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Abstract 13 

Mutations that occur in the cell lineages of sperm or eggs can be transmitted to offspring. In humans, 14 

positive selection of driver mutations during spermatogenesis is known to increase the birth prevalence 15 

of certain developmental disorders. Until recently, characterising the extent of this selection in sperm 16 

has been limited by the error rates of sequencing technologies. Using the duplex sequencing method 17 

NanoSeq, we sequenced 81 bulk sperm samples from individuals aged 24 to 75 years. Our findings 18 

revealed a linear accumulation of 1.67 (95% CI = 1.41-1.92) mutations per year per haploid genome, 19 

driven by two mutational signatures associated with human ageing. Deep targeted and exome NanoSeq 20 

of sperm samples identified over 35,000 germline coding mutations. We detected 40 genes (31 novel) 21 

under significant positive selection in the male germline, implicating both activating and loss-of-22 

function mechanisms and diverse cellular pathways. Most positively selected genes are associated with 23 

developmental or cancer predisposition disorders in children, while four genes that exhibit elevated 24 

frequencies of protein-truncating variants in healthy populations. We find that positive selection during 25 

spermatogenesis drives a 2-3 fold elevated risk of known disease-causing mutations in sperm, resulting 26 

in 3-5% of sperm from middle-aged to elderly individuals carrying a pathogenic mutation across the 27 

exome. These findings shed light on the dynamics of germline mutations and highlight a broader 28 

increased disease risk for children born to fathers of advanced age than previously appreciated. 29 

 30 

  31 
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Introduction  32 

Human cells in all tissues accumulate mutations throughout life. In replicating tissues, acquired driver 33 

mutations that confer a selective advantage can promote the expansion of individual clones within 34 

competing stem and progenitor cell populations. While patterns of selection and clonal expansion have 35 

been extensively studied in cancers, recent research has also highlighted their occurrence in normal 36 

tissues during ageing1–10.  37 

 38 

The spermatogonial stem cells of the testis occupy a unique niche amongst other studied normal tissues. 39 

Among replicating cells, they have the lowest mutation rate, ~5-20 fold lower than any other studied 40 

somatic cell type7. They are also the only replicating cells with the potential to transmit mutations to 41 

offspring, balancing self-renewal and spermatogenesis to produce 150-275 million sperm per day post-42 

puberty11,12. Targeted sequencing studies have revealed that driver mutations are acquired in 43 

spermatogonial stem cells and that these cell populations expand along seminiferous tubules, resulting 44 

in elevated fractions of mutant clones that are detectable in sperm13–17. Interestingly, all germline driver 45 

mutations identified so far are activating missense hotspot mutations, which contrasts with a broader 46 

range of activating and inactivating driver mutations observed in cancers and somatic tissues. These 47 

germline driver mutations can have profound implications for offspring, as they are found in a set of 13 48 

genes all known to cause severe developmental disorders18. This leads to a significant increase, up to 49 

1,000-fold, in the sporadic birth prevalence of these disorders, with a strong correlation to elevated age 50 

of the father19. 51 

 52 

Technical limitations, related to the polyclonality and low mutation rate of testis and sperm, have 53 

prevented extensive characterisation of this selection beyond a limited set of genes18. However, recent 54 

advances in error-corrected duplex DNA sequencing approaches, in which information from both DNA 55 

strands is used to detect mutations at single molecule resolution20–22, have proven successful for the 56 

accurate estimation of mutation burden in sperm23–25. Here we combine the duplex approaches of whole 57 

genome NanoSeq23 with deep whole exome and targeted NanoSeq (Lawson A.R., Abascal F., P.A. 58 

Nicola et al., manuscript submitted for publication) to characterise positive selection in the male 59 

germline and quantify its consequences for accumulation of disease mutations in sperm. 60 

 61 

Results 62 

Cohort and sequencing coverage 63 

We performed restriction enzyme based, whole genome NanoSeq23 of bulk semen samples (n = 81; 1-64 

2 timepoints per donor; age range: 24-75 years) and matched blood (n = 119; 1-3 timepoints; age range: 65 

22-83 years) from 63 men in the TwinsUK cohort26 (including 9 monozygotic and 3 dizygotic twin 66 

pairs; Methods; Supplementary Table 1). The analysed sperm samples had sperm counts above 1 67 
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million/mL, as those below this threshold showed evidence of somatic cell contamination 68 

(Extended Data Fig. 1; Supplementary Note 1). Across these samples, the mean number of unique 69 

DNA molecules per site where a mutation was callable (duplex coverage - dx) was 3.7dx in sperm, and 70 

4.3dx in blood (Extended Data Fig. 2a). For sperm, a haploid cell, 1dx is equivalent to one cell, 71 

whereas for blood, a diploid cell, 2dx is equivalent to one cell.  72 

 73 

Mutational burden and signatures 74 

We performed stringent variant filtering of single nucleotide variants (SNVs) and small insertion–75 

deletion mutations (indels) from sperm and blood whole genome NanoSeq (Methods). From the 6,653 76 

SNVs detected in sperm, we estimated an age-related accumulation of 1.67 substitutions per year per 77 

haploid genome (95% CI 1.41-1.92, linear mixed-effect regression). This is comparable to estimates 78 

from paternal de novo mutations (DNMs) in family pedigrees27 of 1.44 substitutions per year (95% CI 79 

1.00-1.87) and seminiferous tubules of the testes7 of 1.40 substitutions per year (95% CI 1.02-1.76; 80 

Fig. 1a). Indels accumulated in sperm at a rate of 0.10 indels per year per haploid genome (95% CI 0.06-81 

0.15), similar to the rate observed in paternally phased DNMs27 of 0.08 haploid indels per year (95% 82 

CI  -0.02-0.17) and seminiferous tubules of the testes7 of 0.08 haploid indels per year (95% CI  0.02-83 

0.13; Fig. 1b).  84 

 85 

From the 92,035 SNVs and 4,641 indels detected in whole blood, we estimated an age-related 86 

accumulation of 19.9 substitutions per year per diploid genome (95% CI 17.3-22.5; Fig. 1c) and 0.9 87 

indels per year (95% CI 0.7-1.1; Fig. 1d). Both estimates are within the range of mutation rates observed 88 

for specific cell types in the blood8, consistent with measuring a weighted average of these cell types in 89 

whole blood (Extended Data Fig. 3a,b). We find that individuals had a mean of 7.6-fold more 90 

substitutions per bp per year (range 4.2-11.5; Fig. 1e) and 6.3-fold more indels per bp per year (range 91 

2.2-18.7; Fig. 1e) in blood than in sperm. Accounting for twin status or multiple timepoints from the 92 

same individuals had a significant predictive effect for mutation burden in blood but not in sperm 93 

(Supplementary Note 2).  94 

 95 

The SNV mutational signatures in sperm were inferred to be SBS1 (mean 16%) and SBS5 (mean 84%), 96 

the expected clock-like ageing signatures28 (Fig. 1f-g). In blood, SBS1 (mean 15%) and SBS5 (mean 97 

75%) were also the main mutational signatures, with an additional contribution of SBS19 (mean 10%), 98 

which has been linked to persistent DNA lesions in hematopoietic stem cells28 (Fig. 1f-g). We observed 99 

that all signatures were correlated with age (Extended Data Fig. 3c,d). SBS1 and SBS5 accumulated 100 

in individuals at a mean of 8.9-fold (range 2.3-39.1) and 6.8-fold (range 3.7-10.9) higher rate in blood 101 

than in sperm respectively (Extended Data Fig. 3e), indicating that SBS19 does not explain a 102 

substantial fraction of the mutation burden gap between the two tissues. 103 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.30.24316414doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.30.24316414
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 104 
Figure 1 | Mutational burden and signature analysis in sperm and matched blood  105 

a,b, Substitutions (a) and indels (b) per haploid cell from sperm whole genome NanoSeq, trio paternal DNMs27 106 

called with standard sequencing and clonal variants from seminiferous tubules of testis7 called with standard 107 
sequencing. Dots indicate single donors while boxplots for testis variants show 1-15 samples per donor. c,d, 108 
Substitutions (c) and indels (d) per diploid cell for different ages from blood NanoSeq samples. e, Ratio blood to 109 
sperm substitutions and indels per diploid cell per year. Each dot corresponds to an individual with both a blood 110 
and sperm sample and where individuals had multiple timepoints the mean value of all timepoints in that tissue 111 
was used. f, Trinucleotide mutation counts in all sperm and blood samples. g, Contribution of signatures SBS1, 112 
SBS5, and SBS19 in sperm and blood samples ordered by age. a,b,c,d, Models are linear mixed regressions with 113 
95% CIs calculated by parametric bootstrapping. a,b,e, Box plots show the interquartile range, median, and 95% 114 
confidence interval for the median. 115 

 116 

Selective pressure dynamics in sperm  117 

To investigate positive selection in protein-coding regions in sperm we required much greater duplex 118 

coverage. Therefore, we utilised a capture-based modification to NanoSeq (Lawson A.R., Abascal F., 119 

P.A. Nicola et al., manuscript submitted for publication) to deeply sequence coding regions from the 120 
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same set of semen samples. Specifically, we sequenced 38 samples using whole-exome NanoSeq to a 121 

mean depth of 551dx per sample (20,923 cumulative dx), and 81 samples using targeted NanoSeq to a 122 

mean depth of 985dx per sample (79,811 cumulative dx) with a target panel consisting of 263 canonical 123 

cancer driver genes, 107 of which are also associated with developmental disorders (Extended Data 124 

Fig. 2a; Supplementary Table 2; Methods). After variant filtering (Methods), we detected 56,503 125 

(58% within coding regions) SNV/indel mutations from the exome panel and 5,059 (58% within coding 126 

regions) from the targeted cancer panel. The age correlation of mutation burden for exome and targeted 127 

sample sets were consistent with whole genome NanoSeq after correcting for the relative trinucleotide 128 

composition of sequencing coverage (Extended Data Fig. 2b). 129 

 130 

The vast majority of variants (99.5%) were detected only in a single duplex molecule of a sample. 131 

Similarly, in the 23 samples with two timepoints (mean 12.1 year gap), 99.3% of the 5,143 variant calls 132 

from the first timepoint were not called in the second timepoint. These results are consistent with sperm 133 

being a highly polyclonal collection of cells derived from a large population of spermatogonial stem 134 

cell progenitors in the testis. 135 

 136 

The exome-wide strength of positive selection in sperm was quantified by estimating the rate of non-137 

synonymous (N) relative to selectively neutral synonymous (S) mutations (dN/dS ratio, where dN/dS = 138 

1.0 indicates neutrality). We employed the dNdScv algorithm, which by default calculates dN/dS while 139 

adjusting for trinucleotide context and several gene-level genomic covariates that influence mutation 140 

rate29. We modified this algorithm in three ways: first, we adjusted for duplex sequencing coverage per 141 

base to correct for differential coverage within and between genes; second, we incorporated an 142 

adjustment for CpG methylation levels in the testis due to its significant influence on mutation rates; 143 

and third, we switched from trinucleotide to pentanucleotide context to better account for the effects of 144 

extended contexts on germline mutation rates30. These modifications refined exome-wide dN/dS ratios 145 

by resolving specific mutation rate biases but had minor effects on gene-level dN/dS ratios 146 

(Extended Data Fig. 4, Supplementary Note 3). 147 

 148 

Using this model, we estimated the dN/dS ratio in the exome-sequenced samples to be 1.07 (95% CI 149 

1.04-1.10). This ratio implies that 6.5% (95% CI 3.8%-9.1%) of the observed non-synonymous 150 

substitutions in sperm conferred a clonal advantage during spermatogenesis in this cohort. Splitting the 151 

cohort into thirds by age, we find that the exome-wide dN/dS ratio increased with age. The ratio was 152 

1.01 (95% CI 0.93-1.09) in 26-42 year olds, 1.03 (95% CI 0.97-1.10) in 43-58 year olds, and 1.09 (95% 153 

CI 1.06-1.13) in 59-74 year olds (Fig. 2f). This suggests that the dN/dS ratio increases over male 154 

lifespan and that the cohort wide dN/dS ratios presented here in part reflect the age distribution of 155 

samples (age range 26-74; mean 53 years). 156 
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 157 

We next compared the dN/dS ratios across gene sets related to spermatogenesis expression31 (Fig. 2g). 158 

We find that the gene sets with the highest dN/dS ratios are those which are highly expressed during 159 

spermatogenesis (1.25, 95% CI 1.13-1.38) and most specific to differentiated spermatogonial stem cells 160 

(1.11, 95% CI 1.05-1.17). In contrast, the genes which are unexpressed in spermatogenesis (0.98, 95% 161 

CI 0.88-1.11) and the genes most specific to elongating spermatids (1.01, 95% CI 0.94-1.08) show 162 

dN/dS ratios close to neutrality. These results are consistent with the understanding that excess 163 

nonsynonymous mutations observed in sperm confer a competitive advantage earlier in their cell 164 

lineage, specifically in the spermatogonial stem cells of the testis15.  165 
 166 

Discovery of novel genes and pathways under positive selection in the germline 167 

We then investigated which genes were driving the signal of positive selection using the combination 168 

of the exome and targeted panel datasets (Methods). We applied dN/dS tests for excess non-169 

synonymous mutations at both the gene-wide and SNV hotspot levels, which together identified 40 170 

genes under significant positive selection. Of these, 35 genes reached exome wide significance at the 171 

gene level (FDR q < 0.1; Supplementary Table 3) and/or contained one of 17 exome-wide significant 172 

hotspots (q < 0.1; Extended Data Table 1). The genes PTPN11, MIB1, RIT1, FGFR3, EP300, and 173 

FGFR2, were significant in both the gene and hotspot tests, KDM5B, NF1, SMAD6, CUL3, RASA2, 174 

PRRC2A, PTEN, ROBO1, DDX3X, CSNK2B, KRAS, PPM1D, ARID1A, BRAF, HRAS, KMT2E, 175 

SCAF4, BMPR2, TCF12, CCAR2, DHX9, NSD1, LZTR1, ARHGAP35, CBL, SSX1, and RBM12 were 176 

significant in only the gene test, and SMAD4 and FAM222B were significant in only the hotspot test 177 

(Fig. 2a,b). We excluded the major seminal fluid component gene SEMG1 from this list, despite excess 178 

indels driving gene-level significance. This gene is expressed at extremely high levels in seminal 179 

vesicles and unexpressed during spermatogenesis36, suggesting that the enrichment may be the result of 180 

a known process of indel hypermutation in highly-expressed genes37,38 from a small contamination of 181 

seminal vesicle DNA, rather than selection in germ cells.  182 

 183 

Subsequently, we carried out restricted hypothesis dN/dS tests at the per-gene and per-site level. The 184 

gene level test examined only the set of 263 canonical cancer driver genes on our target panel and the 185 

site level test used a set of 1,963 sites composed of known cancer hotspots and recurrent DNM sites 186 

from the DDD cohort39. This identified 5 additional genes: KDM5C, KMT2D, AR, CTNNB1, and RAF1 187 

and 7 hotspots not already significant at the exome wide level (q < 0.1; Fig. 2a,b; 188 

Supplementary Table 4; Extended Data Table 1).  189 
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 190 

Figure 2 | Germline positive selection  191 

a,b,c Genes with significant dN/dS ratios from exome-wide and restricted hypothesis tests. a, Mutation count split 192 
by mutation class. b, Enrichment over expectation of mutation classes. c, Mutation type driving dN/dS enrichment, 193 

COSMIC32 cancer gene tier, developmental disorder gene link in DDG2P33, and potential germline selection 194 
geneset. d,e, Observed sperm mutations across the cohort for CUL3 and SMAD4 where the height of the “lollipop” 195 
represents the number of unique samples with a mutation at that location and the colour represents its mutation 196 
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type. Mutations are labelled with their amino acid consequence for point substitutions or their insertion 197 
(ins)/deletion (del) consequence of in frame (IF) or frameshift (FS). A “P” indicates that the variant is classified 198 

as pathogenic/likely pathogenic in ClinVar34. Exons are shown as purple rectangles and the blue background 199 
represents the total duplex coverage across the cohort. Lines below the gene indicate COSMIC somatic mutations 200 

in cancer within that gene32. f-h, dN/dS ratios for sperm SNVs across sets of individuals or genes, where the dotted 201 
black line indicates neutrality and the dotted orange line represents the cohort average across all genes. f, Exome-202 
wide dN/dS ratios in sperm for the cohort split into thirds by age. g, Expression gene sets from single-cell 203 

sequencing of germ cells31. Expression levels represent 7 bins of mean expression levels across germ cell stages 204 
and expression clusters represent genes most characteristic to certain germ cell stages. Germ cell types include 205 
undifferentiated and differentiated spermatogonial stem cells (SSCs), spermatocytes, round spermatids (1) and 206 
elongating spermatids (2). h, Germline selection genes and cancer gene census genes split by ten canonical cancer 207 

pathways in KEGG35. i, The observed/expected mutation rate in sperm for bins of mutations. COSMIC and DDD 208 
are bins of variants that have been seen at different levels of recurrence. Error bars depict 95% CIs. 209 
 210 

 211 

Genes linked to germline positive selection to date all operate through activating missense mutations, 212 

with 12 linked to the RAS-MAPK signalling pathway18 and one (SMAD4) linked to TGF-β/BMP 213 

signalling40. Our findings replicate SMAD4 and 8 of the 12 RAS-MAPK pathway genes as under 214 

significant positive selection in this dataset. The 4 genes which did not reach significance (MAP2K1, 215 

MAP2K2, SOS1, and RET) each had between 2- and 4-fold enrichment of missense mutations, which 216 

corresponded to nominally significant missense enrichment in all 4 genes (p < 0.1). Given the direct 217 

evidence for these genes driving clonal selection in testis and nominal enrichment from sperm 218 

sequencing, we expect that each will reach exome-wide significance with deeper sequencing. 219 

 220 

We estimate that together, the 44 genes linked to germline selection here or in previous studies, contain 221 

an estimated 357 (95% CI: 319–387) excess non-synonymous variants in exome sequenced samples. 222 

This would account for 23% (95% CI: 14%–43%) of the total estimated driver variants across the 223 

exome. The wide confidence intervals and the sensitivity of this estimate to the mutation model used 224 

(Supplementary Note 3) suggest that small uncertainties in mutation rates, when propagated across the 225 

exome, make it difficult to precisely estimate the fraction of drivers explained. Nevertheless, the 226 

findings suggest that additional driver genes remain to be discovered. 227 

 228 

The 31 newly identified genes demonstrate that germline positive selection is not restricted to activating 229 

mutations or to the RAS-MAPK pathway. For instance, 30/31 of the novel genes are enriched for loss-230 

function mutations such as nonsense, splice, and indel variants, suggestive of protein-inactivating 231 

mechanisms of selection (Fig. 2c,d). Splitting the germline selection genes and known cancer genes by 232 

ten canonical cancer pathways within the Kyoto Encyclopedia of Genes and Genomes (KEGG)35, we 233 

find that the top gene groups enriched in dN/dS are RAS-MAPK, Wnt and TGF-β/BMP signalling 234 
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(Fig. 2h). Indeed, many of the novel selection genes are linked to the RAS-MAPK pathway, such as 235 

NF1, CUL3 and LZTR1, Wnt signalling (i.e. CSNK2B, MIB1, CCAR2), and TGF-β/BMP signalling (i.e. 236 

SMAD6, TCF12, BMPR2) (Fig. 2c). We also identified a number of genes that encode epigenetic 237 

modifiers (i.e. KDM5B, KDM5C, ARID1A, KMT2D, KMT2E, EP300, NSD1), and genes encoding RNA 238 

metabolism proteins (i.e. DHX9, DDX3X, SCAF4). These findings highlight a new diversity of genes, 239 

mutational mechanisms, and pathways driving germline selection, however future work will be needed 240 

to confirm the specific pathways and roles through which these genes drive clonal expansion during 241 

spermatogenesis. 242 

 243 

It has been observed that cancers and germline developmental disorders share causal pathways and 244 

genes41–44. Notably, the 13 genes previously linked to germline positive selection are all known cancer 245 

and known developmental disorders genes18,40. This pattern holds, but to a lesser extent, in the new 246 

germline selection genes identified here: 16 of 31 genes are tier 1 or 2 cancer census genes32 and 24 of 247 

31 are linked to monogenic developmental disorders in the DDG2P database33 (Fig. 2c; 248 

Supplementary Table 5). Among the positively selected genes which are not associated with 249 

monogenic developmental disorders, three are linked to other monogenic disorders45 (Fig. 2c; 250 

Supplementary Table 5). These include BMPR2 associated with pulmonary arterial hypertension46–48, 251 

ROBO1 associated with pituitary stalk interruption syndrome49,50 and SSX1 associated with X-linked 252 

spermatogenic failure51.  253 

 254 

The overlap between germline positive selection genes and cancer/developmental disorders is also 255 

apparent at the variant level. Somatic mutations that are most frequently observed (>50 times) in the 256 

COSMIC cancer database are enriched 11-fold (95% CI: 6-20) among our sperm mutation dataset after 257 

adjusting for expected mutation rate (Methods). Similarly, germline mutations that are most frequently 258 

observed (>5 times) in a large cohort of children with developmental disorders are enriched 66-fold 259 

(95% CI: 41-100) in our sperm mutation dataset (Fig. 2i). In addition, the mutation types (e.g. missense 260 

or protein truncating variants) enriched in sperm for a given gene are largely consistent with those 261 

enriched in cancer and those causal for developmental disorders (Extended Data Fig. 5a-c). These 262 

results show a clear overlap between genes, hotspots, and mutation mechanisms which drive germline 263 

positive selection, cancer, and developmental disorders. A notable exception to this pattern is SMAD4, 264 

which has two distinct missense hotspots in sperm that are developmental disorder hotspots causal for 265 

Myhre syndrome52 but that are not often seen in cancers, replicating recent findings40 (Fig. 2e).  266 

 267 

Positive selection drives enrichment of disease-causing mutations in sperm  268 

Given the association of many positively selected genes to disease, it is of interest to assess to what 269 

degree germline positive selection may increase the fraction of sperm carrying potential disease-causing 270 
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mutations, and thus the birth prevalence of the associated disease. To estimate the fraction of sperm 271 

carrying specific classes of variants, we aggregated the variant allele frequencies (VAFs) of different 272 

mutation types and compared this to expected values. Expected values were generated using the custom 273 

fit dNdScv mutation model (adjusted for base pair coverage, CpG methylation, and trinucleotide 274 

context) and normalised to account for the linear impact of age on mutation rate (Methods).  275 

 276 

We find that the fraction of sperm carrying a non-coding or synonymous mutation increases linearly 277 

with age as predicted by the model (Extended Data Fig. 6). In contrast, the frequency of missense, 278 

truncating (nonsense and splice) variants, and coding indels deviate above expected values in older 279 

individuals, consistent with dN/dS results and indicative of positive selection acting over time 280 

(Extended Data Fig. 6). 281 

 282 

We then generated a list of likely monoallelic disease-causing mutations, which includes ClinVar34 283 

pathogenic/likely pathogenic variants and highly damaging variants in high confidence monoallelic 284 

developmental disorder genes from DDG2P33 (loss-of-function or missense CADD53 score >30). This 285 

list represents a conservative estimate of disease-causing mutations due to the incomplete discovery and 286 

annotation of disease-causing variants and genes. We found that the observed fraction of sperm 287 

containing disease mutations was markedly higher than that expected under a germline mutational 288 

model at all ages of our cohort. The expected fraction of sperm with a likely disease mutation ranged 289 

from 0.73% in 30-year-olds to 1.6% in 70 year olds, whereas, fitting a quasibinomial regression, the 290 

observed fraction of sperm with a likely disease mutation in each age bracket ranged from 2% (95% CI: 291 

1.6%-2.5%) in 30-year-olds to 4.5% (95% CI: 3.9%-5.2%) in 70 year olds (Fig. 3c). These differences 292 

represent similar enrichments of 2.8-fold (95% CI: 2.2 to 3.5) and 2.9-fold (95% CI: 2.5 to 3.3) in 30-293 

year-olds and 70-year-olds respectively. 294 

 295 

Interestingly, the disease cell fraction estimates are made up of many low frequency variants rather than 296 

being driven by individual high VAF mutations. The estimates in exome samples are made up of a mean 297 

of 18.3 unique variants (range 4-62) per individual. Furthermore, 692 of 696 (99.4%) of all those 298 

variants are only observed in a single sperm cell, similar to the average of all variants (99.5%). 299 

 300 

We next investigated to what degree the observed enrichment of disease mutations can be attributed to 301 

driver mutations in positively selected genes. Fitting a quasibinomial regression, we observe a strong 302 

positive correlation between age and driver rate (P = 7.95e-06) with an estimated 0.5% (95% CI: 0.3%-303 

0.8%) of sperm from individuals at age 30 and 2.6% (95% CI: 2.0%-3.3%) of sperm from individuals 304 

aged 70 carrying a known driver mutation (Fig. 3b). However only about two thirds (65.6%) of those 305 

driver mutations meet our criteria of likely disease-causing.  306 
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 307 
Figure 3 | Pathogenic burden  308 

a, Estimated mean percentage of sperm in the cohort carrying a likely monoallelic disease mutation (Left) or a 309 
driver mutation in a germline selection gene (Right). Disease mutations are divided into the fraction that was 310 
expected from the mutation model, the portion explained by driver variants and the portion unexplained. Driver 311 
mutations are split by those contributing to the disease mutations and the remainder, ‘Ageing drivers’. b, 312 
Estimated percentage of sperm per individual carrying a driver mutation by age. c, Observed and expected 313 
percentages of sperm with likely disease mutation by age. b,c, Model fits represent quasibinomial regressions 314 
with 95% confidence intervals. d, Cohort means from (a) split by gene and ordered by estimated mutation 315 
percentage. Per-gene contributions are shown above each gene; the summed contributions of all genes are 316 
shown below. Genes with 4 or fewer variants are grouped on the left with a condensed x-axis for clarity. 317 

 318 

Mutations in sperm that are likely disease-causing and those that are known driver mutations therefore 319 

represent overlapping but distinct annotations (Fig. 3a). Across the cohort, an estimated 3.3% of sperm 320 

carry a likely disease-causing mutation. Of this, approximately one-third (1.2%) is expected by the 321 

neutral mutation model, another third (1.1%) is explained by known driver mutations, and the remaining 322 

third (1.0%) is unexplained by either source. These findings suggest that the increase in likely disease-323 

causing mutations is largely driven by germline positive selection, but also indicate that additional 324 

driver genes with disease associations remain to be identified. 325 

 326 

Examining driver mutations which do not meet our criteria of a likely disease-causing mutation, we 327 

find that they impact an estimated 0.6% of sperm across the cohort. The consequences of these 328 

mutations are unclear. For instance, driver variants in SMAD6, which has a variably penetrant link to 329 
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congenital phenotypes54, may be disease-causing in some cases but not others. Other potential 330 

consequences include mutations that are disease-causing but not yet annotated as such, less able to 331 

fertilise an egg, embryonic lethal, or biallelic disease-causing. 332 

 333 

Much of the fraction of sperm with a disease and/or a driver mutation can be attributed to a small number 334 

of genes in the exome. From 374 genes with at least one such variant, the 33 genes with ≥5 independent 335 

mutations, most of which are under significant positive selection (26/33), represent 42.8% of the 336 

disease/selection fraction in sperm (Fig. 3d). Strikingly, 6 of those genes, all of which are under 337 

significant positive selection, (KDM5B, MIB1, SMAD6, PRRC2A, NF1, and PTPN11) together explain 338 

over 20% of the disease/selection fraction. This suggests that although individual mutations we observe 339 

are at low frequencies, positive selection systematically favours the likelihood of observing variants in 340 

driver genes. 341 

 342 

We next sought to examine whether there are risk factors other than age which contribute to the 343 

accumulation disease or driver mutations in sperm. Currently known mutagenic effects in the male 344 

germline include chemotherapy and inherited DNA repair defects39,55 and small effect size influences 345 

of genetic ancestry and smoking56. While the cohort did not include any individuals with known 346 

chemotherapy treatments or DNA repair defects, phenotype data was available for BMI, smoking, and 347 

alcohol consumption, all of which have some evidence of driving mutation burden or driver mutation 348 

rate in some somatic tissues57. We used multivariate generalised linear models to test the association 349 

between these factors and measures of mutation burden, signatures, and driver cell fractions, correcting 350 

for multiple testing (Methods; Extended Data Fig. 6). Regardless of the sperm sequencing set 351 

examined (targeted, exome, or whole genome) only age was significantly correlated with measures of 352 

mutational burden, signatures, and driver cell fractions. No significant effects were found for BMI, 353 

smoking pack-years, or alcohol drink-years. However, in blood samples, age, smoking, and alcohol 354 

consumption showed significant effects on SNV and SBS5 burdens. These results suggest that, unlike 355 

many somatic tissues, the male germline mutation landscape may be largely protected from these risk 356 

factors, although larger cohorts will be needed to interrogate possible small effect sizes. 357 

 358 

Selection in germ cells relative to single generation and population-level variants 359 

Mutations in sperm account for ~80% of DNMs and are therefore also the origin of most population 360 

level variants. Comparisons between these different sources of germline variants provide an opportunity 361 

to explore how positive selection in the male germline may manifest over time. 362 

 363 

Examining control DNMs from offspring without clinical phenotypes58 we found a dN/dS ratio 364 

consistent with neutrality of 0.98 (95% CI 0.90-1.08; Fig. 4a). In contrast, the dN/dS ratio in DNMs 365 
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from offspring with developmental disorders showed a large enrichment of nonsynonymous variants, 366 

as previously reported39: 1.36 (95% CI 1.33-1.39; Fig. 4a). However, ascertainment biases in these 367 

cohorts suggest that these dN/dS ratios may not accurately reflect the dN/dS ratio of DNMs entering 368 

the population. Future large DNM studies of birth cohorts will likely be required to give less biased 369 

estimates. 370 

 371 
Figure 4 | Comparison to population variation 372 

 a, Exome-wide dN/dS ratios across different variant sets, including sperm variants from all exome sequenced 373 

samples, de novo mutations (DNMs) from a collection of healthy trios58 and the Deciphering Developmental 374 

Disorders (DDD) cohort39; and population variants from gnomAD59 split by allele frequency (AF). b, 375 
Observed/expected enrichment of missense and loss-of-function (LOF; essential splice, nonsense, indel) variants 376 
in positively selected genes within sperm (x-axis) from dN/dS models vs gnomAD LOF z-score. Positive z-377 
scores indicate LOF depletion, while negative ones indicate excess over expected. Error bars indicate 95% CIs. 378 

 379 

The pattern of largely neutral dN/dS ratios in control DNMs contrasts with the strong evidence of 380 

negative selection in human single nucleotide polymorphisms (SNPs), particularly in common SNPs. 381 

To shed light on this, we calculated dN/dS ratios for population variants at different allele frequencies 382 

(AF) in the population using data from gnomAD59 (Fig. 4a). This revealed a decay in dN/dS ratios for 383 

population variants with higher AFs, a pattern consistent with purifying selection operating over many 384 
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generations on germline SNPs. Altogether, these analyses suggest that the dominant selection force on 385 

germline mutations is positive selection during spermatogenesis but negative selection between 386 

generations. This dynamic mirrors the well-established contrast between selective forces on cancer 387 

mutations and those on germline mutations in populations29. 388 

 389 

We then compared the per-gene enrichment of loss-of-function mutations in sperm to those of 390 

population germline variants using the gnomAD loss-of-function z-score. This z-score is a measure of 391 

how significantly the observed counts differ from expectations of a germline mutation model. The vast 392 

majority of genes in gnomAD have a positive z-score, indicative of depletion of LOFs and the negative 393 

selection expected in populations. Of the 31 significant germline selection genes with LOF enrichment 394 

in sperm (range 3-fold to 50-fold), 27 were depleted for LOFs in gnomAD. Each of these genes has a 395 

disease phenotype, consistent with a model by which these genes are selected for in spermatogenesis 396 

but purged from the population by strong negative selection. Interestingly, 4 significant germline 397 

selection genes had more loss-of-function mutations than expected in gnomAD: SMAD6, MIB1, LZTR1, 398 

and SSX1 (Fig. 4b). The latter 3 of these genes are 3 of the 4 strongest outliers of LOF enrichment of 399 

all genes in gnomAD v2 and were given a cautionary outlier label for unexplained LOF enrichment. 400 

Our results suggest that the explanation behind their apparent enrichment in gnomAD is that germline 401 

positive selection introduces them at a higher rate than for other genes and negative selection against 402 

these variants is not strong enough to mask it. 403 
 404 
 405 
 406 

  407 
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Discussion 408 

We sequenced sperm and blood from healthy men spanning a wide age range to quantify mutation rate 409 

and positive selection in the male germline. The observed mutation rates and mutational signatures in 410 

sperm were consistent with those from family trio and testis sequencing studies7,27,60–63. We find that, 411 

despite sharing the same mutational signatures, SBS1 and SBS5, mutations accumulate at 412 

approximately an 8-fold lower rate in sperm compared to blood. This supports our previous observations 413 

comparing germline mutations in testes to a wide range of somatic tissues7 and emphasises the protected 414 

nature of the germline relative to the soma. 415 

 416 

Analysing over 35,000 coding variants from sperm exome-wide, we build on the 13 previously 417 

identified germline selection genes, identifying an additional 31 genes under positive selection. This 418 

provides a foundational catalogue of genes under selection in the male germline and expands the 419 

diversity of pathways and mutational mechanisms linked to selection in this tissue. 420 

 421 

Our findings have significant implications for studies relying on germline mutation models, as they do 422 

not currently account for germline positive selection. As shown here, this can lead to inaccurate 423 

constraint metrics in population cohorts. Importantly, this bias can also affect the identification of novel 424 

disease-causing genes from DNM enrichment tests. For instance, the recent identification of an excess 425 

of de novo loss-of-function mutations in MIB139 likely reflects germline selection rather than disease 426 

association. Loss-of-function variants in MIB1 are more common in population cohorts than expected 427 

for a gene associated with developmental disorders, and carrying one of these variants does not correlate 428 

with developmental disorder phenotypes64. In principle, adopting case-control tests for DNM 429 

enrichment should help to exclude genes under germline selection that are not linked to the disease. 430 

However, sufficiently large control trio datasets, as well as close age matching of controls to account 431 

for the age dependency of germline selection, will be needed to ensure sufficient statistical power. Until 432 

such resources become available, analyses of DNM enrichment in disease should take into account the 433 

evidence for germline selection influencing individual genes presented here (Supplementary Table 3). 434 

 435 

Unlike the example of MIB1, most genes under positive selection during spermatogenesis are known to 436 

be associated with severe monogenic disorders with mutation mechanisms under positive selection 437 

matching those associated with disease. We demonstrate that this positive selection leads to a striking 438 

2-3 fold enrichment in the fraction of sperm carrying a likely disease mutation across the age range 439 

studied. As a result, we estimate that 3-4% of sperm from men over 50 carry a likely disease-causing 440 

mutation. Somewhat reassuringly, we note that typical paternal ages at conception are younger than the 441 

average age of sperm donors studied here, and that the impact of germline positive selection will be 442 
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correspondingly weaker. Future investigations, including sequencing of sperm from cohorts focused on 443 

men under the age of 30 will aid in developing estimates of germline selection strength in this age range.  444 

 445 

A key consideration when interpreting the fraction of disease mutations in sperm is that this fraction 446 

may not directly correspond to the rate at which these variants are observed in live births. There are a 447 

number of reasons why, for some genes, the transmission rate to live births could be lower than those 448 

observed in sperm, including impaired ability of sperm to fertilise an egg, embryonic lethality, or 449 

increased pregnancy loss (Supplementary Note 4). Future studies, such as sequencing of trio DNMs 450 

from large birth cohorts, will be needed to quantify the relationship between the rate of positively 451 

selected disease mutations in sperm and disease incidence in populations.  452 

 453 

While up to 3-5% of sperm in middle-aged to elderly individuals harbouring a known driver mutation 454 

has a large impact on offspring disease risk, it is on the low end of the spectrum of estimates in 455 

proliferative somatic tissues. For instance, in comparable age groups, more than 40% of cells in 456 

endometrial and esophageal epithelium carry a driver mutation2,5, whereas only a few percent of cells 457 

are estimated to carry a driver mutation in healthy colon or liver3,4. For blood, on average only a few 458 

percent of cells carry a driver mutation in middle aged individuals, but some individuals can present 459 

large clonal expansions due lack of severe spatial constraints for clonal expansion9. While the germline 460 

mutation rate is under evolutionary pressure to remain low to prevent detrimental mutations across the 461 

genome, it is perhaps under particularly strong pressure to keep driver mutation rate low, as a single 462 

germline driver mutation can cause disease in offspring. It is likely that the tubular organisation of the 463 

testis provides strong spatial constraints to prevent large clonal expansions, limiting the accumulation 464 

of driver mutations in sperm despite the large number of cell divisions required to sustain sperm 465 

production. The low relative rate of driver mutations in the male germline is also consistent with the 466 

unique aspects of spermatocytic tumours, the tumour type thought to derive from spermatogonial stem 467 

cells in the testis. Spermatocytic tumours are rare relative to most somatic tumours and are primarily 468 

driven by chromosome aneuploidies65 rather than the classical sequential acquisition of driver mutations 469 

leading to cancer transformation66,67 observed in driver rich somatic tissues.  470 

 471 

The findings of this study provide important insights into the historically underexplored reproductive 472 

ageing risks associated with the male germline. This contrasts with the well-established relationship 473 

between maternal ageing and reproductive risks, where decreasing oocyte quality with age leads to 474 

increased rates of pregnancy loss and aneuploidy68. Our results demonstrate that driver mutation 475 

accumulation from the male germline’s continuous cell proliferation is a substantial risk, though one 476 

spread across many genes. As trends toward delayed reproduction continue69, it is essential to recognise 477 

that both paternal and maternal ageing contribute to elevated risks for offspring, albeit primarily through 478 

different biological mechanisms. Future research will refine our understanding of selective pressures 479 
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and disease risk associated with germline mutation, enhancing our understanding of their implications 480 

for human reproduction and health. 481 

 482 

 483 

  484 
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Extended Figures 485 

 486 
Extended Data Fig. 1 | Sperm counting 487 

a,b,c, Slides of Papanicolaou stained semen samples for (a) an azoospermic sample where no sperm cells are 488 
visible, (b) an oligozoospermic sample where a small number of sperm samples are visible and (c) a 489 
normozoospermic sample where many sperm cells are visible. Sperm concentrations are given for each sample 490 
in millions of sperm per ml (M/ml). The black band in the bottom left of each slide photo corresponds to 491 
100µm. d, The distribution of sperm counts on a log scale among semen samples analysed with colour bands 492 
indicating the concentration bin of the sample. All samples below 1 million/mL were subsequently excluded. e, 493 
The distributions of mutation burden per year from blood samples and three categories of sperm samples broken 494 
down by sperm concentration.  495 
 496 
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 497 
Extended Data Fig. 2 | Coverage summary  498 

a, Mean duplex coverage (log scale) and percentage of genome covered (log scale) per sample. Panels 499 
summarise the mean duplex coverage (dx) and mean percentage of genome covered per NanoSeq type and 500 
tissue. b, Mutation burden of targeted (dark orange), exome (yellow), and genome (blue) sperm sequenced 501 
samples that are observed without correction (left), corrected for trinucleotide composition of covered base pairs 502 
relative to the whole genome (middle) or corrected and masked for mutations and coverage in the 44 genes 503 
linked to germline positive selection (right). Model fits are linear regressions with 95% CI bands. 504 
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 505 
Extended Data Fig. 3 | Mutation rates relative to blood cell types and split by signatures 506 

a,b, Substitutions (a) and indels (b) per diploid cell from blood NanoSeq relative to specific blood cell types8. 507 
c,d, Substitutions per haploid cell for sperm (c) and diploid cell for blood (d) split by signature contributions of 508 
SBS1, SBS5, and SBS19. a,b,c,d, Models are linear mixed regressions with 95% CIs calculated by parametric 509 
bootstrapping. e, Ratio of age-corrected blood to sperm substitutions per diploid cell per year for mutations 510 
assigned to SBS1 and SBS5. Each dot corresponds to an individual with both a blood and sperm sample and 511 
where individuals had multiple timepoints the mean value of all timepoints in that tissue was used. Box plots 512 
show the interquartile range, median, and 95% confidence interval for the median. f, Distribution of indel types 513 
observed in sperm and blood. 514 
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 515 
Extended Data Fig. 4 | Model selection dN/dS  516 

a,b, Mean duplex coverage (a) and methylation percentage (b) of all base pairs with exome sequencing 517 
coverage split by mutation consequence. c, C>T mutation rate at CpG sites in exome sequenced samples split by 518 
methylation bin based on percentage methylated from testis bisulfite sequencing70. d, Comparison of global 519 
dN/dS values from exome sequenced samples using different modifications to the dNdScv algorithm. Categories 520 
are all nonsynonymous mutations, missense, nonsense or essential splice. The basic model excludes genes 521 
which have no coverage but otherwise uses default parameters. Additional models show the impact of adding 522 
corrections for duplex coverage per base pair (BasePairCov), CpG methylation level (CpGmeth), and 523 
pentanucleotide context (Penta). e, Comparison of per-gene significance in exome-wide (blue) or restricted 524 
hypothesis (orange) dN/dS tests using the different models. Genes that did not reach significance in either test 525 
are shown in grey. Error bars indicate 95% CIs. 526 
 527 
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 528 

Extended Data Fig. 5 | Gene mutation mechanisms  529 

a, The mutation mechanism assigned to each gene based on the mutation pattern in sperm, developmental 530 
disorders and cancer (Methods). b,c,d,e,f,g, Observed sperm mutations across the cohort for six illustrative 531 
genes where the height of the “lollipop” represents the number of unique samples with a mutation at that 532 
location and the colour represents its mutation type. Mutations are labelled with their amino acid consequence 533 
for point substitutions or their insertion (ins)/deletion (del) consequence of in frame (IF) or frameshift (FS). A 534 

“P” indicates that the variant is classified as pathogenic/likely pathogenic in ClinVar34. Exons are shown as 535 
purple rectangles and the blue background represents the total duplex coverage across the cohort. Lines below 536 

the gene indicate COSMIC somatic mutations in cancer within that gene32. 537 
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 538 
Extended Data Fig. 6 | Mean variant class count per individual by age 539 

The relationship between age and the mean count of SNVs (non-coding, synonymous, missense, and loss-of-540 
function (nonsense or essential splice)) and indels (non-coding indel and coding indel) per sperm cell. The red 541 
points represent the observed values for each individual. The grey line represents the expected mutation count 542 
per sperm based on the germline mutation rate model. Error bands indicate 95% CIs of linear regressions. 543 
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 544 
Extended Data Fig. 7 | Phenotype correlations 545 

Correlation of cohort phenotypes to mutation outcome variables, with different sequencing datasets 546 

split by facets. Joint predictor glm models used the gaussian family with FDR corrected P values. 547 

Asterisks indicate significance level of corrected P value: (*P value >0.01 to <0.05, **P value >0.001 548 

to <0.01, ***P value <0.001). 549 
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 550 

 551 
Extended Data Table 1 | Significant SNV hotspots from dN/dS exome-wide and 552 

restricted hypothesis tests (RHT) 553 

 554 

 555 

  556 
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Methods 557 

Ethics 558 

This study was carried out under TwinsUK BioBank ethics, approved by North West – Liverpool 559 

Central Research Ethics Committee (REC reference 19/NW/0187), IRAS ID 258513 and earlier 560 

approvals granted to TwinsUK by the St Thomas’ Hospital Research Ethics Committee, later London 561 

– Westminster Research Ethics Committee (REC reference EC04/015).  562 

 563 

Sample collection 564 

Bulk semen samples were collected or obtained from archival samples with informed consent from 75 565 

research participants within the TwinsUK cohort26. Archival whole-blood samples were also obtained 566 

from 67 of those men from the TwinsUK BioBank. A total of 104 semen samples spanned an age range 567 

of 24-75 years and included 29 men with 2 timepoints separated by a mean of 12.1 years (range 12-13 568 

years) and the remaining 46 men with a single timepoint. A total of 133 blood samples were collected 569 

at an age range of 22-83 years. There were 11 men with a single blood timepoint, 47 with two 570 

timepoints, 8 with three timepoints and 1 with four timepoints. The mean interval between blood 571 

timepoints was 8.1 years (range 1-13 years). Within the cohort there were a total of 9 monozygotic 572 

(MZ) twins and 3 dizygotic (DZ) twin pairs. Counts of samples, timepoints, and twin pairs which were 573 

successfully sequenced and passed analysis quality control thresholds are summarised in 574 

Supplementary Table 1. 575 

 576 

Metadata 577 

Metadata for self-reported age, height, weight, ethnicity, twin zygosity, smoking and alcohol 578 

consumption were obtained from questionnaires provided by TwinsUK taken periodically. All 579 

individuals that provided ethnicity information indicated “white”. BMI was calculated as 580 

weight/height2. A smoking pack year was defined as 365 packs of cigarettes and total pack years was 581 

calculated using the highest estimate across all questionnaires from cigarettes per day or week and total 582 

years smoked. Alcohol drink years was calculated from using average weekly alcohol consumption 583 

extrapolated to the duration of adult life before sampling (age - 18). 584 

 585 

DNA extraction 586 

DNA was extracted from sperm samples using the Qiagen QIAamp DNA Blood Mini Kit. Isolation of 587 

genomic DNA from sperm; protocol 1 (QA03 Jul-10) was followed with the exceptions of substituting 588 

DTT in place of β-mercaptoethanol for Buffer 2 and substituting Buffer EB in place of Buffer AE for 589 

elution of DNA. 590 
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DNA was extracted from whole blood using the Gentra Puregene Blood Kit, following the protocol for 591 

10ml of compromised whole blood from the Gentra Puregene Handbook version 06/2011. 592 

 593 

Targeted gene panels 594 

Three separate Twist Bioscience gene panels were used for targeted NanoSeq sequencing in this study: 595 

1) a custom pilot panel of 210 genes; 2) a similar but extended custom panel of 263 genes 596 

(Supplementary Table 2); 3) a default exome-wide panel of 18,800 genes. The two custom gene panels 597 

are highly similar with the extended panel being almost exclusively regions added to the pilot panel. 598 

From the 84 samples that underwent targeted sequencing, 13 were sequenced using a pilot panel of 210 599 

canonical cancer/somatic driver genes, and all 84 were sequenced using the extended panel of 263 600 

genes. Sequencing coverage and mutations were merged from samples sequenced on both targeted 601 

panels. The custom panels were designed by gathering sets of published lists of genes implicated as 602 

drivers in cancers71–74 and somatic tissues1,75 as described in (Lawson A.R., Abascal F., P.A. Nicola et 603 

al., manuscript submitted for publication). 604 

 605 

Sequencing and preprocessing of NanoSeq libraries 606 

Restriction-enzyme whole genome NanoSeq libraries were prepared as described in Abascal et al.23 and 607 

subjected to whole genome sequencing at target 20-30x coverage on NovaSeq (Illumina) platforms to 608 

generate 150-bp paired-end reads with 9-10 samples per lane. Standard whole genome sequencing of 609 

blood (31.7x median coverage) was used to generate matched-normal libraries for both restriction-610 

enzyme NanoSeq blood and sperm.  611 

 612 

Targeted and exome NanoSeq libraries were prepared via sonication and 1-2 rounds of pull down of 613 

target sequences as described in (Lawson A.R., Abascal F., P.A. Nicola et al., manuscript submitted for 614 

publication). They were then sequenced with NovaSeq (Illumina) platforms to generate 150-bp paired-615 

end reads with 7-8 samples per lane for the targeted panel and 2 lanes per sample for the exome panel.  616 

 617 

Base calling and filtering 618 

All samples were processed using a Nextflow implementation of the NanoSeq calling pipeline 619 

(https://github.com/cancerit/NanoSeq). BWA-MEM76 was used to align all sequences to the human 620 

reference genome (NCBI build37). Restriction-enzyme NanoSeq samples were called with their 621 

matched WGS normal and default parameters except for var_b (minimum matched normal reads per 622 

strand) of 5 as needed for WGS normals, cov_Q (minimum mapQ to include a duplex read) of 15 and 623 

var_n (maximum number of mismatches) of 2.  624 

 625 
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For targeted and exome samples we leveraged the high sequencing depth and high polyclonality to 626 

exclude variants with VAF > 10% instead of using a matched normal. Default parameters of the calling 627 

pipeline except for cov_Q of 30, var_n of 2, var_z (minimum normal coverage) of 25, var_a (minimum 628 

AS-XS) of 10, var_v (maximum normal variant allele frequency (VAF)) of 0.1, and indel_v (maximum 629 

normal VAF) of 0.1. Post variant calling, we further filtered variants to those below 1% VAF and those 630 

below 10% duplex VAF as variants above these cutoffs were highly enriched for mapping artefacts, 631 

particularly for indels. No excluded variants from these additional VAF thresholds were found to be 632 

likely driver or ClinVar pathogenic variants; all exclusions were inspected to confirm this.  633 

 634 

A set of common germline variants from dbsnp77 and a custom set of known artifactual call sites in 635 

NanoSeq datasets were masked for coverage and variant calls as previously described23. 636 

 637 

Assessing DNA contamination 638 

The single-molecule accuracy of the duplex sequencing method NanoSeq allows sequencing of 639 

polyclonal cell types such as sperm, but also renders mutation calls sensitive to a) non-target cell-type 640 

contamination and b) contamination of foreign DNA. Non-target cell-type contamination was evaluated 641 

using manual cell counting of semen samples, resulting in the exclusion of 6 samples with sperm count 642 

< 1 million sperm/mL. Sperm counting methods and analysis are detailed in Supplementary Note 1.  643 

 644 

Foreign DNA contamination in whole genome NanoSeq samples was assessed using verifyBamID78, 645 

which checks whether reads in a BAM file match previous genotypes for a specific sample, with higher 646 

values indicating more contamination. Three blood whole genome NanoSeq samples were excluded 647 

based on a verifyBamID alpha value above the suggested cutoff of 0.00523. In sperm, we found that 648 

several samples had outlier mutation burdens with verifyBamID values just below the 0.005 cutoff. 649 

This is logical, as sperm has a much lower mutation rate compared to somatic tissues, for which the 650 

recommended cutoff was designed. Consequently, sperm samples are more sensitive to low levels of 651 

contamination. To account for this, we adjusted the verifyBamID alpha threshold for sperm to a more 652 

stringent level of 0.002, resulting in the exclusion of 3 samples on this criterion.  653 

 654 

When assessing foreign DNA contamination in targeted and exome samples we found that 9 targeted 655 

and 3 exome samples had verifyBamID values above > 0.002, slight outlier mutation burdens, and high 656 

ratio of SNP masked variants to passed variants (4-fold to 16-fold more masked variants). Upon further 657 

investigation we found that all samples exceeding verifyBamID thresholds were processed in the same 658 

sequencing batch and that this contamination could be explained by inherited germline variants of other 659 

samples within that same batch. This suggests that a small amount of cross-contamination may have 660 

occurred during sample preparation or sequencing steps. In order to remove contaminant germline 661 
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mutations we performed an in silico decontamination as previously described23. This involved calling 662 

germline variants from all targeted and exome samples using bcftools mpileup79 at sites where there 663 

were >10 reads and a mutation call with VAF > 0.3. All such sites were subsequently masked across all 664 

samples for both mutation calls and coverage, essentially extending the default common SNP mask to 665 

also include rare inherited variants across the cohort. This resulted in all samples previously identified 666 

as contaminated having mutation burdens consistent with their age and all having a ratio of masked to 667 

passed variants <0.1, and were thus retained for analysis. 668 

 669 

Corrected mutation burdens 670 

Given that mutation rates are strongly influenced by trinucleotide composition, it is important to 671 

consider differences in sequence composition when comparing mutation rates in datasets that target 672 

different regions of the genome. For instance, it is known that coding regions such as those in NanoSeq 673 

target panels, are biased towards a higher mutation rate partially due to a higher GC density than non-674 

coding regions80 which make up the majority of sequenced regions in whole genome NanoSeq datasets. 675 

To correct for this effect, in each sperm NanoSeq dataset we generated a corrected mutation burden 676 

relative to the full genome trinucleotide frequencies as described previously23. 677 

 678 

Comparison of NanoSeq and WGS burden estimates 679 

In order to compare whole genome NanoSeq mutation burdens to mutation burden from standard whole 680 

genome sequencing (WGS) we multiplied the corrected mutation burden estimates described in the 681 

previous section by the genome size per cell type. We assumed 2,861,326,455 mappable base pairs in 682 

a haploid cell for germline datasets and the diploid equivalent of 5,722,652,910 base pairs for blood.  683 

 684 

External datasets for comparison to NanoSeq results were processed in order to achieve comparable 685 

burden estimates. For testis WGS samples70 we implemented the method described in Abascal et al.23 686 

that restricts analysis to regions with high coverage (20+ reads) that overlap with NanoSeq covered 687 

regions. Additionally, we corrected for differences in trinucleotide background frequencies relative to 688 

the full genome as described in the previous section. For trio paternally phased DNMs from standard 689 

sequencing, as a callable genome size per sample following thorough filtering was available, we 690 

generated the mutation per cell estimate by multiplying the paternally phased DNM count by the ratio 691 

of the sample’s callable genome to total genome size. For comparison to cell types in blood we 692 

compared directly to the published mutation burden regressions8. 693 

 694 

Mutation burden regressions 695 

To investigate the relationship between age and mutation burdens, we performed linear mixed-effects 696 

regression analyses. For each tissue and mutation type where a regression was performed, the model 697 
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was constructed using the `lmer` function from the `lme4` package81 in R. Each model included age at 698 

sampling as a fixed effect and a random slope for each individual to account for multiple timepoint 699 

samples, specified as: 700 

 701 

lmer(burden ~ age + (age - 1| indiv_ID), REML=F) 702 

 703 

The 95% confidence intervals (CIs) for regression lines were calculated through bootstrapping by 704 

simulating prediction intervals. For each model, we generated 1000 bootstrap samples. Predictions and 705 

their associated standard errors were calculated for a sequence of ages from 14 to 84 years. The 95% 706 

CIs were then derived by determining the range within which 95% of the bootstrap sample predictions 707 

fell. 708 

 709 

Mutational signature analysis 710 

We extracted de novo mutational signatures using Hierarchical Dirichlet Process (HDP; 711 

https://github.com/nicolaroberts/hdp), which is based on the Bayesian Hierarchical Dirichlet process. 712 

HDP was run with double hierarchy: (1) individual ID and (2) tissue types (either blood or sperm), and 713 

without the Catalogue Of Somatic Mutations In Cancer (COSMIC) reference signatures82 (v3.3) as 714 

priors, on the mutation matrices. The number of mutations were normalised for the tri-nucleotide 715 

context abundance specific for each sample relative to the full genome. Both clustering hyper-716 

parameters, beta and alpha, were set to one. The Gibbs samples ran for 30,000 burn-in iterations 717 

(parameter “burnin”), with a spacing of 200 iterations (parameter “space”), from which 100 iterations 718 

were collected (parameter “n”). After each Gibbs iteration, three iterations of concentration parameters 719 

were conducted (parameter “cpiter”). Two components were extracted as de novo mutational signatures 720 

which were further reconstructed and decomposed into known COSMICv3.3 SBS signatures using 721 

SigProfilerAssignment (https://github.com/AlexandrovLab/SigProfilerAssignment). As a result, three 722 

COSMIC signatures: SBS1, SBS5, and SBS19, were reported.  723 

Quantifying selection with dN/dS 724 

To examine genes under positive selection and quantify global selection we used the dNdScv 725 

algorithm29. This algorithm was extended using base pair level duplex coverage, methylation level and 726 

pentanucleotide context to capture more complex context dependent mutational biases, and to achieve 727 

more accuracy for our selection analysis. Detailed methods for input mutations, model selection and 728 

evaluation, site dN/dS tests, driver mutation estimation, and gene set enrichment are described in 729 

Supplementary Note 3. 730 
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Gene disease and mechanism annotation 731 

Positively selected genes were annotated with monoallelic disease consequences using the 2024-02-29 732 

release of the Development Disorder Genotype - Phenotype Database (DDG2P)33 and the 2024-06-21 733 

release of the Online Mendelian Inheritance in Man (OMIM) database45. OMIM annotations related to 734 

somatic disease, complex disease, or tentative disease associations were excluded.  735 

 736 

Genes were also annotated for their potential mutation mechanism observed in sperm and 737 

cancer/developmental disorders when available. In sperm, genes were labelled as loss-of-function if 738 

they had nominal enrichment of nonsense+splice variants and/or indel variants (ptrunc_cv < 0.1 | 739 

pind_cv < 0.1) and 2+ loss-of-function mutations. There were two exceptions to this where genes met 740 

these thresholds but were labelled as activating due to having a restricted repertoire of loss of function 741 

mutations that are known to be oncogenic in cancers: CBL (LOFs in and downstream of the RING zinc 742 

finger domain)83 and PPM1D (LOFs in final two exons)84. All other genes had missense enrichment 743 

only and were labelled as activating. The mechanism in cancer was defined by using the 'Role in Cancer' 744 

field of the COSMIC cancer gene census v9932 where ‘oncogene’ was labelled as activating and ‘tumour 745 

suppressor gene’ as loss of function. Annotations of a fusion mechanism were not displayed except for 746 

genes which had neither an oncogene, nor a tumour suppressor annotation which were labelled as 747 

‘fusion only’. The developmental disorder mechanism was defined by using the variation consequence 748 

field of DDG2P where ‘restricted repertoire of mutations;activating’ was labelled as activating and 749 

‘loss_of_function_variant’ was labelled as loss of function.  750 

Gene mutation plots 751 

The “lollipop” gene mutation plots were created with a coordinate system where the 1 was the first 752 

coding base of the GRCh37-GencodeV18+Appris85 transcript of the gene. The data sources included 753 

protein domains from UniProt86, somatic mutations from the exome and genome wide screens of the 754 

COSMIC32 (v99), ClinVar release 2024.07.0134 pathogenic annotation, per base pair cohort wide 755 

(targeted + exome) NanoSeq coverage, sperm mutation count (number of independent individuals with 756 

a mutation) and mutation consequence and amino acid change annotated by the dNdScv algorithm29. 757 

These data were plotted with code modified from the lolliplot function in the trackViewer R package87.  758 

Variant annotation 759 

Variants were annotated using Ensembl’s Variant Effect Predictor (VEP)88 with added custom 760 

annotations of mutation context, ClinVar release 2024.07.0134, Combined Annotation Dependent 761 

Depletion (CADD) version GRCh37-v1.653 and average methylation level in testis. Methylation data 762 

was obtained from whole genome shotgun bisulfite sequencing methylation data from a 37 year old 763 

(ENCFF638QVP) and 54 year old (ENCFF715DMX) male testis from the ENCODE project70. The 764 
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average methylation level was calculated by selecting CpG sites with coverage of 3 or more and 765 

averaging the percent of sites methylated between the two samples.  766 

 767 

Variants were annotated as likely monoallelic disease-causing mutations if they met at least one of two 768 

criteria: 1) Reported in ClinVar as pathogenic, likely pathogenic, or if they were reported as 769 

‘Conflicting_classifications_of_pathogenicity’ where the conflict was between reports of 770 

pathogenic/likely pathogenic and ‘Uncertain_significance’ with no reports of benign or likely benign 771 

and not specified as a recessive condition or 2) Were a highly damaging variant in a high confidence 772 

monoallelic developmental disorder genes from DDG2P33. Genes met criteria of a) allelic requirement 773 

being monoallelic_autosomal, monoallelic_X_hem, monoallelic_X_het, or mitochondrial, b) 774 

confidence in strong, definitive, or moderate and c) a mutation consequence of ‘absent gene product’. 775 

Highly damaging was defined as being a ‘HIGH’ impact variant in VEP annotation (frameshift 776 

splice_acceptor, splice_donor, start_lost, stop_gained, or stop_lost) or a missense variant with CADD53 777 

score >30 (top 0.1% damaging).  778 

 779 

Variants were defined as a likely driver if they met the ‘highly damaging’ criteria defined above in a 780 

significant germline selection gene with loss-of-function mutation enrichment or if they were in one of 781 

the 24 significant mutation hotspots. This resulted in 320 variants being labelled as likely drivers in 782 

exome samples. 783 

Cell fraction mutation estimates 784 

To calculate the mean count of synonymous, missense or loss-of-function, or pathogenic mutations per 785 

sperm cell we summed the duplex VAFs of all variants in that class. For example, if an individual had 786 

three synonymous mutations each observed once with a duplex coverage of 100 at each of those sites, 787 

each of those variants would have a duplex VAF of 1/100 = 0.01. The sum of VAFs in this example 788 

would then be 0.03 and this would then be reported as the estimate for the mean count of synonymous 789 

variants per sperm cell for that individual. At low fractions such as 0.03, the mean count per cell is 790 

approximately equivalent to the percentage of sperm with this mutation class (3%) and thus the driver 791 

and disease mutations are reported as percentage estimates. At higher fractions (e.g. mean count > 1) 792 

the fractions are not equivalent to percentage as many cells will have multiple variants of that class and 793 

thus the estimates are reported as mean count. 794 

 795 

Expected mean counts for SNVs were generated by annotating each possible substitution at each 796 

covered site with an expected number of mutations per sample as given by expCountSNV = 797 

context_mut_rate*duplex_coverage*age_correction. The context_mut_rate was given by the 208 798 

basePairCov + cpgMeth trinucleotide mutation model estimates for that trinucleotide+methylation 799 
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mutation context (Supplementary Note 3; Supplementary Table 6). Duplex coverage is the exact 800 

duplex coverage at that site for that sample. The age_correction parameter was given to normalise the 801 

mutation model estimates (derived from all exome samples) to the mutation rate of that sample based 802 

on age. Specifically, we fit a linear model to the mutation burden vs age of the exome samples and used 803 

this to generate a predicted mutation rate for each sample based on age. The per sample corrected 804 

parameter was calculated as the age predicted mutation burden divided by the mean mutation rate of all 805 

exome samples (3.89e-08). The resulting corrections spanned from 0.50 (youngest sample) to 1.42 806 

(oldest samples). The expected indel mutation rate was calculated in the same way, except with a single 807 

mutation rate parameter (indels/bp) expCountIndel = 808 

indel_mut_rate*duplex_coverage*age_correction. The expected mean count was then calculated for 809 

each category (e.g. synonymous, likely disease) by summing the expected values for each SNV and/or 810 

indel base pair matching the relevant annotation. As background for possible ClinVar pathogenic 811 

variants we only considered indels of size 21 bp or less, the largest detected indel in the dataset. 812 

Regressions were fit with either linear models or generalised linear models (glm in R) with family = 813 

quasibinomial. 814 

Regression analysis 815 

We tested for associations between mutation outcome variables from sperm genome, sperm exome, 816 

sperm targeted and blood genome NanoSeq data and the phenotype predictor variables of BMI, smoking 817 

pack years, and alcohol drink years. These tests were performed using a gaussian family generalised 818 

linear regression in R. For each mutation outcome variable the test took the form of: 819 

glm(mutationOutcome ~ age_at_sampling + BMI + pack_years + drinkYears, family = “gaussian”). 820 

 821 

The mutation outcome variables examined were SNV and indel burden from all 4 sequencing datasets, 822 

SBS1 and SBS5 count from sperm genomes, SBS1, SBS5, and SBS19 from blood genomes, and likely 823 

disease cell fraction and likely driver cell fraction from sperm targeted and sperm exomes. The 824 

significance of each predictor was assessed from the model's summary output coefficients, and p-values 825 

were adjusted for 68 total tests using the false discovery rate method.  826 

 827 

 828 

 829 

 830 

  831 
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 832 

 833 

Data availability 834 

Raw sequencing data are available on the European Genome–Phenome Archive under accession 835 

number X. Additional individual-level data are not permitted to be publicly shared or deposited due to 836 

the original consent given at the time of data collection, where access to these data is subject to 837 

governance oversight. All data access requests are overseen by the TwinsUK Resource Executive 838 

Committee (TREC). For information on access to these genotype and phenotype data and how to apply, 839 

see https://twinsuk.ac.uk/resources-for-researchers/access-our-data/. 840 

 841 

Code availability 842 

All scripts are available on github at https://github.com/mattnev17/spermPositiveSelectionManuscript.  843 
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