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Key Points 

Question: Do novel, multidimensional epigenetic clocks demonstrate accelerated aging in 

schizophrenia? 

Findings: In this meta-analysis, patients with schizophrenia-spectrum disorders demonstrated evidence 

of broadly accelerated aging in multiple types of epigenetic clocks. This age acceleration is particularly 

evident in the Heart and Lung systems and is already evident by the time of the first psychotic episode.  

Meaning: Novel epigenetic clocks may help identify patients with schizophrenia-spectrum disorders at 

risk for multiple other health comorbidities. 

Abstract 

Importance: Schizophrenia is associated with increased age-related morbidity, mortality, and frailty, 

which are not entirely explained by behavioral factors. Prior studies using epigenetic clocks have 

suggested that schizophrenia is associated with accelerated aging, however these studies have primarily 

used unidimensional clocks that summarize aging as a single “biological age” score.  

Objective: This meta-analysis uses multidimensional epigenetic clocks that split aging into multiple 

scores to analyze biological aging in schizophrenia. These novel clocks may provide more granular 

insights into the mechanistic relationships between schizophrenia, epigenetic aging, and premature 

morbidity and mortality. 

Study selection: Selected studies included patients with schizophrenia-spectrum disorders and non-

psychiatric controls with available DNA methylation data. Seven cross-sectional datasets were available 

for this study, with a total sample size of 1,891 patients with schizophrenia and 1,881 controls. 

Data extraction and synthesis: Studies were selected by consensus Meta-analyses were performed 

using fixed-effect models.  
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Main outcomes and measures: We analyzed multidimensional epigenetic clocks, including causality-

enriched CausAge clocks, physiological system-specific SystemsAge clocks, RetroelementAge, 

DNAmEMRAge, and multi omics-informed OMICmAge. Meta-analyses examined clock associations with 

schizophrenia disease status and clozapine use, after accounting for age and sex.  

Results: Overall SystemsAge, CausAge, DNAmEMRAge, and OMICmAge scores demonstrated increased 

epigenetic aging in patients with schizophrenia after strict multiple-comparison testing. Ten of the 

eleven SystemsAge sub-clocks corresponding to different physiological systems demonstrated increased 

aging, with strongest effects for Heart and Lung followed by Metabolic and Brain systems. The causality-

enriched clocks indicated increases in both damaging and adaptive aging, though these effects were 

weaker compared to SystemsAge scores. OMICmAge indicated changes in multiple clinical biomarkers, 

including hematologic and hepatic markers that support system-specific aging, as well as novel proteins 

and metabolites not previously linked to schizophrenia. Most clocks demonstrated age acceleration at 

the first psychotic episode. Notably, clozapine use was associated with increased Heart and 

Inflammation aging, which may partially be driven by smoking. Most results survived strict Bonferroni 

multiple testing correction. 

Conclusions and relevance: These are the first analyses of novel multidimensional clocks in patients 

with schizophrenia and provide a nuanced view of aging that identifies multiple organ systems at high 

risk for disease in schizophrenia-related disorders. 
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Introduction 

Schizophrenia is a severe psychiatric disorder associated with major reductions in life 

expectancy of 10-20 years
1
. Much of the increased mortality stems from natural causes

2,3
 spanning 

multiple organ systems
4
 and multiple physical comorbidities

5-8
. Some treatments, especially clozapine, 

may decrease mortality from both non-natural and natural causes
9
. Increased morbidity and mortality in 

patients with schizophrenia is associated with accelerated aging, including elevated biomarkers of 

inflammation, oxidative stress, and age-associated proteins that predict mortality
10-12

.  

Epigenetic clocks are commonly utilized biomarkers that estimate biological age using DNA 

methylation data
13-15

. Studies of schizophrenia using epigenetic clocks have shown mixed results 

depending on the specific clock used
15,16

. Early studies utilizing Horvath’s multi-tissue clock found no 

changes in epigenetic age in schizophrenia,
14,17

 likely because the clock’s training included schizophrenia 

samples and thus the clock is trained to ignore CpGs with altered aging patterns in schizophrenia
16

. 

More recent work has utilized second- and third-generation epigenetic clocks (GrimAge, PhenoAge, and 

DunedinPACE), which show increased epigenetic aging in schizophrenia
13,18

. These epigenetic clocks 

better align with epidemiologic data, are more likely to capture causal mechanisms in the aging process, 

and are less likely to be due to cohort or period effects
19-22

.   

However, traditional epigenetic clocks generally summarize aging as a single number, treating 

aging as unidimensional. This is problematic for studies of aging and schizophrenia, which are both 

complex, multi-faceted, heterogeneous phenomena in that they involve many different biological 

processes. Traditional clocks do not allow more nuanced questions to be asked about aging in 

schizophrenia. For example, could a subset of epigenetic changes seen in patients with schizophrenia 

actually reflect adaptive mechanisms that protect individuals with age-related disease? Do some aging 

processes constitute specific responses to behavioral or environmental stressors? Is the aging process 
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uniformly accelerated in the entire body, or are specific physiologic systems disproportionately 

affected?  

To capture multidimensionality in aging, novel epigenetic clocks have recently been developed 

that report a panel of biological age scores. SystemsAge is composed of 11 systems-based epigenetic 

clocks, developed by relating blood DNA methylation to 133 clinical and functional biomarkers organized 

by physiological system and then training mortality predictors for each system
23

. Causality-enriched 

epigenetic clocks (CausAge) were developed using Mendelian Randomization techniques that identify 

CpG sites that are potentially causal for age-related traits
24

, including both detrimental (DamAge) and 

beneficial (AdaptAge) changes. OMICmAge was trained to predict mortality using DNA methylation data 

integrating 40 epigenetic biomarker proxies of proteins, metabolites, and clinical biomarkers that 

provide insight into specific biological processes
25

. Other interesting clocks include IntrinClock
26

, 

intended to capture aging unrelated to changes in cell composition, and RetroelementAge
27

, intended to 

capture aging at CpGs linked to retroelements. 

Here, we systematically investigate these new multidimensional epigenetic clocks in 7 datasets 

of patients with schizophrenia and non-psychiatric controls. We hypothesized that due to increased risk 

of numerous diseases in schizophrenia
4,8

, most physiological systems would demonstrate increased 

epigenetic aging, but that specific systems would be most altered to reflect particularly high disease 

risks in schizophrenia (e.g. Lung for pneumonia, COPD, and smoking, or Brain for dementia risk). We use 

meta-analyses to assess for schizophrenia disease effects across studies, then further assessed for 

effects of first-episode psychosis, interactions with age, sex and smoking status, and clozapine use.  
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Methods 

Selection of Datasets 

We selected available epigenetic datasets of patients with schizophrenia-spectrum disorders and non-

psychiatric controls
28,29

. Most datasets utilized the Illumina Infinium 450K BeadChip, though one dataset 

utilized the Illumina Methylation EPICv1 BeadChip. Individuals for whom chronologic age was not 

available were excluded from the analyses.  

Clock Calculation 

Details for clock calculations can be found in Supplementary Methods. All clocks used in these analyses 

can be found in Supplementary Table 1. Briefly, clocks were calculated using the methylCIPHER package 

in R
30

 as described by
23,24,31

 or using code provided by the authors
27,32

.  

Cell-type composition estimates 

Cell-type composition estimates were obtained using EpiDISH
33

. When accounting for cell-type 

composition, Neutrophils were dropped to avoid overfitting, and proportions of NK cells, B cells, CD4T 

cells, CD8T cells, Monocytes, and Eosinophils were included.  

Epigenetic smoking estimates 

As smoking data was not available for most datasets, we used the GrimAge component DNAmPACKYRS, 

which is a proxy of smoking pack-years predicts mortality better than self-reported pack-years
20

.  

Statistical analyses 

To calculate standardized effect sizes for the effect of schizophrenia, epigenetic ages were first 

regressed onto age, sex, and any other included covariates for the analyses (e.g., cell-type composition, 

smoking). These residuals were then scaled such that for the controls, the standard deviation for a given 

study = 1 and residual mean = 0, and then the final model was a multivariable regression of disease 
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status, age, sex, and any other covariates regressed onto the scaled residuals. To evaluate standardized 

effect sizes for age-by-disease interaction, the same procedure was used. When examining clozapine 

effects, a similar procedure was used, limiting analyses to only individuals with schizophrenia and data 

regarding whether they had taken clozapine or not.  

Statistical analyses were performed using R version 4.0.2
34

. Meta-analyses were performed using a 

fixed-effects model in the Metafor package
35

. Weights for studies were calculated as 1/SE
2
. Heatmap 

and scatter plots were created using ggplot2
36

. Statistics represent nominal values for consistency. 

However, strict correction for multiple comparisons via the Bonferroni method adjusts for 73 

comparisons to account for all clocks and sub-clocks presented in the heatmap in Figure 4 (nominal, 

unadjusted p of 0.000685 = adjusted p of 0.05). This adjustment is likely overly stringent as clocks are 

intercorrelated and capture overlapping aging signals. 

Results 

We identified seven different cohorts of patients (Table 1) composed of 2,210 patients with 

schizophrenia-spectrum disorders and 1,936 non-psychiatric controls. 549 individuals were excluded 

due to missing age data. Age distributions for each cohort are in Supplementary Figure 1. Two cohorts 

(GEO152026 and GEO152027) include individuals with first-episode psychosis (n = 716). Three cohorts 

(GEO116379, GEO80417, and GEO84727) include information regarding clozapine treatment (number 

on clozapine = 225, number confirmed not on clozapine = 406). 

Multidimensional Clocks are Altered in Patients with Schizophrenia 

Meta-analyses demonstrated significantly increased epigenetic age in patients with schizophrenia in all 

three (DamAge, AdaptAge, and CausAge) causality-enriched clocks, 10 out of 11 systems-based clocks, 

as well as total SystemsAge, DNAmEMRAge, OMICmAge, IntrinClock, and RetroelementAge (Figure 1, 

Supplementary Table 1). The largest effects were seen for Heart (β = 0.87, p = 8.5E-121), SystemsAge (β 
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= 0.85, p = 1.1E-114) and Lung (β = 0.82, p = 1.5E-108) clocks. All results except IntrinClock (unadjusted p 

= 0.00363) and RetroelementAge (unadjusted p = 0.00251) survived strict Bonferroni multiple testing 

correction. No significant effect was observed for the Hormone system clock (unadjusted p = 0.79). Of 

the methylation-based predictors included in OMICmAge, the majority were significantly altered 

(Supplementary Figure 2). When males and females are analyzed separately, we observe similar 

patterns (Pearson’s r = 0.96 between effect sizes calculated in males and females separately, 

Supplementary Figure 3). 

To confirm previous findings
13,14,17,18

 using a larger meta-analysis, we repeated our analysis for 

unidimensional clocks. We replicated previous results demonstrating accelerated aging across almost all 

traditional clocks, except the Horvath multi-tissue clock as expected (Supplementary Figure 4). GrimAge 

(both V1 and V2) showed the strongest standardized effect size of 0.98. The principal component 

versions of clocks
31

, largely recapitulated findings from the original clocks.  

Multidimensional Clocks are Altered in First-Episode Psychosis less than in 

Prevalent Schizophrenia  

We asked whether these differences in epigenetic aging pre-dated psychotic symptoms by examining 

individuals with first-episode psychosis. For the causality-enriched clocks, only AdaptAge shows 

nominally significantly higher epigenetic age in patients with first-episode psychosis compared to 

controls, while for the systems-based clocks broadly show significantly higher epigenetic age except the 

Hormone clock and, after Bonferroni correction, the Immune clock (Figure 2, forest plots). Conclusions 

regarding OMICmAge, DNAmEMRAge, and RetroelementAge remain unchanged when just considering 

first-episode psychosis. First-episode psychosis is generally associated with smaller effect sizes than non-

FEP, with notable exceptions of RetroelementAge and OMICmAge (Figure 2, scatterplot). 
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We also asked whether effects of schizophrenia on clocks might change with age. analyses excluded 

GEO116379 due to a narrow age range, and demonstrated a significant age-by-disease interaction in the 

DNAmEMRAge (p = 0.000058), Inflammation (p = 0.00059), Heart (p = 2.7E-10), Lung (p = 8.4E-15), and 

total SystemsAge (9.2E-10) clocks, and nominally significant interactions in the OMICmAge (p = 0.010), 

Hormone (p = 0.046), and Metabolic (p = 0.0043) clocks. Sensitivity analyses including GEO116379 

identify significant interactions in the same clocks.  

Clozapine is associated with age acceleration across most systems-based clocks 

We next sought to identify whether specific medications (i.e., Clozapine) might contribute to higher 

epigenetic age in schizophrenia. Patients with schizophrenia treated with clozapine showed no 

differences in causality-enriched clocks compared to patients with schizophrenia not treated with 

clozapine. However, we observed significantly higher epigenetic age in 7 of 11 systems-based clocks, 

with the largest effects seen in Inflammation and Heart. Smaller effects were seen for Lung, Metabolic, 

Immune, Kidney, and Brain that did not pass Bonferroni correction. The overall SystemsAge score 

showed a similar effect as the strongest systems. No differences were observed in DNAmEMRAge, 

OMICmAge, IntrinClock, or RetroelementAge with clozapine treatment (Figure 3). 

As we observed evidence of higher smoking rates in patients with clozapine in our study (Figure 3), we 

next asked whether smoking accounted for these differences. Most systems showed weaker effects 

after accounting for smoking, with Lung showing the greatest attenuation as expected. After accounting 

for smoking, only the Inflammation, Heart, and Total SystemsAge clocks remain nominally significantly 

elevated with clozapine use (Figure 3, Scatterplot). 
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Neither Cell-type composition nor Smoking account for the differences in 

Systems-Based Clocks in patients with Schizophrenia 

We examined potential drivers of differences in epigenetic age, including cell-type composition
37

 and 

smoking. In general, effect sizes were lower after adjusting for cell-type composition, and CausAge was 

no longer significantly higher in patients with schizophrenia (p = 0.067). The conclusions from the 

Systems-based clocks, RetroelementAge, DNAmEMRAge, IntrinClock, and OMICmAge were unchanged 

after accounting for cell-type proportions (See Figure 4A for a summary).  

When accounting for smoking, DamAge is no longer significantly associated with schizophrenia (p = 

0.58). AdaptAge and CausAge remained nominally significant. Of the systems-based clocks, the Lung 

clock experienced the greatest decrease, with a 8.6-fold reduction of effect size and is no longer 

statistically significant. Heart also showed a reduction in effect size but is still statistically significant. All 

other systems remained robustly elevated in schizophrenia after correcting for smoking. 

RetroelementAge and OMICmAge were no longer significant after accounting for smoking, while 

IntrinClock remained nominally significant and DNAmEMRAge remained significant (See Figure 4A for a 

summary). 

SystemsAge Identifies Deficits in Distinct Physiologic Systems when compared 

to biochemical, imaging, and physical assessments 

We next compared conclusions from SystemsAge to a recent study examining the health of multiple 

physiologic systems in neuropsychiatric disorders utilized brain imaging, physical assessment, and 

biochemical assays
38

. We identified little statistical correlation between these methods in terms of the 

effects on organ systems in schizophrenia when considering either overall estimated effect size (Figure 

4B, p = 0.49, R
2
 = 0.083) or rank order (Figure 4C, p = 0.65, R

2
 = 0.036). Notably, patients with 
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schizophrenia are more likely than controls to have increased epigenetic aging in multiple systems-

based clocks (Figure 4D, p < 1E-15). 

Discussion 

Here, we show that schizophrenia is associated with broad accelerated aging in multidimensional 

epigenetic clocks. These clocks provide a far more nuanced picture of aging in through subscores that 

each capture different aspects of aging. These subscores reveal schizophrenia is characterized by both 

damaging and adaptive age-related changes, accelerated aging in most physiological systems, many age-

related metabolites and proteins, as well as retroelements.  Critically, the large sample size and meta-

analytic design of this study allowed us to obtain robust results that generally pass strict Bonferroni 

multiple testing correction even when examining numerous clocks simultaneously. Of note, this 

correction is likely overly stringent since it assumes the tests are independent, but the clocks are 

intercorrelated and not fully independent. Thus, even results that do not pass multiple testing correction 

likely are trustworthy findings. Sensitivity analyses indicated the observed effects are generally 

independent of cell-type composition and sex. Interestingly, smoking, clozapine, and first-episode 

psychosis each affected specific clock subscores, highlighting the utility of multidimensional clocks in 

disentangling the effects of different clinical variables on aging. 

Importantly, the multidimensional clocks correlate with the known epidemiology of schizophrenia. Large 

studies including meta-analyses have demonstrated that individuals with schizophrenia have increased 

disease and mortality rates from  natural causes covering every physiological system
4,8

. Accordingly, 

10/11 of the SystemsAge subscores are increased in schizophrenia. Because each SystemsAge subscore 

has specific associations with outcomes related to that system
23

 (e.g. lung cancer for Lung, cognition for 

Brain, diabetes for Musculoskeletal and Metabolic), SystemsAge could help explain the increased 

disease and mortality risks in schizophrenia. The only score not increased in schizophrenia is Hormone, 
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which was previously reported to be most related to thyroid disease and cancer risk. Accordingly, 

thyroid disease is not elevated in schizophrenia
8
,  and cancer shows the smallest increased risk in Correll 

et al
4
. As expected, patients with schizophrenia are more likely to show multi-system accelerated aging, 

consistent with the 69% increased risk of multimorbidity in schizophrenia
39

. Importantly, SystemsAge 

can better capture the heterogeneity of risk in schizophrenia and thus could identify which diseases 

individuals with schizophrenia are at greatest risk for. 

A recent study by Tian et al. developed system scores using clinical data and examined changes in 

schizophrenia
38

. Interestingly, while we found that Heart and Lung were the scores with greatest 

increase in schizophrenia, Tian et al. found nearly no change in their Cardiovascular score and a modest 

change in the Pulmonary score. Clinical experience is more consistent with markedly increased heart 

and lung aging, given the high rates of smoking in schizophrenia
40

, known adverse effects associated 

with antipsychotic medications
41

 (weight gain, myocardial infarction, pneumonia), and mortality due to 

pneumonia (RR 7), any respiratory cause (RR 3.75) and cardio-cerebrovascular causes (RR 3.47)
4
.   Given 

the discrepant results from the two methods, it will be interesting to determine if combining clinical and 

laboratory-based risk factors with epigenetic scores may provide complementary information on risks of 

comorbidities in patients with schizophrenia. 

Increased epigenetic age was noted at first-episode psychosis, suggesting many changes are detectable 

early in the disease. However, effect sizes were smaller in first-episode psychosis compared to prevalent 

schizophrenia for nearly all clocks. Interestingly, only a subset of clocks accelerated over time as 

suggested by age-by-disease interactions  - these were the Heart, Lung, Inflammation, full SystemsAge, 

and DNAmEMRAge clocks. It is possible changes in these systems reflect the cumulative effects of 

factors associated with psychosis (e.g., smoking, stress) and treatment of psychosis (e.g., atypical 

antipsychotics). This suggests that older individuals with schizophrenia may be particularly vulnerable to 

a cardiovascular, pulmonary, and inflammatory age-related diseases. 
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Clozapine has unique treatment benefits but also greater metabolic side effects and can induce serious 

cardiac, hematologic, and neurological adverse events. We find that clozapine treatment is associated 

with acceleration in SystemsAge, multiple SystemsAge subclocks especially Inflammation and Heart but 

also in Metabolic and Brain, as well as in multiple hematologic markers of OMICmAge. These changes 

may reflect the side effect profile of clozapine, and indeed longitudinal studies have shown that 

clozapine can directly impact the methylome 
42

. However, there are other explanations: treatment-

resistant individuals, in whom clozapine is primarily used, may represent a distinct clinical population 

with unique risks
43

. Notably, prior meta-analyses have suggested that clozapine is associated with 

decreased mortality in patients with schizophrenia, despite its known effects on cardiometabolic risk 

factors
4
. Further longitudinal studies are needed to determine potential causal relationships between 

clozapine, epigenetic aging, and mortality. 

Our analysis of OMICmAge reveals novel insights into clinical biomarkers, proteins and metabolites 

altered in schizophrenia. Previously, we showed that DNAm proxies of serum B2M, Cystatin C, GDF-15, 

TIMP-1, ADM, and PAI-1 (components of GrimAge) are elevated in schizophrenia, which matches the 

literature concerning these proteins
13

. This suggests DNAm proxies can be used for discovery. In some 

cases, the DNAm proxies may even be more useful. Prior results showed stronger associations with 

mortality for a DNAm proxy of smoking pack-years compared to self-reported smoking pack-years
20

, and 

stronger associations with brain health outcomes for a DNAm proxy of CRP compared to directly 

measured CRP
45

. OMICmAge predicted changes in multiple clinical biomarkers, especially increases in 

DNAm proxies of RDW and decreases in hemoglobin, hematocrit, and albumin, consistent with anemia, 

malnutrition, other comorbidities, and medication effects in schizophrenia
46,47

. Notably, higher RDW and 

lower albumin have been associated with increased mortality in the general population in both NHANES 

and the UK Biobank
48

. IGFBP2 was found to be increased, consistent with prior literature
49

. IGFBP-2 may 

play a role in increased metabolic risk and altered synaptic plasticity in schizophrenia or treatment
49,50

. 
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Potentially novel proteins and metabolites that could play a role in features of schizophrenia include N-

acetyl-isoputreanine (cognition
51

), (4-hydroxy)phenylacetylglutamine (heart disease
52

), vanillactate 

(heart disease
53

), carboxypeptidase B2 (thromboembolic disease
54

), histone H2B type 1-K (cellular 

senescence
55

), mimecan (food intake
56

), and chordin-like protein 1 (cognitive decline
57

, adipogenesis
58

). 

Notably, directionality is not necessarily consistent with prior literature – for example we found 

increased DNAm-predicted cystine though a prior study found reduced directly measured cystine
59

, 

suggesting a complex relationship between cystine, DNAm and schizophrenia. The biology of these 

proteins and metabolites in schizophrenia represent fertile areas for future investigation.  

Limitations of our study include its cross-sectional nature and limited datasets for first-episode psychosis 

and clozapine. The absence of patients with schizophrenia without medication prevents analyses of 

general anti-psychotic treatment and epigenetic aging. Future longitudinal and interventional studies 

with more detailed phenotypic data will be needed to determine whether antipsychotics or other 

factors associated with schizophrenia contribute to accelerated aging.  

Conclusion 

In this meta-analysis, we identify a rich tapestry of accelerated epigenetic aging in schizophrenia-

spectrum disorders. Specific physiological systems are particularly affected, changes can be either 

damaging or adaptive changes, and many age-related metabolites, proteins, and retroelements are 

affected. These findings are robust after strict multiple testing correction and correcting for covariates. 

Factors such as smoking, first-episode psychosis, and clozapine have effects on particular subsets of 

clocks. These clocks may complement clinical data in identifying and preventing aging health risks in 

patients in schizophrenia.  
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Data availability 

All data is available on NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/) and datasets are listed in Table 1. 

Information on clozapine status can be found in their respective papers
13,60

. 

Code availability 

Code to calculate all clocks except for OMICmAge and DNAmEMRAge will be accessible at 

https://github.com/HigginsChenLab/methylCIPHER after publication. Code to calculate OMICmAge, 

DNAmEMRAge and associated algorithms will be accessible via TruDiagnostic’s DNAm Analysis Software 

after publication. You can request access to the software at 

https://www.trudiagnostic.com/softwarerequest . 
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Tables & Figure Legends 
Table 1: Characteristics of included Datasets 
Summary of the seven datasets analyzed here. Age indicates mean +/- SD, range in parentheses. SCZ: 

Schizophrenia-spectrum disorders. FEP: First-Episode Psychosis. IoPPN: Institute of Psychiatry, 

Psychology, and Neuroscience 

Dataset Origin 

Array 

Type Controls 

SCZ 

Cases FEP %Female Age (years) Clozapine 

No 

Cloz 

GEO116378 Dutch Famine 450K 49 15 N/A 79.7% 

36.9 ± 16.3 

(18.0 – 71.0) N/A N/A 

GEO116379 

Chinese 

Famine 450K 79 74 N/A 50.3% 

47.8 ± 1.8 

(44.5 – 51.0) 35 39 

GEO147221 

Dublin 

Consortium 450K 331 348 N/A 29.0% 

41.7 ± 12.0 

(17.0 – 70.9) N/A N/A 

GEO152026 FEP EPICv1 519 409 409 45.2% 

35.2 ± 12.8 

(18.0 – 64.0) N/A N/A 

GEO152027 

IoPPN (King's 

College) - FEP 450K 194 278 278 37.8% 

28.8 ± 9.4 

(13.0 – 72.0) N/A N/A 

GEO80417 

University 

College London 450K 304 353 N/A 40.7% 

40.4 ± 15.0 

(18.0 – 90.0) 96 172 

GEO84727 

University of 

Aberdeen 450K 405 414 N/A 27.8% 

44.6 ± 12.9 

(18.3 – 80.7) 78 160 
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Figure 1: Patients with Schizophrenia have higher epigenetic age compared to 
controls 
Body plot demonstrates comparative effect sizes of meta-analysis in Systems-based clocks, with larger 

text size and bolder color indicating strongest effects. Forest plots of meta-analysis results, with positive 

numbers indicating epigenetic age is higher in patients with schizophrenia. 95
th

 percentile confidence 

intervals are presented.  P values represent nominal significance; Bonferroni correction suggests 

significance (alpha < 0.05) at nominal p < 0.000685.  

 

Figure 2: Patients with first-episode psychosis show higher epigenetic age in 
systems-based clocks 
Forest plots of meta-analysis results in patients with first-episode psychosis, with positive numbers 

indicating epigenetic age higher in patients with first-episode psychosis compared to controls. 95
th

 

percentile confidence intervals are presented. Scatter plot demonstrates comparison of effect sizes in 

patients with first-episode psychosis to non-first-episode psychosis cases. Red line is the identity line 

(x=y). P values represent nominal significance; Bonferroni correction suggests significance (alpha < 0.05) 

at nominal p < 0.000685. 

 

Figure 3: Clozapine treatment is associated with accelerated aging in the 
inflammation, heart, metabolic, and lung clocks 
Forest plots of sub-analysis comparing patients with schizophrenia on clozapine to patients with 

schizophrenia not on clozapine. Positive value indicates higher epigenetic age in patients on clozapine. 

Analsyes of DNAmPACKYR (an epigenetic marker of smoking) demonstrates that patients on clozapine 

smoke more than patients not on clozapine. Scatter plot demonstrates that smoking broadly reduces 

effect sizes of clozapine.  Red line is the identity line (x=y). P values represent nominal significance; 

Bonferroni correction suggests significance (alpha < 0.05) at nominal p < 0.000685. 

 

Figure 4: The association between epigenetic aging and schizophrenia is robust 
to cell composition and smoking, and represents a distinct phenotype from prior 
body health scores  
A: Heatmap demonstrating effect size and significance of the association between schizophrenia, 

schizophrenia-by-age interaction, and clozapine with specific epigenetic clocks. B Scatter plot of 

SystemsAge standardized effect sizes versus prior reported body health scores. Red line is the identity 

line (x=y). C: Scatter plot using rank-order of SystemsAge versus prior reported body health scores. Red 

line is the identity line (x=y). D: Histogram of # of highly accelerated systems-based clocks (age > 1SD 

from 0) by disease status. individuals with schizophrenia (blue) or controls (red).  
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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