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ABSTRACT 

Electronic health records (EHRs) are valuable for public health and clinical 

research but are prone to many sources of bias, including missing data and non-

probability selection. Missing data in EHRs is complex due to potential non-recording, 

fragmentation, or clinically informative absences. This study explores whether polygenic 

risk score (PRS)-informed multiple imputation for missing traits, combined with sample 

weighting, can mitigate missing data and selection biases in estimating disease-

exposure associations. Simulations were conducted for missing completely at random 

(MCAR), missing at random (MAR), and missing not at random (MNAR) conditions 

under different sampling mechanisms. PRS-informed multiple imputation showed 

generally lower bias, particularly when combined with sample weighting. For example, 

in biased samples of 10,000 with exposure and outcome MAR data, PRS-informed 

imputation had lower percent bias (3.8%) and better coverage rate (0.883) compared to 

PRS-uninformed (4.5%; 0.877) and complete case analyses (10.3%; 0.784) in 

covariate-adjusted, weighted, multiple imputation scenarios. In a case study using 

Michigan Genomics Initiative (n=50,026) data, PRS-informed imputation aligned more 

closely with a sample-weighted All of Us-derived benchmark than analyses ignoring 

missing data and selection bias. Researchers should consider leveraging genetic data 

and sample weighting to address biases from missing data and non-probability 

sampling in biobanks. 
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Electronic health records (EHRs) represent a rich, longitudinal resource that 

researchers increasingly use to address questions of public health and clinical 

significance. EHR-linked biobanks, which often contain genetic information linked to 

other data sources (e.g., administrative and insurance claims, neighborhood-level 

characteristics, and complementary survey data), are growing in both the number of 

participants (�) and the breadth of measured variables (�). However, EHR data has not 

been collected for research purposes, so researchers must carefully consider potential 

biases (i.e., systematic errors). Potential sources of bias include missing data1–3 

(including clinically informative visiting processes2,4,5), selection bias,6–8 

misclassification,7,9,10 confounding,11,12 immortal time bias,13,14 and clinical practice and 

data collection and processing heterogeneity across EHRs.15,16 Although the advent of 

large-scale secondary data (colloquially, “Big Data”17) effectively minimizes the threat of 

random error, systematic sources of bias are ever-present adversaries, unphased by 

ever-increasing sample sizes. In fact, large sample sizes amplify these biases relative to 

the very small variance, frequently making inference erroneous, a phenomenon 

commonly characterized as the Big Data Paradox.18 

Missing data is ubiquitous in epidemiology19–23 and almost universally 

encountered in health research.24,25 Complete case analyses, which ignore 

observations with missing data for variables of interest (e.g., exposures, outcomes, or 

important covariates), are the most commonly employed approach in randomized 

clinical trials25 and observational studies24 in the presence of missing data. However, 

complete case analyses can lead to biased parameter estimation depending on the 

missing data mechanism, or the reason why the data are missing.1,19,26 
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Missing data mechanisms broadly fall into three classes: missing completely at 

random (MCAR), missing at random (MAR), and missing not at random (MNAR).27 

Naïve complete-case analyses are expected to produce unbiased results when data are 

MCAR. However, there are several reasons that make the assumption that missing data 

are MCAR in EHR-linked biobanks less reasonable,6,30–32 including non-random patient-

provider interactions,33–35 clinically informative observation processes,2,36 and EHR 

fragmentation. For these reasons, MAR and MNAR assumptions are more plausible.37 

Among the existing missing data methods that improve precision and reduce bias (e.g.,  

inverse probability weighting38–40 and full-information maximum likelihood41–44), multiple 

imputation is a commonly used and frequently recommended approach for handling 

missing data in EHR-linked biobanks.3,37,45–47 It is important to note that MNAR data 

cannot be empirically distinguished from MAR data while the MCAR assumption can be 

tested.48,49 

A hallmark of major biobanks is availability of genetic data on a large fraction of 

participants and an active genetics research community producing polygenic risk scores 

(PRS) for a variety of traits.50,51 It is an interesting question whether PRS observed on a 

large sample can improve imputation of the traits they are constructed for. The actual 

traits may be missing for a large number of participants, and PRS can serve as a weak 

proxy.52,53 

 Adding to the missing data challenge is the fact that EHR-linked biobanks often 

do not represent their source (or target) population, introducing potential selection 

bias.54 Recruitment mechanisms like recruiting patients awaiting surgery (as in the 

Michigan Genomics Initiative (MGI)55) and oversampling groups historically 
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underrepresented in biomedical research (as in the NIH All of Us Research Program56) 

as well as participant-driven factors like healthy volunteer bias (as in the UK 

Biobank57,58) explain differences between the study cohorts and their underlying source 

and target populations.57,59 Weighting-based methods like inverse probability weighting 

and poststratification weighting are often employed to reduce selection bias in 

parameter estimation when individual or summary data from an external non-probability 

sample are available. Recent papers have shown that weighted analyses reduce (but 

do not remove) bias due to selection in EHR-linked biobanks.58,60,61 

In this study we considered, to the best of our knowledge, an unexplored 

question: can PRS-informed multiple imputation reduce bias due to missing exposure 

data in association estimation? We investigated (a) whether PRS-informed multiple 

imputation meaningfully reduces bias due to missing data in probability samples and (b) 

the joint impact of PRS-informed multiple imputation and sample weighting on 

exposure-outcome association estimation in biased samples (Figure 1). We calculated 

unweighted and weighted complete case- and multiple imputation-based estimates of 

the body mass index (BMI) coefficient for glucose in realistic simulations, followed by a 

case study stratified by non-Hispanic White (n=42,999) and non-Hispanic Black 

(n=2,297) status in MGI. First, our simulation studies explored the joint impacts of 

multiple imputation with and without exposure and outcome PRS for missing data in 

MCAR, MAR, and MNAR settings and weighting in random and biased samples. We 

considered sampling weights in biased samples. Our case study applied these methods 

to MGI data to estimate the BMI coefficient for glucose using the same missing data 

methods and stratum-specific selection weights (as described previously60) to 
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demonstrate differences in association estimates under different analytical strategies in 

real-world data relative to National Health Interview Survey-weighted All of Us-based 

benchmark.  

METHODS 

Simulation Design 

Generating outcome, exposure, covariates, and polygenic risk scores jointly 

We simulated 1,000 replicates of a pseudo-population with size 100,000 (Figure 

2). To achieve this, we first generated an 8-dimensional multivariate normal distribution, 

�~����, 	
, mimicking the joint distribution of age, sex, non-Hispanic White (NHW), 

smoking status (ever/never), BMI, glucose, BMI PRS, and glucose PRS, assuming 

mean standardized variables (� � 0) and 	 as observed in MGI (see Eq.1 below).  

� �

�
��
��
�

0.998 0.209 0.254 
0.177 0.060 0.092 0.084 0.0920.209 0.997 0.051 0.020 
0.006 0.022 0.301 
0.0050.254 0.051 0.923 
0.126 0.160 0.165 
0.052 
0.004
0.177 0.020 
0.126 1.001 
0.038 
0.115 0.022 
0.0080.060 
0.006 0.160 
0.038 0.907 0.078 
0.033 0.0230.092 0.0217 0.165 
0.115 0.078 1.005 0.076 0.0010.084 0.301 
0.052 0.022 
0.033 0.076 0.990 0.0610.092 
0.005 
0.004 
0.008 0.023 0.001 0.061 1.005 �
��
��
�

 (Eq.1) 

Binary variables were recoded (sex, NHW, smoking status) from the generated 

continuous variables such that they preserved their correlation with age in observed 

MGI data. 

Sample selection 

For each pseudo-population, we performed sampling under two scenarios: 

random and biased/covariate-informed. Covariate-informed sampling probabilities 

depended on observed age, glucose (the outcome), and BMI (the exposure) (e.g., 


�������� � 1|���, �
�����, ���
� �  � !  ������ !  ����	
��
����� !  ��
���, where 
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� is an indicator variable for selection into the sample;  ���,  ����	
�,  ��
 � 1). For each 

scenario, the intercept,  �, was selected to draw a sample of approximately 1,000, 

2,500, 5,000, and 10,000 ( � = -6.92, -5.83, -4.94, -3.93, respectively) from the pseudo-

population where individual � had selection probability ���� � 1|���� , �
������ , ����
� 

dependent on the exposure (BMI) and the outcome (glucose) as well as the covariate 

(age).  

Missingness generation 

We simulated (a) exposure only (i.e., BMI) and (b) exposure and outcome (i.e., 

BMI and glucose) missingness under MCAR, MAR, and MNAR mechanisms for each 

selected sample size and mechanism. Approximately 25% missingness was generated 

for each variable. Under MCAR, the probability of missingness (e.g., ��"��
 � 1
 where 

"��
 is an indicator for whether BMI is missing) was 25% for all observations. Under 

MAR, exposure missingness depended on the outcome (glucose) and covariates (age, 

sex, race/ethnicity, smoking status) while outcome (glucose) missingness depended 

only on covariates. Under MNAR, exposure and outcome missingness was dependent 

on the whole set of exposure, outcome, and covariates. In all settings, all non-intercept 

regression coefficients were set equal to 1 and only the intercept was tuned to attain the 

desired sample size. Supplementary Table 1 shows the intercept coefficient values by 

missingness mechanism to (approximately) achieve the desired sample sizes. 

Analytic Methods 

For each scenario, we performed unweighted and weighted analyses (for simple 

random sampling, these are equivalent). The weights were proportional to the inverse of 

the known covariate-informed sampling probabilities for each individual � (#� $
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���� � 1|���� , �
������ , ����
��), and weighted analyses were carried out using the 

survey R package (version 4.4-2).62 In addition to complete case analysis, we 

performed multiple imputation to address missing data. For each sample, multiple 

imputation methods using age, sex, NHW, smoking status, BMI, glucose (without PRS; 

woPRS-imputed) and additionally exposure (BMI) and outcome (glucose) PRS (PRS-

imputed) were carried out using the R package mice (version 3.16.0; m = 5 

imputations).63,64 Beta coefficients across imputations were pooled using Rubin’s rule, 

with confidence intervals calculated from pooled standard errors based on within and 

between imputation variances.65,66 For multiply imputed analyses of biased samples, 

weighted analyses were conducted on each imputed dataset before pooling. 

Our target quantity was the true coefficient of BMI in a linear regression model for 

glucose (%��
) adjusted for age, sex, NHW race/ethnicity, and smoking status 

(ever/never) (Eq. 2).  

�������� � �� � ������ � � ����!"�� � �	�
��#� � ���
$%&� � �	�����'�(�� � )�  
where )� + $,0, .�/ 

(Eq.2) 

For each replicate, the true %��
 was obtained from the pseudo-population of size 

100,000 and the sample estimates were obtained in the selected samples of sizes 

1,000, 2,500, 5,000, and 10,000. In each sample, we conducted unweighted and 

weighted complete case, woPRS-imputed, and PRS-imputed analyses, extracting the 

coefficient estimate of BMI for glucose (%&��
). We evaluated association estimation 

properties using percent bias, coverage rate, average 95% confidence interval width, 

and root mean square error (RMSE), averaged over the 1,000 replicates. 
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Case study: Michigan Genomics Initiative 

Description of the study cohort 

MGI is an EHR-linked biobank that began in 2012, initially recruiting adult 

patients through pre-/peri-operative appointments requiring anesthesia from the 

University of Michigan Health System. As of September 2023, ~100,000 consented 

participants have provided access to their EHR and a biospecimen for genotyping, with 

a recent follow-up effort collecting complementary survey data.67 This paper included 

42,999 (25,520 complete cases) non-Hispanic White and 2,297 (1,240 complete cases) 

non-Hispanic Black participants aged 40 or older without a diabetes diagnosis and with 

demographic, health measurement, laboratory, and polygenic risk score data. MGI 

protocols were reviewed and approved by the University of Michigan Medical School 

Institutional Review Board (IRB ID HUM00099605 and HUM00155849). 

Outcome, exposure, covariates, and polygenic risk score 

The outcome and exposure of interest were glucose (mg/dL; logical observation 

identifiers names and codes (LOINC) code: 2345-7) and BMI (kg/m2), respectively. The 

longitudinal data in the EHR was reduced to the participant’s median value after 

removing extreme values (values outside 1.5x the interquartile range) for the 

corresponding variable. Age was considered the participant’s age at the time of data 

pull (March 23, 2022). Sex (indicator for female) and race/ethnicity were obtained from 

EHR data. Multiple measurements of self-reported smoking status were recorded and 

recoded into a binary ever/never indicator variable.  

Ma and colleagues previously calculated several PRS for 27 exposures in MGI 

participants.51 In this paper, we selected the Lassosum PRS for BMI and the 
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deterministic Bayesian sparse linear mixed model PRS for glucose because they had 

the highest R2 value for their respective traits in the published paper.51 These PRSs 

relied on publicly available GWAS summary statistics of UK Biobank data (Neale 

lab68,69). Both PRSs were predictive in MGI, with BMI PRS being much stronger 

(Pearson correlation between BMI and BMI PRS: 0.30; glucose and glucose PRS: 0.09; 

Supplementary Figure 1). 

Estimated regression coefficient corresponding to BMI with glucose as the outcome 

The target estimand of interest was the regression coefficient corresponding to 

BMI with glucose as the outcome. We conducted analyses among individuals 40 and 

older without a diabetes diagnosis in non-Hispanic White and non-Hispanic Black strata 

as well as in the full (i.e., unstratified) cohort. Unlike in the simulations, the selection 

weights in MGI were not known. Salvatore and colleagues estimated inverse probability 

selection weights to make MGI more representative of the US adult population using 

National Health Interview Survey data.60 Using the same methods to calculate stratum-

specific weights, we conducted weighted versions of each regression analysis. Using 

the non-Hispanic White and non-Hispanic Black samples with missing data (n=42,999 

and 2,297, respectively), we performed multiple imputation with and without PRS 

(adjusting for age, sex, and smoking status). We also conducted a PRS-informed 

multiple imputation analysis where observations were restricted to only those with 

observed PRS (PRS-imputed (subset): n=25,520 and 1,240 for non-Hispanic Whites 

and non-Hispanic Blacks, respectively). We reported the estimated beta coefficients and 

95% confidence intervals. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.28.24316286doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.28.24316286
http://creativecommons.org/licenses/by-nc/4.0/


 11

Software 

Analyses were conducted using R version 4.3.3. The code used to conduct 

analyses in this paper is available at https://github.com/maxsal/exprs_imputation. 

RESULTS 

Simulation study 

In random sampling with exposure-only missingness, when BMI data was 

MCAR (Figure 3), all analyses successfully maintained the nominal 95% coverage rates 

and exhibited no bias in the estimated BMI coefficients for glucose. However, when the 

data was MAR, complete case analysis showed a decline in coverage rates as sample 

size increased, and consistently exhibited bias (e.g., 8.86% for n=1,000; 7.80% for 

n=10,000). woPRS-imputed analyses, in contrast, provided more stable coverage rates 

(e.g., 0.931 for n=1,000; 0.924 for n=10,000) and reduced bias (e.g., 2.89% for n=1,000; 

0.10% for n=10,000) as sample sizes grew. PRS-imputed analyses outperformed both, 

fully retaining the nominal coverage rate across all sample sizes and achieving the least 

bias (e.g., 1.5% for n=1,000; 0.04% for n=10,000). Under MNAR conditions, none of the 

analyses could maintain the nominal coverage rate, and all exhibited substantial bias 

exceeding 30%. However, PRS-imputed analyses performed slightly better than 

woPRS-imputed analyses, achieving marginally higher coverage rates (e.g., for 

n=1,000: 0.637 for PRS-imputed; 0.561 for woPRS-imputed) and lower bias (e.g., for 

n=1,000: 31.95% for PRS-imputed; 36.12% for woPRS-imputed). 

In biased sampling scenarios where only exposure data were missing, 

MCAR conditions led to significant bias and a failure to retain nominal coverage across 

all unweighted analyses, with the bias worsening as sample sizes increased (e.g., 
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>29%; Figure 4). When the missingness was MAR or MNAR, unweighted complete 

case analyses exhibited less bias than multiple imputation methods, likely due to the 

amplification of biases by multiple imputation when it does not account for sampling 

weights. However, when analyses were weighted, multiple imputation approaches, 

particularly PRS-imputed, showed substantial improvements in coverage rates and bias 

reduction, consistently outperforming complete case analyses. For instance, in a 

10,000-observation sample with MAR missingness, the coverage rate was 0.784 for 

complete case analysis, 0.877 for woPRS-imputed, and 0.883 for PRS-imputed. When 

data was MNAR, coverage decreased, and bias increased across all methods, but 

PRS-imputed analyses performed slightly better, with reduced bias as sample size 

increased. 

In random sampling scenarios where both exposure and outcome data 

were missing, MCAR conditions allowed all analyses to maintain the nominal coverage 

rates and remain unbiased (Figure 3). For example, the coverage rate for complete 

case analysis was 0.938 for n=1,000 and remained above 0.950 for larger sample sizes. 

However, under MAR conditions, coverage rates decreased, and bias remained stable 

with larger sample sizes (e.g., coverage rate dropped from 0.925 for n=1,000 to 0.784 

for n=10,000) in complete case analyses. woPRS-imputed and PRS-imputed analyses 

effectively returned to nominal coverage rates in MAR data (e.g., 0.946 and 0.947, 

respectively, for n=10,000) and exhibited little to no bias (e.g., 1.32% for woPRS-

imputed; 0.97% for PRS-imputed). Under MNAR conditions, no analysis method could 

maintain nominal coverage, and all showed significant bias. Nonetheless, PRS-imputed 

analyses slightly outperformed others, achieving better coverage rates (e.g., 0.299 for 
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PRS-imputed versus 0.000 for complete case in n=1,000) and lower bias (e.g., 53.89% 

for PRS-imputed versus 62.27% for complete case in n=1,000). Plots describing 

average 95% CI width and RMSE are shown in Supplementary Figure 2. 

In biased sampling with both exposure and outcome missingness, 

unweighted PRS-imputed analyses failed to recover nominal coverage and exhibited 

significant bias across all missingness mechanisms, with MCAR data showing the least 

bias (Figure 4). When sampling weights were applied, PRS-imputed multiple imputation 

analyses performed better than complete case analyses, with improved coverage rates, 

particularly in MAR data. For example, PRS-imputed coverage rates for MAR data 

exceeded those observed for MCAR as sample sizes increased (e.g., 0.840 for n=1,000 

to 0.906 for n=10,000). Despite these improvements, MNAR data analyses remained 

problematic across all methods, with PRS-imputed analyses showing slightly better 

performance but still exhibiting considerable bias and suboptimal coverage (e.g., 

percent bias of 32.40% for n=1,000 and 23.19% for n=10,000; plots depicting average 

95% CI width and RMSE are shown in Supplementary Figures 3 and 4). 

Analysis in the Michigan Genomics Initiative (MGI) 

Descriptive characteristics of the study population 

We analyzed a cohort of 50,026 MGI participants aged 40 or older without 

diabetes, of which 54.5% were female and 86.0% non-Hispanic White. The mean age 

was 62.9 years (SD: 12.5), BMI was 29.1 (6.0), and glucose was 99.0 mg/dL (14.1) 

(Supplementary Table 8). Due to suspected racial/ethnic heterogeneity,70,71 we stratified 

the analysis into non-Hispanic White and non-Hispanic Black groups. 
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Among the 42,999 non-Hispanic White participants, 53.8% were female, with a 

mean age of 63.5 years (12.5), BMI of 29.1 (6.0), and glucose of 99.5 mg/dL (14.2) 

(Table 1). Participants with missing data were generally younger (mean age 62.6 vs. 

64.1 years), more likely to be female (54.6% vs. 53.3%), less likely to have smoked 

(46.5% vs. 50.7%), and had slightly lower glucose levels (99.47 vs. 99.55 mg/dL), with 

no differences in BMI PRS (p=0.6) or glucose PRS (p=0.4) compared to those with 

complete data. 

Among the 2,297 non-Hispanic Black participants, 63.3% were female, with a 

mean age of 57.8 years (11.4), BMI of 30.8 (6.4), and glucose of 95.1 mg/dL (12.5) 

(Table 2). Those with missing data were less likely to have smoked (39.2% vs. 44.7%) 

and had lower glucose levels (94.0 vs. 95.8 mg/dL), with no differences in BMI PRS 

(p=0.8) or glucose PRS (p=0.061) compared to complete cases. 

Subsets of 30,492 non-Hispanic Whites and 1,437 non-Hispanic Blacks had 

complete PRS data. Smoking status and glucose showed moderate missingness (14% 

and 11% in the non-Hispanic White sample and 13% and 7% in the non-Hispanic Black, 

respectively), while BMI was rarely missing in both groups (0.5% in non-Hispanic 

Whites and 1.1% in non-Hispanic Blacks). 

Estimation of the coefficient for BMI with glucose as the outcome 

Among non-Hispanic White individuals aged 40 years or older without diabetes in 

the MGI cohort, the unweighted, covariate-adjusted, complete case coefficient estimate 

was 0.288 (0.264, 0.312) (Figure 5), which differed from the benchmark range of 0.376 

to 0.423, derived from NHIS-weighted All of Us data. Using sampling weights, the 

estimate improved to 0.324 (0.283, 0.365), aligning more closely with the benchmark. 
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Multiple imputation alone also improved the estimates, with woPRS-imputed and PRS-

imputed estimates rising to 0.300 (0.277, 0.323) and 0.302 (0.280, 0.324), respectively. 

When these imputation methods were combined with sample weighting, they 

approached the benchmark even more closely, with final estimates of 0.331 (0.292, 

0.371) for woPRS-imputed and 0.338 (0.280, 0.324) for PRS-imputed analyses. Overall, 

sample weighting and multiple imputation consistently brought estimates closer to the 

benchmark. Similar trends were seen in the corresponding unadjusted analyses in 

Figure 5A. 

In non-Hispanic Black individuals aged 40 years or older without diabetes, the 

unweighted complete case estimate was 0.178 (0.097, 0.261) (Figure 5), also differing 

from the benchmark range of 0.196 to 0.297. However, applying sampling weights 

brought the estimate within the benchmark range at 0.202 (0.086, 0.317). Multiple 

imputation alone saw nominal increases in estimates, with woPRS-imputed and PRS-

imputed estimates at 0.204 (0.119, 0.288) and 0.203 (0.116, 0.290), respectively. The 

weighted analyses produced similar results, with estimates of 0.200 (0.082, 0.318) for 

woPRS-imputed and 0.214 (0.096, 0.332) for PRS-imputed analyses. Unlike the non-

Hispanic White group, weighting had a smaller impact because the estimates were 

already within the benchmark range. 

In the unstratified results for the entire MGI cohort aged 40 years or older without 

diabetes (Supplementary Figure 5), which was predominantly non-Hispanic White 

(86%), the findings mirrored those of the non-Hispanic White stratum. For example, the 

weighted PRS-imputed estimate (0.312 (0.274, 0.349)) was closer to the benchmark 
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range of 0.346 to 0.386 than the unweighted complete case estimate (0.277 (0.255, 

0.299)). 

DISCUSSION 

We investigated the combined impact of missing data and selection bias on 

association estimates using simulation studies and real-world EHR data. Our study 

shows that biobanks with genetic data can reduce these biases by incorporating genetic 

summaries of exposures and outcomes. Building on previous research,3,51 we assessed 

the effectiveness of PRS-informed multiple imputation in improving association 

estimates, and to examine the interaction between multiple imputation and sample 

weighting using simulations and a case study. To our knowledge, this is the first paper 

to explore the joint impacts of genetic-informed multiple imputation and sample 

weighting methods in EHR-linked biobank data. 

Our simulations revealed that PRS-informed multiple imputation generally 

outperformed standard methods, particularly for MAR and MNAR data, by offering 

smaller confidence intervals (Supplementary Figure 3) and reduced bias. PRS preserve 

correlation between underlying traits despite often being weakly predictive of the trait 

itself.51 Because PRS are observed on a large fraction of the sample, they may help 

with selection and non-response biases. However, while PRS-imputed analyses 

improved coverage rates and reduced bias compared to complete case analyses, as 

expected, 26,65 they did not fully recover the nominal coverage rate, especially under 

MNAR conditions. Notably, PRS-imputed analyses also demonstrated the lowest RMSE 

in MAR scenarios, suggesting better estimation accuracy. 
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Missingness in EHR-linked biobank data often deviate from the MCAR 

assumption due to factors such as patient health status, healthcare access, and EHR 

fragmentation, leading to biased observation processes.2,4,6,35,47,72–77 PRS-informed 

imputation performed best but struggled to achieve nominal coverage or bias reduction 

when data were MNAR. While correlations between exposures and their PRS are weak 

(Supplementary Figure 1), stronger correlates would likely improve multiple imputation. 

 EHR-linked biobank data are subject to selection bias, including due to healthy 

volunteer bias (as in the UK Biobank57) or non-random recruitment strategies (as in 

MGI55 and the NIH All of Us Research Program56). When simulating selection bias by 

oversampling by age, BMI, and glucose, all methods showed substantial bias in 

unweighted analyses (≥21%). Weighting improved PRS-imputed analyses' 

performance, especially for MAR data, significantly reducing bias and nearly restoring 

nominal coverage rates (e.g., woPRS-imputed vs. PRS-imputed coverage rate for 

n=1,000: 0.842 vs. 0.840; n=10,000: 0.884 vs. 0.906). PRS-imputed methods only 

slightly improved bias and RMSE for MNAR data (e.g., n=1,000: 33.67% vs. 32.40%; 

n=10,000: 25.46% vs. 23.19%). 

In the case study using MGI data, we estimated the BMI coefficient for glucose 

and found small differences between complete case and imputed estimates, likely due 

to low levels of missingness (non-Hispanic Whites and Blacks: glucose: 14% and 13%; 

BMI: 0.5% and 1.1%). However, accounting for selection bias resulted in more 

substantial changes, underscoring its greater impact than missing data. 

Our findings suggest that while PRS-informed multiple imputation can enhance 

the accuracy of association estimates, particularly in MAR scenarios, it does not fully 
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address challenges when data are MNAR. Sensitivity analyses, alongside expert 

knowledge78,79 and tools like m-graphs or m-DAGs,80–83 are recommended and methods 

like Heckman imputation84,85 and pattern-mixture models86,87 can be explored. For most 

regression models, complete case analyses can give unbiased results when the 

probability of being a complete case is independent of the outcome after taking 

covariates into account, regardless of the missingness mechanism (Supplementary 

Table 9).88–90 Combining PRS-informed multiple imputation with sampling weights can 

reduce bias and improve coverage, but careful consideration of underlying data-

generating mechanisms is essential. 

Strengths and limitations 

This study emphasizes the need to address missing data and selection bias in 

EHR-linked biobanks and suggests actions for researchers. Our simulations highlight 

the effectiveness of multiple imputation combined with weighting methods. However, 

our study has limitations. First, our simulations considered a single level of missingness 

(~25%) in two scenarios: exposure alone and exposure and outcome, whereas in 

practice, multiple patterns and levels of missingness can affect exposures, outcomes, 

and covariates simultaneously. Future studies should explore a wider range of 

missingness scenarios. Second, selection bias varies across EHR-linked biobanks due 

to differing recruitment strategies. For instance, MGI has notable selection biases 

relative to the US adult population, which may not be as pronounced in population-

based biobanks like the NIH All of Us Research Program or the UK Biobank. Third, our 

case study examined a single association parameter with a relatively small level of 

missingness and without a gold standard estimate. Future research should investigate 
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associations where gold standard estimates are available. Fourth, the study focused on 

glucose levels, which can be collected without fasting conditions and managed with 

medication, complicating interpretation. Codes specifying fasting conditions were rarely 

used and thus not considered in our analyses, and we did not consider other factors 

that might impact glucose levels (e.g., surgery, metformin use in people with pre-

diabetes). Fifth, we examined the association between two continuous variables after 

collapsing longitudinal data, whereas many studies utilize binary outcomes and 

longitudinal data. Future work should address these data types. Lastly, clinically 

informative visiting processes in EHR data increase the likelihood of MNAR data. 

Although PRS-imputed analyses showed some improvements for MNAR data, future 

research should incorporate methods that specifically model these processes.91–94 

Conclusion 

Missing data is a critical issue in EHR-linked biobank data. We leveraged non-

missing genetic data – a key feature of biobanks – to assess if PRS-informed multiple 

imputation could reduce bias in association estimation. Our simulations demonstrated a 

substantial reduction in bias for MAR data when incorporating genetic information. 

Using real-world MGI data, selection bias was relatively more impactful than missing 

data. Our findings call for exploring additional missingness patterns and levels across 

associations. Biobanks should provide PRS for common exposures available as proxies 

and sampling weights to address selection bias. This approach will help researchers 

better mitigate multiple biases in EHR-linked biobank association analyses, enhancing 

the reliability and validity of their findings. 
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Tables 

Table 1 Comparison of demographic, health measurements, and polygenic risk score values overall and 
among non-Hispanic Whites 40 or older without diabetes, with and without any missing values in the 
Michigan Genomics Initiative.  

 
Overall 

Incomplete 
observations 

Complete 
observations 

  

Non-missing 
PRS 

Characteristic N = 42,999a N = 17,479a N = 25,520a p-valueb 
 

N = 30,942a 
Age 63.5 (12.5) 62.6 (12.4) 64.1 (12.5) <0.001 

 
63.7 (12.5) 

Female 53.8 (23,145) 54.6 (9,547) 53.3 (13,598) 0.006 
 

53.4 (16,509) 
Smoking status (ever) 49.4 (18,187) 46.5 (5,255) 50.7 (12,932) <0.001 

 
50.1 (14,320) 

    Missing 6,178 6,178 0 
  

2348 
BMI 29.1 (6.0) 29.1 (6.0) 29.0 (5.9) 0.3 

 
29.0 (5.9) 

    Missing 236 236 0 
  

138 
Glucose 99.5 (14.2) 99.5 (14.7) 99.5 (14.0) 0.023 

 
99.8 (14.3) 

    Missing 4,836 4,836 0 
  

3560 
BMI PRSc 0.000 (1.000) 0.004 (1.021) -0.001 (0.996) 0.6 

 
0.000 (1.000) 

    Missing 12,057 12,057 0 
  

0 
Glucose PRSc 0.000 (1.000) 0.013 (0.989) -0.003 (1.002) 0.4 

 
0.000 (1.000) 

    Missing 12,057 12,057 0 
  

0 
a continuous: mean (SD); dichotomous: % (n) 
b Wilcoxon rank sum test; Pearson’s Chi-squared test 
c PRS were mean standardized 
Abbreviations: BMI, body mass index; PRS, polygenic risk score 
 
Table 2 Comparison of demographic, health measurements, and polygenic risk score values overall and 
among non-Hispanic Blacks 40 or older without diabetes, with and without any missing values in the 
Michigan Genomics Initiative.  

 
Overall 

Incomplete 
observations 

Complete 
observations 

  

Non-missing 
PRS 

Characteristic N = 2,297a N = 1,057a N = 1,240a p-valueb 
 

N = 1,437a 
Age 57.8 (11.4) 57.3 (11.2) 58.2 (11.6) 0.069 

 
57.7 (11.6) 

Female 63.3 (1,454) 63.2 (668) 63.4 (786) >0.9 
 

63.3 (910) 
Smoking status (ever) 42.6 (847) 39.2 (293) 44.7 (554) 0.017 

 
44.3 (597) 

    Missing 310 310 0 
  

88 
BMI 30.8 (6.4) 30.6 (6.3) 31.0 (6.5) 0.2 

 
31.0 (6.5) 

    Missing 26 26 0 
  

8 
Glucose 95.1 (12.5) 94.0 (12.6) 95.8 (12.4) <0.001 

 
95.8 (12.4) 

    Missing 160 160 0 
  

116 
BMI PRSc 0.000 (1.000) -0.006 (0.977) 0.001 (1.004) 0.8 

 
0.000 (1.000) 

    Missing 860 860 0 
  

0 
Glucose PRSc 0.000 (1.000) 0.158 (1.064) -0.025 (0.988) 0.061 

 
0.000 (1.000) 

    Missing 860 860 0 
  

0 
a continuous: mean (SD); dichotomous: % (n) 
b Wilcoxon rank sum test; Pearson’s Chi-squared test 
c PRS were mean standardized 
Abbreviations: BMI, body mass index; PRS, polygenic risk score 
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Figures 

 
Figure 1 Schematic representation depicting multiple imputation and weighted analyses to jointly address 
missing data and selection bias. 0 represents the outcome (e.g., glucose), 1 represents the exposure 
(e.g., body mass index) and covariates could include age, sex, race/ethnicity, and smoking status. The 
empty boxes represent missing data. 0��� and 1��� are the polygenic risk scores (PRS) corresponding to 
the outcome and exposure, respectively. 
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Figure 2 Schematic representation of random and biased sampling simulation analyses. Abbreviations: 
CI, confidence interval; MAR, missing at random; MCAR, missing completely at random; MNAR, missing 
not at random; PRS, polygenic risk score; RMSE, root mean square error; woPRS, without polygenic risk 
score 
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Figure 3 Coverage rate (panels A and B) and percent bias (panels C and D) diagnostics for exposure only 
(panels A and C) and exposure and outcome missingness (panels B and D) BMI coefficient for glucose 
by missing data mechanism and method and sample size under random sampling in a 1,000-iteration 
simulation. Analyses were adjusted for age, sex, non-Hispanic White, and smoking status (ever/never). 
Corresponding coverage rate, percent bias, average confidence interval width, and root mean squared 
error diagnostics are reported in Supplementary Table 2 and Supplementary Table 3. Abbreviations: 
MAR, missing at random; MCAR, missing completely at random; MNAR, missing not at random; PRS-
imputed, polygenic risk score-informed multiple imputation; woPRS-imputed, multiple imputation without 
exposure and outcome PRS. 
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Figure 4 Coverage rate (panels A and B) and percent bias (panels C and D) diagnostics for unweighted 
(left) and weighted (right) BMI coefficient for glucose estimation by missing data mechanism and method 
and sample size under biased sampling and exposure only (panels A and C) and exposure and outcome 
missingness (panels B and D) in a 1,000-iteration simulation. For biased sampling simulations, 
unweighted and weighted diagnostics are reported in Supplementary Tables 4, 5, 6, and 7, respectively. 
Analyses were adjusted for age, sex, non-Hispanic White, and smoking status (ever/never).   
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Figure 5 Estimation of the coefficient for BMI with glucose as the outcome by missing data method and 
weighting approach among non-Hispanic Whites (n=42,999; panels A and B) and non-Hispanic Blacks 
(n=2,297; panels C and D) in all MGI adults age 40 or older without diabetes. The PRS-imputed subset 
sample (n=30,942 for non-Hispanic Whites; n=1,437 for non-Hispanic Blacks) was restricted to individuals 
with non-missing genotype data before multiple imputation. Analyses were adjusted for age, sex, and 
smoking status (ever/never). Gray shaded regions represent corresponding 95% confidence interval from 
National Health Interview Survey-weighted All of Us data where weights are calculated separately for 
non-Hispanic Whites and non-Hispanic Blacks to make All of Us data for each of these groups more 
representative of their corresponding US population (target population). Results for the full, unstratified 
cohort are shown in Supplementary Figure 5. Abbreviations: PRS, polygenic risk score. 
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