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Abstract: 

Background:  

Large Language Models (LLMs) are emerging as promising tools in healthcare. This systematic review 

examines LLMs’ potential applications in nephrology, highlighting their benefits and limitations.  

Methods:  

We conducted a literature search in PubMed and Web of Science, selecting studies based on Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The review focuses 

on the latest advancements of LLMs in nephrology from 2020 to 2024. PROSPERO registration number: 

CRD42024550169. 

Results:  
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Fourteen studies met the inclusion criteria and were categorized into five key areas of nephrology: 

Streamlining workflow, disease prediction and prognosis, laboratory data interpretation and management, 

renal dietary management, and patient education. LLMs showed high performance in various clinical 

tasks, including managing continuous renal replacement therapy (CRRT) alarms (GPT-4 accuracy 90-

94%) for reducing intensive care unit (ICU) alarm fatigue, and predicting chronic kidney diseases (CKD) 

progression (improved positive predictive value from 6.7% to 20.9%). In patient education, GPT-4 

excelled at simplifying medical information by reducing readability complexity, and accurately translating 

kidney transplant resources. Gemini provided the most accurate responses to frequently asked questions 

(FAQs) about CKD. 

Conclusions:  

While the incorporation of LLMs in nephrology shows promise across various levels of patient care, their 

broad implementation is still premature. Further research is required to validate these tools in terms of 

accuracy, rare and critical conditions, and real-world performance. 
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Introduction: 

Large language models (LLMs), such as ChatGPT1, are advanced AI models designed to generate human-

like text2. These models have already shown potential across various medical specialties3–11. The complex 

nature of kidney diseases and their treatment may enable LLM technology to improve clinical 

management. 

Multimodal LLMs allow for effective interpretation of complex data, including visual data through 

imaging12. They are also capable of tailoring treatments by accessing evidence-based scientific 

literature13. Furthermore, LLMs can possibly automate routine tasks, such as documenting medical 

records, analyzing laboratory tests, and reviewing different imaging modalities14–16. This automation may 

allow doctors to focus more on providing patient-centered care, ultimately leading to better outcomes in 

nephrology practice.  

In this review, we aim to show diverse clinical applications of LLM in the field of nephrology. Our review 

outlines the capabilities and limitations of LLM in kidney disease management.  

 

Overview of AI modalities (Figure 2): 

Artificial Intelligence (AI) aims to train a computer to perform tasks usually requiring human cognition. 

AI is a general term referring to a broad range of models17. 

Natural Language Processing (NLP) is an important domain within AI, offering various functions related 

to human language. NLP allows for human language understanding, such as human-like interactions 

between the user and the chatbot, text generation and processing, and many other functions 18.  

Deep Learning (DL) is an advanced type of AI. Within NLP it is used to facilitate its complex linguistic 

functions. The underlying DL architecture is inspired by the function of biological neurons. It is based on 

artificial neural networks arranged in multiple layers (hence “deep”). Data processing is handled by 
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interconnected nodes representing neurons, where each "neuron" is similar to a single logistic regression 

unit19. 

When the user presents the chatbot with a textual input (termed prompt), the text then passes through 

several layers of interconnected nodes, each layer allowing the algorithm additional understanding of the 

text. An attention mechanism is used, detecting individual importance of words within a sentence20. This 

ultimately allows the machine to understand the written text in a contextual manner, and therefore, more 

accurately. 

Transformers are a specific type of multi-layered neural network used in DL, characterized by their use of 

attention mechanisms. A major advancement in transformers occurred with the release of Bidirectional 

Encoder Representations from Transformers (BERT)21. BERT improved the application of transformer 

architecture and achieved state-of-the-art results in various NLP tasks. The improvement offered by 

BERT was due to several factors, including its bidirectional text processing ability, its pre-training and 

fine-tuning processes, and its effective adaptability to new tasks. 

Large Language Models (LLMs) represent a significant development in the field of transformers and the 

expansion of NLP’s capabilities. LLMs enable complex language generation skills, as seen in well-known 

chatbots such as openAI’s Chat Generative Pre-Trained Transformer (ChatGPT)1 and Google’s Gemini 22. 

These platforms allow users to pose prompts, and receive written, coherent, and contextual answers 

generated by AI. When the prompt is more descriptive, the generated answer becomes more accurate. 

Language generation by LLMs is based on predicting the most probable sequence of words, one by one. 

LLMs are trained on very large databases and then fine-tuned via reinforcement learning—a process of 

improving the tool’s performance through its own experience. The powerful text analysis capabilities 

offered by LLMs can be widely used across numerous professions, potentially alleviating the burden of 

intricate data processing and information retrieval, thus enabling a more effective workflow.  

OpenAI offers both free and paid versions of ChatGPT, with the free version utilizing GPT-3.5 and the 

paid version powered by the more advanced GPT-4. In this paper, ChatGPT will refer to the GPT-3.5 
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version, while GPT-4 will denote the paid, more advanced model to maintain clarity between the two 

versions. 

As AI continues to evolve, its applications in various medical fields are becoming increasingly 

prominent3–11. This systematic review aims to explore how the diverse functions of LLMs can be 

leveraged to enhance clinical care within the field of nephrology. 

 

 

Methods: 

Search strategy 

This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines (Figure 3). 

We conducted a literature search in MEDLINE/PubMed and Web of Science databases on July 21st, 

2024. The keywords used for the search were related to two main subjects: “Nephrology” and “LLM”. 

The full strategy search for each database is detailed in Supplementary Material 1. 

Studies were included in this systematic review if they addressed the clinical applications of LLMs within 

the field of nephrology. To meet the inclusion criteria, studies had to be peer-reviewed original research 

articles published in English and directly relevant to the integration of LLMs in nephrology practice, 

including aspects such as patient care, diagnostic processes, treatment efficacy, and clinical outcomes. 

Exclusion criteria were applied to ensure the relevance and quality of the review. Non-original articles, 

including reviews, editorials, and commentaries, were excluded. Studies that focused on areas outside of 

nephrology, such as urology, renal oncology, clinical pharmacology, and laboratory medicine 

instrumentation, were omitted. Additionally, research concentrating on LLM optimization techniques, 

engineering applications, or technological advancements without a clear connection to patient care or 

clinical outcomes in nephrology was excluded. Articles evaluating AI tools in non-clinical settings—such 
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as professional certification assessments, literature search assistance, scientific writing support, or exam 

question responses—did not meet the inclusion criteria. Furthermore, studies exploring non-LLM 

artificial intelligence applications or those showcasing visual data processing tasks performed by LLMs 

were excluded. 

This systematic review is registered in PROSPERO: CRD42024550169. 

Study selection 

Two reviewers (ZU and SS) independently screened the titles and abstracts to decide whether the results 

met the inclusion criteria. A further review of the full-text article took place in case of uncertainty. A third 

reviewer (EK) aided in solving any disagreements in the study selection process.  

Data extraction 

Data was collected using a standardized data extraction sheet. The information gathered included the year 

of publication, study design, study location, ethical statement, number of patients, inclusion and exclusion 

criteria, description of the population, use of an online database, size of the online database, use of an 

independent test dataset, clinical application, evaluation metrics, and performance results. 

Quality assessment and risk of bias 

To check for bias and quality assessment, we used the adapted version of Quality Assessment of 

Diagnostic Accuracy Studies (QUADAS-2) criteria.  

 

Results: 

Study selection and classification process 

Our literature search identified a total of 556 papers. Of these, 14 studies met our inclusion criteria Figure 

3. We categorized the eligible studies into five distinct nephrology practice clinical applications: 
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Streamlining workflow, disease prediction and prognosis, laboratory data interpretation and management, 

renal dietary management, and patient education, as outlined in Table 1. 

The characteristics of each included article are presented in Table 2. Furthermore, a thorough comparison 

of the advantages and limitations of the discussed LLM modalities is in Table 3.  

 

Quality assessment 

To assess the quality and risk of bias, we employed the adapted version of the Quality Assessment of 

Diagnostic Accuracy Studies (QUADAS-2) criteria across the 14 studies. Overall, all studies exhibited a 

moderate to high risk of bias concerning the index test, predominantly due to the absence of external 

validation and ambiguity surrounding the independence of results interpretation relative to the reference 

standard. Notably, two studies were classified as having a high risk of bias in at least one domain. The 

data management domain also revealed a moderate risk of bias in most studies, primarily due to 

incomplete or poorly specified data management processes and a lack of clear procedures to ensure data 

integrity. The detailed quality assessment is available in Supplementary Material 2. 

 

Descriptive summary of the results according to the five clinical applications 

Streamlining workflow 

Four papers were classified under this category, each addressing distinct aspects of clinical work 

performed by nephrologists 23–26 

Sheikh MS et al.23 demonstrated high accuracy of GPT-4 (90-94%) in managing continuous renal 

replacement therapy (CRRT) alarms, surpassing the performance of ChatGPT (84-86%) although the 

difference was not statistically significant. As the chosen CRRT questions reflect real-life frequently 
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encountered ICU scenarios, the study illustrates LLMs' potential to reduce ICU alarm fatigue and improve 

patient safety.  

Miao J et al.24 provided a descriptive application of GPT-4 in addressing inquiries from practicing 

nephrologists, using nephrogenic diabetes insipidus (DI) diagnosis as a case study. They employed 

techniques such as Chain of Thought (CoT) prompt engineering, which guides the model to break down 

reasoning step-by-step 27, and Retrieval-Augmented Generation (RAG), which integrates external data 

sources into the model’s responses 28. The authors found that these methods enhance diagnostic specificity 

and alignment with the kidney disease: Improving Global Outcomes (KDIGO) guidelines. 

Disease prediction and prognosis 

Two studies presented LLM tools for different prediction tasks related to nephrology conditions 29,30 

Zisser M et al.29 introduced the STRAFE transformer, which outperformed other models in predicting 

progression to stage 5 chronic kidney disease (CKD) and significantly improving the identification of 

high-risk patients. STRAFE’s ability to utilize real-world censored data (of patients with limited 

observation time, who have not yet encountered the event of interest) allows a more accurate time-to-

event prediction.  

Mao CS et al.30 presented AKI-BERT for the early prediction of acute kidney injury (AKI) based on 

clinical notes. AKI-BERT achieved higher accuracy (AUC 0.720-0.764) compared to general BERT 

models, emphasizing the importance of specialized training in handling unstructured medical text. 

Both models require a complex training process and further adaptations for generalizability to other tasks.  

Laboratory data interpretation and management 

Two papers explored the integration of LLMs in the laboratory aspect of nephrology 15,31 

Kaftan AN et al. 15compared the performance of three LLMs in interpreting ten simulated sets of 

laboratory values, and found that the Copilot model demonstrated the highest accuracy. Copilot’s 
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performance had statistically significant difference from ChatGPT’s (p=0.002 for all lab results, 0.001 for 

kidney functions) and Gemini’s (p=0.008 for all lab results, 0.005 for kidney functions). It is noteworthy 

that the newer GPT-4 model was not evaluated, and only ten cases were analyzed. Despite the high 

performance of Copilot, it relies on input quality and bases its responses on online resources, which are 

not necessarily tailored for professional medical use. 

Berger M et al. 31introduced a differential transformer for sodium monitoring during a simulated CRRT 

setup, utilizing a noninvasive and contactless architecture. The test duration was limited to six hours, 

during which electrolytes were intentionally varied to assess performance in pathological states as well, 

which are commonly encountered in patients requiring CRRT.  

The transformer demonstrated high sensitivity to sodium concentration changes (192 mV/mol/L) and 

greater precision in repeated measurements (0.3 mmol/L) compared to standard blood gas analyzer 

(BGA), which has a precision of 0.6 mmol/L. While the absolute accuracy was 4 mmol/L, lower than the 

BGA’s 2 mmol/L, this was still considered sufficient for continuous sodium monitoring. Further 

evaluation of this tool in real-world clinical settings is needed. 

Renal dietary management 

The renal diet, an essential part of care for patients with kidney disease, was addressed by one study 32 

Qarajeh A et al. evaluated the ability of four different LLMs to classify food based on their potassium and 

phosphorous content. GPT-4 and Bing Chat excelled in potassium content classification, achieving an 

accuracy of  81%, while Bard AI showed 100% accuracy in determining phosphorus content.  

Patient education 

The abilities of LLMs to answer patient inquiries and concerns were showcased in five papers 33–37 

Garcia Valencia OA et al. 33,34contributed two significant studies to this group, both promoting inclusivity 

and equity in renal healthcare. The first paper 33assessed the simplification abilities of ChatGPT and GPT-

4 for 27 frequently asked questions (FAQs) and answers on kidney donation. Two independent attempts 
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were conducted in new chat sessions. GPT-4 significantly reduced the average reading grade level from 

the original reference of 9.6 ± 1.9 (roughly 10th grade) to 4.30 ± 1.71 (4th grade), while ChatGPT reduced 

it to 7.72 ± 1.85 (about 8th grade). The goal was to simplify the text to below an 8th-grade reading level. 

GPT-4 achieved this in 96.30% of cases, while ChatGPT succeeded in 59.26% of cases, indicating that 

the free version of ChatGPT provides more limited access to high-quality, simplified information. The 

second paper by this author 34, evaluated the translation abilities from English to Spanish of 54 FAQs on 

kidney transplant. Two Spanish-speaking nephrologists scored the translations and found high levels of 

linguistic accuracy (ChatGPT: 4.89 ± 0.31, GPT-4: 4.94 ± 0.23) and cultural sensitivity for Hispanics 

(4.96 ± 0.19 for both models) in both ChatGPT and GPT-4. As opposed to the previous paper, there was 

no significant difference between the performance of the paid and free versions of ChatGPT (linguistic 

accuracy: p=0.26, cultural sensitivity: p=1.00).   

Lee J et al.35 also evaluated 86 questions on kidney transplant, selected from a pool of real questions 

asked on Reddit. In this research, the rating of information quality and empathy was done by 565 

participants in an online survey. While the study did not explicitly exclude medical professionals as raters, 

the primary aim was to capture individual perceptions of ChatGPT-generated responses, reflecting how 

they might be received by patients. The study found that higher education levels among non-White 

individuals predicted higher-perceived quality (M = 6.03, SE = 0.39), whereas higher education among 

White individuals led to lower perceived quality (M = 5.85, SE = 0.39). 

 

Similarly, Naz R et al. 36 researched the accuracy and quality of information provided by three LLMs, 

when asked 40 FAQs on a different topic- parents’ concerns about CKD. Two independent pediatric 

nephrologists classified the generated responses with respect to the KDIGO guidelines as a reference. 

ChatGPT and Gemini showed high accuracy in diagnosis and CKD lifestyle questions. Among the models 

evaluated, Gemini was noted as the most accurate in providing information on CKD, with an average 

Global Quality Score (GQS) of 3.46 ± 0.55.  
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Discussion:  

In this systematic review we explored the use of various LLMs such as ChatGPT in nephrology. We 

focused on five key aspects of patient care emphasizing their potential to enhance both physician 

workflows and patient engagement. However, the tested modalities present several limitations, including 

dependence on input quality, and the necessity for further validation in diverse clinical settings. 

 

Applications from Physicians’ Perspective 

LLMs, such as GPT-4, have demonstrated significant potential in improving workflow efficiency in 

nephrology, particularly in ICU settings. However, several of these tools, including their application in 

continuous renal replacement therapy (CRRT) management, lack extensive external validation and have 

not been prospectively tested in real-world clinical environments 2331. Additionally, LLMs support 

diagnostic processes by enhancing diagnostic specificity and ensuring alignment with established 

guidelines like KDIGO, thereby improving clinical decision-making and patient outcomes 24To mitigate 

issues such as hallucinations and outdated information, Retrieval-Augmented Generation (RAG) has been 

integrated to pull from external data sources, ensuring that LLMs provide up-to-date, guideline-adherent 

recommendations 24,28. However, constant verification is required, and ethical issues related to cloud-

based patient data processing and security pose significant barriers to widespread implementation.  

LLMs also contribute to disease prediction by accurately forecasting CKD progression and AKI, 

facilitating early interventions. Models like STRAFE and AKI-BERT leverage unstructured clinical data 

to identify high-risk patients, enhancing personalized patient management. In laboratory data 

interpretation, LLMs improve the accuracy of renal function test analyses.  

While these developments show promise, the ability of tools like ChatGPT to simulate a physician's 

thought process remains limited. Although LLM reasoning mimics a physician's diagnostic approach by 

breaking the reasoning process into steps, these models still require further validation before being fully 
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integrated into clinical practice24,27. For instance, Kaftan AN et al. showcased Copilot‘s accuracy in 

interpreting ten sets of laboratory values; however, its reliance on online resources and its inability to 

manage complex medical data suggest that further empirical validation in real-world settings is needed 15. 

Moreover, despite their potential, the generalizability of these models remains restricted, necessitating 

further validation before widespread adoption in nephrology practice. 

 

Applications from Patients’ Perspective 

The incorporation of LLMs into nephrology practice holds the potential for bridging gaps in patient 

education and improving accessibility to medical information. For example, models such as GPT-4, can 

simplify complex medical concepts, provide culturally sensitive translations, and accurately respond to 

frequently asked questions, even when inquiries contain misspellings or are incomplete. 33,34,37.  The 

studies reviewed focused on patient inquiries based on real online sources, that patients may encounter 

when exploring a nephrology subject online. These studies underscore the potential for AI tools to 

improve the accessibility of health-related content across different literacy levels and languages, 

promoting inclusivity and health equity 33,34. However, a significant disparity remains between the free 

and paid versions of ChatGPT, with GPT-4 (the paid version) consistently outperforming the free version 

in medical information simplification tasks 33. This performance gap, while showcasing the advancements 

in AI, also raises concerns about accessibility, as better-quality health information is currently limited to 

those who can afford paid access, highlighting an inherent health inequity. 

While LLMs enhance accessibility, they may oversimplify information, potentially omitting critical 

details necessary for comprehensive patient understanding 38. Furthermore, as Lee J et al. noted, while 

tailoring AI-generated responses based on education level and race has the potential to improve 

effectiveness, patient perception of these responses can still vary, suggesting that LLM-generated 

information may not always be equally accessible or comprehensible to all patients 35. Lastly, the lack of 

human interaction in LLMs limits their ability to provide empathetic, personalized care, a crucial aspect 
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of effective doctor-patient communication 37. This limitation raises ethical concerns about their integration 

into clinical settings. 

 

Limitations 

Our systematic review focused on five areas of possible clinical applications of LLMs in nephrology, 

specifically excluding non-clinical applications. Some of the papers retrieved relied on a relatively small 

dataset. The heterogenicity in the tested clinical tasks and used methods among our selected papers did 

not allow us to conduct a meta-analysis. The field of LLMs and its clinical implications is quickly 

evolving, and thus drawing conclusions still requires further research.  

 

In conclusion, while incorporating LLMs in nephrology shows promise across various levels of patient 

care, their broad implementation is still premature. Further research is required to validate these tools in 

terms of accuracy, rare and critical conditions, and real-world performance. 
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Figure 1: Visual Abstract  

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.30.24316199doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.30.24316199
http://creativecommons.org/licenses/by/4.0/


 19 

Figure 2: Overview of AI modalities 
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Figure 3: Search and selection flowchart 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.30.24316199doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.30.24316199
http://creativecommons.org/licenses/by/4.0/


 21 

Table 1: 

Clinical application Title  1st author  Journal  Year of 
publication  

Streamlining 
workflow  

Personalized Medicine Transformed: 
ChatGPT's Contribution to 
Continuous Renal Replacement 
Therapy Alarm Management in 
Intensive Care Units 

Sheikh 
MS23 

J Pers Med 2024  

 How to improve ChatGPT 
performance for nephrologists: a 
technique guide 

Miao J24 J Nephrol 2024 

 Constructing synthetic datasets with 
generative artificial intelligence to 
train large language models to 
classify acute renal failure from 
clinical notes 

Litake O25 J Am Med Inform Assoc 2024 

exKidneyBERT: a language model 
for kidney transplant pathology 
reports and the crucial role of 
extended vocabularies  

Yang T26 PeerJ Comput Sci 2024 

Disease prediction 
and prognosis  

Transformer-based time-to-event 
prediction for chronic kidney disease 
deterioration 

 

Zisser 
M29 

J Am Med Inform Assoc 2024  

 A Pre-trained Clinical Language 
Model for Acute Kidney Injury 

Mao CS30 Proceedings of the 2020 8th 
IEEE International 
Conference on Healthcare 
Informatics (ICHI 2020) 

2020 

Laboratory data 
interpretation and 
management  

Response accuracy of ChatGPT 3.5 
Copilot and Gemini in interpreting 
biochemical laboratory data a pilot 
study 

Kaftan 
AN15 

Sci Rep 2024  

 Contactless and continuous sodium 
concentration monitoring during 
continuous renal replacement therapy 

Berger 
M31 

Sensors and Actuators B: 
Chemical 

2020 

Renal dietary 
management  

AI-Powered Renal Diet Support: 
Performance of ChatGPT, Bard AI, 
and Bing Chat 

Qarajeh 
A32 

Clin Pract 2023 

Patient education Empowering inclusivity: improving 
readability of living kidney donation 
information with ChatGPT 

Garcia 
Valencia 
OA33 

Front Digit Health 2024 

 AI-driven translations for kidney 
transplant equity in Hispanic 
populations 

Garcia 
Valencia 
OA34 

Sci Rep 2024  

 Using ChatGPT for Kidney 
Transplantation: Perceived 
Information Quality by Race and 
Education Levels 

Lee J35 Clin Transplant 2024  

 Can large language models provide 
accurate and quality information to 

Naz R36 J Eval Clin Pract 2024  
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parents regarding chronic kidney 
diseases? 

 Evaluating ChatGPT's Accuracy in 
Responding to Patient Education 
Questions on Acute Kidney Injury 
and Continuous Renal Replacement 
Therapy 

Sheikh 
MS37 

Blood Purif 2024  

 

 

Table 2:  

Clinical 
application 

Ref. Model Objective  Training sets Reference 
standard  

Sample size  Main findings  

Streamlinin
g workflow  

23 ChatGPT, GPT-
4  

Compare accuracy in 
CRRT alarm management 

N/A Nephrologis
t answer key 

50 CRRT 
alarm 
questions 

GPT-4 (90%, 94% 
accuracy) 
outperformed 
ChatGPT (86%, 
84%) 

 24 Custom GPT-4  Diagnose nephrogenic 
diabetes insipidus with 
CoT and RAG prompting 

N/A Standard 
prompting  

Unspecified CoT provided 
more specificity; 
RAG-aligned 
GPT-4 with 
KDIGO 
guidelines 

 25 RoBERTa, 
BioBERT, 
PubMedBERT  

 

Identify acute renal 
failure from clinical notes 

-Authentic 
MIMIC-III 
discharge 
summaries 
(75% train, 25% 
test)  

-Three sets of 
synthetic notes 
generated by 
ChatGPT  

Anesthesiol
ogist 
labelling   

1000 
authentic 
and 1000 
synthetic 
notes 

RoBERTa 
outperformed 
others (AUC 
0.84). Shorter 
synthetic notes 
improved results. 

26 exKidneyBERT  Extract data from renal 
transplant pathology 
reports for rejection and 
IFTA grading  

Renal transplant 
pathology 
reports with 
extended 
tokenizer 

Pathological 
diagnosis 

20% of 
3,428 
reports  

exKidneyBERT 
showed highest 
accuracy: 83.3% 
and 79.2% for 
rejection, 95.8% 
for IFTA  

Disease 
prediction 
and 
prognosis  

29 STRAFE 
transformer  

time-to-event prediction 
of CKD progression from 
stage 3 to 5 

11th Health 
Digital Data 
Sandbox dataset 
(80% train, 20% 
test) 

Medical 
claims data  

136,027 
patients 
with stage 3 
CKD 

STRAFE 
outperformed 
other models, 
improved high-
risk patient PPV 
(from 6.67% to 
20.9%) 

 30 AKI-BERT  Predict early AKI risk 
from clinical notes  

MIMIC-III 
dataset (train 
9248, validation 
2312, test 5000) 

KDIGO 
guidelines  

16,560 ICU 
notes 

AKI-BERT had 
highest AUC 
(0.72–0.76) with 
targeted AKI 
training 
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Laboratory 
data 
interpretatio
n and 
managemen
t  

15 ChatGPT, 
Copilot, Gemini  

Interpret renal function 
test results along with 
other lab data  

N/A Independent 
physician 
ratings 

10 
simulated 
lab sets  

Copilot had the 
highest accuracy 
(median: 5), 
significantly 
outperforming 
other models 
(p<0.01) 

 31 Differential 
transformer  

Contactless sodium 
monitoring during 
simulated CRRT on 
human pRBCs, focusing 
on performance in 
electrolyte imbalances 

N/A Blood 
sample 
analysis by 
BGA  

6 hours of 
sodium 
measuremen
t 

High precision 
(0.3 mmol/L) and 
sensitivity (192 
mV/mol/L), lower 
absolute accuracy 
(4 mmol/L) 

Renal 
dietary 
managemen
t  

32 ChatGPT, GPT-
4, Bard AI, Bing 
Chat  

Classify food items based 
on potassium and 
phosphorus content 

N/A Mayo Clinic 
Renal Diet 
Handbook 

240 food 
items 
selected  

GPT-4 and Bing 
Chat were most 
accurate for 
potassium (81%), 
Bard AI for 
phosphorus 
(100%) 

Patient 
education  

33 ChatGPT, GPT-
4  

Simplify FAQs on kidney 
donation 

N/A Donate Life 
America 
website 

27 FAQs  GPT-4 reduced 
readability to 4.30 
± 1.71, 
outperforming 
other models, 
with 96.3% 
success vs. 
ChatGPT's 
59.26% 

 34 ChatGPT, GPT-
4  

Translate kidney 
transplant FAQs into 
Spanish 

N/A Spanish-
speaking 
nephrologist 
ratings 

54 FAQs on 
kidney 
transplant 
(sources: 
OPTN, 
NHS, and 
NKF) 

Both models had 
high accuracy 
(ChatGPT: 4.89 ± 
0.31, GPT-4: 4.94 
± 0.23) and 
cultural sensitivity 
(4.96 ± 0.19), 
with no 
significant 
difference 
(p>0.05)  

 35 ChatGPT  Answered kidney 
transplant questions, the 
responses were evaluated 
in an online survey  

N/A 565 
individuals  

86 questions 
based on 
4624 Reddit 
posts 

 

Higher education 
levels predicted 
higher perceived 
quality in non-
White individuals 
(M = 6.03, SE = 
0.39), comparing 
to White 
individuals (M = 
5.85, SE = 0.39) 

 36 ChatGPT, 
Gemini, Copilot  

Answer CKD FAQs  N/A Pediatric 
nephrologist 
ratings 
(based on 
KDIGO 
guidelines) 

40 FAQs 
(online 
sources 
unspecified) 

Gemini provided 
the most accurate 
CKD information 
(GQS 3.46 ± 
0.55) compared to 
other models 
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 37 GPT-4  

  

Answered AKI and CRRT 
questions in various 
linguistic formats 

N/A Critical care 
nephrologist 
evaluation 

89 questions 
from Mayo 
Clinic 
Handbook 
(50 on 
CRRT, 39 
on AKI)  

98% accuracy for 
CRRT questions 
with misspellings/ 
incomplete 
sentences, 97% 
for all formats on 
AKI 

 GPT: generative pretrained transformer, CRRT: continuous renal replacement therapy, N/A: not applicable, CoT: chain-of-
thought, RAG: retrieval-augmented generation, KDIGO: Kidney Disease Improving Global Outcomes, BERT: Bidirectional 
Encoder Representations from Transformers, MIMIC-III: Medical Information Mart for Intensive Care-III, AUC: area under 
curve, IFTA: interstitial fibrosis and tubular atrophy, CKD: chronic kidney disease, PPV: PPV: positive predictive value, AKI: 
acute kidney injury, ICU: intensive care unit, pRBC: packed red blood cells, BGA: blood gas analyzer, FAQs: frequently asked 
questions, OPTN= Organ Procurement and Transplantation Network, NHS: National Health Service, NKF= National Kidney 
Foundation, M: Mean, SE: Standard Error, GQS: global quality score 

 

 

Table 3:  

Clinical 
application 

Ref. Advantages of LLMs Limitations of LLMs 

Streamlining 
workflow  

23 -High accuracy in interpreting CRRT 
alarms. 

-High consistency. 

-GPT-4 outperformed ChatGPT. 

-Potential to reduce ICU alarm fatigue. 

-Applicable in real-life ICU scenarios. 

-GPT-4 can potentially solve newly 
encountered alarms. 

-Human verification still required. 

-Findings are specific to CRRT; not yet applicable 
to other critical care devices. 

-Further training needed for broader clinical 
scenarios (including rare conditions).  

-Potential for bias and data quality issues. 

-Cannot fully replicate clinicians' complex 
decision-making. 

-Lack of real-time integration with CRRT limits 
fast intervention in ICU settings. 

-Empirical validation needed to bridge 
experimental results with practice. 

 24 -CoT enables more specific diagnoses and 
mimics physician reasoning, especially for 
multi-step or rare conditions.  

-RAG accesses external literature and 
guidelines to support evidence-based 
medicine.  

-Customizable profiles for nephrologists. 

-CoT and RAG require complex prompt 
engineering and manual updates.  

-Only GPT-4 was evaluated.  

-Effectiveness limited by training data.  

-Ethical and legal concerns: constant verification 
needed to detect bias or hallucinations. 

-Further enhancements needed for generalizability. 

 25 -Effective at processing clinical notes and 
identifying nephrology conditions.  

- RoBERTa performed best due to larger 
datasets and focus on masked language 
modeling.  

-Balanced datasets and synthetic data (from 
LLaMA-2) were used, which may help 
reduce bias and improve model 
generalizability. 

-Limited generalizability of BioBERT and 
PubMedBERT in broader contexts. 

-ARF focus limits application to other nephrology 
conditions.  

-Retrospective design may introduce bias; 
prospective validation needed.  

-Longer clinical notes reduce effectiveness. 

-Absence of RAG for enhancing performance. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.30.24316199doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.30.24316199
http://creativecommons.org/licenses/by/4.0/


 25 

-Improved model performance with shorter 
prompts.  
- RoBERTa's potential generalizability from 
parameter sharing and extensive training. 

-No need for protected clinical data or 
manual labeling in data-scarce 
environments. 

 

26 -Extended vocabulary of medical terms 
improves renal transplant pathology report 
processing.  

-exKidneyBERT outperformed other models 
in data extraction. 

-High accuracy in classifying rejection types 
and IFTA, despite a small training dataset. 

-Adaptability to medical subdomains where 
large, annotated datasets may not be 
available. 

-Improved positive predictive value in 
identifying high-risk conditions from renal 
pathology reports. 

-Limited broader applicability; potential overfitting 
to tested tasks.  

-Relatively small training dataset.  

-The effectiveness of exKidneyBERT relies on 
extending the vocabulary with specific keywords.  

-Dependence on manual annotation for training 

-Maintaining patient confidentiality can complicate 
data access and model development. 

Disease 
prediction and 
prognosis  

29 -Time-to-event predictions are more 
clinically relevant than fixed-time risk 
predictions.  

-STRAFE outperformed other models in 
both time-to-event and fixed-time 
predictions.  

-Use of real-world censored data improves 
accuracy. 

-Availability of data and code, as well as the 
used attention mechanism, allows 
reproducibility.  

-Novel visualization approach aids 
physician understanding. 

-Complex training process.  

-Domain experts needed for interpretation. 

-STRAFE did not improve survival time rankings. 

-Further research is needed to generalize the model 
across demographics and other prediction tasks. 

-Potential bias in evaluation. 

 

 

 

 

 30 -Domain-specific BERT improves 
performance.  

-AKI-BERT handles unstructured text.  

-The detailed data preparation, pre-training 
and fine-tuning of AKI-BERT ensure 
reproducibility.   

-Addressed data imbalance. 

 

-Extensive training required.  

-Further adaptation needed for tasks beyond AKI 
prediction.  

-BERT’s 512-token input limit necessitates 
truncation and pooling for long notes.  

-Dependency on data quality.  

-Bias remains despite efforts to address imbalance. 

Laboratory data 
interpretation 
and 
management  

15 -No ethical concerns with simulated patient 
data. 

-Copilot outperformed other models.  

-Copilot provided detailed responses. 

-Statistical analysis suited for nephrology. 

-GPT-4 not evaluated. 

-Variable response lengths.  

-Copilot relies on online sources, limiting its use 
for complex medical data. 

-Limited evaluation of 10 simulated patients.  

-Further training and validation needed. 

-Subjective rating of responses. 
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-Lack of individualization.  

-Fluidity in accuracy over time. 

 31 -Continuous noninvasive monitoring.  

-High sensitivity and precision. 

-Evaluated at different pathological 
concentrations of electrolytes and for 
potential cross-sensitivity. 

-Lower absolute accuracy than standard BGA. 

-Complex setup and calibration required. 

-Potential cross-sensitivity with other electrolytes.  

-Limited testing (6 hours).  

-Needs real-world validation. 

Renal dietary 
management  

32 -High accuracy in classifying potassium and 
phosphorus content.  

-High consistency.  

-Potential to reduce healthcare workload 
through automation. 

-GPT-4 shows advancements over 
ChatGPT.  

-Can assess various dietary items. 

-Inconsistency in results remains, inconsistent 
phosphorus classification.  

-Clinical validation needed to avoid misinformation 
and patient harm. 

-Recommendation accuracy depends on input 
quality.  

-Lack of personalized dietary recommendations. 

-Ethical/ legal concerns with clinical AI use. 

Patient 
education  

33 -Promotes equity, reducing healthcare 
disparities.  

-Utilizes online content patients can access.  

-Accuracy and fidelity confirmed.  

-Two independent sessions in new chats 
were conducted to assess reproducibility. 

-GPT-4 simplifies information well.  

-ChatGPT also improves accessibility for 
broader demographics. 

-ChatGPT (free) less consistent than GPT-4 (paid).  

-Limited to kidney donation FAQs.  

-Potential for regression in readability with 
updates.  

-Flesch-Kincaid formula may miss readability 
complexities. 

 34 -Promotes health equity, addressing 
language barriers. 

-High cultural sensitivity and accuracy. 

-No significant differences between 
ChatGPT versions. 

-Uses FAQs from reputable sources.  

-High inter-rater reliability (Cohen's kappa = 
0.85). 

-Subjective scoring system.  
-Limited to Spanish translation; further evaluations 
needed for other languages (and other medical 
areas).  
-Only two LLMs tested.  
-Occasional lower translation scores. 

 35 -Reflects real-world concerns about kidney 
transplants from Reddit. 

-High perceived quality and empathy. 

-Subjective scoring by non-professionals.  
-Only ChatGPT evaluated; version unspecified.  
-Perception varies by race and education.  
-Limited generalizability beyond kidney transplant. 

 36 -High accuracy and precision for ChatGPT 
and Gemini.  
-Strong recall performance across 
modalities. 

 

-Moderate quality for Gemini. 

-Performance varies between models and question 
types.  

-Inadequate compared to reference; potential 
misinformation.  

-Study limited to CKD questions. 

-Question sources not noted. 
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 37 -High accuracy from GPT-4 across different 
formats, including misspellings and 
incomplete sentences.  

-Consistent across CRRT and AKI topics.  

-Reliable for patient education.  

-High reliability (Cronbach’s alpha= 0.94); 
each question was tested in a new chat 
session to prevent model adaptation. 

-Capable of providing accessible medical 
information to individuals with varying 
literacy levels. 

-Free version of ChatGPT not evaluated.  

-Limited to nephrology topics. 

-Cannot replace doctor-patient interactions; further 
research needed for real-world application.  

CRRT: continuous renal replacement therapy, GPT: generative pretrained transformer, ICU: intensive care unit, CoT: chain-of-
thought, RAG: retrieval-augmented generation, BERT: Bidirectional Encoder Representations from Transformers, ARF: acute 
renal failure, IFTA: Interstitial Fibrosis and Tubular Atrophy, AKI: acute kidney injury, BGA: blood gas analyzer, AI: artificial 
intelligence, FAQs: frequently asked questions, LLMs: large language models, CKD: chronic kidney disease 
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