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Abstract. Multimodal graph learning techniques have demonstrated
significant potential in modeling brain networks for Alzheimer’s disease
(AD) detection. However, most existing methods rely on Euclidean space
representations and overlook the scale-free and small-world properties of
brain networks, which are characterized by power-law distributions and
dense local clustering of nodes. This oversight results in distortions when
representing these complex structures. To address this issue, we propose
a novel multimodal Poincaré Fréchet mean graph convolutional network
(MochaGCN) for AD detection. MochaGCN leverages the exponential
growth characteristics of hyperbolic space to capture the scale-free and
small-world properties of multimodal brain networks. Specifically, we
combine hyperbolic graph convolution and Poincaré Fréchet mean to
extract features from multimodal brain networks, enhancing their rep-
resentations in hyperbolic space. Our approach constructs multimodal
brain networks by integrating information from diffusion tensor imag-
ing (DTI) and functional magnetic resonance imaging (fMRI) data. Ex-
periments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset demonstrate that the proposed method outperforms state-of-the-
art techniques.

Keywords: Hyperbolic space · Graph learning · Graph convolutional
networks · Multimodal fusion · Alzheimer’s disease.

1 Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder that im-
pacts cognition, function, and behavior, progressively leading to a loss of physical
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functions and, ultimately, death [14]. Approximately 60 million people world-
wide were affected by Alzheimer’s disease [15], and the global economic burden
is projected to reach 9.12 trillion US dollars by 2050 [9]. These staggering figures
underscore the urgent need for more effective diagnostic and monitoring tools.
The disease is linked with the accumulation of amyloid beta and tau proteins
in specific cortex areas, causing the loss of neurons and synapses. Neuroimag-
ing that reflects the structural, functional connectivity properties of the human
brain can be used to analyze disease development.

Recently, graph learning techniques have demonstrated significant capabil-
ities in brain network modeling, achieving promising results in brain disorder
detection [5, 17, 19, 22, 23]. With the increasing availability of multimodal neu-
roimaging data, such as functional magnetic resonance imaging (fMRI), diffu-
sion tensor imaging (DTI), computed tomography (CT), and positron emission
tomography (PET), multimodal brain graph learning has become a trending re-
search area. Some works enhance the detection performance by integrating graph
neural network (GNN) and its variants with novel multimodal feature learn-
ing [11,25]. In addition, some studies highlight that the graph structure informa-
tion is crucial for advancing the brain disorder detection performance [4,12,27].
For example, Zhang et al. [29] proposed a multimodal graph neural network to
fuse the learned node representations for AD prediction. However, these meth-
ods rely on Euclidean space representations, which are not suitable for capturing
the scale-free and small-world properties of brain networks [26, 30], as shown in
Fig. 1. As brain regions are organized hierarchically, the regions and their con-
nections grow exponentially. This exponential growth surpasses the polynomial
expansion capacity of Euclidean space, leading to representation distortion.

Notably, hyperbolic geometry can describe data structures that grow expo-
nentially more effectively than Euclidean space [16, 30]. Recent studies use hy-
perbolic graph learning to achieve superior representations and improve model
availability [1,18,20,28]. For example, Zhang et al. [28], projected the functional
and structural brain network into hyperbolic space and utilized a hyperbolic
graph kernel for the diagnosis of mild cognitive impairment (MCI). These works
demonstrate that hyperbolic geometry can better capture graph structures and
improve model performance.

Therefore, to reduce representation distortion of multimodal brain networks
and enhance information fusion, we propose a novel multimodal hyperbolic graph
learning method (MochaGCN) for AD detection. Specifically, we introduce a hy-
perbolic graph convolutional network with Poincaré Fréchet mean aggregation to
capture multimodal brain network features in hyperbolic space. We fuse informa-
tion from DTI and fMRI modalities and employ contrastive learning to enhance
the fused features by minimizing the contrastive loss. Finally, we calculate the
hyperbolic distance of the learned representation features for AD detection. The
proposed model offers a more accurate representation of multimodal brain net-
works, holding significant implications for the diagnosis and treatment of brain
disorders.

Our contributions can be summarized as follows:
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− We propose a novel multimodal hyperbolic Poincaré Fréchet mean graph
convolutional neural network (MochaGCN) for AD detection, significantly
reducing the representation distortion of brain networks and enhancing in-
formation fusion between DTI and fMRI modalities.

− We combine a graph convolutional network with the Poincaré Fréchet mean
aggregation to preserve scale-free and small-world properties of multimodal
brain network representations in hyperbolic space.

− The experimental results on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset demonstrate the effectiveness of the proposed method, which
outperforms the state-of-the-art methods.

(a) Brain network node
degree distribution

(b) DTI network
connections

(c) fMRI network
connections

Fig. 1: Scale-free and small-world properties of brain networks. (a) The node
degree distribution of the fMRI brain networks from 115 subjects in the ADNI
dataset follows a power-law distribution, indicates the scale-free characteristics.
The visualizations of (b) the DTI network and (c) the fMRI network projected
onto the Poincaré disk for one subject demonstrate small-world characteristics.

2 Preliminaries

2.1 Problem Definition

The AD detection task first obtains the connectivity from preprocessed DTI and
fMRI neuroimages to construct the brain networks. The networks are represented
as graph GDTI = (VDTI, EDTI) and GfMRI = (VfMRI, EfMRI), where V is the
set of vertices representing brain regions and E is the set of edges connecting
the regions. The connectivity graph in Euclidean space is represented by an
adjacency matrix AE

DTI,A
E
fMRI ∈ Rn×n, where n is the number of regions of

interest (ROIs). Each element ei,j of A represents the connectivity strength
between regions i and j. Each modality’s graphs form the data MDTI and MfMRI,
where M = {A1,A2, ...,Anp

} and np is the number of participants. The goal
of this research is to learn a classification function f : (AE

DTI,A
E
fMRI) → p,
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where p is the probability of subject class γ , i.e., γ = 1 for AD patients and
γ = 0 for normal controls. The function f(·) is learned from a training set
of subjects with known labels. The learned function is then used to predict
the labels of new subjects in a test set and its performance is evaluated using
standard classification metrics.

2.2 Hyperbolic Geometry

Hyperbolic geometry, characterized by negative curvature, differs from the flat
Euclidean space. Hyperbolic space grows exponentially. Specifically, considering
a 2-dimensional hyperbolic disk with radius r and constant curvature -1, the
perimeter and area of the disk can be calculated by 2π sinh r and 2π(cosh r−1),
and both of them grow as er with r, compared with the linearly and quadrati-
cally growth in Euclidean space. So it is ideal for representing data with expo-
nential expansion and hierarchical structures. There are many models to embed
hyperbolic space in Euclidean space. And in this paper, the Poincaré model is
introduced as the necessary background of this study. Hyperbolic manifold H
with curvature K < 0 can be mapped to Euclidean space by the Poincaré ball
model, which is defined as:

Hd
K := {ϕ ∈ Rd : ∥ϕ∥2 < − 1

K
}, (1)

where ∥·∥ denotes the Euclidean norm. When limK = 0, the hyperbolic space is
isometric to the Euclidean space. For two points ϕ1, ϕ2 in the hyperbolic space,
the Möbius addition is defined as:

ϕ1 ⊕K ϕ2=
(1−2K⟨ϕ1,ϕ2⟩−K∥ϕ2∥2)ϕ1+(1+K∥ϕ1∥2)ϕ2

1− 2K⟨ϕ1,ϕ2⟩+K2∥ϕ1∥2∥ϕ2∥2
. (2)

And the distance between them is defined as

dK(ϕ1, ϕ2) =
2√
|K|

arctanh(
√
|K| || − ϕ1 ⊕K ϕ2||). (3)

For a point ϕ in the hyperbolic space, the tangent space T Hd
K at ϕ is Eu-

clidean space. The coordinates can be mapped to each other by the exponential
map and logarithmic map. The exponential map expK : T Hd

K → Hd
K maps a

vector ϕE in the tangent space to a point in the hyperbolic space, and the loga-
rithmic map logKϕ : Hd

K → T Hd
K maps a point ϕH in the hyperbolic space to a

vector in the tangent space. For a given point ϕ, the exponential map of point
ϕE and logarithmic map of point ϕH are defined as:

expK(ϕE) := ϕ⊕K

(
tanh(

√
|K|λK∥ϕE∥

2
)

ϕE√
|K| ∥ϕE∥

)
, (4)

logK(ϕH) :=
2√

|K|λK
arctanh(

√
|K| ∥ − ϕ⊕K ϕH∥) −ϕ⊕K ϕH

|| − ϕ⊕K ϕH ||
, (5)
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where λK = 2(1 +K∥ϕ∥2)−1 is the conformal factor.
According to [6], we formulate matrix-vector multiplication, bias translation,

and activation function of hyperbolic neural networks are defined as:

T⊗K ω = expK(T logK(ω)), (6)

ω ⊕K b = expK(PTK(b)), (7)

σK1,K2
(ω) = expK1

(σ(logK2
(ω))), (8)

respectively, where T is a matrix, ω is a vector, b is a bias, and σ is an activation
function.

3 Methodology

The AD detection task is a binary classification problem and involves four main
steps. First, functional, structural, and fused brain networks are constructed
for each subject based on DTI and fMRI imaging data. Next, hyperbolic graph
convolution is applied to these brain networks to extract representation feature
vectors. Then, contrastive learning minimizes the contrastive loss between the
fused vector and the functional and structural vectors. Finally, the fused feature
vectors are projected into hyperbolic space, and the distance from the cluster
center is calculated to generate the diagnosis results. The overall architecture of
the proposed method is shown in Fig. 2.

3.1 Brain Graph Construction

We begin by preprocessing the neuroimaging data to construct structural graph
AE

DTI derived from DTI data, and functional graph AE
fMRI based on fMRI data.

Both graphs are initially represented in Euclidean space. Subsequently, we em-
ploy the mapping techniques outlined in Section 3.2 to project these graphs into
hyperbolic space, and get hyperbolic counterparts AH

DTI, A
H
fMRI.

We introduce a multimodal fusion graph to leverage both early and late fusion
strategies [13]. In the early fusion stage, we integrate the information from both
modalities in hyperbolic space. This fusion is formulated as follows:

AH
fusion = I⊕K

(
α⊗K AH

DTI

)
⊕K

(
β ⊗K AH

fMRI

)
, (9)

where I is the identity matrix. α, β are the fusion parameters, and α+ β = 1.

3.2 Hyperbolic Graph Convolution

To capture the brain graph features for AD detection, a hyperbolic graph con-
volutional network will be used to learn the representation of the brain network.
The input graphs are represented by a binary adjacency matrix and the outputs
are hyperbolic embeddings for graph classification and link prediction tasks. The
proposed model architecture is illustrated in Fig. 2. The model consists of the
following parts:
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6 C. Xie et al.

Fig. 2: Overall framework of MochaGCN. (a) Calculation of the fMRI functional
connectivity matrix and DTI structural connectivity matrix based on the AAL
brain atlas, followed by graph construction. (b) Projection of the brain graph to
hyperbolic space and fusion of the DTI fMRI information into a fusion modal-
ity, with hyperbolic Poincaré Frechet mean graph convolution (Graph Conv.)
applied to each modality. (c) Feature learning for DTI and fMRI modalities via
contrastive learning, where the fusion feature is learned by contrasting the fusion
feature with the other two features. (d) Disease classification by calculating the
fusion feature’s hyperbolic distance.

− Mapping We first transport the input data between Euclidean space and
hyperbolic space via logarithmic map Eq. (5) and exponential map Eq. (4).
For DTI and fMRI brain networks, we first map the input data to hyper-
bolic space using the exponential map AH

DTI = expK(AE
DTI) and AH

fMRI =
expK(AE

fMRI), where AH represents the brain graph in hyperbolic space.

− Node Aggregation Aggregation function captures features of neighbor-
hood in the graph, and is a core component of convolutional networks. Lou
et al. [7] extended Fréchet mean for arbitrary Riemannian manifolds, and
Cao [2] presented a (1−ϵ)-approximation to fix imprecise convergences prob-
lem. In this work, we combine the Poincaré Fréchet mean and hyperbolic
graph convolution to aggregate the information from neighboring nodes.
Each modality adjacent matrix in hyperbolic space, AH

DTI, A
H
fMRI, A

H
fusion is

then fed into the hyperbolic graph convolution module to learn the corre-
sponding representations. This process is formulated as:

hℓ
i = Wℓ ⊗Kℓ−1

xℓ−1
i ⊕Kℓ−1

bℓ, (10)

yℓ
i = AggregationµPF

j∈N(i)(h
ℓ
j), (11)
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where ℓ is the layer index, where xℓ−1
i are the features of node i of the

previous layer ℓ − 1, and Wℓ and bℓ the weights and bias parameters of
layer ℓ, N(i) denotes the neighbors of node i. The Poincaré Fréchet mean
µPF is defined as:

µPF = argmin
∑
k=1

wk · dK (xk, µ)
2
, (12)

where dK is the the hyperbolic distance as introduced in Eq. (3), wk is the
weight of the k-th point, and µ is the Fréchet mean of the points in the
manifold.

− Activation Function We implement the hyperbolic ReLU function using
Eq. (8). The output was defined by:

xl
i = σ(yl

i). (13)

The output of each modality is xl
DTI, x

l
fMRI, and xl

fusion respectively, where
l is the number of layers.

3.3 Contrastive Fusion

According to [13], we will leverage late contrastive fusion techniques, further en-
hancing the fusion modality features based on previously learned representations
xl
DTI, x

l
fMRI, and xl

fusion. For the DTI modality, we select subjects with the same
class labels as positive samples and those with different class labels as negative
samples from the dataset and follow the approach of SimCLR [3] and HCL [24]
to construct a contrastive loss, as follows:

LDTI = −
∑
i∈N

log

(
exp

(
− dK(xl

i,DTI,x
l
pos(i),DTI)/τ

)∑
a∈M exp

(
− dK(xl

i,DTI,x
l
a,DTI)/τ

)) , (14)

where τ ∈ R+ is a scalar temperature parameter, M denotes a batch samples,
xpos(i) is the positive pairs of node i. We can also obtain a contrastive loss
LfMRI for fMRI modality in a similar way. These two contrastive losses are used
to update the DTI and fMRI representations separately without exchanging
information with each other.

Since the fused modality integrated the information from both modalities
early on, it will further refine this information by comparing to the features
extracted from DTI and fMRI modalities in the late stage. The fusion modality
contrastive loss can be calculated by:

Lfusion = −
∑
i∈M

log

(
exp

(
− dK(xl

i,fusion,x
l
pos(i),DTI)/τ

)∑
a∈M exp

(
− dK(xl

i,fusion,x
l
a,DTI)/τ

))

−
∑
i∈M

log

(
exp

(
− dK(xl

i,fusion,x
l
pos(i),fMRI)/τ

)∑
a∈M exp

(
− dK(xl

i,fusion,x
l
a,fMRI)/τ

)) . (15)
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Algorithm 1 Learning process of MochaGCN
Input: A training epoch g of multimodal data MfMRI,MDTI, where Ai ∈ M
Output: AD classification result p(γ)
1: for i = 1, 2, · · · , g do
2: Map the DTI and fMRI graph into hyperbolic space Ai,DTI, Ai,fMRI (Eq. (4),

Eq. (5)) and construct fusion modality graph Ai,fusion (Eq. (9))
3: Extract each modality’s features by hyperbolic graph convolution and get xi,DTI,

xi,fMRI, xi,fusion (Eq. (10)-Eq. (13))
4: Calculate the contrastive loss Li,DTI, Li,fMRI and Li,fusion between the positive

and negative samples (Eq.(14), Eq. (15))
5: Update each modality’s neural network parameters by minimizing the contrastive

loss
6: end for
7: Calculate the AD classification result p(γ) (Eq. (16))

3.4 Classification

The AD classification probability is calculated using the hyperbolic distance be-
tween the fusion modality’s extracted features and the centers C = [c1, c2, ..., cq]
of different classes, where q is the number of classes. The probability of the j-th
class is calculated as follows:

p(γj) = softmax (ψ0, ..., ψq) , (16)

where ψi = (exp(dK(xfusion, ci)
2 − 2) + 1)−1 and γj is the j-th class.

To elucidate the data processing mechanism of MochaGCN, we employ pseu-
docode to describe the model’s AD classification process, as outlined in Algo-
rithm 1.

3.5 Complexity Analysis

The time complexity of the primary component of MochaGCN is analyzed below.
The complexity for mapping the brain graph to hyperbolic and tangent spaces
is O(n2), where n represents the number of ROIs. The complexity for forward
training and backpropagation in the Poincaré Fréchet mean graph convolution is
O(L·(n·f2+T ·n·d)), where L denotes the number of layers, f is the dimension of
embedding features, T is number of iterations for Fréchet mean convergence, and
d is average degree of the nodes. The complexity of the contrastive fusion module
is O(n · f). The remainder no longer involves high computational complexity.

4 Experiments

4.1 Dataset and Experimental Settings

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 6 dataset is a compre-
hensive neuroimaging dataset for AD diagnosis. We evaluate 115 subjects, with
6 https://ida.loni.usc.edu/pages/access/studyData.jsp?project=ADNI
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60 normal controls (NC), and 55 patients with AD for the experiments. Each
participant has both DTI and fMRI data.

To ensure the reproducibility of this study, we adopt QSIprep 0.19.1 and
fMRIprep 20.2.3 to preprocess DTI and fMRI modalities respectively. We an-
alyze brain networks using the Automated Anatomical Labeling (AAL) Atlas,
which contains 90 ROIs. Then the Pearson correlation coefficient and fractional
anisotropy are used for fMRI and DTI brain graph construction. The hyperbolic
graph convolutional model used in this work has two layers, with the curvature
set to -1.0 and an embedding dimension of 128. During training, we apply a
learning rate of 0.01 and the Adam optimizer to update network weights. To
evaluate the model’s performance, we conducted 5-fold cross-validation, repeat-
ing the experiments 10 times to ensure robust results.

4.2 Baselines

To establish a benchmark for comparison, we examined existing studies that
leverage DTI and fMRI data for AD diagnosis. These studies incorporate ad-
vanced deep learning techniques, such as dynamic graph learning and hypergraph
learning, to improve diagnostic accuracy. The state-of-the-art baseline methods
are as follows:

− DecGAN [10] employs a decoupling generative adversarial network to detect
abnormal neural circuits associated with AD.

− mmLasso [8] utilizes a multi-modal LassoNet framework to integrate supple-
mentary information from different modalities.

− Cross-GNN [21] captures inter-modal dependencies through dynamic graph
learning and mutual learning.

− PALH [31] predicts abnormal brain connections through a prior-guided ad-
versarial learning framework with hypergraph.

4.3 Result Analysis

We evaluate the performance of the model using accuracy (ACC), sensitivity
(Sen.), and specificity (Spe.). The mean values achieved are 93.56% for accu-
racy, 95.34% for sensitivity, and 91.54% for specificity, with standard deviations
(SD) of 1.10%, 2.10%, and 3.64% respectively, as shown in Table 1. Since the
baseline methods do not provide open-source code, their results were collected
from their original papers. Our model achieved the highest accuracy and demon-
strates strong overall classification performance and effectiveness. For example,
while mmLasso [8] uses 16,830 dimensions for disease classification, our model
only uses 128 dimensions, significantly reducing the feature space without com-
promising performance. Although our model’s sensitivity and specificity were
slightly below the best, it maintains a strong balance between correctly identi-
fying true positives (sensitivity) and minimizing false positives (specificity), en-
suring reliable disease detection. Overall, MochaGCN outperforms the baseline
models in detecting Alzheimer’s disease with improved accuracy and efficiency.
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10 C. Xie et al.

Table 1: Classification performance comparison with baseline methods.

Method ACC(%) Sen.(%) Spe.(%)
DecGAN [10] 85.18 81.25 90.91
mmLasso [8] 90.68±0.34 88.81±0.68 91.91±0.55

Cross-GNN [21] 88.6±6.3 95.9±9.2 85.2±7.7

PALH [31] 88.73 84.37 92.31

MochaGCN 93.56±1.10 95.34±2.10 91.54±3.64

4.4 Effectiveness Analysis of Hyperbolic Representation

Effect of Hyperbolic Curvature To evaluate the impact of hyperbolic curva-
ture on the performance of our model, we conducted experiments across different
curvature values, and curvature 0 means Euclidean space. This test is conducted
with embedding dimension 16. The results are shown in Fig. 3(a). The hyper-
bolic and Euclidean results are colored blue and orange, respectively. Overall,
our model with negative curvature outperforms the flat curvature in the classifi-
cation task, suggesting that hyperbolic space representation is a superior choice
for multimodal fusion in AD diagnosis.

-1.8 -1.4 -1.0 -0.6 -0.2 0

80

90

100

82.1

92.9 92.9
94.1

91.7
90.5

(a) Effect of curvature

A
C

C
(%

)

16 32 64 96 128 192 256

70

80

90

100

(b) Effect of embedding dimension

A
C

C
(%

)

Euclidean
Hyperbolic

Fig. 3: Performance comparison of different curvature values (a) and dimensions
(b). In (a), the best result is observed at a curvature of -1.0, and worst is at
curvature 0 which corresponds to Euclidean space. In (b), the ACC (%) of the
algorithm in Euclidean and hyperbolic space is compared.

Effect of Embedding Dimension We conducted experiments with different
embedding dimensions and also reimplemented the MochaGCN using GCN in

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2024. ; https://doi.org/10.1101/2024.10.29.24316334doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.29.24316334
http://creativecommons.org/licenses/by-nc-nd/4.0/


Multimodal Hyperbolic Graph Learning for Alzheimer’s Disease Detection 11

Euclidean space for comparison. The hyperbolic curvature is set to -0.8. The
results are shown in Fig. 3(b). Our proposed algorithm achieves near-optimal
performance with an embedding dimension of 16, which is significantly smaller
than the 64-dimensional embedding required by GCN. This indicates that hy-
perbolic space embedding can significantly reduce the required embedding di-
mension while maintaining high performance.

4.5 Ablation Study

To evaluate the contributions of each component in the proposed model, we
conducted an ablation study by sequentially replacing the hyperbolic space con-
volution with the Euclidean space convolution, removing the fusion modality,
and both. The hyperbolic curvature is set to -1.0 and embedding dimension
is 128. The accuracy decreased by 11.42%, 4.99%, and 17.77%, respectively, as
shown in Table 2. These results indicate that hyperbolic Poincaré Fréchet mean
convolution significantly contributes to the overall performance of the model,
also means proposed MochaGCN can greatly reduce the representation distor-
tion compared to Euclidean space.

Table 2: Contribution of each component.

Method ACC(%) Sen.(%) Spe.(%)
MochaGCN 93.56 95.34 91.54

MochaGCN wo:hyperbolic 82.14 81.11 81.79
MochaGCN wo:fusion 88.57 92.0 84.62
MochaGCN wo:hyperbolic&fusion 75.79 78.59 72.46

’wo’ indicates the removal of a module from the MochaGCN.

5 Conclusion

In this paper, we have proposed a novel multimodal hyperbolic graph convolu-
tional neural network for brain network analysis. The proposed method lever-
ages the hyperbolic space to model the intrinsic geometry of the brain network.
We conducted experiments on ADNI dataset and demonstrated that the pro-
posed method outperforms baseline methods. The results show that the proposed
method achieves a 93.56% classification accuracy with 115 ADNI subjects. This
performance not only outperforms baseline methods but also underscores the effi-
cacy of our approach in handling complex neuroimaging data. We also conducted
an ablation study to investigate the effect of hyperbolic curvature, embedding
dimension, and fusion methods on the performance of the model. The proposed
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model offers a new perspective in brain network analysis, with significant im-
plications for the diagnosis and treatment of brain disorders. By enhancing the
accuracy and efficacy of neuroimaging analyses, our approach holds the potential
to greatly improve clinical outcomes for patients with Alzheimer’s disease and
other neurodegenerative disorders.
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