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Abstract 

Aim: This study aims to investigate the spatial patterns of COVID-19 mortality across U.S. counties and identify the 

socioeconomic determinants that influence these mortality trends, using spatial epidemiological methods. 

 

Subject and Methods: We conducted a spatial analysis of COVID-19 mortality data from over 3,000 U.S. counties, 

applying cluster detection techniques, including SatScan, to identify areas with significant mortality trends. Spatial 

regression models, including spatial lag and spatial error models, were employed to examine the impact of 

socioeconomic variables, such as race, income inequality, and insurance rates, on COVID-19 mortality. The analysis 

controlled for multicollinearity and spatial autocorrelation in the data. 

 

Results: Counties with higher proportions of Black populations and higher uninsured rates exhibited significantly 

lower COVID-19 trends over the study period. Spatial clustering revealed regions in the northwestern and 

eastern/northeastern United States with a mix of positive and negative mortality rate trends. The spatial lag model 

showed the strongest fit, confirming the importance of spatial dependency in explaining mortality patterns. 

 

Conclusion: This study highlights the significant spatial disparities in COVID-19 mortality across U.S. counties. 

The findings emphasize the need for targeted public health interventions in vulnerable regions to address these 

disparities. 

 

Keywords: COVID-19 mortality, socioeconomic status (SES), spatial regression, health disparities, spatial clusters 
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Introduction 

The COVID-19 pandemic has had catastrophic global effects, influencing public health, economic stability, and 

social structures. In the United States, the unemployment rate surged from 10.3% to 14.7% between March and 

April 2020. The U.S. healthcare system faced immense strain, with only 2.9 hospital beds per 1,000 people and 34.7 

ICU beds per 100,000 people (Shrestha et al., 2020). Moreover, the pandemic disproportionately impacted different 

populations, exacerbating pre-existing social, racial, and economic disparities (Yancy, 2020). 

Numerous studies have highlighted how these disparities contributed to worsened COVID-19 outcomes. 

Hawkins et al. (2020) found that counties with lower educational attainment, higher Black populations, and greater 

poverty rates experienced higher COVID-19 mortality. Similarly, Millett et al. (2020) demonstrated that Black 

Americans more likely to die from COVID-19 compared to White Americans, due in part to structural inequalities, 

including access to healthcare and economic disparities. Polyakova et al. (2021) further reinforced the role of 

socioeconomic inequalities by showing that states like Michigan and Louisiana, which have larger Black 

populations, experienced disproportionately high mortality rates. 

Although these studies provide valuable insights, relatively few have employed spatial methods to 

investigate the relationship between socioeconomic status (SES) and COVID-19 mortality, especially at the county 

level. Spatial patterns of disease provide essential context for understanding how regional factors influence health 

outcomes. Studies using spatial epidemiological methods, such as Desjardins, Hohl, and Delmelle (2020), have 

shown geographic clusters of high COVID-19 incidence. Additionally, Kang et al. (2020) employed spatial-

temporal analysis in China to identify regions with rapidly increasing COVID-19 cases. Despite these important 

findings, few studies have applied spatial cluster analysis specifically to COVID-19 mortality, particularly in the 

United States. 

To address this gap, we use SatScan’s Spatial Variations in Temporal Trends (SVTT) analysis to identify 

clusters of U.S. counties with statistically significant COVID-19 mortality trends. SatScan is a statistical software 

designed for the detection of disease outbreaks by scanning for clusters of disease cases or deaths in space and time. 

The method compares the observed cases within a defined geographic area to the expected number of cases, based 

on population size and other variables, identifying areas where mortality or case counts significantly deviate from 

what is expected (Kulldorff et al., 1997). The SVTT module in SatScan specifically identifies clusters where 

mortality trends are increasing or decreasing over time, which allows for the detection of regions with particularly 

concerning or improving trends. By applying SaTScan, we isolate regions of interest while avoiding noise from 

random fluctuations, ensuring that our analysis focuses on counties exhibiting meaningful spatial-temporal patterns. 

Previous research has demonstrated that spatial analysis techniques such as SaTScan can be valuable for 

identifying and understanding the spread of disease. For example, Desjardins et al. (2020) used SatScan to track 

COVID-19 transmission dynamics in the U.S. Other studies, such as Gross et al. (2021), have also used spatial 

methods to map the unequal burden of COVID-19 on minority populations, reinforcing the importance of spatial 

techniques for public health interventions. 

This study aims to explore significant clusters of COVID-19 mortality trends and the socioeconomic 

attributes driving these disparities, offering a focused analysis of regions with statistically significant mortality 
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trends. Spatial regression models, including spatial lag and spatial error models, are then employed to account for 

spatial dependence in the data, further refining our understanding of the role that socioeconomic conditions and 

regional factors play in shaping mortality outcomes during public health crises. 

Methodology 

Data Collection & Sources 

The data for this analysis were sourced from the U.S. Census Bureau’s American Community Survey 

(ACS) and the Centers for Disease Control and Prevention (CDC). The socioeconomic and demographic data were 

obtained using ACS 5-year estimates for 2020 at the county level, while COVID-19 mortality data were gathered 

from the CDC’s National Vital Statistics System for the years 2019 to 2022. The goal was to explore the relationship 

between socioeconomic status (SES) indicators and COVID-19 mortality trends in U.S. counties. 

 

COVID-19 Mortality Data Processing 

The COVID-19 mortality data were aggregated at the county level. The data were cleaned by replacing 

suppressed data values with missing values (NA) and converting the reported deaths into integers. Counties with 

missing or suppressed death counts were excluded from the analysis to avoid introducing bias or uncertainty. While 

imputation techniques could have been considered, exclusion was chosen to maintain the integrity of the spatial 

patterns and avoid potential distortions in mortality trends due to unreliable data. 

The analysis was limited to counties identified as part of spatial clusters using SatScan’s SVTT method, 

which isolates regions with statistically significant increases or decreases in mortality over time. This approach 

enhances the precision of the study by excluding counties without significant patterns, thereby reducing noise and 

improving the detection of meaningful associations between socioeconomic factors and mortality trends. 

SatScan’s Spatial Variations in Temporal Trends (SVTT) test was employed to detect clusters where 

COVID-19 mortality trends were either increasing or decreasing over time. By restricting the analysis to these 

clusters, we ensured that the study was concentrated on counties that showed statistically significant patterns in 

mortality, thereby improving the ability to detect meaningful relationships between socioeconomic variables and 

mortality trends. This approach allowed us to avoid including counties with random or non-significant trends, which 

could dilute the findings and obscure important relationships.  

The default Population At Risk (PAR) setting in SaTScan allows up to 20% of the population at risk to be 

included in each cluster. However, when applying this default to the current study, the clusters identified were too 

large, often encompassing multiple regions of the continental United States. Large clusters can be problematic 

because they reduce the granularity of the analysis, making it difficult to detect localized variations in COVID-19 

mortality trends and their associations with socioeconomic factors. Large, multi-region clusters might obscure the 

more precise, smaller-scale relationships that exist within specific counties or smaller regions. 

To address this, an iterative process was undertaken, gradually reducing the PAR parameter until cluster 

sizes were more appropriate for the study's objectives. Smaller clusters offer a higher level of specificity, allowing 
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for a more accurate exploration of the associations between SES variables and COVID-19 mortality trends within 

distinct geographic areas. This adjustment ensures that the study captures local-level trends and avoids the loss of 

statistical power that could result from overly broad spatial clusters. 

In the study, a Standard Monte Carlo approach with 999 replications was employed to calculate p-values 

for the significance of detected clusters. Monte Carlo simulations are a robust method to assess statistical 

significance in spatial analysis, particularly in SaTScan, where cluster detection relies on random simulations to 

establish the distribution of the test statistic under the null hypothesis (Kulldorff, et al., 1997). 

The choice of 999 replications is standard practice in spatial epidemiology, as it strikes a balance between 

computational efficiency and the accuracy of p-value estimation. This number of replications ensures that the 

simulation provides a stable and reliable distribution of the log-likelihood ratio (LLR) test statistic, from which the 

statistical significance of the clusters can be determined. The use of Monte Carlo simulations helps minimize the 

risk of type I errors (false positives) when detecting clusters, ensuring that the findings are statistically robust and 

not due to random chance. 

By adjusting for more likely clusters and applying a cut-off p-value of 0.05, we ensured that only clusters 

with a high degree of confidence in their statistical significance were included in the analysis. This method provides 

additional robustness to the findings, ensuring that the reported clusters reflect true spatial patterns in COVID-19 

mortality trends. 

We aggregated the data by three-month intervals due to issues with model convergence when using shorter 

time periods. Monthly data, while more granular, introduced challenges related to model stability and computation. 

By aggregating to a quarterly basis, we were able to smooth out short-term fluctuations and ensure more reliable 

convergence in the spatial regression models, ultimately improving the robustness of the analysis. This approach 

also captures longer-term trends in COVID-19 mortality without losing the temporal dimension necessary for the 

analysis. The final SaTScan parameters are shown in table 2. 

Table 1: SatSCan Parameters Used 

Parameter Setting 

Type of Analysis Spatial Variation in Temporal Trends 

Probability Model Discrete Poisson 

Scan for Areas with Increasing or Decreasing Rates 

Time Aggregation Units Month 

Time Aggregation Length 3 

Maximum Spatial Cluster Size 0.5 percent of population at risk 

Window Shape Circular 

Minimum Cases in Cluster for High Rates 2 

Restrict High Rate Clusters No 

Restrict Low Rate Clusters No 

Temporal Adjustment None 

P-Value Reporting Standard Monte Carlo 
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Number of Replications 999 

Adjusting for More Likely Clusters Yes 

Maximum number of iterations 10 

Stop when p-value greater 0.05 

Standard Drilldown on Detected Clusters Yes 

Minimum Locations in Detected Cluster 2 

Minimum Cases in Detected Cluster 10 

Cutoff of Detected Cluster 0.05 

Report Hierarchical Clusters Yes 

Criteria for Reporting Secondary Clusters No Geographical Overlap 

Restrict Reporting to Smaller Clusters No 

Report Critical Values Yes 

Report Monte Carlo Rank Yes 

 

SES Data & Variables 

To capture socioeconomic and demographic profiles of each county, we extracted variables from the 2020 

ACS 5-year estimates, which included: 

• Median income 

• Poverty rate 

• Unemployment rate 

• Percent with no health insurance 

• Overcrowding rate: The percentage of households with more than 1.5 occupants per room. 

• Public transportation usage: The percentage of people using public transportation. 

• Race/ethnicity variables: The percentage of the population identifying as White, Black or African 

American, Asian, or Hispanic or Latino. 

• Median age 

Each SES variable was calculated as a percentage of the total population in each county where applicable. 

For example, the unemployment rate was calculated by dividing the number of unemployed individuals by the total 

labor force in each county. 

Table 2: Socioeconomic Variable Descriptive Statistics 

Variable Mean Median Min Max Std. Dev. 

Median Age 43.63 43.7 30 56.3 3.953 

Median Income $49,189.00  $48,350.00  $22,292.00  $107,246.00  $12,657.50  

Poverty Rate 16.97% 16.13% 4.59% 36.10% 6.14% 

Unemployment Rate 6.30% 5.72% 1.70% 25.43% 2.65% 

Uninsured Rate 0.15% 0.10% 0.00% 1.15% 0.18% 
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Overcrowding Rate 0.79% 0.06% 0.00% 0.86% 0.89% 

Public Transport Usage Rate 0.34% 0.10% 0.00% 10.55% 1.13% 

Percent Black 4.97% 1.70% 0.00% 50.07% 8.77% 

Percent Asian 0.96% 0.54% 0.00% 16.53% 1.51% 

Percent Hispanic 3.83% 1.83% 0.00% 31.95% 4.70% 

 

Identifying Spatial Clusters 

Spatial clusters of counties with similar COVID-19 mortality trends were identified using SaTScan’s 

Spatial Variations in Temporal Trends analysis. This method identifies spatial and temporal clusters of events, such 

as disease cases or deaths, by detecting areas where the observed number of cases significantly exceeds what is 

expected. It is used to find clusters of unusually high or low event rates in both space and time. Counties that were 

detected as part of a cluster were included in this analysis, while counties not identified as part of a cluster were 

excluded from trend-based modeling. 

The decision to exclude counties not identified as part of spatial clusters in this research is grounded in the 

methodology of SaTScan’s SVTT model, which detects areas with statistically significant clusters of mortality 

trends. Counties outside of these clusters were not flagged as having unusual patterns in the data and including them 

could dilute the statistical power and focus of the analysis. By concentrating only on counties with significant spatial 

or temporal mortality trends, this research aims to better understand the factors influencing these distinct regions and 

avoid introducing noise from areas with no significant trends. 

Data Preparation & Aggregation 

SES metrics were calculated using American Community Survey (ACS) data and merged with COVID-19 

mortality data from the CDC by matching county geographic identifiers (GEOIDs). To minimize the impact of 

short-term fluctuations, mortality data were aggregated at three-month intervals, smoothing out seasonal or monthly 

variations and ensuring model convergence in subsequent spatial regression analyses. 

Statistical Models 

We used several regression models to examine the relationship between SES indicators and the COVID-19 

mortality trends in counties within identified spatial clusters. 

1. Ordinary Least Squares (OLS) Model: Initially, a linear regression model was fitted using COVID-19 

mortality trends as the dependent variable and the SES indicators as independent variables. 

Multicollinearity was assessed using variance inflation factors (VIF), with a threshold of VIF > 10 

indicating problematic multicollinearity. High collinearity was observed between race_white_rate and 

race_black_rate. After assessing their respective importance to the model, race_white_rate was excluded to 

retain race_black_rate, as previous literature suggests that the Black population has been disproportionately 

affected by COVID-19 mortality. This decision was based on both statistical considerations and substantive 

relevance to the study. 
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2. Spatial Lag Model: To account for spatial dependence in the data, we employed a spatial lag model. This 

model assumes that the mortality trend in each county is influenced by the trends in neighboring counties, 

with spatial weights determined by contiguity. The inclusion of a spatial lag variable helps correct for 

spatial autocorrelation in the data. 

3. Spatial Error Model: A spatial error model was used as an alternative to the spatial lag model. This model 

corrects for spatial autocorrelation by accounting for spatial dependence in the error terms of the regression 

model. 

4. Models with Interaction Terms: To explore potential interactions between SES variables, we included 

interaction terms in the spatial models. Specifically, we examined interactions between median income and 

race_black_rate, as well as other combinations of SES indicators such as unemployment rate and insurance 

coverage. 

Spatial Weights & Autocorrelation 

A queen contiguity spatial weights matrix, which defines neighboring counties based on shared borders, 

was applied in both the spatial lag and spatial error models to capture spatial dependence. The Moran’s I statistic 

was computed to assess spatial autocorrelation in the OLS model’s residuals, and the significant results (Moran’s I = 

0.125, p=0.003) justified the need for spatial econometric models. 

Model Selection 

The spatial lag model without interaction terms was selected as the best-performing model based on the 

lowest Akaike Information Criterion (AIC) value and its ability to mitigate residual spatial autocorrelation, 

providing a better fit for the data than the OLS or spatial error models. 

Results 

SaTScan Results 

The SaTScan SVTT analysis identified 10 statistically significant clusters of counties across the continental 

United States, highlighting regions with notable variations in COVID-19 mortality trends over time. Cluster 1, the 

largest cluster, comprised 66 counties with a log likelihood ratio (LLR) of 891.92 and a relative risk (RR) of 1.85, 

indicating that mortality in these counties was 85% higher than expected. This cluster recorded 7,185 observed 

deaths, significantly exceeding the 3,903.91 expected deaths. The "Trend In" value of 55 indicated that, despite the 

high mortality, the trend within this cluster had been increasing over the study period, suggesting a worsening 

mortality rate. In contrast, the "Trend Out" value of -17.53 showed that mortality rates were declining outside this 

cluster, emphasizing the need for targeted interventions in these counties. 

Similarly, Cluster 8, with 35 counties, had the highest relative risk (RR=2.02), suggesting that mortality 

rates in these counties were more than twice as high as expected. The cluster recorded 6,365 observed deaths 

compared to 3,164.84 expected deaths. The "Trend In" value of 32.74 suggested an increasing mortality trend within 

the cluster, while the "Trend Out" value of -17.65 reflected a decrease in mortality trends outside of it. This contrast 

pointed to regions that had ongoing mortality challenges, despite improvements elsewhere. 
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In contrast, some clusters, such as Cluster 4 and Cluster 7, exhibited relative risks below 1, indicating 

lower-than-expected mortality rates. For example, Cluster 7, composed of 25 counties, had a relative risk of 0.82, 

with 2,550 observed deaths compared to the expected 3,120.83. The "Trend In" value of 79.17 indicated a sharp 

increase in mortality over the study period within the cluster, while the "Trend Out" value of -17.43 suggested a 

decrease outside the cluster. Despite lower-than-expected deaths overall, this cluster warranted attention due to its 

rising mortality trend. 

The results from this analysis emphasized the geographic disparities in COVID-19 mortality trends, with 

some clusters experiencing rising mortality rates over the study period, while others saw declines. This highlighted 

the need for targeted interventions in regions that showed increasing mortality rates, while acknowledging the 

success of efforts in areas with decreasing trends. Including the "Trend In" and "Trend Out" values provided a more 

nuanced understanding of how mortality rates evolved both within and outside each cluster. 

Table 3: Significant SaTScan SVTT Clusters & RR 

Cluster Counties P-Value Obs. Mortality Exp. Mortality RR 

1 66 0.001 7185 3903.91 1.85 

2 3 0.001 4693 3766.95 1.25 

3 2 0.001 5216 3729.88 1.4 

4 28 0.001 3602 3786.85 0.95 

5 59 0.001 5467 3802.46 1.44 

6 1 0.001 3019 2977.41 1.01 

7 25 0.001 2550 3120.83 0.82 

8 35 0.001 6365 3164.84 2.02 

9 18 0.001 5970 3135.35 1.91 

10 21 0.001 5162 3585.74 1.44 

 

 

Table 4: Significant SaTScan SVTT Clusters & Mortality Trends 

Cluster Trend In. Trend Out. 

1 55 -17.53 

2 -58.77 -17.21 

3 -57.57 -16.89 

4 71.96 -17.16 

5 44.88 -17.46 

6 -61.32 -17.22 

7 79.17 -17.43 

8 32.74 -17.65 

9 37.6 -17.86 
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10 46.06 -18.06 

 

Figure 1: Internal Mortality Rate Trends of Significant SaTScan SVTT Clusters 

 

 

OLS Regression Results (Main Effects Model) 

We first estimated an ordinary least squares (OLS) regression model with mortality trend 

(LOC_TRENDLOC) as the dependent variable and key SES indicators as independent variables. The SES indicators 

included median age, median income, poverty rate, unemployment rate, percent without medical insurance, 

overcrowding rate, public transport usage rate, and racial/ethnic population proportions (Black, Asian, and Hispanic 

rates). 

The OLS model was statistically significant (p < 0.001, table 8) and revealed statistically significant 

associations between several SES variables and COVID-19 mortality trends. Counties with higher uninsured rates 

(β=−91.72, p=0.00716) and higher public transport usage rates (β=−17.73, p=0.01953) showed more negative 

mortality trends, indicating a decrease in mortality over time. A higher proportion of Black residents was also 

significantly associated with more negative trends (β=−1.82,p=0.01199). These findings were counterintuitive, 
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particularly for the uninsured rate, which may reflect delayed healthcare access, late-stage public health 

interventions, or timing differences in pandemic waves. The adjusted R² of the model was 0.1237, indicating that 

about 12% of the variation in mortality trends could be explained by these SES variables. 

Despite these results, the model diagnostics raised concerns about spatial autocorrelation in the residuals. A 

Moran's I test revealed significant spatial autocorrelation (Moran’s I = 0.125, p=0.003), suggesting that an OLS 

regression may not fully capture the spatial dependence present in the data. 

Table 5: Ordinary Least Squares Model Results 

Variable Estimate Std. Error t value Pr(>|t|) 

(Intercept) 128 130.9 0.978 0.32906 

median_age -1.148 1.817 -0.632 0.52812 

median_income -4.71E-06 0.001028 -0.005 0.99635 

poverty_rate -1.592 2.145 -0.742 0.4587 

unemployment_rate 5.989 3.618 1.656 0.09937 

uninsured_rate -91.72 33.76 -2.717 0.00716 

overcrowding_rate 145.2 79.41 1.828 0.06901 

public_transport_usage_rate -17.73 7.532 -2.354 0.01953 

race_black_rate -1.817 0.7166 -2.536 0.01199 

race_asian_rate 7.706 5.947 1.296 0.19652 

hispanic_rate -2.107 1.757 -1.199 0.23191 

AIC 2470.1 N/A N/A N/A 

Moran's I of Residuals 0.125 (Exp.: -0.005) N/A Z=2.762 0.003 

 

 

Spatial Lag Model 

To address spatial dependence, which was confirmed by significant spatial autocorrelation in the OLS 

residuals, a spatial lag model was employed. This model assumes that the mortality trend in each county is not 

independent of neighboring counties, with spatial relationships modeled through a queen contiguity spatial weights 

matrix. The spatial lag parameter (ρ=0.27275, p=0.001) was statistically significant, further justifying the use of a 

spatial econometric approach. This model improved the fit compared to OLS by successfully addressing residual 

spatial autocorrelation, as indicated by the reduction in the Lagrange Multiplier statistic (LM=3.251, p=0.071). 

 

The spatial lag model was statistically significant (p=0.001, table 8) and indicated that the uninsured rate 

(β=−82.80,p=0.0095), and Black population rate (β=−1.52,p=0.027) were negatively associated with mortality 

trends. However, the magnitude of the coefficients was somewhat reduced compared to the OLS model. The AIC of 

the spatial lag model was 2462.1, the lowest of the spatial models. The Lagrange Multiplier test for residual 

autocorrelation was not statistically significant (LM=3.251, p=0.071), indicating that the spatial lag model 
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successfully addressed spatial autocorrelation. 

Table 6: Spatial Lag Model Results 

Variable Estimate Std. Error z value Pr(>|z|) 

(Intercept) 152.57 123.76 1.2328 0.217633 

median_age -1.6411 1.7134 -0.9578 0.33814 

median_income -0.00029165 0.00096876 -0.3011 0.763369 

poverty_rate -1.8217 2.0217 -0.9011 0.367537 

unemployment_rate 4.8843 3.4154 1.4301 0.152697 

uninsured_rate -82.795 31.938 -2.5924 0.009531 

overcrowding_rate 106.73 74.925 1.4245 0.154306 

public_transport_usage_rate -13.183 7.119 -1.8518 0.064059 

race_black_rate -1.5152 0.68536 -2.2108 0.027049 

race_asian_rate 6.7479 5.6044 1.204 0.228577 

hispanic_rate -1.6153 1.6614 -0.9722 0.330942 

Spatial Component 
    

Lagrange Multiplier 3.251 N/A N/A 0.071 

Rho 0.27275 N/A 3.2714 0.0010701 

Log likelihood -1218.054 N/A N/A N/A 

Wald statistic 10.702 N/A N/A 0.0010701 

AIC 2462.1 N/A N/A N/A 

 

Spatial Error Model 

An alternative spatial error model was also estimated to account for potential spatial error dependence. This 

model was statistically significant (p < 0.001, table 8). In the error model, the lambda parameter 

(λ=0.28315,p=0.005) was statistically significant, indicating that spatial error dependence was present. The findings 

from the spatial error model were largely consistent with those from the spatial lag model. Uninsured rate 

(β=−90.82,p=0.006) and Black population rate (β=−1.88,p=0.021) remained significant predictors of negative 

mortality trends. 

Table 7: Spatial Error Model Results 

Variable Estimate Std. Error z value Pr(>|z|) 

(Intercept) 249.33 129.17 1.9303 0.05357 

median_age -2.4483 1.7958 -1.3634 0.172762 

median_income -0.00078985 0.0010569 -0.7473 0.454859 

poverty_rate -2.3317 2.1551 -1.082 0.279272 

unemployment_rate 4.4988 3.6216 1.2422 0.214158 
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uninsured_rate -90.817 33.098 -2.7439 0.006072 

overcrowding_rate 76.198 77.643 0.9814 0.326398 

public_transport_usage_rate -11.802 7.6341 -1.5459 0.122121 

race_black_rate -1.8813 0.81646 -2.3043 0.021208 

race_asian_rate 5.2614 5.5059 0.9556 0.33928 

hispanic_rate -1.8635 1.8807 -0.9909 0.321758 

Spatial Component 
    

Lambda 0.28315 0.085763 3.3016 0.0049626 

Log likelihood -1219.109 N/A N/A N/A 

Wald statistic 10.9 0.085763 3.3016 0.00096146 

AIC 2464.2 N/A N/A N/A 

 

Interaction Models 

Finally, interaction terms were added to the spatial models to test whether the effects of SES variables on 

COVID-19 mortality trends varied across different racial or economic contexts. Specifically, interactions between 

median income and race Black rate, as well as median income and poverty rate, were included in the models. 

The spatial lag model was statistically significant (p < 0.001, table 8). Both race_black_rate and uninsured 

rate were found to be statistically significant predictors. The interaction between median income and race Black rate 

was not statistically significant (β=−0.42, p=0.951), nor were any of the other interaction terms (Table 6). Similarly, 

in the spatial error model with interaction terms, no interactions were found to be significant. 

Table 8: Spatial Lag with Interactions Model 

(Intercept) 45.8764 9.3286 4.9178 8.75E-07 

median_age -8.9709 7.1598 -1.253 0.21022 

median_income -5.7783 17.4968 -0.3303 0.74121 

race_black_rate -15.3131 6.7504 -2.2685 0.0233 

poverty_rate -14.3464 16.8038 -0.8538 0.39324 

unemployment_rate 10.3285 9.2985 1.1108 0.26667 

uninsured_rate -18.2914 7.694 -2.3774 0.01744 

overcrowding_rate 10.0785 6.8858 1.4637 0.14328 

public_transport_usage_rate -16.5025 8.7522 -1.8855 0.05936 

median_age:median_income -1.3915 7.3568 -0.1891 0.84998 

median_income:race_black_rate -0.4175 6.8617 -0.0608 0.95148 

median_income:poverty_rate -3.9883 6.5469 -0.6092 0.54239 

unemployment_rate:insurance_coverage_rate -5.4677 8.3257 -0.6567 0.51136 

overcrowding_rate:public_transport_usage_rate 10.9709 13.689 0.8014 0.42288 
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Spatial Component 
    

Rho 0.27957 N/A 3.3436 0.00082705 

Log likelihood -1218.365 N/A N/A N/A 

Wald statistic 11.18 N/A N/A 0.00082705 

AIC 2468.7 N/A N/A N/A 

 

Similarly, the spatial error model with interactions was statistically significant (p < 0.001, table 8), and both 

race_black_rate and uninsured rate were significant predictors. Similar to the spatial lag model with interactions, 

none of the interaction terms were statistically significant predictors. 

Table 9: Spatial Error with Interactions Model 

Variable Estimate Std. Error z value Pr(>|z|) 

(Intercept) 64.10389 9.32122 6.8772 6.10E-12 

median_age -11.5548 7.43501 -1.5541 0.12016 

median_income -12.12399 18.02588 -0.6726 0.50121 

race_black_rate -19.00961 8.04292 -2.3635 0.0181 

poverty_rate -16.42961 16.85724 -0.9746 0.32974 

unemployment_rate 9.34689 9.85051 0.9489 0.34268 

uninsured_rate -19.15362 7.64401 -2.5057 0.01222 

overcrowding_rate 7.23279 7.08871 1.0203 0.30757 

public_transport_usage_rate -19.06628 9.8516 -1.9353 0.05295 

median_age:median_income -4.00621 7.38426 -0.5425 0.58745 

median_income:race_black_rate -0.34494 7.84032 -0.044 0.96491 

median_income:poverty_rate -4.62624 6.85432 -0.6749 0.49971 

unemployment_rate:insurance_coverage_rate -5.73692 8.83199 -0.6496 0.51598 

overcrowding_rate:public_transport_usage_rate 13.37656 12.34885 1.0832 0.27871 

Spatial Component 
    

Lambda 0.30463 N/A 3.6071 0.00030964 

Log likelihood -1218.884 N/A N/A N/A 

Wald statistic 13.011 N/A N/A 0.00030964 

AIC 2469.8 N/A N/A N/A 

 

Summary of Key Findings 

1. Uninsured Rate: Higher rates of uninsured people were associated with a more negative trend in COVID-

19 mortality rates. This suggests that counties with a larger uninsured population may have experienced a 

decline in mortality rates over time, potentially due to other factors like public health interventions or shifts 

in the pandemic’s impact across different population groups. However, it could also reflect delayed 
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healthcare access or different timing of the pandemic's severity in these areas. 

2. Black Population Rate: A higher proportion of Black residents was negatively associated with COVID-19 

mortality trends, indicating that counties with larger Black populations may have experienced declining 

mortality rates during the study period. This may reflect the disproportionate impacts at earlier stages of the 

pandemic, with mortality declining after heightened awareness and targeted interventions in these 

communities. 

3. Spatial Dependence (Rho): Both the spatial lag and spatial error models provided better fits to the data 

compared to the OLS model, highlighting the importance of accounting for spatial dependence when 

analyzing county-level mortality trends. These models indicated that spatial autocorrelation played a 

significant role in the mortality trends across counties, with nearby counties exhibiting similar trends. 

Table 10: Overall Regression Model Results 

Model Adjusted R² p-value AIC Rho Lambda LL 

Ordinary Least Squares 0.1237 <0.001 N/A N/A N/A N/A 

Spatial Lag N/A 0.001 2462.1 0.2728 N/A -1218.05 

Spatial Lag with Interactions N/A <0.001 2468.7 0.2796 N/A -1218.37 

Spatial Error N/A <0.001 2464.2 N/A 0.2832 -1219.11 

Spatial Error with Interactions N/A <0.001 2469.8 N/A 0.3046 -1218.88 

 

Table 11: Overall Regression Model Spatial Autocorrelation Tests 

Model Residual Autocorrelation Test 

Ordinary Least Squares Moran's I=0.125 (p=0.003) 

Spatial Lag LM=3.2509 (p=0.0714) 

Spatial Lag with Interactions LM=1.7322 (p=0.189) 

Spatial Error LR=7.893 (p=0.005) 

Spatial Error with Interactions LR=9.1198 (p=0.003) 

 

 

 

Discussion & Conclusion 

This study investigated the relationships between socioeconomic status (SES) factors and COVID-19 

mortality trends across U.S. counties, with a particular focus on spatially clustered counties identified using 

SatScan's SVTT analysis. By applying spatial regression models, particularly the spatial lag model, we accounted 

for potential spatial autocorrelation, providing more robust insights into the regional dynamics of COVID-19 

mortality trends. 

The spatial lag model revealed three key findings: 

Uninsured Rate: Counties with higher rates of uninsured populations were significantly associated with 
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more negative COVID-19 mortality trends, meaning mortality rates in these counties decreased over time. This 

counterintuitive result may reflect several factors. For instance, counties with low insurance coverage may have seen 

delayed impacts from the pandemic, or public health interventions, such as testing and vaccination, might have been 

intensified in areas with lower access to healthcare. Moreover, community-based support and delayed pandemic 

waves could also contribute to this observed decline in mortality. 

Black Population Rate: Another significant finding was the negative association between the proportion 

of Black residents and mortality trends. Counties with higher Black population rates experienced a decrease in 

mortality over time. This result suggests that targeted public health interventions aimed at reducing racial 

disparities—such as increased testing, vaccine distribution, and health outreach—were effective in mitigating the 

disproportionate impact of COVID-19 on Black communities, especially given the higher mortality rates early in the 

pandemic. 

Spatial Dependence: The spatial lag parameter (rho) was significant, underscoring the presence of spatial 

dependence in COVID-19 mortality trends. Counties with declining mortality rates tended to be geographically 

clustered, suggesting that public health measures, healthcare resources, and socioeconomic conditions in 

neighboring counties likely influenced each other. This finding emphasizes the importance of spatial relationships in 

shaping COVID-19 outcomes, highlighting the interconnectedness of regional responses to the pandemic. 

Non-Significant Findings 

Some SES variables, such as median age, median income, and poverty rate, did not emerge as significant 

predictors in the spatial lag model. This may be due to the overriding importance of healthcare-related factors, such 

as insurance coverage, during the pandemic. Although poverty and income are typically strong predictors of health 

outcomes, during a global health crisis like COVID-19, immediate access to healthcare services may have played a 

more direct role in reducing mortality than longer-term SES conditions. 

Spatial Considerations & Model Performance 

The spatial lag model outperformed the OLS model in terms of goodness of fit (as indicated by lower AIC 

values and significant spatial lag coefficients). By accounting for spatial dependence, the model was able to provide 

more accurate and reliable estimates of the associations between SES variables and COVID-19 mortality trends. 

Ignoring the spatial structure would have likely led to biased or inefficient estimates. 

While residual autocorrelation was present in the OLS model, it was significantly reduced in the spatial lag 

model, highlighting the appropriateness of including spatial dependence in the analysis. This finding is consistent 

with the nature of the data, where counties sharing similar socioeconomic characteristics and public health responses 

influenced each other’s COVID-19 outcomes. 

Limitations 

A notable limitation of this study is the exclusion of counties not identified as clusters. While the decision 

to focus on clustered counties allows for the study of areas with significant COVID-19 mortality trends, it may limit 

the generalizability of the findings to counties not included in the clusters. Another limitation involves the reliance 
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on county-level data, which may mask important within-county disparities, particularly in counties with large 

populations or diverse socioeconomic conditions. 
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