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ABSTRACT  

Aging is associated with dysfunction in the cholinergic system, including degeneration of basal 

forebrain cholinergic terminals that innervate the cortex, which directly contributes to age- and 

disease-related cognitive decline. In this study, we used [18F]fluoroethoxybenzovesamicol 

([18F]FEOBV) positron emission tomography (PET) imaging to assess the effect of age on 

cholinergic terminal integrity in predefined regions of interest and its relationship to cognitive 

performance in healthy older adults who underwent neuropsychological assessment and FEOBV 

PET brain imaging. Our results showed age-related reductions in FEOBV binding, particularly in the 

anterior cingulate cortex-our primary region of interest-as well as in the striatum, posterior cingulate 

cortex, and primary auditory cortex. Notably, FEOBV binding in the anterior cingulate cortex was 

positively correlated with cognitive performance on the NIH EXAMINER Executive Composite 

Score. These findings suggest that [18F]FEOBV PET imaging can be used as a reliable biomarker to 

assess cholinergic changes in the human brain and indicate that preserving the cholinergic integrity 

of the basal forebrain may help maintain cognitive function and protect against age-related cognitive 

decline. 
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1.  INTRODUCTION 

The process of natural aging is associated with moderate structural and functional 

degeneration in the basal forebrain cholinergic neurotransmitter system.1,2 These age-related changes 

in cholinergic neurotransmission are thought to contribute to the decline in cognitive functions that 

are commonly observed with aging.3–6 Indeed, cholinergic projections from the basal forebrain play 

a crucial role in cognitive performance due to their involvement in high-order cognitive functions 

such as attention, learning and memory, and executive function.3,6,7 For example, enhancing 

cholinergic signaling has been demonstrated to enhance attention and memory performance in 

individuals with naturally lower cognitive performance.8–10 Consequently, cholinergic signaling has 

been identified as a potential key factor in age-related cognitive diseases, such as mild cognitive 

impairment (MCI) and Alzheimer’s disease.3,11 For instance, degeneration of basal forebrain 

cholinergic neurons can occur years before the onset of cognitive symptoms and may predict both 

cortical pathology and memory impairment.12,13 Understanding age-related changes in the 

cholinergic system is crucial for elucidating the contribution of aging to cognitive decline and for 

identifying those who are at risk for age-related cognitive diseases marked by cholinergic 

degeneration. 

[18F]Fluoroethoxybenzovesamicol ([18F]FEOBV) is a reliable positron emission 

tomography (PET) tracer for the direct assessment of cerebral cholinergic neurotransmission in vivo. 

This high-affinity tracer binds to the vesicular acetylcholine transporter (VAChT), thereby enabling 

precise measurement of presynaptic cholinergic terminal density. 14 The binding pattern of 

[18F]FEOBV across cortical and subcortical areas reflects the unique organization of the cholinergic 

system, with decreases in binding indicating regions that show reduced cholinergic terminal 
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densities due to natural aging 15 and age-related cognitive diseases. 16–18 For example, substantial 

declines in FEOBV binding have been documented across the entire cortex in individuals with 

Alzheimer's disease, with higher binding levels associated with superior performance on global 

cognitive assessments.19,20 Similarly, reductions in cortical FEOBV binding have been observed in 

individuals with MCI, with binding levels positively correlating with executive function and 

attention in a cohort that included MCI patients and cognitively intact older adults.18 In natural 

aging, a recent study found reduced FEOBV binding in the anterior cingulate cortex of healthy older 

compared to younger subjects.15 The anterior cingulate cortex plays a key role in attention, memory, 

and executive function. 21–23 Notably, greater anterior cingulate thickness has been associated with 

successful cognitive aging,24 whereas atrophy in this region has been linked to impaired cognitive 

function.25 

This paper presents the baseline characteristics of the intent-to-treat population in the 

Improving Neurological Health in Aging via Neuroplasticity-based Computerized Exercise 

(INHANCE) trial. The INHANCE trial is a Phase IIb double-blind randomized controlled study 

targeting community-dwelling healthy older adults aged 65 and above. Participants were randomized 

to receive either 35 hours of a computerized speed and attention brain training intervention 

(BrainHQ) or an active control involving computerized games over a 10-week period. We used 

[18F]FEOBV PET imaging with volume-of-interest analysis, focusing on a priori-selected regions of 

interest, to investigate two aspects in the largest known sample of neurocognitively intact older 

human brains: (1) the impact of age on cholinergic neurotransmission, and (2) the relationship 

between cholinergic neurotransmission and cognitive performance. Considering previous findings, 

we anticipated age-related reductions in FEOBV binding in the primary region of interest, the 
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anterior cingulate cortex. Second, we anticipated that higher FEOBV binding in the anterior 

cingulate cortex would be associated with better cognitive performance.  

2. METHODS 

2.1 Study Design 

Study staff supporting participants remained unblinded, while blinded staff conducted 

assessments, scoring, follow-ups, and baseline data analyses. 

The INHANCE trial took place at McGill University, Canada, where the FEOBV radiotracer 

was both synthesized and administered. Below, we outline the methodological details pertinent to 

this paper. A comprehensive description of the training programs, measures, and data analyses can 

be found in the study protocol. 26 

2.2 Participants 

Inclusion criteria comprised individuals aged 65 or older, proficient in English or French, 

cognitively intact with a Montreal Cognitive Assessment (MoCA) score of ≥ 23 
27, and capable of 

fulfilling study requirements. Exclusion criteria encompassed neurocognitive disorders, suicidal 

ideation, major depression scoring >10 on the Geriatric Depression Scale – Short Form (GDS-SF), 

prior experience with BrainHQ within the past 5 years, concurrent clinical trial participation, 

pregnancy, substance abuse, neuroimaging contraindications, or medical conditions hindering study 

engagement.  

The study protocol was developed in accordance with the Declaration of Helsinki guidelines 

and was approved by WIRB (IRB00000533) and REB of McGill University Health Centre (2020-

6474). The radioligand FEOBV was approved by Health Canada (Control # 252085).  All 

participants provided written, informed consent.  

2.3 Imaging acquisition 
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All participants underwent a structural T1-weighted MRI scan (3T Siemens Prisma) and a 

[18F]FEOBV-PET scan using the Siemens High-Resolution Research Tomograph (HRRT; full 

width at half maximum of 2.4 mm) at the McConnell Brain Imaging Centre of the Montreal 

Neurological Institute-Hospital. The [18F]FEOBV precursor (ABX Advanced Biochemical 

Compounds, GmbH, Germany) was synthesized on the same day as participant testing at the 

cyclotron facility. Radiochemical purity was ensured using high-performance liquid 

chromatography. Mass dosages did not exceed the proposed limits of 0.0175 mcg/kg.14 Participants 

received a slow bolus intravenous injection of [18F]FEOBV with radioactivity doses ranging from 

350-400 MBq. PET data acquisition started 180 minutes after injection, for a duration of 30 minutes, 

divided into 6 frames of 5 minutes each. All PET imaging sessions were supervised by a qualified 

nuclear medicine physician. 

Participants reported a total of 53 adverse events of which 4 (7.5%) were related to the 

administration of [18F]FEOBV tracer. Of those 4 reports, one participant reported 2 events (mild dry 

mouth, mild strange sensations in the mouth) and a second participant reported 2 events (moderate 

nausea, moderate vomiting). Both recovered without treatment. No serious adverse events were 

reported.  

2.4 PET and MRI data processing 

SPM12 (http://fil.ion.ucl.ac.uk/spm/) for MATLAB was used for the following preprocessing 

steps. First, the six frames of the PET image were time-averaged to create a static PET image. The 

MRI scans were then linearly spatially normalized to the MNI152 asymmetrical template 

(MNI152NLin2009cAsym template) using SPM12's unified segmentation algorithm (i.e., image 

registration, tissue classification, and bias correction). The same linear transformation matrices from 

the MRI normalization were applied to the PET images to align them with the MRI. Müller-Gärtner 
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partial volume correction was applied to the PET data using the PETPVE toolbox, with an estimated 

point-spread function (PSF) of 2.4mm, to remove the partial volume effect on our PET images. The 

DARTEL module was used to estimate the nonlinear deformation field, and these were applied to 

the PET scan, further aligning the PET images to the MNI152 template space. To reduce noise, a 

Gaussian smoothing kernel with a full width at half-maximum (FWHM) of 6 mm was applied to the 

PET images. All preprocessing steps were conducted with appropriate quality control checks, 

ensuring data integrity and consistency throughout the process. 

For all spatially normalized FEOBV PET images, the mean standard uptake value ratios 

(SUVR) were computed in pre-selected regions of interest (ROI) using a white matter mask as a 

reference region to normalize the PET images.28 Anatomical MNI-space Hammers atlas 29 was 

applied to the PET images to quantify regional differences in FEOBV binding in the anterior 

cingulate cortex (Matched MNI-space region: anterior cingulate), striatum (Matched MNI-space 

region: putamen and caudate), posterior cingulate cortex (Matched MNI-space region: posterior 

cingulate), primary sensorimotor cortex (Matched MNI-space region: precentral gyrus and 

postcentral gyrus), global cortex (frontal, temporal, occipital and parietal cortices), hippocampus 

(Matched MNI-space region: hippocampus), and parahippocampal gyrus (Matched MNI-space 

region: parahippocampal gyrus). The Jülich Brain cytoarchitectonic atlas was used to quantify the 

binding in the primary auditory cortex (Matched MNI-space region: TE1.0, TE1.1, TE1.2). 

2.5 Outcome Measures 

The endpoints relevant to the current paper include (1) baseline FEOBV binding in the a 

priori selected primary ROI (anterior cingulate cortex) and pre-specified exploratory ROIs (posterior 

cingulate cortex, primary auditory cortex, primary sensorimotor cortex, parietal lobe, frontal lobe, 

occipital lobe, temporal lobe, global cortex, hippocampus, parahippocampal gyrus, putamen, 
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caudate, striatum), and (2) baseline cognitive performance using the executive composite z-score 

from the NIH EXAMINER battery.30  

2.6 Statistical analysis 

The distributions of the FEOBV SUVR for each ROI were tested for normality using the 

Shapiro-Wilk Test. To evaluate the association between FEOBV binding and age, we conducted 

Pearson correlations between baseline FEOBV SUVRs and age in years reported by the intent-to-

treat (ITT) in the primary region of interest (i.e. anterior cingulate cortex) and exploratory ROIs. To 

evaluate the association between FEOBV binding and cognitive performance, we conducted Pearson 

correlations between baseline FEOBV SUVR in the primary region of interest (i.e. anterior cingulate 

cortex) and exploratory ROIs and the baseline cognitive composite z-score from the NIH 

EXAMINER battery.  

No correction for multiple comparisons is made for exploratory analyses as specified in the 

published protocol. 26 All trending relationships (p < 0.10) are reported. 

 

3. RESULTS 

3.1 Participants 

The flowchart of participants is depicted in Figure 1. Out of 113 individuals who were 

consented and screened, 20 were excluded for not meeting the criteria. Additionally, one participant 

was withdrawn by the site Principal Investigator before starting the assigned training program due to 

incidental findings on baseline imaging that precluded participation in the study. Thus, 92 

participants completed the baseline neuropsychological assessments and neuroimaging sessions. 

Detailed information regarding the randomization procedures and intervention is available in the 

published protocol.26  
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3.2 Baseline characteristics of the intent-to-treat population 

Demographic and neuropsychological characteristics for this study cohort (N= 92) are 

summarized in Table 1.  

3.3 Distribution of [18F]FEOBV PET signal  

Brain FEOBV binding exhibited non-uniform distribution across various brain regions. The 

highest tracer binding was present in the striatum (putamen > caudate), followed by the 

hippocampus and cortical areas. The general distribution of  [18F]FEOBV binding is described in 

Table 2 and Figure 2.  

3.4 Association between FEOBV binding and age for the intent-to-treat population 

Baseline FEOBV SUVR was negatively associated with age in the anterior cingulate cortex, 

with lower uptake observed in older adults (r = -0.29, p = 0.005, Figure 3). This finding replicates 

previous research and confirms the validity of using FEOBV PET in this trial.14 

To further investigate predictors of FEOBV binding changes in the anterior cingulate cortex, 

a multiple linear regression analysis was conducted, including age, sex, and education as predictors. 

The overall model accounted for 8.6% of the variance in FEOBV binding (F(3, 87) = 2.73, p = 

0.049, R= 0.29, R square= 0.086). Among the predictors, only age was a significant predictor of 

changes in FEOBV binding in the anterior cingulate cortex. The unstandardized coefficient indicates 

that for each additional year of age, FEOBV binding in the anterior cingulate cortex decreases by 

0.011 units (B = -0.011, Beta = -0.28, t= -2.81, p = 0.006). With a baseline SUVR of 1.90, this 

corresponds to a 0.58% decrease per year and a cumulative decrease of 5.8% over a decade. In 

contrast, sex (B = 0.002, Beta = 0.004, t = 0.042, p = 0.96) and education (B = 0.001, Beta = 0.044, t 

= 0.42, p = 0.67) did not significantly affect FEOBV binding. 
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Baseline FEOBV SUVR values exhibited a significant negative association with age in 

several exploratory regions of interest (ROIs). Specifically, negative correlations were observed in 

the striatum (r = -0.26, p = 0.01), putamen (r = -0.27, p = 0.01), caudate (r = -0.21, p = 0.05), 

primary auditory cortex (r = -0.28, p = 0.008) and posterior cingulate cortex (r = -0.20, p = 0.05). No 

significant associations were found in the remaining ROIs. See Table 2. 

3.5 Association between FEOBV binding and cognition for the intent-to-treat population 

Baseline FEOBV SUVR in the anterior cingulate cortex exhibited a positive correlation with 

baseline NIH EXAMINER executive composite z-score (r = 0.23, p = 0.027, Figure 4). This 

indicates that reduced FEOBV binding in the anterior cingulate is associated with reduced cognitive 

performance. No significant associations were found across other exploratory ROIs. See Table 2. 

 

4. DISCUSSION  

In this study, we used [18F]FEOBV PET imaging to examine cholinergic nerve terminal 

distribution and its relationship with cognition in a large cohort of 92 neurocognitively intact older 

adults. We observed age-related reductions in FEOBV binding in the primary region of interest, the 

anterior cingulate cortex. Given the extensive projections of the basal forebrain cholinergic neurons 

throughout the cortex and subcortical regions, we conducted an exploratory analysis in additional 

ROIs. Significant age-related decreases in FEOBV binding were observed in the striatum (putamen 

and caudate), primary auditory cortex and posterior cingulate cortex. Additionally, FEOBV binding 

in the anterior cingulate cortex positively correlated with cognitive performance on the NIH 

EXAMINER executive composite score.  

Current evidence suggests that [18F]FEOBV reliably assesses changes in the integrity of the 

brain's acetylcholine system,14,16,31,32 with its binding distribution reflecting the known anatomical 
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distribution of cholinergic terminals.14,32–34 In our study, the distribution of the [18F]FEOBV tracer 

was highest in the striatum, with greater binding observed in the putamen compared to the caudate, 

followed by the hippocampus and cortical regions. Overall, this heterogeneous cholinergic 

distribution is similar to previous histological post-mortem studies of brain cholinergic innervation 

in humans,15,32,33 as well as observed in rats 34,35 and non-human primates.36  

We confirmed that aging is associated with decreased acetylcholine neurotransmission in the 

anterior cingulate cortex in healthy older adults, as indicated by reduced FEOBV binding in older 

individuals. Specifically, we observed approximately a 5.8% decline in FEOBV binding in the 

anterior cingulate cortex per decade. Similarly, Albin et al. recently used [18F]FEOBV PET imaging 

to investigate the topography of brain cholinergic innervation in 29 healthy subjects, with a mean 

age of 47 years (range 20–81 years). They reported age-related reductions in FEOBV binding, 

including approximately a 4% decrease per decade in the striatum and a 2.5% decrease per decade in 

both the primary sensorimotor cortex and anterior cingulate cortex.15 These results were later 

confirmed by a whole brain voxel-based analysis study in a larger sample with 42 healthy subjects 

(mean age 50 years, range 20–80 years).31 Unexpectedly, Okkels et al. found similar levels of 

regional FEOBV binding in a cohort of 20 neurocognitively intact older adults (mean age 74 years, 

range 64–86 years). These contrasting results may stem from variations in age ranges and the limited 

sample size used in Okkels' study.32 Additionally, MRI morphometry studies have reported age-

related reductions in basal forebrain volumes.37 Our results align with existing literature showing 

region-specific declines in FEOBV binding, suggesting changes in key basal forebrain cholinergic 

groups with aging. For instance, reductions in cholinergic terminals in the nucleus basalis of 

Meynert, which innervates the entire cerebral cortex.33 Nevertheless, this process is not uniform; we 

observed significant decreases in FEOBV binding in some cortical regions while others showed no 
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age-related changes. Reductions in striatal cholinergic interneuron terminals, which provide the 

primary cholinergic input to the striatum,33 were also observed. 

Furthermore, we investigated the relationship between FEOBV binding and NIH executive 

composite score. Notably, we observed a positive correlation between FEOBV binding in the 

anterior cingulate cortex and the NIH executive composite score in healthy older adults. To our 

knowledge, this is the first study to observe a positive association between FEOBV binding in the 

anterior cingulate cortex and cognitive performance in a large sample of neurocognitively intact 

older adults. Xia et al. reported positive correlations between global cortical FEOBV SUVR and 

cognitive composite scores for executive function (r = 0.70) and attention (r = 0.60) in a cohort of 18 

individuals with MCI and cognitively intact older adults. For executive function, correlations were 

widespread across cortical and subcortical regions, while for attention, significant clusters were 

mainly in the anterior cingulate gyrus.18 Moreover, in a large sample of cognitively unimpaired 

Parkinson's disease patients, positive associations were observed between global cortical FEOBV 

binding and cognitive performance across memory, executive functioning, and attention domains.17 

Additionally, neurodegeneration in the nucleus basalis of Meynert preceded and predicted cortical 

degeneration and memory impairment in patients with Alzheimer’s disease.12 

The mechanisms underlying age-related impairments in basal forebrain cholinergic 

neurotransmission are not fully understood. Possible biological factors may contribute to this 

decline. One key factor is the sensitivity of cholinergic neurons to disruptions in nerve growth factor 

signaling, which is crucial for their protection and maintenance. Such disruptions can lead to cellular 

atrophy and alterations in gene expression.38 Additionally, basal forebrain cholinergic neurons, 

characterized by their extensive axonal projections, are particularly susceptible to metabolic 

disturbances. The substantial energy requirements needed to maintain these widespread connections 
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throughout life may underlie the vulnerability of the basal forebrain cholinergic system to 

neurodegenerative diseases.39 Given the critical role of these cholinergic neurons in important 

cognitive processes,3  the degenerative changes observed in cortical cholinergic terminals during 

normal aging likely contribute significantly to age-related cognitive decline.40 Indeed, augmenting 

acetylcholine levels through acetylcholinesterase inhibitors, has demonstrated cognitive 

enhancements in individuals with MCI and Alzheimer’s disease,41,42 underscoring the significance of 

acetylcholine in preserving the integrity of the brain and cognitive function.43 These findings 

collectively highlight the pivotal role of the cholinergic system in maintaining cognitive health and 

its potential as a target for interventions to mitigate age-related cognitive decline. 

Limitations of this study include the use of a limited volume-of-interest analysis based on an 

a priori selection of regions with relatively age-related reductions in FEOBV binding reported in 

previous studies. A more spatially unbiased analysis would facilitate a more comprehensive 

assessment of the effects of aging on cholinergic neurotransmission.  

5. CONCLUSION 

In conclusion, we demonstrated that key cholinergic cell groups and their projections are 

particularly vulnerable to the effects of natural aging, with age-related changes in FEOBV 

distribution in the anterior cingulate cortex potentially playing a crucial role in cognitive decline. 

Our study adds to the literature by showing that [18F]FEOBV PET imaging is an effective marker 

for assessing changes in cholinergic neurotransmission, suggesting that maintaining an intact basal 

forebrain cholinergic system may provide cognitive resilience and protect against both age- and 

disease-related cognitive decline. 
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Table 1. Baseline characteristics of the intent-to-treat (ITT) population and all consented 

participants (N=113).  

 
Participant’s characteristics Intent-to-treat 

(ITT) (N=92) 
Consented 
(N=113) 

Age, mean (SD), years 71.9 (4.9) 71.9 (5.0) 
Education, mean (SD), years 16.5 (3.4) 16.7 (3.4) 
Sex, n (%)   

Female 61 (66) 71 (63) 
Male 31 (34) 42 (37) 

Race, n (%)   
White 88 (97) 106 (93) 
Asian 2 (2) 4 (4) 

Black or African American 1 (1) 1 (1) 
American Indian/Alaska Native  0 (0) 0 (0) 

Native Hawaiian or Other Pacific Islander  0 (0) 0 (0) 
More than one race 0 (0) 0 (0) 

Unknown or not reported 1 (1) 2 (2) 
Ethnicity, n (%)   

Not Hispanic or Latino 91 (99) 110 (97) 
Hispanic or Latino 0 (0) 2 (2) 

Unknown or not reported 1 (1) 1 (0) 
Native Language, n (%)   

English 33 (36) 42 (37) 
French 50 (54) 57 (50) 

Other Language 9 (10) 14 (13) 
Primary Language, n (%)   

English 43 (47) 55 (50) 
French 48 (52) 57 (50) 

Other Language 1 (1) 1 (1) 
Bilingual, n (%) 12 (13%) 18 (16%) 
MoCA, total score (SD) 26.2 (1.8) Not applicable 
GDS-SF, total score (SD) 1.4 (1.9) Not applicable 
NIH EXAMINER, composite score (SD), 
raw 

0.44 (0.57) Not applicable 

Abbreviations: ITT, intent-to-treat; SD, standard deviation; MoCA, Montreal Cognitive Assessment; 

GDS-SF, Geriatric Depression Scale - Short Form; NIH EXAMINER, National Institutes of Health 

The Executive Abilities: Measures and Instruments for Neurobehavioral Evaluation and Research,  
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Table 2. Pearson correlations between FEOBV binding, age and NIH EXAMINER across the pre-

specified primary and exploratory ROIs for the ITT (N= 92) with bilaterally averaged FEOBV 

SUVRs and standard deviations (SD). 

 

Region of Interest (ROI) 
 
 

Mean FEOBV 
SUVR  
(SD) 

Correlations 
with Age 

Correlations with 
NIH EXAMINER 

executive composite  

Primary ROI r p r p 

     Anterior cingulate cortex 
 

 
1.90 (0.19) 

 
-0.29 

 
0.005 

 
0.23 

 
0.02 

 

Exploratory ROIs  r p r p 

     Posterior cingulate cortex 1.94 (0.20) -0.20 0.05 0.13 0.22 

     Primary auditory cortex 2.01 (0.30) -0.28 0.008 0.13 0.23 

     Primary sensorimotor cortex  1.73 (0.21) -0.12 0.25 0.19 0.07 

     Global cortex 1.44 (0.14) -0.19 0.07 0.16 0.13 

   Parietal lobe 1.46 (0.16) -0.17 0.10 0.12 0.24 

   Frontal lobe 1.67 (0.17) -0.11 0.29 0.07 0.48 

   Occipital lobe 1.20 (0.17) -0.19 0.07 0.20 0.06 

   Temporal lobe 1.42 (0.17) -0.17 0.10 0.14 0.17 

     Hippocampus 2.13 (0.29) -0.13 0.21 0.14 0.18 

     Parahippocampal gyrus  1.39 (0.21) -0.13 0.21 0.12 0.23 

     Striatum 6.09 (0.81) -0.26 0.01 0.12 0.27 

Putamen 7.06 (0.98) -0.27 0.01 0.11 0.28 

Caudate 5.11 (0.75) -0.21 0.05 0.11 0.30 

Abbreviations: SUVR, standard uptake value ratios 
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Figure 1.  Flowchart for the INHANCE trial.  

 

Abbreviations: PI, Principal Investigator; MoCA, Montreal Cognitive Assessment; MRI, Magnetic 

resonance imaging; PET, Positron emission tomography. 

 

Figure 2. FEOBV binding topography in averaged brain slices of the intent-to-treat population 

(N=92). Abbreviations: A, Anterior; P, posterior; S, superior; I, inferior; R, right; L, left. SUVR: 

standard uptake value ratios. 
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Figure 3. Pearson correlation between baseline FEOBV binding in the anterior cingulate cortex a

age for the intent-to-treat population (N= 92). Each point represents an individual participant, with

the regression line depicting the overall trend. Shaded regions around the regression lines represen

95% confidence intervals for the mean. 
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Figure 4. Pearson correlation between FEOBV binding in the anterior cingulate cortex and the NI

EXAMINER executive composite z-score for the intent-to-treat population (N=92) with darker 

observation points representing participants of relatively younger age. Abbreviations: SUVR, 

standard uptake value ratios. 

 NIH 
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