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Abstract 35 

Background 36 

All individuals with Down Syndrome (DS) will develop full-blown Alzheimer´s disease (AD) 37 

pathology by age 40, decades before the occurrence of sporadic late-onset AD. 38 

Understanding this strong biological relation between age and AD pathology risk in DS is 39 

important to accelerate diagnostics, disease monitoring, and treatment. Several genes 40 

encoded in chromosome 21 including dual-specificity tyrosine phosphorylation-regulated 41 

kinase 1A (DYRK1A) have been proven to contribute to the pathology. A recently validated 42 

plasma immunoassay to measure tau phosphorylation at threonine-212 (p-tau212) has very 43 

high diagnostic accuracy in detecting AD. P-tau212 is also very sensitive to DYRK1A 44 

phosphorylation and is increased in DSAD brain lysates. Here, we assessed the potential of 45 

this biomarker in DSAD and sporadic AD.  46 

Methods 47 

Using Simoa technology, we tested p-tau212 and p-tau181 (n=245 for plasma, n=114 48 

matching cerebrospinal fluid (CSF) samples). We used AUC-ROC to examine diagnostic 49 

performance and the DeLong test to compare the AUC-ROC differences between methods. 50 

Spearman correlation is used to examine correlations. Fold changes relative to median levels 51 

were calculated for their respective asymptomatic groups. ANCOVA followed by Tukey post-52 

hoc test was used to calculate differences across groups. LOESS was used to determine the 53 

temporality of plasma biomarker changes.  54 

Results 55 

We have confirmed that p-tau212 has extremely high accuracy in detecting AD-related 56 

changes in euploid controls. For the DS population, we observed a strong correlation 57 

between plasma and CSF p-tau212 (r=0.867; p<0.001). In prodromal DS (pDS) and 58 

dementia DS (dDS), we observed significantly elevated levels of p-tau212 in reference to 59 
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asymptomatic DS (aDS). The diagnostic accuracy to differentiate between aDS and dDS was 60 

AUC=0.91 and AUC = 0.86 in discriminating between DS amyloid positive and amyloid 61 

negative participants. Plasma p-tau212 started increasing approximately when people 62 

became amyloid PET-positive.  63 

Conclusions 64 

We have confirmed that the levels of plasma p-tau212 are increased in the DS population 65 

and sporadic AD cases including prodromal and MCI states. Plasma p-tau212 might have 66 

utility for theragnostic, monitoring therapy efficacy, and as a target engagement biomarker in 67 

clinical trials both in sporadic and DSAD.   68 

 69 

Keywords 70 

Alzheimer´s disease; Down Syndrome; plasma biomarkers; p-tau212; DYRK1A; DABNI; 71 

SPIN; Simoa; CSF biomarkers.  72 

 73 

Introduction 74 

A triplication of chromosome 21 causes Down syndrome (DS)(1). All individuals with DS 75 

develop full-blown Alzheimer’s Disease (AD) pathology by age 40(2) and the lifetime risk of 76 

developing AD exceeds 90% in the seventh decade(3). The estimated age of onset of AD 77 

dementia in this population is 53.8 years, decades before the occurrence of late-onset AD in 78 

the general population(4). Understanding this strong DSAD relationship is important to 79 

accelerate diagnostics and treatment. This ultra-high risk is mainly due to the triplication of 80 

the amyloid precursor protein (APP), which leads to the overproduction of amyloid-β (Aβ) 81 

peptides, and increased Aβ plaques formation(5). Although other genes encoded in 82 

chromosome 21 such as dual-specificity tyrosine phosphorylation-regulated kinase 1A 83 

(DYRK1A) and RCAN1 contribute to the pathology(6–9). DYRK1A is a dose-sensitive gene 84 
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that overexpression contributes to DS cognitive dysfunction(10). This protein phosphorylates 85 

different targets involved in AD development and progression for instance Glycogen 86 

synthase kinase-3β (GSK-3β)(11), Presenilin1(12), APP(6), and tau(13).  87 

 88 

Diagnosing DSAD is challenging due to the association of DS with cognitive 89 

dysfunction(14,15). Recent advances allow us to recognize ante-mortem AD pathology using 90 

blood-based biomarkers(16–19). These reflect the disease almost as accurately as more 91 

expensive and less available CSF and imaging biomarkers(20).  Several plasma p-tau 92 

biomarkers have been found to reflect both Aβ and tau pathology(21). Recently validated 93 

plasma p-tau212 has shown very high performance for detecting those pathologies and AD 94 

diagnosis(22). That phosphorylation site might also have the strongest biological correlation 95 

with AD pathology in DS since threonine-212 is a primary target for DYRK1A in tau 96 

protein(23).  Intensified phosphorylation at thr-212 induces tau aggregation, reduces tau 97 

binding to microtubules, and increases cell toxicity in in-vitro studies(24). Levels of p-tau212 98 

are highly elevated in reference to AD and control participants in human AD-DS brains(25). 99 

Additionally, a major tau phosphatase – Protein phosphatase 1A (PP1A) is not 100 

dephosphorylating p-tau212 derived from AD brains(26), suggesting that this epitope might 101 

be vulnerable to very subtle changes related to AD pathology. Knowing that direct biological 102 

association, we hypothesized that p-tau212 is an accurate tau species to reflect AD 103 

pathology in the DS population. To test this hypothesis, we used Single molecule array 104 

(Simoa) immunoassays to measure plasma and cerebrospinal fluid (CSF) p-tau212 105 

concentrations in asymptomatic DS (aDS), prodromal DS (pDS), and dementia DS (dDS) 106 

individuals, as well as in sporadic AD patients both in Mild Cognitive impairment (MCI) and 107 

dementia states and we compare the results with a validated biomarker.  108 

 109 

 110 

 111 
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 112 

Methods 113 

Study design and participants 114 

We performed a cross-sectional cohort study of adults with DS, and euploid individuals along 115 

the Alzheimer's disease continuum in the Hospital of Sant Pau, Barcelona (Spain), Adults 116 

with DS in Barcelona were recruited from a population-based health plan designed to screen 117 

for AD dementia, which includes yearly neurological and neuropsychological assessments. 118 

Those subjects interested in research studies are included in the Down Alzheimer Barcelona 119 

Neuroimaging Initiative (DABNI) cohort(14,15). We also recruited euploid controls and 120 

sporadic Alzheimer's disease patients from the Sant Pau Initiative on Neurodegeneration 121 

(SPIN cohort)(27).  122 

 123 

Biomarker measurements  124 

Amyloid-β peptides (Aβ40, Aβ42) analyses were performed on the LUMIPULSE G600II, and 125 

the cut-off for positivity was defined as in the previous publication(28). All other plasma and 126 

CSF biomarker assays were performed on the Simoa HD-X platform at the University of 127 

Gothenburg. P-tau212 and p-tau181 concentrations were measured using published and 128 

validated in-house assays(16,22). For p-tau181, the AT270 antibody (Invitrogen) was used 129 

as a capture antibody and was paired with n-terminal antibody for detection (Tau12; 130 

BioLegend). For p-tau212, a sheep monoclonal antibody was used for capture paired with 131 

Tau12 as the detector. Coefficients of variation for 3 different internal quality controls for 132 

plasma were 5.3-12% for within-plate variation and 6.4%-12% for between-plate variation. 133 

For CSF, these values were 10.8%-13.3% and 12.9%-15.5%, respectively.  134 

 135 

Statistical Analysis:  136 

We used AUC-ROC to examine diagnostic performance and the DeLong test to compare the 137 

AUC-ROC differences between methods. Spearman correlation is used to examine 138 
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correlations. Fold changes relative to median levels are calculated for their respective 139 

asymptomatic groups. Age-adjusted analysis of covariance (ANCOVA) followed by Tukey 140 

post-hoc test is used to calculate differences across groups. A First-degree locally estimated 141 

scatterplot smoothing curve (LOESS) is independently used in controls and adults with Down 142 

Syndrome to determine the temporality of plasma biomarker changes. For Down participants 143 

we set the mean age of symptoms onset at 53.8 years according to a previous study from 144 

our group(29). All significance tests were two-sided, and significance was set at p<0.05. 145 

 146 

Results  147 

Cohort characteristics 148 

We tested n=245 plasma samples for p-tau212 and p-tau181. A subset of participants had 149 

amyloid PET data. Table 1. shows the demographics, cognitive, and plasma biomarkers 150 

across groups of all participants included in the analyses. N=114 (47%) participants had CSF 151 

biomarker measurements. Demographics for the CSF subset are shown in Supplementary 152 

Table 1.  153 

 154 

Correlations with biomarkers and cognition 155 

Plasma and CSF p-tau212 were highly correlated with each other within the cohort. We 156 

observed moderate correlation across sample types in all participants (r=0.712 p<0.0001) 157 

(Fig. 1A). However, the strongest correlation of plasma p-tau212 with CSF p-tau212 was 158 

observed in the DS-only subgroup (r=0.867, p<0.0001) (Fig 1A). This improved CSF-plasma 159 

correlation in DS groups was not seen for p-tau181, which showed similar correlations in the 160 

whole cohort and subgroups (r=0.652-0.681, p<0.0001) (Fig 1B). Those results indicate that 161 

plasma p-tau212 measurements accurately reflect AD-related p-tau level changes in CSF in 162 

sporadic and DS groups.  163 

 164 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 2, 2024. ; https://doi.org/10.1101/2024.10.31.24316469doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.31.24316469
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

Figure 1. Spearman correlations for plasma and CSF p-tau212 and p-tau181. The Figure 165 

shows correlations between plasma and CSF for A) p-tau212 and B) p-tau181 for euploid 166 

groups (n=88; p<0.001; r= 0.701 and r=0.660 respectively) and DS groups (n=26, p<0.001; 167 

r=0.867, r=0,681 respectively). The correlation between plasma and CSF measurements for 168 

all measurements (n=114, p<0.001) is 0.712 for p-tau212 and 0.652 for p-tau181. The fitted 169 

simple linear regression line is presented as a mean and error.  170 

 171 

Both biomarkers were correlated with decrease in The Cambridge Cognitive Examination 172 

adapted for individuals with Down Syndrome (CAMCOG-DS) in plasma (r=-0.338; p=0.001 173 

for p-tau212 and r=-0.328 for p-tau181; p=0.002;) and in CSF (r=-0.686; p<0.001 for p-174 

tau212; and r=-0.511; p<0.001 for p-tau181).  175 

 176 

Plasma p-tau212 levels are increased in asymptomatic Down syndrome  177 

Plasma p-tau212 concentration was 2.4x times higher in the aDS group compared with 178 

cognitively normal (CN) euploid people (p<0.001) whereas plasma p-tau181 was not 179 

significantly changed (p=0.052).  180 

 181 

Plasma and CSF p-tau212 increase along the AD continuum in DSAD and sporadic AD  182 

Both in individuals with DS and euploid participants, p-tau212 levels were increased in 183 

symptomatic patients in comparison with asymptomatic individuals. (Fig. 2A). For pDS we 184 

observed a 3.4x (p=0.003) mean fold increase in plasma and a 5.6x mean fold-fold increase 185 

in CSF in reference to aDS. For dDS we observed a 2.9x (p=0.004) mean fold increase in 186 

plasma and a 7.1x mean fold increase in CSF. For MCI-AD, compared with cognitively 187 

normal euploid people, we observed a 3.0x (p<0.001) mean fold increase in plasma and a 188 

7.8x mean fold increase in CSF. AD dementia patients had a 3.8x mean fold increase in 189 

plasma (p<0.001) and a 9.1x mean fold increase in CSF. P-tau181 concentrations were also 190 

increased, but with a lower magnitude than p-tau212, and comparison between DS groups 191 

showed no significance (Fig. 2B). Both biomarkers kept the pattern of greater increases in 192 

CSF than in plasma (Supplementary Fig. 1A-B).  193 

 194 

Figure 2. Plasma p-tau212 and p-tau181 levels in euploid and Down Syndrome (DS) 195 

groups. Box plots represent median and IQR, and boundaries of the whiskers are minimum 196 

to maximum values for A) plasma p-tau212 and B) plasma p-tau181. Differences for euploid 197 
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participants are calculated for Mild Cognitively impaired Alzheimer’s Disease (MCI-AD; n=62) 198 

and Alzheimer’s Disease Dementia (AD; n=20) in reference to Cognitively Normal (CN; 199 

n=46) participants. Differences for prodromal Alzheimer’s Disease in DS (pDS; n=8) and 200 

Alzheimer’s Disease dementia in DS (dDS; n=17) are calculated in reference to 201 

asymptomatic (aDS; n=92). Age-adjusted analysis of covariance (ANCOVA) followed by 202 

Tukey post-hoc test is used to calculate differences across groups.  203 

 204 

Plasma p-tau212 has greater diagnostic accuracy than p-tau181 205 

ROC analysis was used to evaluate the diagnostic performance of plasma and CSF p-tau212 206 

and p-tau181. AUCs were usually higher for biomarkers in CSF, and for p-tau212 than for p-207 

tau181. In our comparisons, we included Age+ Apolipoprotein E4 (APOE4)+Sex since they 208 

have been shown to influence diagnostic accuracy(30). AUCs of Age+APOE+Sex were not 209 

significantly different from p-tau212 but better than p-tau181. Both biomarkers had high 210 

accuracy to differentiate between CN and AD in plasma AUC = 0.96 (95% CI 0.92-1) for p-211 

tau212 and AUC = 0.89 (95% CI 0.84-0.95) for p-tau181 (Fig. 3B). For differentiating 212 

between CN and MCI-AD (Fig. 3A) or MCI-AD+AD (Fig. 3C), p-tau212 had accuracy of 0.91 213 

(95% CI 0.85-0.97) and AUC=0.93 [95% CI 0.88-0.97] respectively. That accuracy was 214 

significantly higher than p-tau181 - (p=0.026 for both comparisons).  Plasma p-tau212 215 

reached AUC=0.91 (95% CI 0.86-0.97) to differentiate between aDS and dDS diagnosis (Fig. 216 

3D). 217 

 218 

Figure 3. Diagnostic accuracy of plasma and CSF biomarkers to discriminate between 219 

sporadic and DSAD groups. P-tau212 and p-tau181 receiver operating characteristic 220 

curves (ROC) to discriminate between sporadic and DSAD groups. Plasma p-tau181, plasma 221 

p-tau212, CSF p-tau181, CSF p-tau212, and Age+APOE+Sex are on each graph. In A) ROC 222 

curves for differentiating Cognitively normal (CN) and Mild Cognitive Impairment - 223 

Alzheimer’s Dementia (MCI-AD). B) ROC curves to discriminate between CN and 224 

Alzheimer’s Disease (AD). C) ROC curves to differentiate between CN and MCI-AD 225 

combined with AD group. D) ROC curves to discriminate between asymptomatic Down 226 

syndrome (aDS) and prodromal Down Syndrome (pDS) + dementia Down syndrome (dDS).  227 

 228 

Plasma p-tau212 increases approximately parallel to amyloid PET positivity and has 229 

great accuracy in discriminating between Aβ+ and Aβ- participants 230 
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Both biomarkers had significant accuracy in discriminating between Aβ+ and Aβ- participants 231 

(Fig. 4). Plasma p-tau212 had numerically higher accuracy than p-tau181 both for DS (AUC 232 

= 0.86 (95%CI = 0.7-1) (Fig. 4B) and euploid participants AUC = 0.9 (0.83 – 0.96) (Fig. 4C).  233 

 234 

Figure 4. Diagnostic accuracy of plasma and CSF biomarkers to discriminate between 235 

Aβ+ and Aβ- participants. P-tau212 and p-tau181 receiver operating characteristic curves 236 

(ROC) to discriminate between amyloid positive (Aβ+) and amyloid negative (Aβ-) 237 

participants in sporadic and DSAD groups. Plasma p-tau181, plasma p-tau212, CSF p-238 

tau181, CSF p-tau212, and Age+APOE+Sex are on each graph. In A) ROC curves for 239 

differentiating Aβ+ from Aβ- in whole cohort. B) ROC curves to discriminate Aβ+ and Aβ- in 240 

DS groups. C) ROC curves to differentiate between Aβ+ and Aβ- in euploid groups.  241 

 242 

An early increase in plasma levels was observed many years before the onset of clinical AD 243 

symptoms in DS (Fig 5). For p-tau212 the increase started approximately when people 244 

became amyloid PET-positive, i.e., in their late 30s, and approximately 15 years before the 245 

disease onset (Fig. 5A). P-tau181 started increasing approximately 10 years before the 246 

estimated disease onset (Fig. 5B).    247 

 248 

Figure 5. Age-related plasma p-tau212 and p-tau181 changes in Down syndrome and 249 

euploid controls. Open Circles represent asymptomatic and filled circles represent 250 

symptomatic participants. Down syndrome population is represented in red and cognitively 251 

normal euploid people are represented in blue. Horizontal lines depict each group's fitted 252 

loess model, and fainted bands display confidence intervals. The vertical red line represents 253 

the estimated years to symptom onset which is 53.8 for Down syndrome participants and 254 

was used as reference in euploid controls for comparison purposes.  255 

 256 

Discussion 257 

In this cross-sectional study, we show that p-tau212 serves as a biomarker to track AD-258 

related changes in sporadic cases and DSAD. P-tau212 has a very high correlation between 259 

plasma and CSF. The strongest correlation was observed for the DS population, where p-260 

tau212 reached a greater correlation than for euploid participants. For p-tau181 correlation in 261 

euploid and DS groups was similar, suggesting greater translation from CSF to plasma for p-262 

tau212 in DS populations.  263 

 264 
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We observed elevated p-tau212 concentration in plasma and CSF in aDS compared with 265 

euploid CN. That elevation is greater than the p-tau181 elevation, which did not reach 266 

statistical significance. Additionally, other reported biomarkers, such as p-tau217 Glial 267 

fibrillary acidic protein (GFAP)(30,31), had lower increases. This suggests the effects of 268 

DYRK1A gene dose interacting with AD pathology on p-tau212 levels in DS and a better fit 269 

for the use of this biomarker in the DS population.  270 

 271 

Levels of plasma p-tau212 were significantly higher across disease groups. Plasma p-tau212 272 

reached significance levels to differentiate between aDS vs pDS and aDS vs dDS groups 273 

while p-tau181 failed to do it. However, we think this might be a limitation of the small sample 274 

size used in this cohort since p-tau181 levels were previously shown to be significantly 275 

increased in pDS and aDS(30,32). In MCI-AD and AD dementia groups, we observed 276 

significant increases for both biomarkers, concomitantly having fold changes higher for p-277 

tau212 which confirms our previous findings(22). 278 

  279 

The excellent performance of the assay was confirmed in discriminating patients according to 280 

the diagnosis in both DS and euploid groups. P-tau212 additionally has greater accuracy 281 

than p-tau181 in discriminating between MCI-AD and control groups, simultaneously 282 

reaching 0.96 AUC to differentiate CN from AD. Additionally, plasma p-tau212 acquired very 283 

high AUC-ROC in discriminating between Aβ+ and Aβ- participants in both euploid and DS 284 

groups. This accuracy was not different from CSF accuracy, supporting the high between-285 

matrix translation of p-tau212 and providing additional reasoning to use plasma p-tau212 to 286 

recruit participants for clinical trials. 287 

 288 

Plasma p-tau212 starts increasing in the 30s, approximately when people start being positive 289 

in amyloid PET scans, and 5 years before we observe an increase in p-tau181. Additionally, 290 

the biomarker increased further as AD progressed towards symptomatic stages. Therefore p-291 

tau212 could be useful to monitor the progression of asymptomatic DS people to prodromal 292 
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AD. Moreover, the onset of the increase comes along with the appearance of neurofibrillary 293 

tangles (NFTs) and Aβ plaques in brain(4,33). 294 

 295 

This is (to our best knowledge) the first study to measure p-tau212 in CSF and plasma as a 296 

biomarker for DSAD however, the potential involvement of p-tau212 in this population and its 297 

association with DYRK1A was published more than 20 years ago(13). The kinase is 298 

perceived as a target in DS and neurodegenerative diseases(8,34). Its under- or 299 

overexpression leads to different clinical phenotypes including cognitive impairment(34).  300 

Since DYRK1A is a dose-sensitive protein in which down-regulation or up-regulation has a 301 

critical role, DYRK1A inhibitors have already been widely explored in clinical trials and have 302 

been proven to improve cognitive function in DS people(10,35,36). Importantly, p-tau212 has 303 

already been successfully used to test the efficacy of DYRK1A inhibitor in cell models(37). 304 

The use of the chosen inhibitor was further shown to reverse the upregulation of p-tau212 in 305 

hippocampal tissue and temporal cortex in mouse models(37). Our novel plasma p-tau212 306 

immunoassay provides a simple-to-implement and cost-effective opportunity to monitor the 307 

efficacy of DYRK1A inhibitors, or in the future – enhancers, not allowing the activity of this 308 

kinase to be reduced or increased to levels that could cause more harm than good. This 309 

utility will be explored in our future research.  310 

 311 

The major strength of this study is the confirmation that p-tau212 is increased in the DS 312 

population, and levels of this biomarker increase with progression to AD dementia.  P-tau212 313 

reaches very high accuracy to differentiate between control and disease groups and Aβ+ and 314 

Aβ- participants. The high correlation between plasma and CSF p-tau212 also supports a 315 

very high translation of the results from CSF to plasma. DeLong tests between DS groups 316 

did not show any significantly better performance of CSF p-tau212 compared with plasma p-317 

tau212 providing further evidence that plasma measurements can be used for clinical 318 

evaluation of AD pathophysiological processes occurring in patients with suspected disease. 319 

Advantages would also be reflected in the economy, availability, and perception of the test, 320 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 2, 2024. ; https://doi.org/10.1101/2024.10.31.24316469doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.31.24316469
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

since lumbar punctures or PET scans are costly, require resources, and might be perceived 321 

as frightening(20). Next, plasma p-tau212 increased approximately when people are starting 322 

to be amyloid PET positive and 5 years before p-tau181, indicating the benefits in disease 323 

monitoring.  324 

 325 

This study has a few limitations. First is a slightly low representation of prodromal-DS 326 

participants, which prohibits us from making better AUC-ROC analysis in that group. Ideally, 327 

longitudinal measurements of p-tau212 in the DS population would tell us more about the 328 

trajectories of this biomarker. The second limitation is that p-tau217 measurements are 329 

unavailable at the moment, however direct comparison between biomarkers was not a 330 

purpose of experiments presented in this article. Still, p-tau181 is the most commercialized 331 

and fully automated immunoassay, with great utility in AD.  332 

 333 

Conclusions 334 

In conclusion, we have confirmed that levels of plasma p-tau212 are increased in the DS 335 

population and sporadic AD cases including prodromal and MCI states. High accuracy in 336 

discriminating amyloid positive from amyloid negative people and increase in parallel to 337 

amyloid-PET positivity give the promise to evaluate ongoing pathophysiological AD 338 

processes many years before the disease onset in individuals with DS. This will also facilitate 339 

participants recrutation for clinical trials. This is a cost-effective application that provides 340 

higher chance to receive appropriate therapy. Plasma p-tau212 will also find high utility for 341 

theragnostic, to monitor therapy efficacy, and as a target engagement biomarker in clinical 342 

trials both in sporadic and DSAD.   343 
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DS: Down Syndrome 347 

DYRK1A: dual-specificity tyrosine phosphorylation-regulated kinase 1A 348 

p-tauX: tau phosphorylated at amino acid X 349 

DSAD Down Syndrome Alzheimer´s disease 350 

CSF Cerebrospinal Fluid 351 

AUC-ROC: Area Under the Curve and Receiver Operating Curves  352 

ANCOVA: Age-adjusted analysis of covariance 353 

LOESS: locally estimated scatterplot smoothing 354 

pDS: prodromal Down syndrome 355 

aDS: asymptomatic Down syndrome 356 

dDS:  dementia Down syndrome 357 

PET: Positron Emission Tomography 358 

MCI: mild cognitive impairment 359 

Aβ: amyloid beta 360 

APP: amyloid precursor protein 361 

GSK-3β: Glycogen synthase kinase-3β  362 

PP1A: Protein phosphatase 1A 363 

DABNI: Down Alzheimer Barcelona Neuroimaging Initiative 364 

SPIN: Sant Pau Initiative on Neurodegeneration 365 
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CN: cognitively normal 366 

IQR; interquartile range 367 

 SD: standard deviation 368 

CAMCOG-DS: The Cambridge Cognitive Examination adapted for individuals with Down 369 

Syndrome 370 

APOE4: Apolipoprotein E4 371 

GFAP: Glial fibrillary acidic protein 372 

NFTs: Neurofibrillary tangles 373 
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Table 1. Study Participants  

aDS pDS dDS CN MCI-AD AD 

n= 

Female/Male 

36/56  

(39.1/60.9%) 

5/3 

(62.5/37.5%) 

8/9  

(47.1/52.9%) 

31/15 

(67.4/32.6%) 

35/27 

(56.5/43.5%) 

12/8 

 (60/40%) 

AGE (years)-range 18-62 41-60 46-59 18-75 56-83 53-83 

AGE (years)-mean(sd) 42.2 (9.78) 51.5 (7.41) 51.8 (3.75) 50 (14.8) 72.3 (6.03) 70.5 (8.94) 

AGE (years)-median[IQR] 44 [35.8-49] 52 [46.2-57] 52 [49-55] 46.5 [39-63.8] 72 [68-76.8] 71 [64.8-77.5] 

APOE4-/APOE4+ 

68/23 

(74.7/25.3%) 

7/1 

(87.5/12.5%) 

13/4 

(76.5/23.5%) 

39/7 

(84.8/15.2%) 

24/37 

(39.3/60.7%) 

10/10  

(50/50%) 

Plasma p-tau212 n  92 8 17 46 62 20 

Plasma p-tau212 range 0.0435-1.69 0.666-2 0.404-2 0.0163-0.444 0.079-1.65 0.174-1.23 

Plasma p-tau212 mean 

(SD) 0.404 (0.377) 1.11 (0.445) 0.929 (0.46) 0.166 (0.0856) 0.498 (0.28) 0.629 (0.29) 

Plasma p-tau212 

median[IQR] 

0.245  

[0.156-0.529] 

0.926 [0.831-

1.24] 

0.764  

[0.627-1.23] 

0.151  

[0.113-0.235] 

0.427  

[0.33-0.632] 

0.65 

 [0.372-0.738] 

Plasma p-tau181 range 3.34-47.8 17-50.1 13.5-42.9 3.95-41.6 4.97-53.7 11.4-37.8 

Plasma p-tau181 mean 

(SD) 15.9 (10.9) 29 (11.8) 23.5 (8.18) 11.1 (7.03) 22.3 (11.5) 22.6 (7.01) 

Plasma p-tau181 

median[IQR] 

11.7  

[7.54-20.9] 

24.7 

[20.4-35.3] 

21.6  

[18.9-27.7] 

9.02  

[7.07-12.7] 

19.3  

[14.6-27.9] 

22.5  

[18.2-27.4] 

Total CAMCOG-DS score-

n 73 3 12 0 0 0 

Total CAMCOG-DS score-

range 25-102 6-56 32-77 - - - 

Total CAMCOG-DS score-

mean(sd) 70.7 (20) 37.7 (27.5) 49.8 (13) - - - 

Total CAMCOG-DS score-

median[IQR] 74 [57-87] 51 [28.5-53.5] 52 [38.5-57.2] -  - 

aDS – asymptomatic Down syndrome; pDS – prodromal Down syndrome; dDS – dementia Down syndrome; CN 

– cognitively normal; MCI-AD – mild cognitive impairment due to Alzheimer’s Disease; AD – Alzheimer’s disease 

dementia; IQR – interquartile range; SD – standard deviation. CAMCOG-DS The Cambridge Cognitive 

Examination adapted for individuals with Down Syndrome 
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