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Abstract

Although high-frequency deep brain stimulation (DBS) is e↵ective at relieving
many motor symptoms of Parkinson’s disease (PD), its e↵ects on gait can be
variable and unpredictable. This is due to 1) a lack of standardized and robust
metrics for gait assessment in PD patients, 2) the challenges of performing a thor-
ough evaluation of all the stimulation parameters space that can alter gait, and 3)
a lack of understanding for impacts of stimulation on the neurophysiological sig-
natures of walking. In this study, our goal was to develop a data-driven approach
to identify optimal, personalized DBS stimulation parameters to improve gait in
PD patients and identify the neurophysiological signature of improved gait. Local
field potentials from the globus pallidus and electrocorticography from the motor
cortex of three PD patients were recorded using an implanted bidirectional neu-
ral stimulator during overground walking. A walking performance index (WPI)
was developed to assess gait metrics with high reliability. DBS frequency, ampli-
tude, and pulse width on the “clinically-optimized” stimulation contact were then
systemically changed to study their impacts on gait metrics and underlying neu-
ral dynamics. We developed a Gaussian Process Regressor (GPR) model to map
the relationship between DBS settings and the WPI. Using this model, we iden-
tified and validated personalized DBS settings that significantly improved gait
metrics. Linear mixed models were employed to identify neural spectral features
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associated with enhanced walking performance. We demonstrated that improved
walking performance was linked to the modulation of neural activity in specific
frequency bands, with reduced beta band power in the pallidum and increased
alpha band pallidal-motor cortex coherence synchronization during key moments
of the gait cycle. Integrating WPI and GPR to optimize DBS parameters under-
scores the importance of developing and understanding personalized, data-driven
interventions for gait improvement in PD.

Keywords: Parkinson’s disease, DBS, movement disorder, human gait, Bayesian
optimization, Gaussian process, neurophysiology

1 Introduction

Gait disturbances are common symptoms of Parkinson’s Disease (PD) and can often
manifest as decreased step length [1, 2], increased variability in step length and step
time [3–5], and asymmetry between the two stepping legs [6]. Gait dysfunction reduces
mobility, increases fall risk, and significantly impacts a patient’s quality of life [7–
10]. While high-frequency deep brain stimulation (DBS) of the basal ganglia is highly
e↵ective at mitigating symptoms such as tremor, rigidity, and bradykinesia [11–16],
its impact on gait is more variable and less predictable, with some reports show-
ing improved gait [17–19], while others indicate no significant improvement or even
worsening of gait [20–24]. These unpredictable e↵ects of DBS settings, coupled with
individual variability among patients, highlight the need for improved DBS treat-
ments targeting advanced gait-related problems and understanding their impacts on
the basal ganglia thalamocortical network neurophysiology [25].

One significant challenge in enhancing DBS outcomes for treating gait disorders is
the lack of a standardized gait metric for clinicians to use during programming. Stride
velocity, variability in step time and step length, and arm swing amplitude are among
essential gait symptoms seen in PD patients [26–32]. However, focusing on a single
metric may overshadow the comprehensive impact of DBS settings, leading to subop-
timal outcomes. Currently, DBS programming is mainly conducted with the patient
seated, focusing on the assessment of limb motor functions using the Unified Parkin-
son’s Disease Rating Scale (UPDRS). While some clinicians incorporate walking tests,
these are often limited, non-standardized, and based primarily on subjective observa-
tion. Moreover, the UPDRS fails to capture many critical aspects of gait dysfunctions
specific to PD, further complicating the evaluation and optimization of DBS settings
for gait [33]. Thus, a systematic approach to assessing gait quality is necessary.

Even in cases where gait metrics are evaluated during DBS adjustments, iden-
tification of DBS stimulation parameters optimized for gait is di�cult [17]. This is
because the extensive parameter space (i.e., amplitude, frequency, and pulse width
of the stimulation impulses at each contact) required to search for gait optimization
would require an impractical amount of time for both patients and clinicians [34, 35].
Therefore, most clinicians primarily rely on empiric high-frequency stimulation during
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DBS programming visits for clinical optimization. While high-frequency DBS is usu-
ally e↵ective for tremor, rigidity, and bradykinesia, its e�cacy for gait disorders is less
consistent [36–38]. Lower frequency stimulation can improve gait kinematics, but sig-
nificant uncertainties remain due to individual variations and inconsistent DBS e↵ects
[19, 22, 24, 39–44]. The variability in patient responses to di↵erent DBS stimulation
parameters underscores the need for a more structured approach to systematically
explore the full parameter space and identify settings that optimize gait functions
[45–50].

The next challenge is the limited understanding of gait neurophysiology, which
restricts our ability to fully understand the e↵ects of DBS settings on modulating gait-
related neural dynamics. Advances in sensing technologies now allow us to explore
how changes in DBS settings influence the neural mechanisms driving motor func-
tions [51–54]. By identifying neural biomarkers associated with gait improvements, we
would gain 1) valuable insights into the circuits and structures involved in gait con-
trol, 2) understanding of how di↵erent stimulation parameters can result in similar
improvements in gait, and 3) potentially leverage these biomarkers to guide DBS pro-
gramming to target specific gait-related oscillations more e�ciently to further enhance
walking performance. Our previous study has shown that in PD patients without gait
deficits, low-frequency local field potentials (LFPs) in the subthalamic nucleus (STN)
and their synchrony with the primary motor cortex change cyclically based on the
specific phase of the gait cycle. These dynamic oscillatory changes across the basal
ganglia-cortical network may represent a physiologic signature of e↵ective overground
walking [55]. Despite these findings, the e↵ects of DBS settings on neural signatures
involved in gait are not well studied and may account for the variable e↵ects of DBS
on gait. Therefore, a deeper understanding of the relationship between DBS settings,
underlying neural mechanisms, and resulting gait outcomes would further enhance our
knowledge of the neurophysiological foundations of complex gait functions in PD.

Our study addresses these challenges by evaluating and modeling the e↵ects of
di↵erent DBS setting parameters on gait metrics and cortico-basal ganglia neurophys-
iology. We first developed a walking performance index (WPI) that integrates key
gait kinematics to objectively assess and track gait performance across di↵erent DBS
configurations. We then applied an individualized-Bayesian optimization method for
modeling predicted walking performance based on the DBS settings for each subject,
which e�ciently delineates these relationships with limited trials. The data-driven
model approach provided a robust tool to identify e↵ective personalized DBS settings
for gait improvement. Finally, by studying how DBS influences the pallidal and motor
cortical network, we identified neurophysiological biomarkers associated with improved
walking performance, which can further guide programming in the future (Figure 1).
These findings significantly contribute to our understanding of DBS’s influence on gait
disorders and support the development of personalized data-driven models of DBS
parameter optimization that refine neuronal activity and enhance gait outcomes. This
methodology could be adapted to address a variety of other symptoms within PD,
potentially o↵ering a framework for similar approaches in other circuit-based disorders.
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2 Results

Patient characteristics and electrode placement

Three participants with PD (1 female, 2 male) undergoing DBS implantation for motor
fluctuations were recruited and implanted with a bidirectional investigational device
(Summit RC+S, Medtronic). Two participants were implanted bilaterally, while one
received a unilateral implant in the left hemisphere. All subjects had gait disturbances
(Figure 1I). Gait disturbances in our subjects were assessed using the Movement Dis-
order Society’s UPDRS Part III (MDS-UPDRS-III), focusing on the motor symptoms
associated with PD. Additionally, the posture instability and gait disorder (PIGD)
sub-score provided a more specific evaluation of gait-related challenges, including dif-
ficulties with arising from a chair, walking, freezing episodes, postural instability, and
overall posture [56]. All subjects were implanted with quadripolar DBS leads target-
ing the globus pallidus (GP) and quadripolar electrocorticography paddles placed in
the subdural space over the motor cortical area. Figures 1J and 1K demonstrate the
lead location reconstruction from both GP and motor cortex areas. In subject 1, the
cortical paddle primarily records brain activity from the primary somatosensory (S1)
area and M1 cortices. The cortical paddle spans the primary motor (M1) and premo-
tor (PM) cortices in subjects 2 and 3. Each cortical paddle and the GP DBS lead in
the same brain hemisphere were connected to a bidirectional neural stimulator device
(summit RC+S, Medtronic Plc.). This device is used to deliver electrical impulses and
can chronically stream high-resolution time-domain data [57].

Walking performance index reveals changes in gait functions
under di↵erent DBS stimulation parameters

To objectively evaluate overground walking metrics across all patients and assess their
fluctuations in response to alterations in DBS settings, we developed a walking perfor-
mance index (WPI), which is comprised of four kinematic parameters associated with
common gait deviations in PD (Figures 2A and 2B): stride velocity (the average walk-
ing speed over a complete gait cycle), arm swing amplitudes, and variability in step
length and step time. Higher WPI indicates quicker stride velocity, larger arm swing
amplitudes, and lower variability in step length and step time. During each visit, we
tested both clinically optimized settings (adjusted by each patient’s Movement Dis-
orders neurologist) and several new DBS configurations by varying the stimulation
frequency, amplitude, or pulse width within safe ranges. Patients performed over-
ground walking in a 6-meter loop while their neural data and gait kinematics were
continuously recorded. Each setting was evaluated over 200 steps, excluding turns,
with turns evenly distributed between left and right. Gait metrics were calculated
from full body inertial measurement unit (IMU) sensors that precisely capture gait
kinematics.

We assigned equal weights to each of the four gait parameters to ensure a balanced
contribution from all variables and then normalized the WPI to that of their clini-
cally optimized settings. Additionally, our analysis showed no signs of multicollinearity
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among the metrics, confirming that each metric provides unique information and
contributes independently to the WPI (Figure 2C).

For each subject, we tested up to three amplitudes: clinical amplitude, 25-30%
reduction from clinical and their higher limits (i.e., 4.1–5.5 mA for Subject 1, 2.8–5
mA for Subject 2, and 3.5–4.9 mA for Subject 3). In addition to the clinical frequency,
we tested 60 Hz as well as a higher frequency setting (i.e., 60/190 Hz for Subject
1, 60/180 Hz for Subject 2, and 60/190 Hz for Subject 3). We also tested two pulse
widths: clinical and their limits (i.e., 70/90 µs for Subject 1, 60/70 µs for Subject 2,
and 60/80 µs for Subject 3). All these ranges were within the safety ranges defined by
each patient’s neurologist. The details and range of DBS setting variables are presented
in the bottom panels of Figures S1-S3.

As a result of changes in these DBS setting parameters, we observed significant
modifications in subjects’ gait kinematics. Specifically, in Subject 1, stride veloc-
ity ranged from 0.5444 to 1.7217 m/s (Figure S1A). Arm swing amplitude ranged
from 0.6571 to 1.5453 m (Figure S1B). Step time ranged from 0.3983 to 0.6075 s
(Figure S1C). Step length ranged from 0.3511 to 0.8731 m (Figure S1D). The WPI
varied from 0.4660 to 1.5597 (Figure S1E). In Subject 2, stride velocity ranged from
0.4738 to 1.2038 m/s (Figure S2A). Arm swing amplitude ranged from 0.3631 to
1.5121 m (Figure S2B). Step time ranged from 0.3105 to 0.7705 s (Figure S2C). Step
length ranged from 0.2392 to 0.7897 m (Figure S2D). The WPI varied from 0.2656 to
1.3205 (Figure S2E). For Subject 3, stride velocity ranged from 0.6345 to 1.3132 m/s
(Figure S3A). Arm swing amplitude, calculated as the average of both arms, ranged
from 0.7215 to 1.5809 m (Figure S3B). Step time ranged from 0.4339 to 0.5689 s
(Figure S3C). Step length ranged from 0.3605 to 0.6166 m (Figure S3D). These alter-
ations in gait kinematics were accompanied by changes in the levels of WPI, which
varied from 0.4352 to 1.4185 (Figure S3E).

Furthermore, participants were blinded to the changes in DBS settings during the
trials. After each trial, their subjective feedback was collected to assess their perception
of walking performance under di↵erent stimulation settings and compared to those of
a blinded physical therapist. We show a good correlation between the WPI and the
subject, as well as the physical therapist’s ranking of the settings (Figures 2D and 2E).
This demonstrates the validity of the WPI to capture gait changes.

Data-driven model identifies optimal DBS settings to improve
gait in PD

To predict optimal DBS settings to enhance gait functions in PD, we employed a
data-driven Gaussian process regressor (GPR) to map the relationship between the
DBS settings (input) and the WPI (output) for each subject (see Figure 3). The GPR
is particularly appropriate for this application because it can extrapolate data from
a limited number of tested settings to predict outcomes across a broader parameter
space. This approach allows for the e�cient identification of optimal settings by lever-
aging the relationships between DBS parameters and gait performance, even when
only a few settings have been experimentally tested. The GPR’s ability to model com-
plex, nonlinear relationships and provide uncertainty estimates makes it beneficial for
optimizing personalized DBS settings. We utilized the GPR after testing an average
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of 11 stimulation configurations to predict the next groups of settings to be tested. At
each subsequent visit, we tested these model-predicted settings (best and worst) along
with the clinically optimized setting. The resulting data were incorporated back into
the GPR for further refinement.

The GPR model was able to predict and identify the optimal settings after testing
several DBS configurations (i.e., 13 for subject 1, 20 for subject 2, and 11 for subject
3). Across all patients, the gait-optimized settings predicted by the model led to an
overall improvement in WPI, with specific degrees of improvement varying by patient.
Panels (A) in Figures 3 demonstrate the progression of the model between the DBS
amplitude and frequency and WPI in 2D planes. In these plots, a deeper red color is
associated with settings linked to higher walking performance levels. It illustrates how
including the data from each visit would contribute to the changes in model dynamics,
with the final model shown in Panels (B) of Figure 3. Each patient exhibited a unique
gait-optimized setting. For Subject 1, the optimal setting of 5.1 mA, 60 Hz, and 90 µs
showed a significant 18% improvement in WPI over the clinical setting of 5.5 mA, 150
Hz, and 90 µs (Figure 3B). Subject 2’s gait was optimized at 4.0 mA, 60 Hz, and 60 µs,
compared to the clinical setting of 4.0 mA, 130 Hz, and 60 µs, leading to a modest 2%
improvement in WPI (Figure 3B). For Subject 3, the model predicted that a setting
of 4.2 mA, 180 Hz, and 80 µs would outperform the clinically optimized setting of
3.9 mA, 145 Hz, and 60 µs. Testing this prediction resulted in an 8% improvement in
WPI (Figure 3B). Moreover, we observed a strong relationship between WPI scores
and patient feedback rankings. The Spearman’s rank correlation coe�cient was 0.62
(p = 0.008, Figure 2D).

There were also notable unique variations in individual gait parameters across the
subjects (Panels (C) in Figure 3). Subject 1 exhibited the most pronounced improve-
ments, with stride velocity increasing by 21.08% (Kruskal-Wallis, p < 0.0001) and
arm swing amplitude by 2.71% (p = 0.0002). This subject also demonstrated a notice-
able 46.83% reduction in step time variability and an 18.93% increase in step length
variability (Figure 3C).

Subject 2 showed a 2.34% increase in stride velocity (p = 0.111) and a 1.98%
increase in arm swing amplitude (p = 0.146, Figure 3C). Moreover, this subject expe-
rienced a substantial reduction in gait variability, with step time variability decreasing
by 34.96% and step length variability by 19.96%. In Subject 3, stride velocity increased
by 0.40% (p = 0.378), arm swing amplitude improved by 4.70% (p < 0.0001), and step
time variability decreased by 11.22% (Figure 3C). However, step length variability
increased by 22.34% in subject 1.

In Subject 1, after identifying and validating the gait-optimized DBS settings, we
presented these parameters to their neurologist for clinical confirmation. After evalu-
ating the optimized settings, the patient’s device was programmed with a new group
with the gait-optimized settings. The patient was given the option to switch to this
gait-optimized setting during longer walks and return to the clinical setting designed
to manage their other symptoms as needed. An analysis of the device logs revealed that
over a period of 64 days, the patient voluntarily used the gait-optimized setting for an
average of 4 hours and 37 minutes per day. (Figure S4 in supplementary materials).
These findings demonstrate the real-world applicability and e�cacy of our proposed
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pipeline for identifying and implementing personalized DBS settings to improve gait
functions, further validating its utility beyond controlled clinical environments.

Identification of neural spectral changes across the gait cycle

To identify the neurophysiological basis for changes in these gait metrics, we analyzed
pallidal LFP fluctuations, cortical activity, and pallidal-cortical coherence dynamics
(i.e., magnitude-squared wavelet coherence) during each gait cycle as patients walked
back and forth during the walking performance evaluation. Neural data streamed
from the RC+S were time-synchronized to wearable devices that captured heel-strike
and toe-o↵ events. We first performed time-frequency and time-varying coherence
analyses on each pallidal contact pair and the two cortical channels during all gait
cycles, excluding turns, as standard gait cycle events do not occur during turning.
To ensure the accuracy of our analysis, we meticulously removed all artifacts, includ-
ing motion, electrocardiogram-related, and stimulation artifacts. Following artifact
removal, we analyzed the spectral power within each frequency band and normalized
the results across all tested DBS settings during each patient visit. Due to the pres-
ence of stimulation-induced sub-harmonic activity in some DBS settings, our analysis
focused on the 1-30 Hz canonical frequency bands (i.e., delta (2-4 Hz), theta (4-8 Hz),
alpha (8-12 Hz), and beta (12-30 Hz)) (see Methods section for additional details).
Figure S5 illustrates an example of power spectral density and continuous wavelet
transformation of the LFP signal in the GP region under 60 Hz and 145 Hz stimulation
conditions for subject 3. By restricting our analysis to the 1-30 Hz frequency range,
we ensured that stimulation-induced artifacts and their subharmonics were excluded
from subsequent analyses (right panels of Figure S5A and Figure S5B).

The neurophysiological investigation of our study focused on identifying the aver-
age levels of signal power and coherence within distinct phases of the gait cycle
and across canonical frequency bands. These features were extracted to capture the
dynamic changes in neural activity and connectivity as patients moved through dif-
ferent stages of the gait cycle. An example of this analysis is presented in Panel (A)
of Figure 4. Each gait cycle begins with the left heel strike (LHS) (purple line), fol-
lowed by the right toe o↵ (RTO) (orange line), right heel strike (RHS) (red line), and
left toe o↵ (LTO) (pink line), culminating in the next LHS. The phases of the gait
cycle are defined as follows: the first double limb support period (DS1: LHS-RTO),
contralateral leg swing (CLS: RTO-RHS), second double limb support period (DS2:
RHS-LTO), and ipsilateral leg swing (ILS: LTO-LHS). As an example of characteriz-
ing the changes within canonical frequency bands across the gait cycle, we present the
spectral power and coherence within the beta band (12-30 Hz) across all gait cycles
(Figure 4B). Each row represents the average signal power or coherence within the
beta band for a single gait cycle, sorted by stride time and initiated at LHS. This anal-
ysis revealed dynamic fluctuations in neural activity and coherence throughout the
di↵erent phases of the gait cycle within each canonical frequency band (Figure 4C).
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Personalized neural biomarkers associated with gait
improvements

Investigating the relationship between neural spectral features —specifically, the aver-
age power levels during di↵erent phases of the gait cycle and within various canonical
frequency bands— and walking performance, we conducted separate linear regression
analyses for each neural feature. By analyzing each feature individually, we aimed
to identify person-specific neural biomarkers associated with improvements in WPI.
Table 1 highlights significant power bands (i.e., p < 0.05) within di↵erent gait phases
observed for each individual, including data from both cortical and subcortical regions,
as well as cortico-subcortical coherence. Additionally, coherence within each cortical
region was assessed. These correlations were computed on aggregated data across all
stimulation settings for each individual.

Subject 1 exhibited a mix of positive and negative correlations between neural spec-
tral features and walking performance. GP alpha-band power during double support
was negatively correlated to walking performance (p = 0.043, R2 = 0.322), whereas
M1 alpha power during contralateral leg stance (p = 0.040, R2 = 0.330) and beta
power during contralateral leg swing (p = 0.044, R2 = 0.320) is positively correlated
with WPI. Additionally, negative correlations were detected in the primary somatosen-
sory cortex (S1) low-frequency power during both leg swing phases (ipsilateral: theta:
p = 0.041, R2 = 0.327; contralateral: delta: p = 0.025, R2 = 0.379). Coherence
analyses revealed both negative and positive correlations between various regions and
frequency bands. Notably, significant positive correlations were found between GP-M1
delta-band coherence across all gait phases (p < 0.005, R2 < 0.5) as well as M1-S1
alpha-band (p < 0.05, R2 > 0.3). Detailed correlations are listed in Table 1.

In Subject 2, significant negative correlations were primarily observed between
GP alpha-power and walking performance during leg swing (ipsilateral: p = 0.024,
R2 = 0.448; contralateral: p = 0.033, R2 = 0.412) and GP beta power during double
support (p = 0.027, R2 = 0.436). During ipsilateral leg swing and double support
periods, both M1 alpha power (p < 0.05, R2 > 0.35) and M1-PM alpha band coherence
(p < 0.05, R2 > 0.45) were negatively correlated with the WPI. These results indicate
that reductions in alpha and beta power in GP and M1 are associated with improved
walking performance for this subject. Refer to Table 1 for detailed statistical values.

For Subject 3, significant correlations were observed between neural spectral fea-
tures in motor cortical regions and walking performance. Both negative and positive
correlations were found in the primary motor cortex (M1) and premotor (PM) areas
during specific gait phases and frequency bands. For example, a negative correlation
between M1 beta-band power during the ipsilateral leg swing phase and walking per-
formance was identified (p = 0.018, R2 = 0.262), while a positive correlation was
observed during the contralateral leg swing phase (p = 0.001, R2 = 0.424). Similar
patterns were seen in pallidal-cortical coherence, with significant correlations in globus
pallidus GP-M1 and GP-PM coherence varying by gait phase and frequency band.
Notably, a negative correlation was found between beta coherence within the M1-PM
regions during the ipsilateral leg swing phase and walking performance (p = 0.003,
R2 = 0.376). These findings suggest phase- and frequency-specific neural patterns
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associated with walking performance in this individual. Detailed results are provided
in Table 1.

Across all subjects, the significant correlations varied by brain region, frequency
band, and gait phase, underscoring the individuality of neural mechanisms underlying
gait improvements. While some common trends were observed—such as the involve-
ment of alpha and beta bands in motor cortical regions—the specific patterns di↵ered
among individuals. A comprehensive analysis of all neural features, including those
that did not reach statistical significance, is presented in the supplementary materi-
als (Figure S6). This broader view provides additional insights into the relationships
between neural spectral features and walking performance across all individuals.

Shared neural spectral features correlate with walking
performance across subjects

To identify shared spectral features associated with improvements in gait performance
across individuals, we used a linear mixed model to evaluate neural biomarkers of
walking performance. Given the exploratory nature of our analysis, we focused on
assessing correlations between individual neural features and walking performance,
rather than constructing a comprehensive model incorporating all potential features
simultaneously. By analyzing each feature separately, we aimed to identify consistent
neural biomarkers across all participants that correlate with walking performance.
This model included fixed e↵ects for each neural feature and random e↵ects for each
individual. We extracted and averaged spectral power across all gait cycle epochs and
assessed the correlation with the average levels of walking performance across all par-
ticipants, covering multiple visits and di↵erent DBS settings. We observed a significant
negative correlation between the beta band LFP signal power in the pallidal region
and the increase in overall walking performance (Figure 5A). This significant correla-
tion was primarily seen in the beta band power during the ipsilateral leg swing and
double limb support following the contralateral leg swing. Specifically, in the double
limb support phase, beta band power was found to be associated with walking per-
formance, with higher performance associated with lower beta band power (Estimate
= -0.184, SE = 0.0855, t(42) = �2.15, p = 0.037, �2 ⇡ 4.37, p = 0.036). Similarly,
during the ipsilateral leg swing phase, beta band power was found to be associated
with walking performance (Estimate = -0.183, SE = 0.0859, t(42) = �2.13, p = 0.039,
�2 ⇡ 4.29, p = 0.038). In both phases, the inclusion of beta band power significantly
improved the model fit over the null model. These findings suggest that a reduction
in beta band power in the pallidal region during the contralateral leg stance phase is
a critical neural marker for improved gait outcomes.

Similarly, we performed a thorough analysis to assess how the interaction between
the pallidum and primary motor (M1) cortex could be associated with improvements
in walking performance. We analyzed the averaged magnitude-squared coherence value
between the pallidum and primary motor cortex (M1) for each brain hemisphere dur-
ing di↵erent gait phases. We observed a positive correlation between pallidum-M1
coherence and increased walking performance (Figure 5B). This significant correlation
was primarily observed in alpha band power during double limb support following
the contralateral leg swing. Specifically, higher alpha band power in the interaction
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between the pallidum and M1 during double limb support is linked to higher walking
performance (Estimate = 1.66, SE = 0.72, t(43.03) = 2.32, p = 0.025, �2 ⇡ 4.37),
and its inclusion significantly improved the model fit over the null model, as indicated
by the likelihood ratio test (p = 0.029, �2 ⇡ 4.79). These findings suggest that eleva-
tion in cortico-pallidal alpha band coherence serves as a promising neural marker for
improved gait dynamics.

To further illustrate these neurophysiological characteristics and their relationship
with walking performance, we compared neural activity between sessions with the
lowest and highest WPI levels in subject 1 (Figures 5C and 5D). These figures highlight
key di↵erences in beta-band power in the pallidal area as well as alpha-band pallidum-
M1 coherence in the left hemisphere. The heatmaps on the left side of Figures 5C
and 5D display the neural activity associated with the lowest walking performance,
while those on the right correspond to the highest performance. The middle sub-panels
provide a more focused comparison of signal power during key phases: double limb
support after the contralateral leg swing and ipsilateral leg swing in Figure 5C, and
double limb support after the contralateral leg swing in Figure 5D, contrasting sessions
with the lowest WPI (represented by red boxplots) and the highest WPI (represented
by green boxplots). These visualizations underscore the distinct neural dynamics that
di↵erentiate optimal gait performance from less e↵ective patterns.

3 Discussion

We developed a data-driven pipeline to identify optimized DBS setting parameters
for enhancing gait in individuals with PD. Our research is one of the first to sys-
tematically identify optimized DBS settings (using amplitude, frequency, and pulse
width) with a personalized data-driven approach targeting several spatiotemporal
aspects of gait. The proposed model maps the relationship between DBS settings and
walking performance across a wide range of parameter values, allowing us to predict
and identify optimal stimulation configurations beyond the discrete settings initially
tested, thereby significantly enhancing walking performance. Additionally, we identi-
fied neural biomarkers associated with improved walking performance, revealing both
consistent characteristics across patients and features specific to each individual. The
proposed pipeline links DBS configurations, underlying neural connectivity, and gait
kinematics. Our results have several implications which are discussed below.

In this study, we developed an objective walking performance index (WPI) based
on kinematic measures to accurately assess the e↵ectiveness of our approach. The WPI
represents core aspects of gait often impaired in PD, which can lead to significant func-
tional limitations and increased fall risk [2, 4, 26–30, 42, 58]. Stride velocity indicates
overall mobility, with reduced speed being a common symptom of PD [29, 32]. Arm
swing amplitude reflects the coordinated movement necessary for balance [30], while
variability in step length and time provides insight into gait consistency, with greater
variability often linked to instability and fall risk [26]. By combining these metrics, the
WPI o↵ers a more comprehensive assessment of gait, addressing multiple dimensions
of motor function a↵ected by PD. The use of equal weighting in the WPI ensures a
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balanced contribution from all gait parameters, preventing any single metric from dis-
proportionately influencing the overall score. Our findings support this approach, as
each metric contributed unique information without multicollinearity issues. It is also
worth mentioning that alternative weighting schemes could a↵ect the sensitivity of the
WPI to specific aspects of gait dysfunction. Future research might explore di↵erential
weighting based on the relative impact of each parameter on functional outcomes or
patient quality of life.

The WPI’s broad evaluation of gait characteristics allows for a more robust assess-
ment of DBS settings and their e↵ect on walking. Our results confirmed that changes
in DBS settings were e↵ectively captured by the WPI, aligning with patient and clini-
cian evaluations during each visit. This validation supports that the WPI is an e↵ective
metric for assessing and targeting gait improvements in PD. The WPI provides a quan-
tifiable measure to track improvements and identify optimal DBS settings for each
patient, potentially enhancing the precision of DBS programming. Future directions
include developing automated systems for real-time gait analysis and integrating WPI
with DBS programming software. Technologies such as gait mats, wearable sensors,
and advanced motion capture systems could enable continuous and precise monitoring
of gait, allowing for more accurate DBS adjustments. Further studies should explore
the WPI’s broader application across di↵erent populations and its potential to improve
clinical outcomes in PD and other movement disorders.

Optimizing DBS settings to enhance gait in individuals with PD is challenging due
to the vast parameter space and the time-intensive process required during patient
visits. While programming DBS for motor symptoms like bradykinesia and tremor
typically yields quick results, gait disturbances are more complex and may take longer
to respond, adding to the complexity of clinic visits. Moreover, individual responses
to DBS therapy vary significantly, necessitating a systematic, personalized approach
to identify optimized settings. We hypothesized that the extensive DBS parameter
space, combined with the complex nature of gait and individual variability, requires
a personalized, data-driven approach. Unlike methods that compare discrete stimula-
tion parameters, we aimed to establish a continuous map between DBS settings and
walking performance. We employed a Gaussian process regressor (GPR) to model
these dynamics, using data from each visit with DBS settings as input and the WPI
as output. The GPR model, with its non-parametric nature, e↵ectively captured the
complex relationship between DBS settings and WPI by updating its predictions based
on continuous variations in DBS settings.

Our model incorporated several stimulation parameters—amplitude, frequency,
and pulse width—as inputs, enabling us to understand the impact of each parameter
in relation to the others on walking performance. One key advantage of this approach
is its ability to explore the entire DBS parameter space (i.e., amplitude, frequency,
and pulse width) within safety ranges defined by neurologists, potentially deriving
optimized settings beyond the parameters tested. Contact selection was kept constant
and determined separately based on each patient’s movement disorder neurologist’s
expertise, rather than being optimized by the model. Testing the identified settings
further validated the model’s e�cacy, resulting in significant improvements in walking
performance. This approach could enhance the DBS programming process by better

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.30.24316305doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.30.24316305
http://creativecommons.org/licenses/by-nc-nd/4.0/


tracking the e↵ects of changes in stimulation parameters on each spatiotemporal gait
metric [59]. While our current pipeline still requires several visits by the patient, with
the identification of key neurophysiological signatures associated with enhanced gait
functions, we envision using advanced machine learning models in the future that can
potentially predict stimulation parameters that boost these oscillations without the
need for extensive tests. To further enhance the model and expedite the optimization
process, reinforcement learning algorithms could dynamically adjust DBS settings in
real-time based on continuous gait performance feedback, while deep neural networks
could capture complex, non-linear relationships between DBS parameters, neurophys-
iological dynamics, and gait performance, potentially improving prediction accuracy.
Transfer learning could also utilize pre-trained models on similar datasets, reducing
the data needed for training and accelerating optimization for new patients.

An important finding of our work is that although patients’ gait-optimized settings
are varied, there are consistent and convergent neural dynamics identified in these set-
tings that are shared on a group level. Specifically, lower levels of pallidum beta-band
activity during the contralateral stance phase were associated with improved walking
performance. Previous studies have shown that beta power in basal ganglia regions
correlates with PD o↵-symptom severity and that its suppression through dopaminer-
gic therapy or DBS improves UPDRS scores [60–66]. Specifically during gait, reduced
beta-band activity in the GPi is linked to improved performance [52], and STN DBS
can reduce high beta frequency power and bilateral oscillatory connectivity during gait
[67, 68]. This reduction in beta activity may reflect a general mechanism of release from
motor inhibition, facilitating smoother, more coordinated, and faster movements [69].
Additionally, increased alpha band coherence between the pallidum and the primary
motor cortex (M1) during the double limb support phase following the contralateral
leg swing was identified as a potential neural biomarker for enhanced walking per-
formance. Alpha frequency modulation during gait phases has been described in the
pedunculopontine nucleus (PPN) and cortex in PD patients, and is associated with
increased regularity of stepping [70, 71]. We expand on these findings and identify a
potential network oscillatory biomarker of gait improvement in response to DBS stim-
ulation. Our discovery of increased alpha coherence between the pallidum and motor
cortex at the beginning of the contralateral leg stance (double support period), fol-
lowed by pallidal beta desynchronization during the contralateral leg stance phase,
may represent a network mechanism to improve stepping regularity and mechanics.
Our findings deepen the understanding of the neural mechanisms underlying DBS-
enhanced gait performance and emphasize the need to identify individualized DBS
settings to enhance these patterns.

Our study highlights the importance of oscillatory activity during gait functions
and the potential of these neural biomarkers to di↵erentiate between normal and
impaired gait for a more e↵ective therapy. Unlike established approaches that track
biomarkers associated with other PD symptoms—such as beta suppression for aki-
nesia and rigidity or gamma-band activity for dyskinesia—there is a notable lack of
established biomarkers specifically linked to gait dysfunction in PD. By uncovering
network oscillatory activities associated with gait enhancement, our findings provide
valuable insights that could facilitate the programming process and open avenues
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for developing adaptive, closed-loop DBS systems. These systems require a compre-
hensive understanding of the impacts of DBS on pathological neural oscillations and
behavioral measurements. The insights gained from our study could enable the future
design of closed-loop DBS systems that monitor neural oscillatory activity in real-time
and adjust stimulation parameters accordingly to modulate pathological oscillations,
ultimately leading to improvements in walking performance. In such human-in-the-
loop systems, neural oscillations would serve as feedback signals in a decision-making
platform where DBS parameters are adjusted based on real-time tracking of neural
activity. Advancing our understanding of the links between DBS settings, underlying
neural oscillations, and gait outcomes could pave the way for control system–based
methodologies that adjust stimulation parameters in real-time. Such developments
hold significant potential not only for improving gait in PD but also for addressing
motor symptoms in a wide range of neurodegenerative diseases.

Our study has limitations. The data-driven model’s performance was validated
with a small number of participants, and future studies with larger populations are
needed to confirm its e�cacy in identifying optimized DBS settings with fewer tri-
als. We did not impose constraints on total energy delivery, which could be a future
optimization target. Additionally, we relied on neurologists’ selections for GP stimu-
lation contacts without exploring their e↵ects in detail. Our analysis focused mainly
on straight walking, suggesting that future models should incorporate factors like
turning and gait initiation to improve treatment outcomes. Our exploratory analy-
sis identified neural biomarkers associated with gait improvements at both the group
and individual-specific levels. However, we recognize that the limited sample size and
the investigative nature of this study may a↵ect the generalizability of our findings.
Future studies with larger cohorts and more extensive data collection are warranted
to validate these neural biomarkers and to further interpret the neural mechanisms
underlying gait improvements in response to DBS.

4 Conclusion

Our study systematically modeled the relationship between DBS setting parameters,
underlying neural dynamics, and gait functions, demonstrating the e�cacy of data-
driven techniques in optimizing patient-specific DBS settings. By integrating key gait
kinematics into our performance assessment, we developed a robust tool for enhanc-
ing motor function through personalized DBS interventions. Our data-driven model
e↵ectively identified optimal DBS settings tailored to each patient, resulting in signif-
icant improvements in gait performance. The neural biomarkers we identified could
be used to assess the impact of DBS settings on gait functions, providing insights for
further optimization of stimulation parameters. This approach not only deepens our
understanding of how DBS settings modulate gait but also highlights the potential
for personalized treatment strategies applicable across a wide range of neurodegen-
erative diseases. The identified neural biomarkers have the potential to be utilized
in electrophysiology-based optimization of DBS settings targeting gait functions. The
methodologies explored in this research underscore the importance of addressing
individual patient needs to achieve more e↵ective DBS therapies.
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5 Methods

Subjects’ recruitment, DBS surgery, and electrode localization

Three participants with Parkinson’s disease (PD) and gait dysfunction (1 female,
2 male, age range: 48-66 years, disease duration: 3-13 years) were recruited and
implanted with Medtronic Summit RC+S devices (two subjects received bilateral and
one received unilateral), with subdural paddle electrodes over the motor cortex and
deep brain stimulation (DBS) electrodes in the globus pallidus (Figures 1J and 1K).
Participants were enrolled in a clinical trial (ClinicalTrials.gov ID: NCT-03582891)
at the University of California San Francisco (UCSF), which was approved by the
UCSF Institutional Review Board (IRB) under the approval number 20-32847. The
leads were attached to a research-grade, sensing-capable implantable pulse generator
(Medtronic Summit RC+S model B35300R), which was positioned in a compartment
over the pectoralis muscle on each side. Precise electrode localization was achieved
through established image analysis pipelines for both depth and cortical electrodes.
Post-implantation high-resolution CT images were briefly coregistered to preopera-
tive T1-weighted 3T MRI using a rigid, linear a�ne transformation. The accuracy
of coregistration was verified through visual inspection and, when necessary, refined
using an additional brain shift correction routine to align subcortical anatomy. Elec-
trode artifacts were then identified on CT and matched to known electrode geometry.
Additionally, cortical electrodes were projected onto the MRI-rendered pial surface.
More details regarding the surgical implantation and lead reconstruction can be found
in [57, 72–75].

Experiment procedures and data collection

For each subject, the DBS setting configuration was optimized before initiating the
tasks. This optimization (their “clinical setting”) was completed by each patient’s
Movement Disorders neurologist over a range of 1.5 – 3 months. All subjects were
receiving their typical dose of Parkinsonian medication throughout data collection
and follow-ups. In all participants, local field potentials (LFPs) were recorded from
the globus pallidus (GP). Electrocorticography (ECoG) recordings were recorded from
cortical sites were carried out using pairs of contacts: 9 and 8 for either the primary
motor (M1) or somatosensory cortices (S1), and 10 and 11 for either the premotor cor-
tex (PM) or M1, as determined by imaging-based reconstruction (Figures 1J and 1K).
Neural data were acquired at a sampling rate of 500 Hz. Moreover, the RC+S sys-
tem’s built-in accelerometer, which synchronizes measurements with external sensors,
collected accelerometry data at 64 Hz. We extracted and analyzed all the data using
open-source code available in https://github.com/openmind-consortium/Analysis-rcs-
data [76].

During clinic visits, patients’ DBS settings were altered within safety ranges to
examine their impacts on modulating gait functions. In response to each set of DBS set-
tings, participants performed overground walking in a loop of approximately 6 meters
with continuous streaming of their neural data and gait kinematics. Each setting was
tested for 200 (non-turning) steps, with half the turns to the left and half to the
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right. Before each walking trial, the research team systematically changed the stim-
ulation settings. These adjustments encompassed changes in stimulation amplitude,
frequency, and pulse width. A minimum interval of 15 minutes was observed between
each walking trial to allow a proper washout period. Following the completion of the
overground walking tasks, subjects were instructed to sit and rest for three minutes.
After this initial rest period, a member of the research team collected patient feed-
back using standardized questions covering the presence of any potential side e↵ects,
perceived e↵ort with walking, gait symmetry, perceived balance and/or stability, and
the overall feel of the setting compared to everyday function. Upon receiving their
feedback, participants were asked to sit and rest as they received new sets of stimula-
tion parameters. All trials were conducted in a randomized order with examiner and
patient blinding.

We used two types of wireless technology to capture gait kinematics: Trigno sys-
tem (Delsys) and MVN Analyze (Xsens). Delsys included two Avanti force-sensitive
resistor (FSR) adapters, two Avanti goniometer adapters, and two Trigno surface elec-
tromyography (EMG) sensors with built-in accelerometers. EMG sensors were placed
on the lower legs (bilateral soleus and tibialis anterior muscles) for precise muscle
activity measurement. Each FSR adapter connects to four FSRs (model DC: F01,
Delsys) positioned under the heel (calcaneus), big toe (hallux), base of the big toe
(first metatarsal), and base of the pinky toe (fifth metatarsal). A digital goniometer
(SG110/A) was placed next to the ankle bone (lateral malleolus) on each side to mea-
sure continuous ankle joint angles. Xsens uses 15 body-worn sensors to detect position
and movement for full-body motion tracking [77]. Subjects were also video recorded
with multiple camera views to facilitate additional inspection and analyses.

Integrating gait kinematics with walking performance index

This study focuses on straight-line overground walking; hence, turns were excluded
from the analysis. Gait kinematics, including step length and step time duration, are
derived utilizing Delsys and Xsens recordings. The initial detection of gait events nec-
essary for our analysis is conducted using FSR sensors. However, in instances where
gait peculiarities, such as toe walking, result in suboptimal signal strength, alternative
methods (e.g., goniometer signal) were employed to ensure accurate identification of
gait events. All gait events underwent visual inspection, with any inaccuracies manu-
ally adjusted. To analyze how walking performance is influenced by changes in DBS
settings, we developed a walking performance index (WPI) to capture various gait
kinematics, including stride velocity, step length variability, step time variability, and
arm swing amplitude. These metrics were selected based on their importance in the
literature on PD gait [26–32]. During each visit, we normalized the WPI relative to
the baseline levels observed in the clinical setting.

Data-driven model development and identification of

gait-optimized DBS setting

Leveraging data-driven methodologies, we modeled the relationship between distinct
DBS settings as the input and the WPI as the output. Employing the Gaussian process
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regression (GPR) method, we created personalized maps detailing how DBS settings
influence WPI for each participant, highlighting which stimulation settings could
enhance WPI. GPR stands out as a flexible, non-parametric Bayesian approach, adept
at capturing complex relationships between variables without presupposing the form
of the underlying function [78]. This method excels in scenarios where the relation-
ship’s exact nature is unknown or too complex to model with traditional parametric
techniques. By integrating a potentially infinite number of parameters, GPR allows
the data to dictate the complexity of the model, adapting to the nuances of each indi-
vidual’s response to DBS adjustments. Furthermore, GPR’s utility extends beyond
passive analysis, facilitating active learning by optimizing input selection to maximize
desired outcomes, making it an invaluable tool in the iterative process of identifying
optimal DBS settings for enhancing gait performance. This approach aligns with pre-
vious studies across various domains, demonstrating the versatility and power of GPR
in both understanding and optimizing human behavior and physiological responses.
In our implementation, we adopt the Matern kernel as the covariance function [79], a
choice driven by its flexibility and capability to capture the roughness of the functional
relationship between DBS settings and WPI. The Matern kernel is defined as:

k(xi, xj) =
1
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where d(., .) is the Euclidean distance, K⌫(.) is a modified Bessel function and �(.)
is the gamma function. The parameter l is associated with the length scale, while ⌫
controls the smoothness of the resulting function. Utilizing these specific parameters,
we enable a single restart of the optimizer to fine-tune the kernel’s hyperparame-
ters, aiming to improve the model fit. Additionally, we normalize the target values to
have zero mean and unit variance, a standard practice to enhance numerical stability
and the e�ciency of the optimization process. We implement this approach using the
scikit-learn library [80], which enables us to develop a nonlinear model that predicts
the WPI based on DBS settings and quantifies the uncertainty of these predictions.
The approach is particularly well-suited for our objective of generating personalized
maps of DBS settings to WPI, o↵ering insights into the optimal stimulation param-
eters for enhancing walking performance. This process continues by incorporating
additional visits and experimenting with new settings. Ultimately, we validate the
model by evaluating these optimized settings and comparing them to their clinical
configurations.

To assess the relationships between the ranked WPI values and feedback rankings
from both patients and physical therapists, we employed Spearman’s rank correlation
coe�cient (⇢). This non-parametric measure of correlation evaluates the strength and
direction of association between two ranked variables, making it suitable for ordinal
data.

⇢ = 1� 6
P

d2i
n(n2 � 1)

(2)
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where di is the di↵erence between the ranks of corresponding variables and n is the
number of observations. We selected this approach for its robustness to non-linear
relationships and its ability to handle ordinal data, which is appropriate given the
ranked nature of both our WPI values and subjective feedback rankings. Within each
visit, WPI values were ranked such that the highest WPI value received a rank of 1,
with the ranking continuing in descending order. This provided a set of ranked WPI
values for each visit. The ranked WPI values and the corresponding feedback rankings
from both patients and physical therapists across all subjects were combined into a
single dataset for comprehensive analysis.

Neural data processing and neurophysiological analysis

To synchronize LFP data and ECoG recordings with gait kinematic measurements,
we investigated the peak acceleration moments detected by RC+S, Delsys Trigno,
and Xsens sensors. Neural data were sampled at 500 Hz and processed through a 1
Hz high-pass filter. We then used MATLAB’s built-in continuous wavelet transform
function (cwt) for time-frequency analysis. Additionally, we conduct a comprehen-
sive analysis to examine the interaction between cortical and subcortical areas within
each hemisphere. This includes coherence between the LFP recordings from the pal-
lidum and ECoG recordings from the motor cortex within each brain hemisphere.
To achieve precise wavelet coherence analysis, we utilize MATLAB’s built-in function
(wcoherence).

Given the susceptibility of neural signals to various artifacts, we closely exam-
ined the time-frequency plots to detect gamma-band artifacts, identifying segments
with unusually high-frequency components. We applied a Butterworth high-pass filter
(cuto↵: 4 Hz, order: 4) using the Fieldtrip toolbox to eliminate low-frequency noise.
Next, we performed bandpass filtering in the gamma range (75-150 Hz) and calcu-
lated z-scores, marking data points exceeding an 8 z-score threshold as artifacts. We
incorporated a 0.2-second blanking bu↵er around each detected artifact to mitigate
spectral artifacts. The identified artifacts were replaced with NaNs, ensuring cleaner
data for subsequent analyses. We also addressed potential EKG-induced artifacts by
implementing an adaptive EKG artifact removal technique, ensuring accurate identifi-
cation of EKG artifact instances [81]. Significant EKG artifacts were not prevalent in
the conventional sensing channels within this cohort. However, when EKG-like arti-
facts were detected in stimulation contacts, we carefully analyzed these instances and
cross-referenced them with other channels to confirm the absence of EKG artifacts in
the LFP recordings. Additionally, we mitigated the possibility of data packet loss in
the RC+S devices by identifying such events through low-frequency analysis, thereby
excluding the a↵ected gait events from further analyses.

We utilized the z-score method for each frequency to normalize the signal power
and coherence values within each visit. Next, we extracted single gait trials from
the clean, normalized time-frequency representations of neural recordings, and sorted
the gait cycles by their stride times. To ensure our conclusions are una↵ected by
stimulation-induced sub-harmonics artifacts, we focused on the 1-30 Hz canonical fre-
quency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (12-30 Hz).
Within these frequency bands, we compute the average levels of signal power during
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phases of gait cycles across all trials (i.e., exemplified in Figure 4). Furthermore, to
assess the impact of variations in DBS settings on the neural signal power across dif-
ferent gait phases, we determined the average levels of signal power for each canonical
frequency band during each gait phase. Di↵erent phases include two double limb sup-
port periods and two swing phases (i.e., right toe o↵ to right heel strike for right leg
swing and left toe o↵ to left heel strike as the left leg swing).

Correlation Between Neural Oscillations and Improved Walking

Performance

To determine the neurophysiological basis underlying changes in gait metrics, we ana-
lyzed fluctuations in pallidal LFPs, cortical activity, and pallidal-cortical coherence
dynamics throughout each gait cycle as participants walked back and forth during the
walking performance assessment. We then used linear mixed-e↵ects models to eval-
uate neural biomarkers of walking performance. This approach included fixed e↵ects
for neural features, which represented the influence of neural oscillations on walking
performance, and random e↵ects for each individual to account for inter-subject vari-
ability. Given the exploratory nature of our analysis, we assessed correlations between
individual neural features and walking performance independently, rather than con-
structing a comprehensive model incorporating all potential features simultaneously.
Our aim was to identify consistent neural biomarkers across all participants that
correlated with walking performance.

Neural features analyzed included the average levels of spectral power in the canon-
ical frequency bands and coherence between cortical and subcortical regions. These
analyses were performed during di↵erent phases of the gait cycle. Additionally, we con-
ducted both group-level and person-specific analyses—group-level analyses to identify
shared neural markers across the cohort and individual-specific analyses to capture
unique characteristics that contributed to improved walking performance under gait-
optimized DBS settings. This dual approach ensured a comprehensive understanding
of the common and individual neural dynamics linked to gait enhancement.

6 Supplementary materials

Figures S1-S6.

7 Data availability

Data from this study can be made available upon reasonable request, provided that
patient confidentiality is maintained and disclosure standards are met.
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A.: Kinematic e↵ects of combined subthalamic and dorsolateral nigral deep brain
stimulation in parkinson’s disease. Journal of Parkinson’s Disease (Preprint), 1–14
(2024)

[41] Conway, Z.J., Silburn, P.A., Perera, T., O’Maley, K., Cole, M.H.: Low-frequency
stn-dbs provides acute gait improvements in parkinson’s disease: a double-
blinded randomised cross-over feasibility trial. Journal of NeuroEngineering and
Rehabilitation 18(1), 125 (2021)
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Pedrosa, D.: Subthalamic 85 hz deep brain stimulation improves walking pace and
stride length in parkinson’s disease patients. Neurological Research and Practice
5(1), 33 (2023)

[43] Jia, F., Shukla, A.W., Hu, W., Ma, Y., Zhang, J., Almeida, L., Kao, C., Guo, Y.,
Zhang, S., Tao, Y., et al.: Variable frequency deep brain stimulation of subtha-
lamic nucleus to improve freezing of gait in parkinson’s disease. National Science
Review 11(6) (2024)

[44] Li, H., McConnell, G.C.: Deep brain stimulation for gait and postural dis-
turbances in parkinson’s disease. Advances in Motor Neuroprostheses, 101–122
(2020)

[45] Morton, A., Fraser, H., Green, C., Drovandi, A.: E↵ectiveness of deep brain stim-
ulation in improving balance in parkinson’s disease: A systematic review and
meta-analysis. World neurosurgery (2024)

[46] Canessa, A., Palmisano, C., Isaias, I.U., Mazzoni, A.: Gait-related frequency mod-
ulation of beta oscillatory activity in the subthalamic nucleus of parkinsonian
patients. Brain Stimulation 13(6), 1743–1752 (2020)

[47] Thenaisie, Y., Lee, K., Moerman, C., Scafa, S., Gálvez, A., Pirondini, E., Burri,
M., Ravier, J., Puiatti, A., Accolla, E., et al.: Principles of gait encoding in
the subthalamic nucleus of people with parkinson’s disease. Science translational
medicine 14(661), 1800 (2022)

[48] Tsuboi, T., Lopes, J.L.M.L.J., Patel, B., Legacy, J., Moore, K., Eisinger, R.S.,
Almeida, L., Foote, K.D., Okun, M.S., Ramirez-Zamora, A.: Parkinson’s disease
motor subtypes and bilateral gpi deep brain stimulation: One-year outcomes.
Parkinsonism & Related Disorders 75, 7–13 (2020)

[49] Celiker, O., Demir, G., Kocaoglu, M., Altug, F., Acar, F.: Comparison of subtha-
lamic nucleus vs. globus pallidus intern deep brain stimulation in terms of gait
and balance; a two year follow-up study. Turkish Neurosurgery (2019)

[50] Lohnes, C.A., Earhart, G.M.: E↵ect of subthalamic deep brain stimulation on

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.30.24316305doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.30.24316305
http://creativecommons.org/licenses/by-nc-nd/4.0/


turning kinematics and related saccadic eye movements in parkinson disease.
Experimental neurology 236(2), 389–394 (2012)

[51] Cury, R.G., Pavese, N., Aziz, T.Z., Krauss, J.K., Moro, E., Movement Dis-
orders Society, N.: Gaps and roadmap of novel neuromodulation targets for
treatment of gait in parkinson’s disease. npj Parkinson’s Disease 8(1), 8 (2022)

[52] Molina, R., Hass, C.J., Sowalsky, K., Schmitt, A.C., Opri, E., Roper, J.A.,
Martinez-Ramirez, D., Hess, C.W., Foote, K.D., Okun, M.S., et al.: Neurophys-
iological correlates of gait in the human basal ganglia and the ppn region in
parkinson’s disease. Frontiers in human neuroscience 14, 194 (2020)

[53] Morelli, N.: E↵ect and relationship of gait on subcortical local field potentials in
parkinson’s disease: A systematic review. Neuromodulation: Technology at the
Neural Interface 26(2), 271–279 (2023)

[54] Swinnen, B.E., Buijink, A.W., Piña-Fuentes, D., Bie, R.M., Beudel, M.: Diving
into the subcortex: The potential of chronic subcortical sensing for unravelling
basal ganglia function and optimization of deep brain stimulation. Neuroimage
254, 119147 (2022)

[55] Louie, K.H., Yaroshinsky, M.S., Morrison, M.A., Choi, J., Hemptinne, C., Little,
S., Starr, P.A., Wang, D.D., et al.: Cortico-subthalamic field potentials sup-
port classification of the natural gait cycle in parkinson’s disease and reveal
individualized spectral signatures. Eneuro 9(6) (2022)

[56] Stebbins, G.T., Goetz, C.G., Burn, D.J., Jankovic, J., Khoo, T.K., Tilley, B.C.:
How to identify tremor dominant and postural instability/gait di�culty groups
with the movement disorder society unified parkinson’s disease rating scale: com-
parison with the unified parkinson’s disease rating scale. Movement Disorders
28(5), 668–670 (2013)

[57] Gilron, R., Little, S., Perrone, R., Wilt, R., Hemptinne, C., Yaroshinsky, M.S.,
Racine, C.A., Wang, S.S., Ostrem, J.L., Larson, P.S., et al.: Long-term wire-
less streaming of neural recordings for circuit discovery and adaptive stimulation
in individuals with parkinson’s disease. Nature biotechnology 39(9), 1078–1085
(2021)

[58] Peterson, D.S., Mancini, M., Fino, P.C., Horak, F., Smulders, K.: Speeding up
gait in parkinson’s disease. Journal of Parkinson’s disease 10(1), 245–253 (2020)

[59] Picillo, M., Lozano, A.M., Kou, N., Munhoz, R.P., Fasano, A.: Programming deep
brain stimulation for parkinson’s disease: the toronto western hospital algorithms.
Brain stimulation 9(3), 425–437 (2016)

[60] Jenkinson, N., Brown, P.: New insights into the relationship between dopamine,
beta oscillations and motor function. Trends in neurosciences 34(12), 611–618

24

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.30.24316305doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.30.24316305
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2011)

[61] Ray, N., Jenkinson, N., Wang, S., Holland, P., Brittain, J., Joint, C., Stein, J.,
Aziz, T.: Local field potential beta activity in the subthalamic nucleus of patients
with parkinson’s disease is associated with improvements in bradykinesia after
dopamine and deep brain stimulation. Experimental neurology 213(1), 108–113
(2008)
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Kühn, A.A.: Subthalamic beta band suppression reflects e↵ective neuromodu-
lation in chronic recordings. European Journal of Neurology 28(7), 2372–2377
(2021)

[70] He, S., Deli, A., Fischer, P., Wiest, C., Huang, Y., Martin, S., Khawaldeh, S.,
Aziz, T.Z., Green, A.L., Brown, P., et al.: Gait-phase modulates alpha and beta
oscillations in the pedunculopontine nucleus. Journal of Neuroscience 41(40),
8390–8402 (2021)

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.30.24316305doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.30.24316305
http://creativecommons.org/licenses/by-nc-nd/4.0/


[71] Thevathasan, W., Pogosyan, A., Hyam, J.A., Jenkinson, N., Foltynie, T.,
Limousin, P., Bogdanovic, M., Zrinzo, L., Green, A.L., Aziz, T.Z., et al.: Alpha
oscillations in the pedunculopontine nucleus correlate with gait performance in
parkinsonism. Brain 135(1), 148–160 (2012)

[72] Davis, T.S., Caston, R.M., Philip, B., Charlebois, C.M., Weaver, K.E., Smith,
E.H., Rolston, J.D.: Legui: a fast and accurate graphical user interface for auto-
mated detection and anatomical localization of intracranial electrodes. Frontiers
in Neuroscience 15, 769872 (2021)

[73] Horn, A., Li, N., Dembek, T.A., Kappel, A., Boulay, C., Ewert, S., Tietze, A.,
Husch, A., Perera, T., Neumann, W.-J., et al.: Lead-dbs v2: Towards a compre-
hensive pipeline for deep brain stimulation imaging. Neuroimage 184, 293–316
(2019)

[74] Ewert, S., Plettig, P., Li, N., Chakravarty, M.M., Collins, D.L., Herrington, T.M.,
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Fig. 1 Workflow overview, patient characteristics, lead reconstruction, and electrode

placement. Panel (A) illustrates the DBS depth electrodes implanted along with the cortical paddles
placed to stimulate electrical impulses and capture neural activity. Panel (B) depicts a subject with
Parkinson’s disease (PD) wearing a combination of sensors (i.e., Trigno system (Delsys) and MVN
Analyze (Xsens)) to capture various gait kinematics. Panel (C) shows a sample of data collected
during overground walking. The first two subpanels display neural data from the Globus pallidus and
motor cortex. Next are the gait kinematics such as force sensors and ankle acceleration to capture gait
events and spatiotemporal measurements to monitor body movements like arm swing amplitudes.
Panel (D) outlines the components of stimulation parameters altered in our experiments. Panel (E)

summarizes the goals of our analysis, which aim to understand the links between DBS settings,
neurophysiological characteristics, and gait functions in PD. Panel (F) details the metrics employed
to assess the impacts of DBS settings on walking performance, including variability in step length
and step time, stride velocity, and arm swing amplitude. Panel (G) presents sample results from
our data-driven approach, mapping the relationship between DBS setting parameters and walking
performance, where deeper red colors indicate higher walking performance. Panel (H) exemplifies
the outcome of our study in uncovering the neurophysiological bases of DBS settings associated with
improved walking performance where the walking performance is a function of the cortical-subcortical
coherence during di↵erent phases of the gait cycle. Panel (I) shows patient characteristics. MDS-
UPDRS-III: Movement Disorders Society’s Unified Parkinson’s Disease Rating Scale; Part III: motor
domain; PIGD: Posture Instability Gait Disorder (subscore from items 3.9: arising from the chair,
3.10: gait; 3.11: freezing, 3.12:postural instability, and 3.13 posture. Depth pallidal electrodes and
cortical paddles over the motor cortex are displayed in Panels (A) and (B), respectively.
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Fig. 2 Walking performance development. Panel (A) shows an example of the variations in
gait kinematics in response to di↵erent DBS settings. Panel (B) displays the corresponding fluctu-
ations in the walking performance index (WPI). The column with the hatched pattern represents
the clinically optimized DBS settings tested at each visit. Heatmap in panel (C) shows the pairwise
Pearson correlation coe�cients among all gait metrics and the WPI. The matrix visualizes the degree
of linear relationships between variables, with color intensity representing the strength of the corre-
lations: colors range from green (lower values) to yellow (higher values). The low o↵-diagonal values
(green shades) indicate minimal multicollinearity among the metrics, confirming that each metric
provides unique and independent information contributing to the WPI. Panels (C) and (D) show
the correlation between the WPI rankings and feedback received from the subject, and evaluations
from the physical therapist, respectively. Green, blue, and red dots represent data from subjects 1,
2, and 3, respectively. The x-axis displays the rankings based on WPI scores, while the y-axis shows
the rankings provided by the patients. In both axes, lower numbers indicate higher rankings, with a
rank of 1 representing the best performance or preference.
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Fig. 3 Data-Driven modeling and optimization of DBS settings. For each subject, panel
(A) depicts the progression of the Gaussian Process Regression (GPR) model in 2-D planes, updated
with data from each visit. Panel (B) showcases the final GPR model, mapping the relationship
between DBS settings (amplitude, frequency, and pulse width) and WPI levels. The two perspectives
illustrate the influence of amplitude, frequency, and pulse width on WPI levels, with red indicating
higher walking performance and blue indicating lower WPI levels. Panel (C) compares WPI levels
and associated gait kinematics under the clinical setting versus the gait-optimized setting derived
from the GPR model.
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Fig. 4 Neural data analysis and feature extraction. Panel (A) demonstrates a sample of
continuous wavelet transformation of the neural data across three complete gait cycles from the
GP (top), PM (middle), and GP-PM coherence (bottom) sub-panel from the left brain hemisphere,
respectively. Each row shows the normalized values of a single frequency, initiated at the left heel
strike (purple lines). Within each row, purple lines denote the left heel strike (LHS), orange lines
denote the right toe-o↵ (RTO), red lines denote the right heel strike (RHS), and pink lines denote the
left toe-o↵ (LTO) moments. Panel (B) demonstrates the average levels of signal power and coherence
within the beta band (12-30 Hz) across all gait cycles, sorted by stride time and initiated at the LHS.
Within each row, orange dots denote the RTO, red dots denote the RHS, and pink dots denote the
LTO moments. All gait cycles conclude with the subsequent LHS (purple dots). Gait phases include
DLS1 (double limb support 1) from LHS to RTO, CLS (contralateral leg swing) from RTO to RHS,
DLS2 (double limb support 2) from RHS to LTO, and ILS (ipsilateral leg swing) from LTO to LHS.
Boxplots in panel (C) represent average levels of the beta band during di↵erent phases of the gait
cycle. Orange, red, pink, and purple colors, in turn, show the DS1, CLS, DS2, and ILS phases of the
gait cycle.
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Fig. 5 Correlation analysis of neural signal characteristics and walking performance.

Panel (A) presents the relationship between changes in LFP signal power in the pallidal area and
walking performance. Left and right sub-panels, in turn, show the relationship between the walking
performance and the beta band power during the double limb support period after the contralateral
leg swing and the ipsilateral leg swing, respectively. Panel (B) illustrates the relationship between
the alpha band power of cortical-subcortical coherence (i.e., pallidum and M1) during the double
limb support period after the contralateral leg swing and walking performance. Panels (C) and (D)

exemplify the comparison of the neural signal variations from the left brain hemisphere between the
sessions with low and high WPI across all single gait cycles. Panel (C) illustrates the beta band power
of LFP signal power in the pallidal area, while panel (D) shows the alpha band power of pallidum–M1
coherence. In each panel, heatmaps on the left and right correspond to the lowest and highest walking
performance, respectively. Each row represents a single gait trial, sorted by stride time and initiated
at the left heel strike. Orange dots denote the right toe-o↵, red dots denote the right heel strike,
and purple dots denote the left toe-o↵. All gait cycles conclude with the subsequent left heel strike.
Middle sub-panels compare signal power during the specific gait phases of interest (i.e., double limb
support period and ipsilateral leg swing in panel (C), and double limb support period in panel (D)).
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