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Abstract

Background. Appendicitis is a common condition among children and adoles-
cents. Machine learning models can offer much-needed tools for improved di-
agnosis, severity assessment and management guidance for pediatric appendici-
tis. However, to be adopted in practice, such systems must be reliable, safe
and robust across various medical contexts, e.g., hospitals with distinct clinical
practices and patient populations.

Methods. We performed external validation of models predicting the diagno-
sis, management and severity of pediatric appendicitis. Trained on a cohort
of 430 patients admitted to the Children’s Hospital St. Hedwig (Regensburg,
Germany), the models were validated on an independent cohort of 301 patients
from the Florence-Nightingale-Hospital (Düsseldorf, Germany). The data in-
cluded demographic, clinical, scoring, laboratory and ultrasound parameters.
In addition, we explored the benefits of model retraining and inspected variable
importance.

† These authors have contributed equally and share first authorship.
‡ These authors have contributed equally and share last authorship.
1Current affiliation: Computer Science Department, Princeton University, New Jersey,

USA.
2Current affiliation: Clinic for Trauma, Hand Surgery and Sports Medicine, ViDia Clinics

Karlsruhe, Germany.
3Current affiliation: Department of Pediatric Surgery and Pediatric Urology, Children’s

Hospital of Cologne, Germany.
4Current affiliation: Department of Pediatric Surgery, RoMed Klinikum Rosenheim, Ger-

many.
*Correspondence to patricia.reiswolfertstetter@barmherzige-regensburg.de.

Preprint submitted to Elsevier 28th October 2024

mailto:patricia.reiswolfertstetter@barmherzige-regensburg.de


Results. The distributions of most parameters differed between the datasets.
Consequently, we saw a decrease in predictive performance for diagnosis, man-
agement and severity across most metrics. After retraining with a portion of
external data, we observed gains in performance, which, nonetheless, remained
lower than in the original study. Notably, the most important variables were
consistent across the datasets.

Conclusions. While the performance of transferred models was satisfactory, it
remained lower than on the original data. This study demonstrates challenges
in transferring models between hospitals, especially when clinical practice and
demographics differ or in the presence of externalities such as pandemics. We
also highlight the limitations of retraining as a potential remedy since it could
not restore predictive performance to the initial level.

Keywords: Appendicitis, Pediatrics, Artificial Intelligence, Machine Learning,
Predictive Modeling, Medical Decision Support Systems, Evaluation

1. Introduction

Acute appendicitis is a common condition among children and adolescents
treated in pediatric surgery departments due to abdominal pain [1, 2]. Diag-
nosis relies on clinical signs and symptoms (in particular, their dynamics and
progression under close observation), laboratory tests and imaging, whereas
postoperative classification is based on intraoperative findings and histology [3].
Scoring systems, such as Alvarado Score (AS) and Pediatric Appendicitis Score
(PAS), can facilitate clinical assessment [4, 5]. The classical treatment of pedi-
atric appendicitis is surgical, although conservative treatment with antibiotics
can be an option in certain cases [6, 7, 8]. Additionally, spontaneous reso-
lution of uncomplicated appendicitis has been observed and reported, which
supports antibiotic-free management based on supportive care for qualifying
cases [9, 10, 11].

Despite new developments and technologies, early and accurate detection,
preoperative classification, and treatment strategy selection are still challeng-
ing, especially in young children [1, 12, 13]. Widely used clinical and laboratory
parameters alone are mostly non-specific at identifying appendicitis [14, 15].
Imaging modalities are important tools to guide management and avoid nega-
tive appendectomies, but they have limitations, such as operator (investigator)
dependency on ultrasonography, radiation exposure for computed tomography,
and availability and feasibility of magnetic resonance imaging, not to mention
the costs [3, 16].

Recent years have marked impressive progress in Machine Learning (ML)
research and the increasing proliferation of tools built upon this technology in
medicine. ML algorithms promise to aid in the detection, management and
treatment of various diseases, thus improving the overall quality and effective-
ness of healthcare. In relation to pediatric appendicitis, ML has been used to
diagnose and manage patients suspected of developing this condition [17, 18, 19,
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20, 21, 22, 23, 24, 25, 26, 27]; specifically, such tools were developed to predict
diagnosis, management and severity of pediatric appendicitis. These models ei-
ther rely exclusively on standard clinical and laboratory data [17, 18, 21, 20, 26],
or additionally utilize imaging modalities (obtained through various methods,
e.g., computed tomography or ultrasonography) either directly in their raw for-
mat or by extracting hand-crafted annotations [19, 22, 23, 24, 25, 27].

Although promising and practical, ML-based tools for pediatric appendicitis
are rarely deployed in practice due to the translational barrier inherent to med-
ical machine learning research. To overcome this challenge, predictive models
need to be (prospectively) validated on external dataset and later go through rig-
orous clinical trials (which tend to be complex, time-consuming and costly) [28].
In this study we make a step in this direction and follow up on our previous
work where we developed ML models [25] for predicting diagnosis (appendici-
tis vs. no appendicitis), treatment assignment (surgical vs. conservative) and
complications (complicated appendicitis vs. uncomplicated or no appendicitis) of
pediatric appendicitis. Specifically, we conduct a principled external validation
of the aforementioned ML tools on tabular electronic health records collected
in a different hospital.

The original models (logistic regression, random forest and gradient boost-
ing, all achieving strong performance) were developed on a dataset of 430 pa-
tients aged 0 to 18 years admitted with abdominal pain and suspected appen-
dicitis to the Department of Pediatric Surgery at the tertiary Children’s Hospital
St. Hedwig in Regensburg, Germany, over the period of 2016–2018 [24, 25]; it
consists of demographic, clinical, scoring, laboratory and ultrasound (US) pre-
dictor variables (see Table 1 for their list).3 The external validation dataset
was acquired at the Department of Pediatric Surgery and Pediatric Traumatol-
ogy, Florence-Nightingale-Hospital, Düsseldorf, Germany. This cohort consists
of 301 pediatric patients hospitalized between 2015 and 2022, and the dataset
format and predictor variables adhere to the format of the Regensburg dataset.
The study design is summarized schematically in Figure 1.

In this retrospective study, we present an external validation of the afore-
mentioned models on a new and independent cohort of patients. To this end,
we:

1. compare the datasets to better understand their differences (Section 3.1);

2. evaluate the models without any adaptation to test their external validity
under real-world distribution shift (Section 3.2);

3. retrain the models, and then evaluate and compare them again to explore
possible gains in performance (Section 3.2); and

4. study feature importance across the models to elucidate their functioning
(Section 3.3).

Our study demonstrates the transferability of the models across hospitals and

3This dataset is available at https://github.com/i6092467/pediatric-appendicitis-ml.
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Figure 1: An overview of the study design. The original predictive models were trained and
validated on the cohort of patients (n = 430) from Regensburg, Germany [25]. This article
presents the results of the external validation on another cohort (n = 301) from Düsseldorf,
Germany. In particular, in this study, we validate the original models on the external data
and retrain them to assess the potential for improvement.

outlines the steps necessary to facilitate such a safe adaptation.

2. Material and Methods

2.1. External Data Acquisition and Description

To facilitate external validation, we collected and reviewed retrospective data
from children and adolescents aged 0–17 years who were admitted to the Depart-
ment of Pediatric Surgery and Pediatric Traumatology at Florence-Nightingale-
Hospital in Düsseldorf with abdominal pain and suspected appendicitis from
January 1st, 2015 to February 1st, 2022. Patients who had undergone an ap-
pendectomy before their admission were excluded. Similarly, we did not in-
clude subjects with chronic intestinal diseases or current antibiotic treatment
if therapy was conservative. In total, 301 patients met the inclusion criteria.
The study, including data acquisition and transfer, was approved by the Ethics
Committee of the University of Regensburg (18-1063-101, 18-1063-3-101) and
was performed in accordance with the relevant guidelines and regulations.

In terms of management, the cohort was divided into conservative and op-
erative groups. Patients admitted and receiving supporting therapy, e.g., intra-
venous fluids, enemas and analgesics, with clinical improvement without surgery
were classified as conservative. Otherwise, having undergone an appendectomy,
subjects were labeled as operative. For the surgical group, histological findings
were recorded.

As in the prior study [25], diagnosis (appendicitis vs. no appendicitis) was
assessed for all included patients. For patients treated surgically, appendicitis
diagnosis was based on histology. In the nonoperative group, patients were
classified retrospectively as having appendicitis if their AS or PAS were at least
4, combined with an appendix diameter of ≥ 6 mm. Conservatively treated
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patients classified as having appendicitis were followed up after discharge for
recurrences. Patients who had a recurrence and underwent secondary operation
were relabeled as surgical in the analysis. The follow-up telephone interview was
performed at least one year after discharge, between January 2023 and February
2024. Informed consent was obtained from the parents or legal representatives
of the patients who underwent the follow-up.

Furthermore, appendicitis severity was assessed. Patients treated non-op-
eratively, both with and without appendicitis, with no recurrence during the
follow-up period were classified as uncomplicated. For patients treated opera-
tively, classification was based on the histology: simple/uncomplicated (suba-
cute/catharral/chronic, phlegmonous) or complicated (abscess, perforation).

During the exploratory analysis presented below, we compute summary
statistics across both datasets, the original from Regensburg and the exter-
nal from Düsseldorf, and perform hypothesis tests for the differences between
internal and external data. Specifically, we report medians and interquartile
ranges (IQR) for numerical attributes and frequencies for categorical features.
For statistical analysis, we utilize the unpaired two-sample t-test and Pearson’s
chi-squared test for the equality of proportions. We adjust the resulting p-values
for multiple comparisons to control the false discovery rate using the Benjamini-
Hochberg procedure [29] at the level q = 0.05.

2.2. Original Predictive Models

We leverage the dataset from the Florence-Nightingale-Hospital, Düsseldorf,
for the external validation of the predictive models developed on the Regens-
burg cohort [25]. The original analysis [25] was concerned with predicting three
response variables: (i) diagnosis (appendicitis vs. no appendicitis), (ii) man-
agement (surgical vs. conservative), and (iii) severity (complicated appendicitis
vs. uncomplicated or no appendicitis). In particular, logistic regression (LR),
random forest (RF) [30] and gradient boosting (GB) [31] models were trained
on the dataset of 430 patients with 38 predictor variables.

In the current study, we train these models on the full Regensburg cohort,
replicating the original R programming language code [25, 32] in the Python
programming language (v3.11.9) using the scikit-learn library (v1.4.2). We use
hyperparameter configurations and perform preprocessing steps similar to those
described in the original study [25], imputing missing values with the k-nearest
neighbors algorithm (with k = 5). Note that we limit our analysis to models
trained on the full set of features and we do not consider ablations with feature
selection or without the US-related variables.

2.3. Model Retraining

In addition to the purely external validation, we retrain the predictive models
on a combination of the Regensburg and Düsseldorf cohorts, building the models
on the 100% of the Regensburg and 80% of the Düsseldorf data. In this setting,
we test the models on the remaining, withheld 20% of the external dataset
(the data were split at random). We conduct this experiment to gauge the
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possible benefits of a multicenter cohort approach and to better understand if
the predictive performance improves with the inclusion of external data points
in the training set.

2.4. Evaluation

For both original and retrained model evaluation, we report the area un-
der the receiver operating characteristic (AUROC) and precision-recall (AUPR)
curves. Additionally, we investigate the tradeoffs among sensitivity, specificity
as well as positive (PPV) and negative (NPV) predictive values by varying the
threshold applied to the classifiers’ output. Lastly, to better understand the
models’ predictions, we compute the permutation feature importance [30] of
predictor variables using the test set.

3. Results

3.1. External Dataset

Both of the datasets investigated in this study are overviewed in Table 1.
Therein we report summary statistics for all the variables observed across the
Regensburg (n = 430) and Düsseldorf (n = 301) cohorts. Additionally, we
provide the adjusted results of statistical hypothesis tests for the differences
in means and proportions of values respectively for numerical and categorical
variables.

We observe significant differences across the distribution of most variables.
Generally, subjects from the Düsseldorf cohort are younger and exhibit a higher
frequency of clinical examination findings. Similarly, the external data exhibit
overall higher laboratory parameter values for the variables correlated with ap-
pendicitis. Despite this, we observe no statistically significant difference in the
neutrophil percentage, likely due to the high rate of missing values for this
predictor in the external dataset (see Figure Appendix A.1).

Furthermore, the Düsseldorf cohort has a lower frequency of positive US
findings. We attribute this trend to the higher rate of missing values for relevant
variables in the Regensburg dataset (refer to Figure Appendix A.1) and the fact
that the summary statistics shown in Table 1 have been calculated only across
the non-missing entries without imputation. By contrast, the reported appendix
diameter is significantly larger for the external dataset subjects. Lastly, it is
worth noting that the information about the appendix perfusion is entirely
missing in the Düsseldorf dataset.

The datasets also differ considerably in two of the response variables: diag-
nosis and management. The Düsseldorf cohort has a significantly higher preva-
lence of appendicitis cases (76.2% vs. 57.2%) with, consequently, more patients
managed surgically (80.5% vs. 38.4%). While the external dataset has a higher
prevalence of complicated appendicitis cases (16.4% vs. 11.9%), this difference
is not statistically significant.

In summary, the external dataset from Düsseldorf and the original dataset
from Regensburg exhibit statistically significant differences with regard to the
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Table 1: Description of the Regensburg and Düsseldorf datasets containing summary statistics
for each variable. For numerical variables, we report medians alongside interquartile ranges;
categorical variables are binarized and summarized as frequencies. Additionally, we report
adjusted p-values from the unpaired two-sample t-test and chi-squared test for proportions.
For significant differences, p-values are given in bold.

Feature
Regensburg

n = 430
Düsseldorf

n = 301
p-value

Demographic

Age [years] 11.5 [9.3, 13.9] 10.1 [7.7, 11.7] ≤ 0.001
Male sex [%] 53.7 58.1 0.260
Height [cm] 150.5 [138.0, 162.9] 140.0 [128.3, 150.0] ≤ 0.001
Weight [kg] 42.0 [31.1, 55.0] 35.0 [26.0, 43.0] ≤ 0.001
Body mass index [kg/m2] 18.1 [15.85, 21.2] 17.9 [15.8, 20.1] ≤ 0.050

Scoring
Alvarado score [points] 6.0 [4.0, 7.0] 6.0 [5.0, 7.0] 0.054
Pediatric appendicitis score [points] 5.0 [4.0, 6.0] 6.0 [5.0, 7.0] ≤ 0.001

Clinical

Peritonitis [%] 38.4 64.1 ≤ 0.001
Migration of pain [%] 25.6 46.6 ≤ 0.001
Tenderness in right lower quadrant [%] 97.0 94.6 0.129
Rebound tenderness [%] 34.4 43.0 ≤ 0.050
Cough tenderness [%] 27.0 48.3 ≤ 0.001
Psoas sign [%] 30.5 41.8 ≤ 0.010
Nauseous/vomitting [%] 56.3 68.1 ≤ 0.010
Anorexia [%] 29.1 68.1 ≤ 0.001
Body temperature [°C] 37.4 [37.0, 38.2] 37.0 [36.5, 37.7] ≤ 0.001
Dysuria [%] 5.4 4.0 0.415
Abnormal stool [%] 27.8 19.5 ≤ 0.050

Laboratory

White blood cell count [103/µl] 11.9 [8.4, 15.8] 14.9 [10.3, 19.3] ≤ 0.001
Neutrophils [%] 74.9 [59.1, 82.9] 72.7 [59.8, 82.1] 0.293
C-reactive protein [mg/l] 7.0 [1.0, 31.3] 19.0 [5.0, 58.0] ≤ 0.010
Ketones in urine [%] 38.4 53.7 ≤ 0.001
Erythrocytes in urine [%] 22.1 33.9 ≤ 0.010
White blood cells in urine [%] 12.4 17.0 0.153

Ultrasound

Visibility of appendix [%] 64.5 24.3 ≤ 0.001
Appendix diameter [mm] 7.3 [6.0, 9.1] 9.0 [7.0, 12.0] ≤ 0.001
Free intraperitoneal fluid [%] 43.6 25.2 ≤ 0.001
Irregular appendix layers [%] 35.9 7.2 ≤ 0.001
Target sign [%] 46.0 30.8 ≤ 0.010
Appendix perfusion [%] 65.5 — —
Surrounding tissue reaction [%] 71.7 16.4 ≤ 0.001
Pathological lymph nodes [%] 68.5 2.7 ≤ 0.001
Mesenteric lymphadenitis [%] 80.4 6.6 ≤ 0.001
Thickening of the bowel wall [%] 40.9 11.9 ≤ 0.001
Ileus [%] 14.5 0.0 ≤ 0.001
Coprostasis [%] 37.8 4.8 ≤ 0.001
Meteorism [%] 72.9 26.4 ≤ 0.001
Enteritis [%] 46.3 0.0 ≤ 0.001

Response
Appendicitis [%] 57.2 76.2 ≤ 0.001
Surgical management [%] 38.4 80.5 ≤ 0.001
Complicated appendicitis [%] 11.9 16.4 0.091
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Table 2: Validation results for the logistic regression (LR), random forest (RF) and gradient
boosting (GB) models predicting the diagnosis, management and severity of appendicitis. The
results on the Regensburg dataset are copied from the original study [25], which conducted
10-fold cross-validation. For the Düsseldorf data, we report averages and standard deviations
obtained by bootstrapping for the models trained exclusively on the Regensburg cohort (orig-
inal) and retrained on both cohorts (retrained). The predictive performance is assessed with
the areas under the receiver operating characteristic (AUROC) and precision-recall (AUPR)
curves.

Dataset Model
Diagnosis Management Severity

AUROC AUPR AUROC AUPR AUROC AUPR

R
egensburg

Random [25] 0.50 0.43 0.50 0.38 0.50 0.12
Original LR [25] 0.91±0.04 0.88±0.07 0.90±0.04 0.88±0.06 0.82±0.13 0.53±0.26
Original RF [25] 0.96±0.01 0.94±0.03 0.94±0.02 0.92±0.05 0.90±0.08 0.70±0.17
Original GBM [25] 0.96±0.01 0.94±0.03 0.94±0.02 0.93±0.04 0.90±0.07 0.64±0.21

D
üsseldorf

Random 0.50 0.76 0.50 0.81 0.50 0.16
Original LR 0.80±0.04 0.92±0.02 0.80±0.04 0.94±0.02 0.70±0.06 0.34±0.08
Original RF 0.85±0.03 0.95±0.01 0.85±0.03 0.96±0.01 0.75±0.04 0.45±0.07
Original GBM 0.83±0.03 0.94±0.02 0.82±0.03 0.95±0.01 0.72±0.04 0.40±0.07
Retrained LR 0.84±0.08 0.94±0.04 0.83±0.08 0.95±0.03 0.74±0.12 0.45±0.17
Retrained RF 0.87±0.06 0.96±0.02 0.83±0.08 0.95±0.03 0.75±0.11 0.49±0.17
Retrained GBM 0.86±0.07 0.95±0.03 0.82±0.09 0.95±0.03 0.75±0.11 0.47±0.18

distribution of the majority of the observed variables (consult Table 1), in-
cluding the response variables. Moreover, the frequency of missing values also
varies across the cohorts (refer to Figure Appendix A.1). These dissimilarities
potentially pose challenges for the generalization of predictive models across
institutions.

3.2. Predictive Performance

We now turn to the external validation of the ML models. Table 2 contains
AUROC and AUPR measurements for predicting the diagnosis, management
and severity of appendicitis on the Regensburg and Düsseldorf datasets. The
results for the Regensburg cohort are taken from the original work [25] and were
obtained by 10-fold cross-validation. When validating on the Düsseldorf data,
we assess the variability in performance using bootstrapping. For reference, we
additionally include the expected metric values for a fair coin flip (random),
which serve as our baselines.

For the models trained exclusively on the Regensburg data (original), we
observe a sizable decrease in the average AUROC for the diagnosis and man-
agement when evaluating on the external dataset. For example, the AUROC of
the random forest model decreases from 96% to 85% for the diagnosis and from
94% to 85% for the management. In contrast the external AUPR is comparable
to the one from the internal validation for these response variables. For the
severity, we observe a larger overall decrease in both metrics. For instance, for
the random forest, the AUROC decreases from 90% to 75%, and the AUPR
drops from 70% to 45%.
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Figure 2: Sensitivity, specificity as well as positive (PPV) and negative (NPV) predictive val-
ues plotted against the value of the threshold applied to the output of the random forest model
trained exclusively on the original Regensburg dataset for the (a) diagnosis, (b) management
and (c) severity of appendicitis. All the metrics were assessed on the external (Düsseldorf)
dataset. Bold lines correspond to the medians with the confidence bounds given by the in-
terquartile ranges.

Additionally, we explore the tradeoff between the sensitivity, specificity, PPV
and NPV while varying the value of the threshold applied to the classifiers’
output. We focus our analysis exclusively on the random forest model as it
exhibits the most balanced performance across all the response variables for
both datasets. These findings are summarized in Figure 2. For the diagnosis and
management targets, using the threshold value of 0.50 explored in the original
analysis [25], we observe a deterioration in the classifiers’ sensitivity, specificity
and NPV. For the severity target, by contrast, there is a decline in sensitivity
and PPV. Arguably, these changes may be related to the prevalence shift [33]
described in Section 3.1 and suggest the necessity for the threshold and model
recalibration.

To verify if the models’ performance improves after including a portion of the
Düsseldorf data in the training set, we retrain all the models on the aforemen-
tioned mixture of the Regensburg and Düsseldorf subjects (see the retrained
models in Table 2), assessing them on the withheld portion of the external
dataset. For all three classifiers, the average AUROC and AUPR metric values
attained on the Düsseldorf data increase moderately after retraining. However,
the resulting level of performance is still substantially lower than that of the
original models on the Regensburg dataset. The lack of bigger improvement
in predictive performance may be due to distribution shift, in particular the
discrepancies in the missingness patterns and reporting across the two datasets
(see Figure Appendix A.1).

3.3. Feature Importance

To elucidate the predictions made by our models on the external dataset, we
calculate permutation feature importance on the test set. Specifically, we assess
the importance of individual predictors by permuting (i.e., shuffling) their values
and then quantifying the resulting change in the AUROC metric. The outcomes
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Figure 3: Permutation feature importance for the random forest model predicting the diagnosis
of appendicitis. The importance is quantified by the decrease in the AUROC predictive
performance metric after permuting the values of the predictor variable of interest. The
variability in importance is assessed using bootstrapping and it is visualized using box plots.

of this analysis are summarized in Figure 3. We limit our investigation to the
diagnosis response variable and the random forest model given that it attained
the best well-balanced performance across all the settings (refer back to Table 2).

Similar to the original findings on the Regensburg data [25], the three most
important features are the diameter and visibility of the appendix as well as
peritonitis. Likewise, the surrounding tissue reaction, target sign, WBC count
and neutrophil percentage have an importance score, on average, above 0. Gen-
erally, the variable importance on the Düsseldorf data follows a pattern com-
parable to the results obtained previously on the Regensburg cohort. However,
the variability across bootstrap resamples is considerably higher. Nonetheless,
these results are not indicative of any concerning trends or spurious associations
and fall well within our expectations. Notably, these observations hold for the
other two response variables; for treatment the three most important features
are peritonitis, appendix diameter and WBC count, and for complications these
are CRP, peritonitis and appendix diameter, which is consistent with the results
reported in the Regensburg study [25].
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4. Discussion

In this article, we performed a comprehensive external validation of ML
models for predicting the diagnosis, management and severity in pediatric pa-
tients with suspected appendicitis (see Figure 1). Specifically, we have focused
on the models initially trained on the dataset from the tertiary care hospital
in Regensburg, Germany [25]. To conduct the analysis, we have acquired an
external dataset at the Florence-Nightingale-Hospital in Düsseldorf, Germany.

We observed that the external Düsseldorf dataset presents a statistically sig-
nificant shift in the distribution of the covariates (captured in Table 1), including
the response variables. Furthermore, the rates of missing values differ consider-
ably across the two hospitals (as shown in Figure Appendix A.1), especially for
US-related variables and the percentage of neutrophils. Such discrepancies pose
substantial challenges to the transferability of ML models to settings different
from those considered at the training time [34].

In assessing the models’ predictive performance (reported in Table 2), we
observed the patients’ diagnoses and treatment assignments could be predicted
on the external Düsseldorf data by the models trained solely on the Regens-
burg cohort. In particular, compared to the original analysis [25], there was
no decrease in AUPR and a moderate 10 percentage-point decrease in AU-
ROC. These performance levels are close to the AUROC of 90% reported as
the baseline in a recent systematic review assessing the accuracy of the artificial
intelligence-based tools in the diagnosis of pediatric appendicitis [35]. In con-
trast, the predictive performance for the severity decreased more substantially.
In addition to AUROC and AUPR measurements, we examined the tradeoff
among the sensitivity, specificity, PPV and NPV (visualized in Figure 2). Fur-
thermore, the feature importance analysis on the external dataset (shown in
Figure 3) exhibited no concerning patterns.

To explore the potential of model updating [34], we retrained the classifiers
on a mixture of the two datasets. This led to a moderate increase in AUROC
and AUPR across all the target variables (refer to Table 2), suggesting that
model updating, indeed, helps to tackle cross-hospital distribution shifts.

In general, our empirical findings indicate some degree of transferability
of the considered predictive models across the two hospitals. Nonetheless, the
decrease in predictive performance across several evaluation metrics is noticeable
and could not be fully mitigated by retraining (as demonstrated by Table 2 and
Figure 2). We hypothesize that this decrease in performance may be attributed
to the shift in the prevalence of appendicitis cases, different missing value and
data recording patterns, and variability in patient management routines. Below,
we discuss these challenges in more detail.

As stated in Section 3.1, the distribution of most parameters differed across
the two datasets. Unique regional and internal hospital practices can, at least
partially, explain the observed differences. Notably, the dataset from Regens-
burg was acquired from in-hospital patients admitted to a pediatric surgery
department of a specialized pediatric hospital. The Düsseldorf dataset, on the
other hand, was acquired from a pediatric surgery department of a general hos-
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pital with other surgical disciplines, such as general and orthopedic surgery. As a
consequence, children aged 14 years or older were treated by general surgeons in
Düsseldorf, and only those younger than 14 were seen and managed by pediatric
surgeons. Consequently, only the latter group of patients was included in the
study, which explains why the children from the Florence-Nightingale-Hospital
were younger (median and IQR in years: 10.1[7.7, 11.7]) than in Regensburg
(11.5[9.3, 13.9]).

The differences in the frequency of variable documentation reflect the inter-
nal organizational habits of the hospitals and departments, including variations
in standardized admission reports and internal emergency department stan-
dards. Additionally, in Regensburg, children and adolescents were admitted
by pediatric surgeons or residents in pediatric surgery or pediatrics, whereas in
Düsseldorf, the admission was performed by both pediatric surgeons or residents
and residents in general or orthopedic surgery working at the emergency depart-
ment. As a consequence the ultrasound performance and report documentation
differs across the two datasets.

Additionally, patients from the Düsseldorf cohort were more likely than those
from Regensburg to be preselected by the referring out-patient family practition-
ers or pediatricians before being admitted to the hospital. This explains, at least
partially, the higher prevalence of appendicitis cases in the Düsseldorf dataset.
Furthermore, given its reputation as a pediatric gastroenterological center, pa-
tients with less specific symptoms may have been referred to the hospital for
further evaluation and therapy, with or without the suspicion of appendicitis.

Another noteworthy aspect is the time period of data acquisition. While the
cohort from Regensburg included patients from January 2016 to December 2018,
the Düsseldorf data were acquired from January 2015 to February 2022. There-
fore, the latter cohort also included patients admitted during the COVID-19
pandemic and post-pandemic individuals, and negative appendectomy rates
were lower during the pandemic [36] as patients might have sought medical
care or have been referred to the hospital only if the positive diagnosis had been
deemed more probable. This factor, alongside the higher frequency of delayed
hospital presentations, might have contributed to the higher appendicitis preva-
lence and a higher rate of complicated cases observed in Düsseldorf [36, 37].

Strengths and Limitations. From the medical perspective, the limitations of the
current study are similar to those reported in the original work that developed
ML models on the Regensburg cohort [25]. These include absence of confirmed
appendicitis diagnosis for patients treated conservatively, limited number of
study participants, and missing values. Additionally, unique regional and in-
ternal hospital practices reduce the comparability of the collected datasets and
transferability of the models, which, as we demonstrated, cannot be easily com-
pensated for with model updating. Nonetheless, the observed distributions of
parameters from both cohorts are clinically acceptable and display variability
that is within expectations. Notably, our study allows to contrast the situat-
edness of a pediatric hospital against a general hospital where adult surgery
and interdisciplinary surgical primary care are dominant. Lastly, the docu-
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mented clinical, laboratory and ultrasound features are standardized, practical
and cost-effective, enabling future analysis and comparison of our models on the
data from other institutions.

5. Conclusion

In this study, we performed an external validation of machine learning mod-
els for predicting the diagnosis, management and severity of pediatric appendici-
tis. When tested externally, the models exhibited lower predictive performance
than on the original data. In our case, this was in part due to the shift in the
prevalence of appendicitis cases we observed between the original and external
datasets. Other potential reasons included intrinsic differences in patient demo-
graphics and clinical practice for the two hospitals as well as the downstream
effects of the COVID-19 pandemic. Such factors demonstrate the challenges of
transferring predictive models between hospitals, which should always be done
with care to avoid harmful fallout. As a possible remedy, we investigated model
retraining; while it showed promise in restoring predictive performance, fur-
ther research is necessary to determine the limitations of this approach, which
we will explore in our future work. Additionally, we plan to investigate the
possible design of the prospective evaluation and deployment of our predictive
models. Specifically, we will look into defining the number of necessary blood
tests and introducing standardized reporting guidelines for clinical examination
and ultrasound findings.
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The analyzed dataset in an anonymized form is available alongside the code
in the following GitHub repository: https://github.com/i6092467/pediat
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E. Eroğlu, F. Akova, A novel and simple machine learning algorithm for
preoperative diagnosis of acute appendicitis in children, Pediatric Surgery
International 36 (2020) 735–742. doi:10.1007/s00383-020-04655-7.

[22] P. Rajpurkar, A. Park, J. Irvin, C. Chute, M. Bereket, D. Mastrodicasa,
C. P. Langlotz, M. P. Lungren, A. Y. Ng, B. N. Patel, AppendiXNet:
Deep learning for diagnosis of appendicitis from a small dataset of CT
exams using video pretraining, Scientific Reports 10 (1) (2020) 3958. doi:
10.1038/s41598-020-61055-6.

[23] C. Stiel, J. Elrod, M. Klinke, J. Herrmann, C.-M. Junge, T. Ghadban,
K. Reinshagen, M. Boettcher, The modified Heidelberg and the AI ap-
pendicitis score are superior to current scores in predicting appendicitis
in children: A two-center cohort study, Frontiers in Pediatrics 8 (2020)
592892. doi:10.3389/fped.2020.592892.
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Supplementary Material: External Validation of Predictive
Models for Diagnosis, Management and Severity of Pedi-
atric Appendicitis

Appendix A. Further Analysis of Datasets
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Figure Appendix A.1: Percentages of missing values across all features for the original Re-
gensburg and external Düsseldorf data. We observe considerable differences in the rates of
missing values, especially for the ultrasonographic findings and neutrophil percentage.
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