host deme used in the
second simulation study. The tree contains 325 infected hosts, of which 250 are sampled. The
red stars correspond to transmission events.

We performed four separate MCMC runs of 100,000 iterations, which took approximately 46181

hours on a 3 GHz processor core. As with the previous simulation study, mixing was slowest182

for  and �, with e↵ective sample sizes between 300-1100 for  and 300-400 for � in each183

chain. For the remaining parameters the e↵ective sample sizes were 4000-5500 for R1, 500-184

4200 for R2, 2000-2300 for ⇡1, 1700-2300 for ⇡2, 900-3700 for ⇢1, and 1500-3300 for ⇢2. The185

multivariate Gelman-Rubin statistic comparing runs was 1.01 (Brooks and Gelman, 1998). The186

inferred means (and 95% credible intervals) for each parameter are R1 : 1.15 (0.92, 1.39),187

R2 : 2.21 (1.78, 2.68), ⇡1 : 0.50 (0.35, 0.68), ⇡2 : 0.88 (0.68, 0.99), ⇢1 : 0.93 (0.87, 0.96),188

⇢2 : 0.72 (0.62, 0.81),  : 0.10 (0.00, 0.28), � : 0.23 (0.03, 0.48). Once again this shows that189

we are able to recover the simulated parameter values e↵ectively since the inferred values are190

close to the correct values used in the simulation. Furthermore, since the credible intervals for191

R1 and R2, and for ⇡1 and ⇡2 do not overlap, we can deduce that we have correctly inferred192
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that the reproduction number and sampling probability are both higher in the second deme193

than in the first deme.194

Looking once more at inferred transmission links, out of the 250 observed hosts 155 are infected195

by another observed host. The full transmission link probabilities are shown in Figure 4. Using196

the same posterior probability threshold as the first simulation study we correctly identify 65197

transmission links including the direction of transmission, giving a directional sensitivity of198

42%. If we ignore the direction of transmission then we identify 89 transmission links, giving a199

bidirectional sensitivity of 57%. We incorrectly establish 39 directional transmission links, and200

50 bidirectional transmission links. These values indicate a precision of 63% when including the201

direction of transmission, and 64% otherwise.202
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Figure 4: Posterior probability estimates for the transmission links in the second simulation
study. The red lines correspond to correct transmission links, and the blue lines correspond to
incorrect transmission links. In each case the posterior probability estimates are binned in 0.1
width intervals, and the vertical height indicates the proportion of transmission links contained
within each bin. The left plots show estimates with deme information, and the right plots
show estimates without deme information. The top plots show bidirectional transmission link
estimates, and the bottom plots show directional transmission link estimates..

When undertaking inference without deme data we assume that all hosts belong to the same203

deme, giving single R and ⇡ parameters, and removing all ⇢ parameters. For the posterior204

means and credible intervals we find R : 1.56 (1.35, 1.79), ⇡ : 0.73 (0.58, 0.9),  : 0.9 (0.00, 0.25),205

and � : 0.28 (0.04, 0.58). That is, we estimate R and ⇡ as somewhere between the pairs of values206

used in the simulation. The true values of  and � remain in the 95% credible intervals, but207
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the estimate of � has slightly increased. In this instance we identify fewer correct transmission208

links, and more incorrect transmission links. Specifically, 53 links are established if we consider209

direction (directional sensitivity of 34%) and 84 if we do not (bidirectional sensitivity of 54%).210

We find 47 false positives in the directional case and 50 in the bidirectional case. This means211

that the precision is significantly smaller when including the direction of transmission (53%),212

but similar when ignoring the direction of transmission (63%).213

Benchmarking using multiple simulations214

We undertake 50 simulation studies across a range of parameter values, similar in design to215

the second simulation study. The parameter sets are sampled from an orthogonal array Latin216

hypercube using the lhs R package. In each case we simulate an outbreak with 250 observed217

hosts across two demes, with each observed host being sampled once. Each deme has separate218

R values sampled between 1 and 6, separate ⇡ values sampled between 0.1 and 1, and separate219

⇢ values sampled between 0.5 and 0.9. Smaller values of ⇢ are not considered, as if ⇢ is high220

in one deme and low in the other this will lead to samples being dominated by one deme. In221

such cases we would expect to obtain poor parameter estimates for the less sampled deme. The222

remaining parameters are the same for both demes, namely both  and � are sampled between223

0 and 1. For each simulated dataset we estimate the eight parameters used in the simulation.224

The marginal posterior results credible intervals are shown in Figure 5 and compared to the225

correct values of the parameters used in the simulations. In general we are able to recover226

the parameter values used in each simulation, but there is considerable uncertainty on some227

of the parameters, as can be seen by the wide credible intervals in Figure 5. The uncertainty228

is particular high for parameters of a deme with a small number of representative samples,229

as shown by the more lightly shaded bars being longer than the more darkly shaded bars in230

Figures 5A-F. The parameter ⇢ tends to be inferred more precisely when its correct value is231

high (Figure 5E-F. The parameters � and  of the within-host population size are only weakly232

informed (Figures 5G-H) as previously noted in the two exemplary analyses.233

Averaging across the 50 simulated data sets, 106.8 out 250 observed hosts are infected by another234

sampled host. Using a posterior probability threshold of 0.5, on average we correctly identify235

15.2 transmission links including the direction of transmission, and 26.6 transmission links236

ignoring the direction of transmission. These correspond to an average directional sensitivity237

of 14%, and an average bidirectional sensitivity of 24%. These relatively low sensitivities are238

typical of data sets with one sample per observed host, and data sets with a relaxed bottleneck239

(Carson et al., 2024). On average we also find 9.3 false positives including the direction240

of transmission, and 14.1 false positives when ignoring the direction of transmission. The241

corresponding directional and bidirectional specificities are > 99.9%. The average directional242

precision is 61%, and the average bidirectional precision is 64%.243

We obtain the sensitivity (recall), specificity, and precision for each simulation under a series244

of di↵erent posterior probability thresholds between 0 and 1. Averaging over the 50 simulated245

datasets, we present the resulting Receiver Operating Characteristic (ROC) and Precision-246

Recall (PR) curves in Figure S1 for both directional and bidirectional transmission links. The247

Area Under the Curve (AUC) is 0.99 for both ROC curves, 0.33 for the PR curve of directional248

transmission links, and 0.44 for the PR curve of bidirectional transmission links.249
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Figure 5: Benchmarking results for the parameters R of deme 1 (A), R of deme 2 (B), ⇡ of deme
1 (C), ⇡ of deme 2 (D), ⇢ of deme 1 (E), ⇢ of deme 2 (F),  (G) and � (H). Mean values are
shown by dots, 95% credible intervals are shown by vertical lines. In A-F the shade indicates
the proportion of sampled hosts in the associated deme (darker implying a greater proportion
in the deme).
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Application to an outbreak of tuberculosis in Argentina250

A multidrug resistantMycobacterium tuberculosis outbreak in Argentina has been described and251

studied in detail using genomic epidemiology (Eldholm et al., 2015). A total of 252 genomes252

were sequenced, with collection dates ranging between 1996 and 2010. 153 of the genomes253

originated from HIV positive individuals, whereas the remaining 99 genomes where sampled254

from HIV negative individuals. A dated phylogeny was previously reconstructed using BEAST255

(Drummond et al., 2012), with the root of this tree being estimated to have existed around256

1970 (Eldholm et al., 2015). This dated phylogeny is the starting point of our analysis and257

reproduced in Figure S2, with leaves colored according to the HIV status of the hosts. The258

role of HIV co-infection in the transmission of this tuberculosis outbreak has been previously259

investigated and found to be not statistically significant (Eldholm et al., 2016). However, this260

analysis was based on a rough reconstruction of transmission events, with a-posteriori testing261

of the e↵ect of HIV status, limiting its statistical power (Eldholm et al., 2016). It is therefore262

interesting to reanalyse this dataset with the new methodology presented here, considering two263

demes for the HIV positive and negative individuals. The sampling window was set from 1st264

October 1996 to 1st December 2009 to include all samples and reflect the original sampling265

collection methodology (Eldholm et al., 2015). We used the same generation time and sampling266

time distributions as was used in previous analyses of tuberculosis outbreaks (Didelot et al.,267

2017; Séraphin et al., 2018; Sobkowiak et al., 2023; Chitwood et al., 2024).268
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Figure 6: Parameter estimates in the tuberculosis analysis: the reproduction number R (A),
sampling fraction ⇡ (B) and probability to remain in a deme ⇢ (C) are shown for both the HIV
negative (left) and HIV positive (right) demes.

The means (95% credible intervals) of the parameters of the within-host population size function269

are  : 5.38 (2.82, 8.79) and � : 0.63 (0.04, 1.69). The initial pathogen population size  is large270

compared to the per-year linear growth rate �, suggesting a relaxed transmission bottleneck271

(Carson et al., 2024). Figure 6 shows the posterior distribution for the parameters specific to272

both demes. The reproduction number R for the HIV negative and HIV positive demes are273

1.10 (0.65, 1.52) and 1.63 (0.86, 2.32), respectively (Figure 6A). The probability that the HIV274

positive deme has a greater reproduction number than the HIV negative deme is 0.86. The275

sampling probability ⇡ for the HIV negative and HIV positive demes are 0.32 (0.13, 0.70) and276

0.79 (0.46, 0.99), respectively (Figure 6B). The probability that the HIV positive deme has a277

greater sampling probability than the HIV negative deme is 0.98. These results suggest that278

HIV positive individuals have a greater reproduction number and are more likely to be observed,279

as would be expected from the fact that HIV co-infection accelerates the transition from latent280

to active tuberculosis (Bruchfeld et al., 2015).281
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Figure 7: Posterior direct transmission probabilities in the tuberculosis analysis. The grey lines
separate the two demes, with HIV negative being left/bottom and HIV positive being right/top.

Figure 7 shows the posterior probabilities of direct transmission from any individual to any282

other. It is visually clear that infector/infectee pairs tend to have the same HIV status. This is283

confirmed by the estimate of the probabilities that the pathogen remains in the same deme at284

transmission which are 0.90 (0.77, 0.98) and 0.66 (0.48, 0.82), respectively for the HIV negative285

and HIV positive demes (Figure 6C). Therefore HIV negative hosts are highly likely to transmit286

to other HIV negative hosts. HIV positive hosts are also more likely to transmit to other HIV287

positive hosts, but to a lesser extent. This may be in part due to the HIV negative population288

being larger than the HIV positive population.289

Application to an outbreak of avian flu H7N7 outbreak in the Netherlands290

An outbreak of avian influenza H7N7 occurred in the Netherlands during 2003, infecting 255291

Dutch farms in less than 3 months, and leading to drastic control measures including the292

culling of 30 million birds (Stegeman et al., 2004). Genetic data is available from GISAID (Shu293
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and McCauley, 2017) from 227 farms, for genes HA, NA and PB2 which were concatenated.294

Most sequences are from the Gelderland (G) area (n = 186) with smaller numbers from the295

Limburg (L) area (n = 33), Central (C) area (n = 7) and Southwest (S) area (n = 1). The296

phylogeography of this outbreak has been described before in a number of studies (Bataille297

et al., 2011; Ypma et al., 2012, 2013; Hall et al., 2015; Klinkenberg et al., 2017). We built298

a dated tree using BEAST2 (Bouckaert et al., 2019) which is shown in Figure S3 with leaves299

colored by location. We used the same generation time and sampling time distributions as in300

a recent study of this outbreak (Klinkenberg et al., 2017). The sampling window was set from301

the 50th to the 125th day from the root of the dated tree, which included all samples (Figure302

S3).303
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Figure 8: Parameter estimates in the H7N7 analysis: the reproduction number R (A), sampling
proportion ⇡ (B) and probability to remain in a deme ⇢ (C) are shown for each of the four
locations.
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The means (95% credible intervals) of the parameters of the within-host population size304

function are  : 5.38 (2.23, 9.60) and � : 3.55 (1.24, 6.28). Figure 8 shows the posterior305

distribution for the parameters specific to the four locations. The per-location reproduction306

numbers are 1.00 (0.86, 1.16), 0.98 (0.71, 1.25), 1.13 (0.54, 1.93) and 0.74 (0.02, 2.37) for regions307

G, L, C and S, respectively. These reproduction numbers are close to 1, with uncertainty308

increasing as the sample numbers decrease (Figure 8A). In location S we approximately309

recover the prior exponential with mean 1, as would be expected given that there was only310

a single representative of this location. The sampling probabilities ⇡ are 0.71 (0.36, 0.97),311

0.28 (0.10, 0.55), 0.33 (0.07, 0.82), 0.27 (0.02, 0.83) for regions G, L, C and S, respectively.312

Location G is best sampled, which makes sense given that it has the largest number of sampled313

cases (Figure 8B). The remaining demes are likely less well sampled, although there was high314

uncertainty due to the small sample numbers. Our analysis was conducted on 227 farms for315

which genetic data was available, whereas during the outbreak 255 farms were confirmed to316

be infected Stegeman et al. (2004); Bataille et al. (2011), suggesting an upper bound of the317

sampling fraction of 0.89. Our estimates are compatible with this, and further suggest that318

some infection went undetected as would be expected from the large scale culling that took319

place at farms even in absence of detection Stegeman et al. (2004).320
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Figure 9: Posterior direct transmission probabilities in the H7N7 analysis. The grey lines
separate the four demes.
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Figure 9 shows the posterior probabilities of direct transmission from any farm to any other,321

with a clear tendency for farms to infect other farms from the same region. This is confirmed322

by the parameters ⇢ representing the probability that the pathogen infects in the same location323

which are estimated to be 0.97 (0.92, 0.99), 0.98 (0.92, 1.00), 0.75 (0.4, 0.95) and 0.48 (0.02, 0.97)324

for regions G, L, C and S, respectively (Figure 8C). Note that we assume that transmissions to325

di↵erent locations are evenly distributed across the other locations. Farms in locations G and L326

almost always transmit to o↵spring in the same deme. The probability that a farm in location327

C infects another farms in location C also seems high, but is more uncertain due to the small328

number of samples. For location S represented by only a single farm we approximately recover329

the prior uniform between 0 and 1.330

DISCUSSION331

Combining genomic and epidemiological data to reconstruct the transmission events within332

an infectious disease epidemic is an idea that was formulated over a decade ago, when the333

first methods to use genomic data for outbreak reconstruction were proposed (Ypma et al.,334

2012; Jombart et al., 2014; Didelot et al., 2014; Hall et al., 2015). It is however di�cult to use335

epidemiological data when considering partially sampled or ongoing outbreaks (Mollentze et al.,336

2014; Didelot et al., 2017), since unsampled cases do not have any associated epidemiological337

data. A naive approach to this issue quickly becomes intractable as larger numbers of unsampled338

cases need to be considered. Instead we presented a new dynamic programming algorithm that339

can e�ciently resolve this problem. We implemented this new methodology by extending the340

TransPhylo framework which can be applied to partially sampled outbreaks (Didelot et al., 2017,341

2021), even when multiple genomes per host are provided or when the transmission bottleneck342

is not complete (Carson et al., 2024).343

We used simulations to show that the combined approach has improved statistical power to344

infer the correct transmission events compared to the previous approach based on genomic data345

only. We also showed that the parameters governing the epidemiological data can be inferred346

with accuracy that increases with the amount of data available for analysis. We applied our347

new algorithm to two widely di↵erent real datasets to showcase the range of scenarios in which348

it can be useful. First we analysed data from a tuberculosis outbreak in Argentina (Eldholm349

et al., 2015) to investigate the role of HIV co-infection on the spread of the bacterial causative350

agent M. tuberculosis. Second we analysed data from the avian influenza H7N7 epidemic that351

hit the Netherlands in 2003 (Stegeman et al., 2004), to infer the parameters involved in the352

spatial spread of this virus from farm to farm.353

The methodological framework we developed makes few assumptions, and we therefore envisage354

that it can be useful in a wide range of situations. The epidemiological model at the heart of355

TransPhylo is a flexible branching process (Didelot et al., 2017) based on o↵spring distribution356

and generation time distribution whose parameters can be set to appropriately model many357

infectious diseases transmitted directly from host to host (Wallinga and Teunis, 2004; Grassly358

and Fraser, 2008; Cori et al., 2013). An example of application concerns the inference of359

the di↵erent reproduction numbers for di↵erent components of the population. This can help360

determine their relative contribution to the overall disease burden, and therefore inform how361

to target public heath policies for maximum e↵ect (Fraser et al., 2004; Grassly and Fraser,362

2008; Hollingsworth, 2009). Another application likely to be useful is to estimate the sampling363
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proportions for di↵erent components of the population, which can reveal if sampling is currently364

biased and how it could be improved (Magnani et al., 2005; Brooks-Pollock et al., 2021; Layan365

et al., 2023).366

There are however some limitations to the methodology we presented. First, the analysis is based367

on a dated phylogeny that needs to be correctly precomputed. This requires consideration of368

how such a tree is computed, under which prior model if a Bayesian method is used, and to369

what extent a single point estimate can be used without quantification of uncertainty. These370

questions arise for all of the many recently developed phylodynamic methods that take a dated371

tree as input (Didelot and Parkhill, 2022). However, this step-by-step approach is necessary372

to be able to analyse state-of-the-art large genomic datasets. Second, we only considered373

discrete epidemiological data. Continuous variables can always be discretised to circumvent374

this limitation, but doing so may lose some information and requires to define potentially375

arbitrary discrete classes. This situation is analogous to the almost ubiquitous use of discrete376

locations in phylogeography (Lemey et al., 2009; De Maio et al., 2015; Baele et al., 2017). In our377

applications, we also assume that transmission outside of a deme is evenly distributed across378

the other demes. We make this choice in order to restrict the number of parameters to linear in379

the number of demes instead of quadratic, but recognise that it will not be appropriate for every380

situation. The dynamic programming algorithm allows for this assumption to be relaxed, but a381

more complex MCMC algorithm would be required to e�ciently estimate the additional model382

parameters, and these estimates would likely exhibit greater uncertainty. Finally it should be383

noted that our methodology has a non-negligible computational cost. For example, the largest384

analysis we performed, on the H7N7 dataset, took several days to achieve acceptable MCMC385

convergence and mixing properties. However, our algorithm currently runs only on a single386

CPU core, whereas most standard desktop and laptop computers have 8 to 16 cores, with many387

more cores available on servers dedicated to computer-intensive tasks. Future work should388

therefore seek to exploit multiple cores to reduce the overall runtime, for example by following389

recent progress in parallel MCMC algorithms (Schwedes and Calderhead, 2021; Syed et al.,390

2022; Glatt-Holtz et al., 2024).391

METHODS392

Case where all demes have the same o↵spring distribution and sampling393

probabilities394

Let us start with the simpler case where all demes are assumed to have the same o↵spring395

distribution and sampling probabilities. In this case most of the calculations in TransPhylo396

(Didelot et al., 2017; Carson et al., 2024) remain unchanged, we simply include an additional397

likelihood term obtained by using an e�cient dynamic programming algorithm similar to398

Felsenstein’s tree-pruning algorithm (Felsenstein, 1973, 1981). This is necessary to integrate399

over demes for unsampled individuals that form part of the transmission tree and for sampled400

individuals with missing deme data.401

Let hosts be labelled 1, ..., N , and define the deme of host n by sn 2 {1, ..., S}. Let Pij be the402

probability that an o↵spring of a host in deme i is in deme j. Finally, let Ln
s be the likelihood403

from the deme data of host n and their descendants, conditional on host n being in deme s.404
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The algorithm is initialised at the leaf nodes, which in this case are hosts with no o↵spring in405

the transmission tree, noting that all such hosts must have been sampled in TransPhylo. If the406

deme of such a host is known, then L
n
sn = 1 at the hosts deme sn, and L

n
s = 0 for s 6= sn (all407

other demes). If the deme of the host is unknown, then L
n
s = 1 for all possible demes s.408

The algorithm then proceeds backwards in time to evaluate the conditional likelihoods of the409

internal nodes (hosts with o↵spring). Let H
n denote the set of o↵spring of Host n. If Host n410

has a known deme sn then411

L
n
sn =

Y

j2Hn

SX

sj=1

PsnsjL
j
sj , (1)

and L
n
s = 0 for s 6= sn. If on the other hand Host n has no known deme then412

L
n
s =

Y

j2Hn

SX

sj=1

PssjL
j
sj , (2)

for all possible values of s.413

The algorithm terminates at the root host, assumed here to be n = 1. The overall likelihood of414

the demes on the transmission tree is given by415

L =
SX

s=1

&sL
1
s, (3)

where &s is the prior probability of the root host being in deme s.416

Illustrative example417

An example of the dynamic programming algorithm is shown in Figure S4A. The target418

transmission tree contains 10 hosts and we assume that there are three possible demes. The419

transition probability between the three demes is given by420

P =

0

@
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

1

A , (4)

meaning that a host has probability 0.8 of an o↵spring having the same deme as its infector,421

and a probability 0.1 of an o↵spring being in either of the other two demes. We know that Host422

5 is in deme 1, Hosts 3 and 7 are in deme 2, and Host 10 is in deme 3. Hosts 2, 4, and 9 are423

sampled hosts, but their deme is missing. Hosts 1, 6 and 8 are unsampled hosts.424

Each host has an associated vector for the conditional likelihood at the three demes. Working425

backwards in time, Host 10 is known to be in deme 3 and is a leaf, and so:426

L
10 =

0

@
0
0
1

1

A . (5)
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Host 9 is a leaf, but does not have a known deme, so that:427

L
9 =

0

@
1
1
1

1

A . (6)

Host 8 is an unsampled individual, whose only o↵spring is Host 10:428

L
8 =

0

@
0.8 · 0 + 0.1 · 0 + 0.1 · 1
0.1 · 0 + 0.8 · 0 + 0.1 · 1
0.1 · 0 + 0.1 · 0 + 0.8 · 1

1

A =

0

@
0.1
0.1
0.8

1

A . (7)

Host 7 is another leaf with deme 2:429

L
7 =

0

@
0
1
0

1

A . (8)

Host 6 is an unsampled individual, whose only o↵spring is Host 9:430

L
6 =

0

@
0.8 · 1 + 0.1 · 1 + 0.1 · 1
0.1 · 1 + 0.8 · 1 + 0.1 · 1
0.1 · 1 + 0.1 · 1 + 0.8 · 1

1

A =

0

@
1
1
1

1

A . (9)

Host 5 is a leaf with deme 1:431

L
5 =

0

@
1
0
0

1

A . (10)

Host 4 is a leaf with no deme data:432

L
4 =

0

@
1
1
1

1

A . (11)

Host 3 has three o↵spring: Hosts 4, 8, and 7. Additionally, Host 3 is in deme 2, and so we only433

calculate the second element of the vector:434

L
3 =

0

@
0.0

(0.1 · 1 + 0.8 · 1 + 0.1 · 1)(0.1 · 0 + 0.8 · 1 + 0.1 · 0)(0.1 · 0.1 + 0.8 · 0.1 + 0.1 · 0.8)
0.0

1

A =

0

@
0.000
0.136
0.000

1

A .

(12)
Host 2 has two o↵spring: Hosts 5 and 6. Host 2 is sampled, but has no deme data, and so all435

elements of the vector are evaluated:436

L
2 =

0

@
(0.8 · 1 + 0.1 · 0 + 0.1 · 0)(0.8 · 1 + 0.1 · 1 + 0.1 · 1)
(0.1 · 1 + 0.8 · 0 + 0.1 · 0)(0.1 · 1 + 0.8 · 1 + 0.1 · 1)
(0.1 · 1 + 0.1 · 0 + 0.8 · 0)(0.1 · 1 + 0.1 · 1 + 0.8 · 1)

1

A =

0

@
0.8
0.1
0.1

1

A . (13)

Finally, Host 1 has two o↵spring: Hosts 2 and 3:437

L
1 =

0

@
(0.8 · 0.8 + 0.1 · 0.1 + 0.1 · 0.1)(0.8 · 0.0 + 0.1 · 0.136 + 0.1 · 0.0)
(0.1 · 0.8 + 0.8 · 0.1 + 0.1 · 0.1)(0.1 · 0.0 + 0.8 · 0.136 + 0.1 · 0.0)
(0.1 · 0.8 + 0.1 · 0.1 + 0.8 · 0.1)(0.1 · 0.0 + 0.1 · 0.136 + 0.8 · 0.0)

1

A =

0

@
0.008976
0.018496
0.002312

1

A .

(14)

Figure S4B shows the transmission tree annotated with the conditional likelihoods calculated438

in the dynamic programming algorithm. If we assume that the prior for the deme of the root439
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host is 1/3 for the three demes, then the likelihood of the deme is the mean of the values for440

Host 1. In this case L = 0.009928. This is verified by brute force by calculating441

L =
SX

s1=1

SX

s2=1

SX

s4=1

SX

s6=1

SX

s8=1

SX

s9=1

⇡s1Ps1s2Ps1s3Ps2s5Ps2s6Ps3s4Ps3s7Ps3s8Ps6s9Ps8s10 . (15)

Note that leaves with no deme data do not ultimately contribute to the likelihood, and can442

therefore be excluded.443

Case where the demes may have di↵erent o↵spring distributions and sampling444

probabilities445

A useful extension would be to allow R and/or ⇡ to change based on deme. For now, let us446

assume that there are S = 2 demes with o↵spring distribution ↵1(k) and ↵2(k). Host infected447

at time t are observed with probability ⇡1 and ⇡2 (leading to time-dependent probabilities ⇣1(t)448

and ⇣2(t)). Unlike the previous case, the transmission tree likelihood and deme likelihood can449

not be calculated separately. To evaluate the combined likelihood, we start by calculating the450

exclusion probabilities as follows.451

Define !1(t) as the exclusion probability of a host infected at time t in deme 1, and !2(t) as452

the exclusion probability of a host infected at time t in deme 2. Assuming that T is the cut-o↵453

time for observations !1(t) = !2(t) = 1 for t � T . We can then define the following recursive454

relationships.455

The exclusion probability of an o↵spring from a host in deme 1 infected at time t is456

!̄1(t) =

Z
1

0
(P11!1(t+ ⌧) + P12!2(t+ ⌧))�(⌧)d⌧, (16)

and for deme 2,457

!̄2(t) =

Z
1

0
(P21!1(t+ ⌧) + P22!2(t+ ⌧))�(⌧)d⌧. (17)

The probability that all o↵spring from an individual in deme i infected at time t are excluded458

is459

�i(t) =
1X

k=0

↵(k)!̄i(t)
k. (18)

The exclusion probability of an individual in deme i infected at time t is then460

!i(t) = (1� ⇣i(t))�i(t). (19)

That is, the probability of the host being unobserved and having no included o↵spring.461

As established in Carson et al. (2024), the transmission tree likelihood contribution from an462

unsampled Host n is463

(1� ⇣(xn))

1� !(xn)

1X

k=dn

↵(k)

✓
k

dn

◆
!̄(xn)k�dndn!

Y

j2Hn

(1� !(xj))�(xj � xn), (20)
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where xn is the host’s infection time, and dn is the number of included o↵spring. If Host n is464

sampled, the likelihood contribution is465

⇡�(yn � xn)

1� !(xn)

1X

k=dn

↵(k)

✓
k

dn

◆
!̄(xn)k�dndn!

Y

j2Hn

(1� !(xj))�(xj � xn), (21)

where yn is the host’s primary observation time, and �(⌧) is the observation time distribution.466

Here, we define467

T
n
s =

(1� ⇣s(xn))

1� !s(xn)

1X

k=dn

↵s(k)

✓
k

dn

◆
!̄s(x

n)k�dndn! (22)

for an unobserved Host n in deme s, and468

T
n
s =

⇡s�(yn � xn)

1� !s(xn)

1X

k=dn

↵s(k)

✓
k

dn

◆
!̄s(x

n)k�dndn! (23)

for an observed Host n in deme s. In addition we define469

U
nj
ssj = (1� !sj (x

j))�(xj � xn)Pssj (24)

for j 2 H
n being the o↵spring of Host n, and sj being the deme of the o↵spring. Finally, define470

471

L
n
s = T

n
s (25)

for leaf hosts, and472

L
n
s = T

n
s

Y

j2Hn

SX

sj=1

U
nj
ssjL

j
sj (26)

for hosts with o↵spring. The combined transmission tree and deme likelihood is then calculated473

using dynamic programming with this replacement definition of Ln
s .474

Illustrative example475

We return to the transmission tree presented in Figure S4A. We include observation times as476

follows:477

Host Deme Infection time Observation time O↵spring
1 - 0.0 - 2, 3
2 - 2.6 3.5 5, 6
3 2 3.2 5.3 4, 7, 8
4 - 5.1 6.9 -
5 1 5.2 8.5 -
6 - 5.5 - 9
7 2 6.3 7.1 -
8 - 7.1 - 10
9 - 8.9 11.0 -
10 3 9.8 11.6 -

478
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We assume that the demes have basic reproduction number R equal to 2, 1.5 and 1, respectively,479

and sampling proportion ⇡ equal to 0.5, 0.7 and 0.9, respectively. We again set P as in480

Equation (4). Both the generation time distribution and observation time distribution are481

Gamma distributed with shape 2 and scale 1. The resulting exclusion probabilities are shown482

in Figure S5.483

The resulting conditional likelihoods are as follows:484

Host Deme 1 Deme 2 Deme 3
1 1.35⇥ 10�19 1.24⇥ 10�19 2.60⇥ 10�21

2 9.71⇥ 10�8 1.07⇥ 10�8 4.86⇥ 10�9

3 0 3.08⇥ 10�9 0
4 5.67⇥ 10�2 9.84⇥ 10�2 1.53⇥ 10�1

5 2.34⇥ 10�2 0 0
6 2.41⇥ 10�3 1.72⇥ 10�3 6.20⇥ 10�4

7 0 1.30⇥ 10�1 0
8 1.40⇥ 10�3 7.30⇥ 10�4 1.80⇥ 10�3

9 1.25⇥ 10�1 1.68⇥ 10�1 2.14⇥ 10�1

10 0 0 3.61⇥ 10�1

485

The overall likelihood is L = 8.69 ⇥ 10�20, which again is confirmed by using a brute force486

calculation.487

As a further check we recalculate the likelihood under R = (2, 2, 2) and ⇡ = (0.8, 0.8, 0.8).488

As the demes now have the same o↵spring distribution and sampling probabilities, we should489

obtain the same likelihood by taking the product of the transmission tree and deme likelihoods,490

as in the case where all demes have the same o↵spring distribution and sampling probabilities.491

We find that both approaches do indeed return the same likelihood.492

Implementation493

We implemented the methods above into a new R package called TransPhylo2, which494

extends TransPhyloMulti (Carson et al., 2024) and therefore inherits the same advantages495

over the previous implementation of TransPhylo (Didelot et al., 2017) in terms of allowing496

multiple samples per host and relaxing the assumption of a complete transmission bottleneck.497

TransPhylo2 is available at https://github.com/DrJCarson/TransPhylo2. This repository498

also contains all the code and data needed to reproduce all results shown in this paper. The499

R package ape was used to store, manipulate and visualise phylogenetic trees (Paradis and500

Schliep, 2019).501
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