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 44 

Abstract 45 

In March 2024, the Pan American Health Organization (PAHO) issued an alert in response to a rapid 46 
increase in Oropouche fever cases across South America. Brazil has been particularly affected, reporting a 47 
novel reassortant lineage of the Oropouche virus (OROV) and expansion to previously non-endemic areas 48 
beyond the Amazon Basin. Utilising phylogeographic approaches, we reveal a multi-scale expansion 49 
process with both short and long-distance dispersal events, and diffusion velocities in line with human-50 
mediated jumps. We identify forest cover, banana and cocoa cultivation, temperature, and human 51 
population density as key environmental factors associated with OROV range expansion. Using 52 
ecological niche modelling, we show that OROV circulated in areas of enhanced ecological suitability 53 
immediately preceding its explosive epidemic expansion in the Amazon. This likely resulted from the 54 
virus being introduced into simultaneously densely populated and environmentally favourable regions in 55 
the Amazon, such as Manaus, leading to an amplified epidemic and spread beyond the Amazon. Our 56 
study provides valuable insights into the dispersal and ecological dynamics of OROV, highlighting the 57 
role of human mobility in colonisation of new areas, and raising concern over high viral suitability along 58 
the Brazilian coast.  59 
 60 
Keywords: Oropouche virus; phylodynamics; phylogeography; ecological niche modelling. 61 
 62 
Main text 63 

Oropouche virus (OROV; Oropouche orthobunyavirus) is an arthropod-borne virus first identified in 64 
1955 in Oropouche, a village in Trinidad and Tobago (1). OROV typically causes a febrile illness with 65 
symptoms such as high fever, headache, myalgia, arthralgia, photophobia, nausea, vomiting, and 66 
dizziness (2). In some cases, the illness can progress to severe neurological complications, including 67 
meningo-encephalitis (1). This re-emerging virus circulates primarily among wildlife such as non-human 68 
primates, rodents, sloths, and birds. It has caused around 30 documented human outbreaks in the Amazon 69 
region in recent years (3, 4). The midge Culicoides paraensis serves as the primary vector for human 70 
transmission, but other secondary vectors include Culex quinquefasciatus, Coquillettidia venezuelensis, 71 
and Aedes (Ochlerotatus) serratus (1, 5).  72 

In March 2024, the Pan American Health Organization (PAHO) issued an alert in response to a rapid 73 
increase in Oropouche fever cases across several countries, including Brazil, Cuba, Bolivia, Colombia, 74 
and Peru (6, 7). By October 6, 2024, a total of 10,275 confirmed cases of Oropouche had been reported 75 
across nine countries in the Americas, as well as the first two deaths (6, 8). Brazil has been particularly 76 
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affected, reporting not only the highest number of cases, but also severe complications linked to 77 
Oropouche virus infection (9). Recent epidemiological data and genomic investigations in Brazil (10, 11) 78 
have described the recent expansion of OROV into previously non-endemic regions. These studies have 79 
identified reassortment events in the virus genome that may have contributed to its changing 80 
epidemiology. While the exact role of reassortment in the adaptation of OROV to novel environments 81 
remains to be fully understood, it has possibly impacted its spread into new ecological niches (10, 11). 82 
 83 
As with other arboviruses (12), recent changes in ecological context, such as deforestation, urbanisation, 84 
human mobility, and climate change, have possibly contributed to the emergence of OROV in new 85 
regions (13). In particular, environmental disruption pushes non-human mammal reservoirs and vectors 86 
into closer contact with human populations, facilitating viral spread (14). Additionally, human activities 87 
(15, 16) like urban expansion and altered land use increase the risk of transmission of OROV in peri-88 
urban and urban settings, where vectors such as Culicoides paraensis and Culex quinquefasciatus thrive 89 
(17–19). Despite these insights, significant gaps remain in quantifying the precise impact of these factors 90 
on recent OROV transmission dynamics. In addition, much remains unknown about the broader disease 91 
ecology of OROV, particularly concerning environmental correlates of local circulation and of its recent 92 
expansion. This lack of comprehensive understanding hampers effective risk assessment and preparedness 93 
efforts, both within Brazil and across the Americas. 94 
 95 
This study aims to formally test key epidemiological hypotheses regarding OROV disease ecology and its 96 
range expansion. We integrate spatially explicit pathogen genomes and epidemiological data with 97 
geospatial data in a phylodynamic and ecological niche modelling framework to (i) reconstruct the 98 
dispersal history of OROV lineages across Brazil and analyse dispersal statistics in the context of a range 99 
expansion, (ii) evaluate the environmental factors associated with OROV transmission during distinct 100 
transmission phases, and (iii) map the ecological niche of OROV transmission to identify covariates of 101 
circulation suitability in the context of the expansion, and to pinpoint surveillance blind spots. 102 
 103 
Results 104 
 105 
Dispersal history and dynamics of OROV in Brazil 106 
The epidemiological dynamics of OROV expansion in Brazil in late 2023 and 2024 show a two-stage 107 
process: a rapid rise in cases in Amazonian states, particularly Manaus, followed by widespread 108 
circulation in other parts of the country (Supplementary Figure S1). To further investigate, we applied a 109 
continuous phylogeographic approach using over ~500 genomes sampled between 2022 and 2024 (10, 110 
11). Building on prior knowledge of reassortment events across genome segments (10, 11), we conducted 111 
separate phylogeographic reconstructions for segments L, M, and S. Our analysis extracted 112 
spatiotemporal data from 100 annotated trees subsampled from post burn-in posterior distributions, 113 
revealing new insights into transition events between sampled regions (Figure 1A).  114 
 115 
The earliest lineage dispersal events were restricted to the Amazon basin and inferred to be before 2020, 116 
with the virus gradually spreading to other Brazilian states in a southeasterly direction in 2023 and 2024. 117 
By further examining the spatial dissemination of OROV lineages across Brazil, we found that the virus 118 
reached a maximal wavefront distance of over 3,000 km from its epidemic origin through the entire 119 
dissemination period (Figure 1B). This reconstruction further captured two distinct expansion phases 120 
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during which the wavefront distance increased rapidly, indicating the invasion of new areas >2024 121 
(Figure 1B). The rapid expansion of wavefront distance in 2024 corresponds to the increase in cases in 122 
areas outside the Amazon (Supplementary Figure S1). Furthermore, diffusion coefficient estimates have 123 
evolved through time, with increases in mid-2022 and mid-2023 consistently detected in all three OROV 124 
segments (Figure 1C). As a result, the weighted diffusion coefficient estimated for the overall period was 125 
also notably high: 582 km2/day (95% HPD = [477, 672]) for segment L, 574 km2/day (95% HPD = [464, 126 
677]) for segment M, and 515 km2/day (95% HPD = [435, 675]) for segment S. These values are 127 
significantly higher than those reported for key viral dispersal events, such as for West Nile virus spread 128 
via birds in North America (20), reflecting a substantial dispersal capacity. In 2024, a large number of 129 
dispersal events occurred within the states of Mato Grosso, Minas Gerais and Bahia (midwest, southeast 130 
and northeast Brazil, respectively), which were previously thought to be non-endemic for OROV 131 
transmission.  132 
 133 
With respect to dispersal distance and diffusion velocity, we observe a large group of phylogenetic 134 
branches associated with relatively short dispersal distance (<20km) and slow diffusion (<4km2/day; 135 
Figure 1D), and a subsequent group of branches that correspond to faster long-distance dispersal events 136 
(Figure 1D). This supports a multi-scale expansion process with a combination of short-distance 137 
diffusive movement and fast long-distance jumps, with some of the latter likely reflecting human-138 
mediated virus movements. We also identified substantial isolation-by-distance (IBD) patterns, with 139 
Pearson correlations between patristic and log-transformed geographic distances between samples close 140 
or greater than 0.5 for all three segments (0.470 (95% HPD = [0.360, 0.599]) for segment L, 0.575 (95% 141 
HPD = [0.286, 0.607]) for segment M, and 0.684 (95% HPD = [0.326, 0.710]) for segment S). Overall, 142 
these dispersal metrics provide a clear indication of rapid long-distance dispersal events during the recent 143 
OROV expansion in 2024 beyond the Amazon Basin, likely human-mediated, followed by more localised 144 
viral circulation. This view is supported by an examination of air travel data from Brazil, with 145 
considerable human mobility between the Amazon region and other parts of the country, primarily 146 
through the airport in Manaus (Supplementary Figure S2). Air travel data also support the inferred long-147 
distance dispersal routes from the state of Acre to the east coast of Brazil, and also highlight the 148 
intermediate role played by the state of Mato Grosso in the virus’ migration out of the Amazon region.  149 
 150 
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151 
Figure 1. Dispersal history and dynamics of OROV lineages in Brazil. (A) Dispersal history of OROV lineages152 
inferred through continuous phylogeographic reconstructions. Lineage dispersal events between Brazilian states153 
with a posterior probability >=0.95 are displayed by solid arrows, and dispersal events with a posterior probability154 
<0.95 are displayed by dashed arrows. Additionally, the location of the different areas is represented by transparent155 
grey dots whose surface is proportional to the number of local lineage dispersal events, i.e. phylogenetic branches156 
inferred as remaining in that state. Brazilian states are coloured according to the estimated date of the first invasion157 
event (median date computed from the 100 trees sampled from the posterior distribution). (B) Evolution through158 
time of the spatial wavefront distance, representing the maximal distance from the epidemic origin over time. (C)159 
Evolution through time of the weighted diffusion coefficient, a dispersal metric that measures the dispersal capacity160 
of viral lineages. (D) Kernel density plots with the branch-weighted diffusion coefficient against the geographic161 
distance travelled by each branch (both axes being log-transformed). 162 
 163 
Ecological factors associated with the transmission of OROV in Brazil 164 
To elucidate the ecological factors associated with the spatial expansion of OROV in Brazil, we analysed165 
virus dispersal history in relation to 28 environmental factors (including land-use, climatic, and166 
demographic variables) (Supplementary Figure S3). In the absence of established species distribution167 
models for Culicoides paraensis, the presumed primary vector for OROV, we also considered the168 
ecological suitability of Ae. aegypti as a covariate, as this species could act as a proxy for urban169 
anthropophilic vectors, or as a potential secondary vector for OROV (21, 22). Aedes (Ae.) aegypti is a170 
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well-established vector for several arboviruses, including dengue, Zika, and chikungunya, and its wide 171 
distribution across urban areas in Brazil (Supplementary Figure S3) may facilitate the spread of OROV, 172 
especially in densely populated regions with favourable breeding conditions. While so far Ae. aegypti has 173 
not been demonstrated as a viable vector, the situation with the novel reassortant lineage could be 174 
different (21). 175 
 176 
Using high-resolution environmental rasters for each covariate (Supplementary Figure S3), we extracted 177 
environmental values at the geographic location of each phylogenetic node. These correspond to inferred 178 
positions through continuous phylogeographic analysis for internal nodes, and to sampling locations 179 
(down to municipality level) for tip nodes (Supplementary Figure S4). Our analyses revealed that 180 
several covariates were temporally associated with OROV dispersal events, highlighting distinct viral 181 
circulation environments over time. We assessed shifts in dispersal environments relative to three specific 182 
time points: (1) prior to the re-emergence and epidemic expansion in the Amazon (<mid-2023), (2) during 183 
the Amazon-restricted transmission phase (<2024), and (3) during the national expansion phase (>2024). 184 
When comparing dispersal events before and after 2023-2024, different environmental conditions for 185 
OROV circulation become apparent (Figure 2). Certain dispersal environments seem to shift at the mid-186 
2023 time point, while others at the 2024 time point (Figure 2, Supplementary Figure S4). For instance, 187 
prior to 2024, dispersal events occurred on average in areas with relatively higher evergreen broadleaf 188 
forest cover, higher precipitation and temperature, but lower population density and cocoa cultivation 189 
areas (Figure 2, Supplementary Figure S4). Interestingly, most lineage dispersal locations before 2024 190 
were associated with a mean temperature of ~27°C, which may indicate an optimal viral replication 191 
environment for OROV in its vector and is supported by preliminary thermal biology studies on biting 192 
midges (23). However, dispersal environments were already shifting towards areas with high population 193 
density, increased urbanisation, and larger cocoa cultivation areas around mid-2023 (Figure 2, 194 
Supplementary Figure S4). With strong Bayes factor support (24), our analyses demonstrated that these 195 
trends in dispersal environments were consistent across the posterior distribution of trees obtained 196 
through continuous phylogeographic inference. 197 
 198 
To statistically test the association of environmental conditions with the spread of OROV lineages, we 199 
employed a landscape phylogeographic approach to analyse the environmental values extracted at the tree 200 
node positions (25). Specifically, for the three distinct time periods mentioned above, we tested whether 201 
inferred OROV lineages tended to preferentially circulate in or avoid certain environmental conditions. 202 
Statistical support (Bayes factors [BF]) was obtained by comparing the results from phylogeographic 203 
reconstructions with a null dispersal model, in which a new continuous diffusion process was randomly 204 
simulated along the same tree topologies. During both transmission phases divided by the 2024 cut-off, 205 
our results reveal strong support (BF >20 for at least two out of three segments) for preferential 206 
circulation of inferred OROV lineages in areas with higher population density and urbanisation, lower 207 
evergreen broadleaf forest cover, and areas associated with cocoa cultivation (Figure 2, Supplementary 208 
Table S1). We also highlight a preferential circulation of inferred OROV lineages in areas associated 209 
with banana cultivation in the expansion phase (>2024), as well as in the pre-expansion phase (<2024) for 210 
segment L (Supplementary Figure S6). These results are consistent with existing knowledge about C. 211 
paraensis larvae developing in microhabitats of decaying debris from banana and cacao plantations (26–212 
28). Specific to the Amazon-only transmission phase (<2024), our results also indicate preferred 213 
circulation in areas with higher mean annual temperatures (Figure 2D). Additionally, our analyses 214 
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indicate strong support for preferential circulation of inferred OROV lineages in areas associated with 215 
higher Ae. aegypti ecological suitability, either in both phases (segment M) or in the only expansion phase 216 
(segments S and L; Figure 2B, Supplementary Figure S5, S6) (Supplementary Table S1), although 217 
this could be an indirect association with human human density. These results indicate similarities in 218 
environmental conditions associated with OROV lineage circulation before and after the 2024 cut-off, 219 
suggesting that the expansion of the virus to areas outside the Amazon was not associated with drastically 220 
different environmental conditions. However, an examination of the differences in dispersal locations 221 
between transmission phases prior to and after mid-2023 reveals compelling differences: for viral lineages 222 
inferred prior to mid-2023, there was not strong support for a preferential circulation in densely populated 223 
areas, areas associated with a lower evergreen broadleaf forest coverage, and those more ecologically 224 
suitable for Ae. aegypti, although urbanised areas were still preferred (Supplementary Table S1). This 225 
suggests ecological differences underlying endemic OROV circulation within the Amazon before the re-226 
emergence and rapid epidemic expansion at the end of 2023. Overall, our findings reveal similar trends 227 
across the three segments analysed (Supplementary Figure S5, S6, Supplementary Table S1). 228 
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229 
Figure 2. Environmental conditions associated with OROV lineage dispersal locations over time (for segment230 
M). Figure panels show the spatial distribution of six main environmental factors (units specified): evergreen231 
broadleaf forest cover (%) (A), human population density (normalised between 0 and 255 per km2 for visual clarity)232 
(B), Ae. aegypti ecological suitability (probability of occurrence) (C), mean annual temperature (°C) (D), banana233 
harvested area (in hectares, log-transformed) (E), and cocoa harvested area (in hectares, log-transformed) (F) in the234 
top rows. Circles on the map depict the end node of dispersal locations inferred by continuous phylogeography,235 
sized by the number of dispersal events in an area, and coloured by the timing of the event. Bottom rows of each236 
figure panel are line graphs depicting the environmental covariates associated with the locations of OROV lineage237 
dispersal events in Brazil. Each plot illustrates how specific ecological conditions have changed over time (2022-238 
2024) at the sites of viral lineage dispersal. The embedded tables show the association between environmental239 
conditions and the dispersal location of inferred OROV lineages. Based on the analysis of 100 posterior trees240 
obtained from continuous phylogeographic inference, the table reports Bayes factor (BF) supports for association241 
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between environmental raster values and tree node locations. Following the scale of interpretation of Kass and 242 
Raftery (24), we highlight BF values >20 considered as strong supports.  243 
 244 
Mapping ecological niches for OROV transmission and range expansion in Brazil 245 
The increased detection of OROV cases in humans also provides an opportunity to apply modelling to 246 
examine areas ecologically suitable for local circulation of the virus, leading to human infections. We 247 
used an ensemble modelling approach to reveal OROV transmission suitability across Brazil. The 248 
suitability index ranges from 0 (unsuitable conditions) and 1 (highly suitable conditions) and illustrates 249 
the potential geographic areas where environmental conditions are most favourable for OROV 250 
transmission (Figure 3A). The disease presence points used as model input, represent OROV circulation 251 
leading to human cases from 450 geocoded sampling locations in Brazil (based on molecular testing and 252 
sequencing records) from 1957 to 2024 (~80% corresponding to 2023-2024). Given this large time span, 253 
climatic variables were matched to the corresponding decade of the occurrence point. In the context of 254 
presence-only ecological niche modelling, where true disease absence data is unavailable, we sampled 255 
pseudo-absence points. Pseudo-absence points sampling was informed by a kernel density estimate of 256 
human population density to reflect surveillance efforts which we assumed is proportional to human 257 
population density, with an exclusion radius around presence points (Supplementary Figure S7). The 258 
model incorporated the same environmental covariates used in the landscape phylogeography analyses 259 
(Figure S1), while testing for overfitting along with model performance (Supplementary Table S3). A 260 
principal component analysis (PCA) was performed to assess multicollinearity between the environmental 261 
covariates (Supplementary Figure S8), resulting in a final selection of nine variables: Ae. aegypti 262 
ecological suitability, annual mean temperature, evergreen broadleaf forest cover, croplands cover, 263 
elevation, human population density, annual mean monthly precipitation, as well as cocoa and banana 264 
harvested area coverages. We also report variability among our model predictions as a measure of 265 
uncertainty (Supplementary Figure S9). Uncertainty is higher in the central regions of Brazil 266 
(Supplementary Figure S9), where lower population density and limited sampling reduce the accuracy 267 
of our predictions. Overall, our findings indicate that the highest ecological suitability for local OROV 268 
circulation (index >0.7) is concentrated in the northern regions (Figure 3A), particularly within the 269 
Amazon Basin, which aligns with previous studies identifying this area as a significant epicentre for the 270 
virus (10, 11). Additionally, moderate to high suitability areas extend toward the northeast and central-271 
western parts of Brazil, particularly in states such as Para, Maranhao, Bahia, and Mato Grosso, suggesting 272 
an expansion into previously non-endemic regions. Our model also highlights the potential for OROV 273 
transmission to move beyond traditional sylvatic cycles, affecting urban and peri-urban areas, particularly 274 
in the northeast (Figure 3A), where human interaction with vectors may amplify transmission risks. This 275 
trend is especially notable for highly suitable areas around the coast of Brazil, where over half of the 200 276 
million people in Brazil reside (Figure 2B).  277 
 278 
To determine the individual contributions of each environmental factor to our suitability prediction, we 279 
further calculated their relative importance (RI) in the resulting ecological niche models. We found that 280 
evergreen broadleaf forest cover and human population density contributed the most to the model 281 
predictions, followed by precipitation, and banana and cocoa agricultural lands (Figure 3D). This aligns 282 
with factors identified in the independent landscape phylogeographic analyses, and provides important 283 
insights into the disease ecology of OROV. We plotted response curves to assess the relationship between 284 
the environmental factors and OROV transmission suitability. These curves illustrate how ecological 285 
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suitability varies with changes in one factor while all others are kept constant at their mean. We observe a 286 
clear tipping point in the suitability index with mean monthly precipitation, where environments with 287 
<2.5 mm mean monthly precipitation appear unsuitable for OROV transmission (ecological suitability 288 
~0) whereas suitability increases considerably above this threshold (ecological suitability >0.4) (Figure 289 
3D). For temperature, there is a clear increase in OROV suitability in environments with annual mean 290 
temperatures above 25°C (Figure 3D). OROV transmission suitability decreases considerably at high 291 
elevations, while higher human population density, evergreen broadleaf forest cover, and higher areas of 292 
banana and cocoa agriculture appear to favour transmission (Figure 3D). 293 
 294 
To investigate whether the expansion of OROV in Brazil in late 2023 and 2024 was associated with an 295 
expansion of its ecological niche, we compared ecological niche models trained on pre-mid-2023, pre-296 
2024, and all available occurrence records. Specifically, we compared both the resulting maps of OROV 297 
ecological suitability and the capacity of each category of models to predict the distribution of most recent 298 
occurrence data. The suitability range obtained with the pre-2024 models (Figure 3B) highlights a similar 299 
spatial distribution of highly suitable regions compared to that obtained with the full models (Figure 3A). 300 
While the full suitability estimates show a slight expansion of suitable areas, the pre-2024 model was able 301 
to predict the 2024 occurrence points with a relatively high performance (TSS = 0.6, AUC = 0.862;  302 
Supplementary Table S2). However, the pre-mid-2023 suitability range (Figure 3C) shows clear 303 
differences from the full model, particularly in the landscape of ecological suitability within the Amazon; 304 
and the models had a lower predictive ability for occurrence points sampled after mid-2023 (TSS  = 0.4, 305 
AUC = 0.55;  Supplementary Table S2). This indicates a shift in ecological suitability after mid-2023, 306 
associated with OROV amplification within the Amazon, prior to circulation in other parts of the country. 307 
Given that this shift did not occur in 2024, viral circulation outside the Amazon was likely associated 308 
with OROV lineages recently reaching areas that were already ecologically suitable for local OROV 309 
transmission. This is supported by our earlier findings of long-distance and rapid dispersal events from 310 
continuous phylogeography.  311 
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312 
Figure 3. Ecological niche prediction for OROV local circulation in Brazil. A) Predicted ecological suitability313 
for OROV transmission across Brazil utilising all disease occurrence points. Suitability predictions range from314 
unsuitable (0) to highly suitable (1). B) Ecological suitability prediction using input disease occurrence points315 
sampled before 2024. C) Ecological suitability prediction using input disease occurrence points sampled before mid-316 
2023. D) Response curves and relative importance (RI) for individual environmental factors obtained from the317 
random forest (RF) suitability prediction model. These response curves (five iterations) depict the relationship318 
between the environmental factors and the response (the ecological suitability of OROV transmission). E)319 
Ecological suitability values of OROV dispersal locations (for segment M) overlayed on weekly recorded OROV320 
cases in Brazil. Suitability values are estimated from three ecological niche models (ENM), as described in the text.  321 
 322 
Integrating results from the ecological niche modelling with the inferred dispersal histories, we can323 
further assess the estimated ecological suitability values at each dispersal location associated with OROV324 
circulation across space and time (Figure 3E). Examining dispersal locations occurring prior to mid-325 
2023, after mid-2023, and in 2024, it becomes evident that for most of its dispersal history, OROV326 
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circulated in regions of moderate ecological suitability (~0.4-0.5), consistent across the three temporal 327 
models we estimated. This was then followed by a peak in ecological suitability values, reaching ~0.6-0.8 328 
associated with OROV dispersal from mid to late 2023, coinciding with unprecedented epidemic 329 
expansion within the Amazon (Figure 3E, Supplementary Figure S1). This peak in ecological 330 
suitability was likely due to the virus being introduced to areas of the Amazon that had a combination of 331 
favourable environments and higher population densities, such as Manaus, leading to an amplification of 332 
transmission. This expansion in a highly suitable and densely populated environment, in turn, likely 333 
facilitated the pathogen’s spread beyond its usual transmission range. Additionally, this amplification 334 
environment was more connected via human mobility to the rest of the country (Supplementary Figure 335 
S2), compared to more remote areas of the Amazon, where the virus had previously circulated. This 336 
further emphasises the need for improved surveillance in blind spot regions where transmission suitability 337 
is high, but where cases may be underreported or genomic data may be scarce. In such regions, 338 
introductions could rapidly lead to amplified outbreaks. A subsequent drop in ecological suitability 339 
associated with dispersal locations after 2024 is likely due to the virus colonising areas with less 340 
favourable environmental conditions (e.g., lower mean annual temperatures - Figure 2D, higher 341 
elevation, and lower precipitation - Supplementary Figure S4), despite high population densities.  342 
 343 
Discussion, limitations and conclusions 344 
The recent emergence and expansion of OROV into previously non-endemic regions underscores the 345 
critical need for a deeper understanding of the factors associated with its spread. In response to the 2023-346 
2024 outbreaks, recent studies have described the emergence of a reassortant lineage (10, 11), 347 
investigated spatiotemporal movement dynamics at a smaller scale (6, 7, 10, 11), reported severe clinical 348 
outcomes (9), and documented biological differences in the novel lineage (29). However, none had 349 
investigated the ecological mechanisms associated with the amplification of OROV within the Amazon 350 
and in other parts of the country (30). Here, we integrated phylogeographic and ecological modelling 351 
approaches to explore potential correlates of OROV transmission and range expansion. Our 352 
phylogeographic reconstructions provide initial evidence for the underlying dynamics governing OROV’s 353 
amplification and spread in Brazil. By analysing environmental phylogeographic relationships and the 354 
ecological niche associated with viral transmission during distinct phases, we found that OROV circulated 355 
in areas of enhanced ecological suitability immediately preceding its explosive expansion in the Amazon. 356 
Our phylogeographic reconstructions also demonstrate that this expansion occurred with a considerable 357 
diffusion capacity, characterised by a series of rapid long-distance dispersal, most likely human-mediated 358 
through air travel across the country. 359 
 360 
Environmental conditions play a pivotal role in shaping OROV transmission dynamics (31). Zones 361 
undergoing land-cover transitions, particularly those involving deforestation and agricultural activities, 362 
have emerged as critical hotspots for virus spread (32, 33). As these areas transition from sylvatic (forest) 363 
environments to more urbanised or agricultural landscapes, the resulting habitat changes bring vectors and 364 
reservoir hosts into closer contact with human populations, creating new opportunities for OROV 365 
transmission, and these must be studied using an integrated approach (34). Through the landscape 366 
phylogeographic and ecological niche modelling analyses conducted in this study, we propose a 367 
mechanism for the expansion of OROV, first within and then beyond the Amazon. We detect both a shift 368 
in estimated ecological suitability and differences in the environmental space visited by dispersal events 369 
prior to epidemic amplification within the Amazon. However, this was not concurrent with the emerging 370 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2024. ; https://doi.org/10.1101/2024.10.29.24316328doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.29.24316328
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

13 

circulation in regions outside the Amazon, where the virus has not widely circulated before. This 371 
consistently supports a two-step expansion process, in which circulation within a highly suitable 372 
environment led to an explosive outbreak in the Amazon, which then facilitated OROV’s spread beyond 373 
its usual transmission range. These findings are supported by independent reconstructions of all three 374 
genomic segments of the virus. While previous studies have identified the Amazon region as the primary 375 
source of OROV emergence in Brazil (10, 11), the re-emergence or introduction of the virus in the 376 
vicinity of Manaus, the capital of the vast state of the Amazon, would have exposed a large number of 377 
naive human hosts and contributed to an amplified outbreak. Higher suitability in the amplification zone 378 
within the Amazon could therefore be attributed to a combination of favourable environmental conditions 379 
and densely populated urban areas. Our results also suggest that the novel circulation of OROV in non-380 
endemic parts of Brazil, albeit concerning, could be self-limiting, particularly in areas with less 381 
favourable environments.  382 
 383 
Our study illustrates the power of integrating phylodynamics, landscape phylogeography and ecological 384 
niche modelling in elucidating complex eco-epidemiological dynamics of re-emerging arboviruses and 385 
urban amplification. These findings have several implications. First, by using complementary analytical 386 
methods and a comprehensive genomic data set, we identify key environmental factors important for 387 
virus transmission. Results from both approaches implicate human population density, banana and cocoa 388 
cultivation, and temperature as factors associated with favourable transmission environments. Such 389 
information can directly inform public health planning and mitigation measures, such as vector control 390 
activities around banana and cocoa plantations, particularly near urban areas. A recent study also 391 
implicated banana and cocoa as important crop types in epidemic locations (35). Second, while not a 392 
confirmation, our work provides a robust initial indication that OROV expanded opportunistically by 393 
finding more favourable environments for transmission, which were also more connected to the rest of the 394 
country. Other hypotheses have explored the idea that higher viral replication in mammalian cells could 395 
allow more efficient transmission to vector and onwards, or that the immune escape ability of the new 396 
reassortant lineage may play a role (29). Synthesising recent work with our findings identifies a  proposed 397 
mechanism for this emerging outbreak. It is possible that genetic reassortment resulted in a viral genotype 398 
characterised by more efficient infection and transmission between humans and the vector, resulting in 399 
higher viremia, in turn explaining the epidemic expansion in favourable urban environments detected in 400 
our study. The approach we propose is highly adaptable to risk mapping and the characterisation of 401 
disease ecology for other arboviruses and zoonotic infections. Finally, the concentration of high-402 
suitability areas in Brazil’s coastal regions is concerning, as this is where most of the population resides 403 
and where multiple arboviruses already circulate. Multiple introduction events into these areas could lead 404 
to further amplification of this pathogen, particularly given the presence of immunologically naive 405 
populations, or the circulation of a variant that can evade prior immunity (29). Additionally, several 406 
suitable areas, especially in the northeastern and central-west regions, remain surveillance blindspots for 407 
OROV. These areas may harbour undetected transmission due to limited sampling. Prioritising these 408 
blind spots for active surveillance is essential for timely viral detection and early interventions to prevent 409 
outbreaks.  410 
 411 
This study needs to be interpreted in light of certain limitations. Our landscape phylogeographic approach 412 
is affected by the pattern of the sampling effort, as approximately half of the node locations are sequenced 413 
tips, making them prone to sampling biases (25). This means that this approach cannot currently test the 414 
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true drivers of transmission but rather test the strength of associations of dispersal environments. 415 
Additionally, we lack a species distribution model for the actual vector, Culicoides paraensis, and 416 
vertebrate host species that typically compose OROV’s natural reservoir, which limits our ability to fully 417 
understand host-vector-specific environmental suitability. To mitigate this bias, we test associations 418 
against a null dispersal model generated through simulations, and only consider factors with the strongest 419 
Bayes factor support (>20). Additionally, this study was designed only to examine the ecological factors 420 
associated with epidemic expansion in Brazil. The potentially critical role of reassortants in viral 421 
adaptation and fitness has not been addressed here. Our phylogeographic analyses focused solely on the 422 
reassortant lineage that emerged in Brazil. To elucidate the role of these evolutionary processes in the 423 
virus’ ability to adapt to new niches, hosts or vectors, our approach could be extended to analyse 424 
evolutionarily distinct lineages of OROV that previously circulated in Brazil or neighbouring regions. The 425 
role of vectors is central to the expansion of OROV, with the primary vector Culicoides paraensis likely 426 
adapting to new landscapes. The interaction between the virus, its vectors and its reservoir hosts is crucial 427 
for both the colonisation of new transmission zones and the maintenance of transmission in established 428 
areas. Our analysis also revealed increased exposure of OROV to urban and peri-urban vectors such as 429 
Ae. aegypti, which could facilitate its spread in densely populated regions. However, our approach cannot 430 
definitively support that this vector was directly involved in epidemic expansion. While the virus has 431 
previously been detected in Ae. aegypti mosquitoes (21), further vector competence studies, particularly 432 
against this novel reassortant lineage, are required to understand the risks posed by increased exposure of 433 
this virus to secondary urban vectors.   434 
 435 
The geographic expansion of OROV into new regions highlights the pressing need for integrating 436 
environmental monitoring into public health frameworks. To effectively predict and mitigate the risks 437 
posed by OROV and other arboviruses, surveillance efforts must account for the complex interaction 438 
between environmental changes, vector ecology and human behaviour. As OROV continues to adapt to 439 
new ecological niches, driven by combinations of genetic evolution and both natural and anthropogenic 440 
factors, a deep understanding of these dynamics will be essential for developing targeted intervention 441 
strategies to control its spread and minimise its public health impact. 442 
 443 
 444 

  445 
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 616 
Materials and Methods 617 
Oropouche Virus genomic data 618 
Complete genome sequences of the S, M, and L segments of the Oropouche virus (OROV), obtained from 619 
the first extra-Amazon OROV cases reported in the states of Bahia (Northeast Brazil), Minas Gerais 620 
(Southeast Brazil), Mato Grosso (Midwest Brazil), and Paraná (South Brazil), were combined with the 621 
corresponding segments of recently published full-length OROV sequences belonging to the Brazilian 622 
2022-2024 sublineage (10). The OROV sequences used in this study correspond to the Genbank 623 
accession IDs: PQ168520-PQ247806 and PP153945-PQ065491. Sequence alignment for each segment 624 
(n=545) was performed using MAFFT (36, 37) and subsequently curated manually to remove artefacts 625 
using AliView (38). Genomic regions identified by RDP5 to have likely been acquired by recombination 626 
and genomic segments identified by RDP5 to have been acquired by reassortment, were stripped from the 627 
full genome data sets by replacing these regions with gap characters (“-”) in the alignment file, thereby a 628 
yielding a free full genome alignment free of recombination and reassortment as previously described 629 
(10). Sequences with recombination and reassortment signals along the majority of the genome were 630 
completely discarded (n=43 for segment S and n=1 for segment L). 631 
 632 
Disease occurrence data 633 
Disease occurrence data was compiled from multiple sources. Epidemiological data on Oropouche virus 634 
(OROV) cases were retrieved from the Brazilian Ministry of Health, accessible at 635 
https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/o/oropouche. The data set includes confirmed 636 
case reports from all Brazilian states where OROV cases have been notified, including but not limited to 637 
Acre (AC), Alagoas (AL), Amazonas (AM), Bahia (BA), Ceará (CE), Minas Gerais (MG), Pará (PA), Rio 638 
de Janeiro (RJ), and São Paulo (SP). The data cover the years 2023 and 2024, organised by 639 
epidemiological week, and include key variables such as the municipality, state, year of occurrence, and 640 
the corresponding epidemiological week of reporting. This data was geocoded at the municipality level 641 
and occurrence deduplicated by month. Additional OROV occurrence data was gathered and geocoded 642 
from all records on the GBIF (years: 1957-present) and Genbank databases (years: 2015-present). After 643 
deduplicating all occurrence records, we obtained a total of 450 unique sampling location points covering 644 
the years 1957 to 2024, with a majority (~85%) sampled in 2023-2024. 645 
 646 
Geospatial data 647 
We tested several environmental factors both as associations with viral dispersal locations and as 648 
covariates in our ecological niche model. These factors included human population density, main land 649 
cover and climatic variables within the study area (Brazil). Each environmental factor was described by a 650 
raster that defines its spatial heterogeneity. Supplementary Table S3 details the source and resolution of 651 
each original raster file. Each raster was cropped to match our study area (Brazil) by using Brazil 652 
shapefiles from the “rnaturalearth” package in R.  653 
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 654 
Air travel  data 655 
We retrieved domestic flight data from Brazil’s Civil Aviation Agency (ANAC) using the “flightsbr” R 656 
package (Version 0.1.0). This dataset contains information on flight routes, departure and arrival times, 657 
airlines, and airport locations. With flight data only available through 2020, we chose to use 2019 as it 658 
represents the most recent complete year before the COVID-19 pandemic. It provides a reliable baseline, 659 
with reports confirming the recovery of air travel to pre-pandemic levels in 2023 (39). We merged the 660 
flight data with airport location information, filtering specifically for public airports across Brazil. We 661 
focused on creating a network of departing flights, visualised spatially by airport, to highlight regional 662 
connectivity patterns. All data processing and visualisations were conducted using R, with geospatial 663 
mapping performed using the ggplot2 and sp packages. 664 
 665 
Phylogeographic reconstruction and dispersal statistics 666 
To model the spatiotemporal spread of OROV using spatially-explicit phylogeographic reconstruction 667 
using the continuous diffusion model implemented in the software package BEAST 1.10 (40), we utilised 668 
three different data subsets containing the 2022-2024 OROV sequences from various regions of Brazil of 669 
the S (n = 501), M (n = 545), and L (n = 544) segments. Before conducting the phylogeographic analyses, 670 
we assessed the strength of the molecular clock signal in each data subset using the root-to-tip regression 671 
method available in TempEst v1.5.3 (41). Preliminary BEAST reconstructions revealed an outgroup of 672 
sequences which diverged from the main clade ~60 years ago for each segment; these were subsequently 673 
discarded from our analyses. Temporal structure was accepted for all datasets as the correlation 674 
coefficients were all close to or above 0.5 (S: 0.4972, M: 0.635, L: 0.5123). We reconstructed the spread 675 
of OROV lineages within Brazil by using a flexible relaxed random walk diffusion model (42), which 676 
accommodates branch-specific variation in dispersal rates, with a Cauchy distribution and a jitter window 677 
size of 0.01 (43). The latitude and longitude coordinates of each sample were used in this analysis. 678 
MCMC analyses were run in BEAST v1.10.4, with chains of up to 1 billion iterations each, sampling 679 
every 100,000 steps in the chain. The chains were stopped when convergence was reached following the 680 
removal of burn-in states. Convergence of each run was assessed using Tracer v1.7.1, ensuring that the 681 
effective sample size (ESS) for all relevant model parameters was >200 (44). Maximum clade credibility 682 
trees were summarised using TreeAnnotator after discarding burn-in samples, the number of which was 683 
also determined in Tracer. Finally, the R package “seraphim” (45) was employed to extract and map the 684 
spatiotemporal information embedded in the posterior trees. We further used “seraphim” to estimate three 685 
dispersal statistics from these movement vectors for each segment: maximal wavefront distances, 686 
weighted diffusion coefficients (46), measuring the dispersal capacity of viral lineages, and an isolation-687 
by-distance (IBD) signal measured as the Pearson correlation between the patristic and log-transformed 688 
geographic distances computed for each pair of tip nodes (20). 689 
 690 
Landscape phylogeographic analyses 691 
To test the association between environmental conditions (Supplementary Figure S2) and dispersal 692 
locations of inferred OROV lineages, we employed a landscape phylogeographic approach (25). We first 693 
extracted and visualised the environmental values explored by phylogenetic branches using the 694 
“spreadValues” function implemented in the R package “seraphim”. For these analyses, we sampled 100 695 
posterior trees obtained from the continuous phylogeographic inference. For each posterior tree sampled 696 
during the phylogeographic analysis, this function extracts then averages the environmental values at the 697 
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tree node positions. For each analysed environmental factor, we then obtained a posterior distribution of 698 
mean environmental values at tree node positions for each segment data set. To assess the tendency of 699 
inferred viral lineages to preferentially circulate within or avoid circulating in specific environmental 700 
conditions, we compared the distribution of mean environmental values extracted at node positions in 701 
inferred trees (Eestimated) with those extracted at node positions in trees whose dispersal history had been 702 
re-simulated under a null dispersal model (Esimulated). To generate such a null dispersal model, a RRW 703 
diffusion process was simulated along each tree topology used for the phylogeographic analyses. These 704 
RRW simulations were performed using the “simulatorRRW1” function of the R package “seraphim” 705 
from the sampled precision matrix parameters estimated by the phylogeographic analyses. Therefore, 706 
from these simulations, values at node positions (Esimulated) constitute the distribution of mean 707 
environmental values explored under a dispersal scenario that is not impacted by any underlying 708 
environmental condition. For each environmental factor and segment-specific phylogeographic 709 
reconstruction, we then compared the distribution of Eestimated values computed from posterior trees with 710 
the distribution of Esimulated values retrieved from the same tree topologies along which a RRW diffusion 711 
process had been re-simulated. Specifically, we approximated a Bayes factor (BF) support equal to (pe/(1-712 
pe))/(0.5/(1-0.5)). To test if viral lineages tended to avoid circulating within a particular environmental 713 
factor e, pe was defined as the frequency at which Eestimated < Esimulated; and to test if viral lineages tended to 714 
preferentially circulate within a particular environmental factor e, pe was defined as the frequency at 715 
which Esimulated < Eestimated. Following the scale of interpretation of Kass and Raftery (24), we here 716 
highlight BF values >20 considered as strong supports. 717 
 718 
Ecological Niche Modelling 719 
Ecological niche models (ENMs) are built using a variety of statistical methods, each varying in 720 
complexity and underlying assumptions about the interaction between species occurrences and 721 
environmental factors (47). Recent studies have shown that disparities among different model structures 722 
can be very large, making model selection difficult (48). An alternative is to use an ensemble of models to 723 
avoid selecting one single best model but instead to use a group of methods for inference. In other words, 724 
the presence of a species might be well classified by some models and misclassified by others, such that 725 
making use of an ensemble model can reduce the predictive uncertainty of a single model by combining 726 
predictions (49). In this study, we applied this approach to model the distribution of OROV transmission 727 
by creating a suitability map based on the occurrence of OROV disease in Brazil and relevant 728 
environmental variables (see Geospatial Data section). For this analysis, we aggregate all raster maps to 729 
the lowest resolution available (~27km2). We used an ensemble of seven statistical, machine learning, and 730 
envelope models: Generalised Linear Model (GLM), Generalised Additive Model (GAM), Boosted 731 
Regression Trees (BRT), Random Forest (RF), Classification Tree Analysis (CTA), Surface Range 732 
Envelope (SRE) and Maximum Entropy Model (MAXENT). To assess the potential expansion of 733 
OROV's ecological niche in Brazil during late 2023 and 2024, we computed and compared ecological 734 
niche models (ENMs) using occurrence data from different time periods. Specifically, we created three 735 
ensemble models using pre-mid-2023 (89 occurrences), pre-2024 (133 occurrences) ,and all available 736 
occurrence records (450 occurrences).  737 
 738 
To assess the models’ performance we use block cross validation (50). This is a spatially explicit method 739 
used to assess model performance by dividing the study area into geographic blocks. Instead of randomly 740 
splitting data, this technique ensures that training and testing data are spatially independent, reducing the 741 
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risk of spatial autocorrelation. True Skills Statistics (TSS) and receiver-operating characteristic (ROC) 742 
curve (area under curve - AUC) are then used to evaluate the predictive performance of the models based 743 
on the test (validation) dataset. TSS is equivalent to sensitivity+specificity-1 and ranges from -1 to 1; 744 
value of 1 indicates perfect classification, 0 means the model is no better than random guessing, and 745 
negative TSS indicates the model performs worse than random guessing. AUC ranges from 0 to 1; AUC 746 
of 1 indicates perfect model performance, 0.5 indicates no discrimination (i.e., the model is no better than 747 
random guessing), and <0.5 indicates the model performs worse than random guessing. We only retained 748 
models with a TSS score of >0.7 to build the ensemble model (Supplementary Figure S10). The mean 749 
probabilities from each model were then computed, and we weighted the predictions of each model 750 
according to its performance during training, giving more weight to better-performing models. The 751 
weights ensure that higher-quality models contribute more to the final ensemble prediction. The different 752 
resulting ‘suitability indexes’ are then combined to get a single value per site. Once the ensemble 753 
predictions are generated, the ensemble model itself is evaluated using the same metrics applied to the 754 
individual models; TSS and AUC.  755 
 756 
Disease presence points used as input represent OROV circulation occurrence from 450 unique sampling 757 
locations in Brazil (molecular testing and sequencing records) from the years 1957 to 2024. Occurrence 758 
points with available collection dates were matched to corresponding climatic variables by month. 759 
Specifically, temperature and precipitation data for each point were extracted from the monthly climate 760 
layers matching the collection month. The sampling of pseudo-absences was done at a 1:1 ratio with 761 
presence points and based on those distribution of presence points and a human population density kernel 762 
density estimate. Our aim was to sample absences in proportion to the rate of presence points while giving 763 
higher priority to areas with greater population density, ensuring more focused sampling in regions where 764 
human populations are denser. This approach helps us account for disease testing biases in more 765 
urbanized areas in the pseudo-absence distribution. Pseudo-absences were also selected within a 766 
perimeter of 50-300 km around presence points, ensuring that absence points are neither too close to 767 
presence points (to avoid the same niche) or too far (to promote localised sampling strategy). 768 
 769 
To determine the independent contributions of each variable to our suitability prediction, we further 770 
calculated their relative importance (RI). In the case of random forest (RF) models, RI is computed by 771 
assessing how frequently a variable is selected for splitting at tree nodes, weighted by the squared 772 
improvement in model performance resulting from each split, and averaged across all trees (51). Higher 773 
RI values indicate greater relative contribution of that variable to the predictive performance of the model. 774 
We also produced response curves to visualise the effect of each variable on suitability predictions in the 775 
RF models. These response curves allow us to observe how changes in a single variable influence the 776 
predicted outcome, while other variables are held constant (at their mean). By examining these 777 
relationships, we gain insights into how each variable individually contributes to the model’s overall 778 
predictions. 779 

 780 
 781 
 782 
 783 
 784 
 785 
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Supplementary Figures 786 

 787 
Figure S1. Epidemiological curve of OROV cases in Brazil. Weekly cases are shown for 2023 and 2024 divided788 
into two epidemiological curves, one for states in the Amazon region, and one for states outside the Amazon region.789 
The inset map is coloured by the specific state, and the circles represent the total number of recorded OROV cases in790 
that state.  791 
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 793 
Figure S2. Human mobility through air travel in Brazil. The figure captures air travel data in Brazil in 2019. The794 
map shows the total number of departing flights from all airports in Brazil. Circles are both coloured and sized by795 
the number of flights departing from an airport origin location. The coloured curves show the number and network796 
of flights from airports of specific municipalities, namely Manaus in state of Amazonas (red), Santarém in the state797 
of Pará (green), Cuiabá in the state of Mato Grosso (grey), Porto Velho in the state of Rondônia (yellow), Rio798 
Branco in the state of Acre (purple), and Macapá in the state of Amapá (blue). 799 
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801 
Figure S3. Environmental covariates analyzed in the context of the range expansion of OROV in Brazil.802 
Various environmental rasters, such as demographic, land-use, and climatic covariates, were analyzed in the study to803 
investigate their association with the spread of the OROV in Brazil. Demographic variables encompass population804 
density and urban areas, while land-use patterns focus on the presence of croplands, water bodies, and regions805 
impacted by deforestation linked to specific agricultural activities, such as cocoa, soy, and banana crops. 806 
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808 
Figure S4. Environmental values associated with OROV branch dispersal locations over time. Line graphs809 
depicting the environmental covariates associated with the locations of OROV lineage dispersal events in Brazil.810 
Each plot illustrates how specific ecological conditions have changed over time (2021-2024) at the sites of viral811 
lineage dispersal. This is shown for segment L (in red), segment M (in blue), and segment S (in green).  812 
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814 

Figure S5. Environmental conditions associated with OROV lineage dispersal locations over time (for815 
segment S). Figure panels show the spatial distribution of six main environmental factors (units specified):816 
evergreen broadleaf forest cover (%) (A), human population density (normalised between 0 and 255 per km2 for817 
visual clarity) (B), Ae. aegypti ecological suitability (probability of occurrence) (C), mean annual temperature (°C)818 
(D), banana harvested area (hectares - log) (E), and cocoa harvested area (hectares - log) (F) in the top rows. Circles819 
on the map depict the end node of dispersal locations inferred by continuous phylogeography, sized by the number820 
of dispersal events in an area, and coloured by the timing of the event. Bottom rows of each figure panel are line821 
graphs depicting the environmental covariates associated with the locations of OROV lineage dispersal events in822 
Brazil. Each plot illustrates how specific ecological conditions have changed over time (2022-2024) at the sites of823 
viral lineage dispersal. The embedded tables show the association between environmental conditions and the824 
dispersal location of inferred OROV lineages. Based on the analysis of 100 posterior trees obtained from continuous825 
phylogeographic inference, the table reports Bayes factor (BF) supports for association between environmental826 
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raster values and tree node locations. Following the scale of interpretation of Kass and Raftery (24), we highlight BF827 
values >20 considered as strong supports.  828 
 829 
 830 

831 

Figure S6. Environmental conditions associated with OROV lineage dispersal locations over time (for832 
segment L). Figure panels show the spatial distribution of six main environmental factors (units specified):833 
evergreen broadleaf forest cover (%) (A), human population density (normalised between 0 and 255 per km2 for834 
visual clarity) (B), Ae. aegypti ecological suitability (probability of occurrence) (C), mean annual temperature (°C)835 
(D), banana harvested area (hectares - log) (E), and cocoa harvested area (hectares - log) (F) in the top rows. Circles836 
on the map depict the end node of dispersal locations inferred by continuous phylogeography, sized by the number837 
of dispersal events in an area, and coloured by the timing of the event. Bottom rows of each figure panel are line838 
graphs depicting the environmental covariates associated with the locations of OROV lineage dispersal events in839 
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Brazil. Each plot illustrates how specific ecological conditions have changed over time (2022-2024) at the sites of840 
viral lineage dispersal. The embedded tables show the association between environmental conditions and the841 
dispersal location of inferred OROV lineages. Based on the analysis of 100 posterior trees obtained from continuous842 
phylogeographic inference, the table reports Bayes factor (BF) supports for association between environmental843 
raster values and tree node locations. Following the scale of interpretation of Kass and Raftery (24), we highlight BF844 
values >20 considered as strong supports.  845 
 846 
 847 

 848 

Figure S7. Distribution of disease presence and pseudo-absence points. We generated pseudo-absence849 
points at a 1:1 ratio with presence points by sampling from the distribution of presence points and the850 
kernel density estimate of human population density. 851 
 852 
 853 
 854 
 855 
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 856 
Figure S8. Principal Component Analysis (PCA) plot illustrating the relationships between857 
variables. Arrows that lie within the same quadrant or are positioned close to each other indicate a higher858 
correlation among the corresponding variables. Furthermore, longer arrows signify a greater contribution859 
of those variables to the principal components, highlighting their discrimination in the overall dataset. 860 
 861 
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 862 

Figure S9. Ecological niche models variability. The degree of variability in suitability prediction values863 
among the models in our ensemble, highlighting areas where different models either converge or diverge864 
in their predictions. 865 
 866 
 867 
 868 
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 869 

 870 

Figure S10. Ecological niche models evaluation results. Results from block cross-validation of the871 
individual environmental niche models of the full model (using all data points). The x- and y-axis show872 
the True Skill Statistic (TSS) and area under the Receiver Operating Characteristic (ROC) curve,873 
respectively. 874 
 875 
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 894 
Supplementary Table S1:  895 

896 

Supplementary Table S2: Model evaluation metrics (TSS and ROC) for the ensemble models, with897 
results from testing on both the training/calibration datasets (left) and an independent dataset from 2024898 
cases (right). The models were evaluated in three stages: points collected before mid-2023, points899 
collected before 2024, and all available points combined. 900 

Model 
performance 

Occurrence 
Points 

Testing on calibration 
dataset 

Testing on independent data 
(Year = 2024 cases)  

Models  TSS AUC TSS AUC 

Pre-mid-2023 89 0.77 0.885 0.4 0.55 
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Pre-2024 133 0.801 0.957 0.6 0.862 

Full 450 0.835 0.974 0.785 0.95 

 901 
Supplementary Table S3: Environmental variables used in the study, with respective resolutions and 902 
data sources. 903 

Environmental Variables Resolution (degrees ~ km)  Source 

Population density 0.0083 ~ 1 km WorldPop, Global Human 
Settlement Layer (GHSL) 

Urban & built up areas cover 0.0083 ~ 1 km GHSL, World Urbanization 
Prospects 

Annual mean temperature 0.0090 ~ 1 km WorldClim 

Elevation 0.0083 ~ 1 km USGS  

Herbaceous vegetation cover 0.0083 ~ 1 km MODIS Land Cover, Global 
Land Cover (GLC) 

Cultivated managed vegetation 
cover 

0.0083 ~ 1 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Regularly flooded vegetation 
cover 

0.0083 ~ 1 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Ae. aegypti ecological suitability 0.0146 ~ 1.62 km  DOI: 
https://doi.org/10.7554/eLife.08
347 

Deciduous broadleaf forest 
cover 

0.0083 ~ 1 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Evergreen broadleaf forest cover 0.0083 ~ 1 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Mixed trees forest cover 0.0083 ~ 1 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Grasslands cover 0.25 ~ 27.75 km EarthEnv - 
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https://www.earthenv.org/landco
ver 

Shrublands cover 0.0083 ~ 1 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Savannas cover 0.25 ~ 27.75 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Woody savannas cover 0.25 ~ 27.75 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Croplands & natural vegetation 
cover 

0.25 ~ 27.75 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Croplands cover 0.25 ~ 27.75 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Banana harvested area  0.0833 ~10 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Cassava harvested area  0.0833 ~10 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Cocoa harvested area  0.0833 ~10 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Coffee harvested area  0.0833 ~10 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Maize harvested area  0.0833 ~10 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Soybean harvested area  0.0833 ~10 km EarthEnv - 
https://www.earthenv.org/landco
ver 
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Sugarcane harvested area 0.0833 ~10 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Cattle cultivation area 0.0833 ~10 km EarthEnv - 
https://www.earthenv.org/landco
ver 

Forest loss (2020-2023) 0.025 ~ 2.78 km  https://glad.earthengine.app/vie
w/global-forest-change 

Water occurrence 0.0833 ~ 10 km  Global surface water explorer 

Annual mean precipitation 0.05 ~ 5.55 km  WorldClim 
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