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Abstract11

Motivation Nearly two decades of genome-wide association studies12

(GWAS) have identify thousands of disease-associated genetic variants,13

but very few genes with evidence of causality. Recent methodologi-14

cal advances demonstrate that Mendelian Randomization (MR) using15

expression quantitative loci (eQTLs) as instrumental variables can16

detect potential causal genes. However, existing MR approaches are17

not well suited to handle the complexity of eQTL GWAS data struc-18

ture and so they are subject to bias, inflation, and incorrect inference.19

Results We present a whole-genome regulatory network analysis tool20

(HORNET), which is a comprehensive set of statistical and compu-21

tational tools to perform genome-wide searches for causal genes using22

summary level GWAS data that is robust to biases from multiple23

sources. Applying HORNET to schizophrenia, we identified differen-24

tial magnitudes of gene expression causality. Applying HORNET to25

schizophrenia, we identified differential magnitudes of gene expression26

causality across different brain tissues. Availability and Imple-27

mentation Freely available at https://github.com/noahlorinczcomi/28

HORNETor Mac, Windows, and Linux users. Contact njl96@case.edu.29
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1 Introduction32

Genetic epidemiologists have spent decades trying to identify genes that cause33

disease [26]. Significant effort has been given to experimental methods [42, 49],34

linkage studies [39], genome-wide association studies (GWAS), and functional35

annotation of putative disease-associated genetic variants [48]. These methods36

of causal validation may be costly, may not always provide causal inference,37

and have sometimes produced conflicting results [31]. They also generally can-38

not be scaled to efficiently test hundreds or thousands of genes simultaneously.39

Cis Mendelian Randomization (cisMR) has been proposed as a cost- and time-40

efficient alternative to identify potential causal genes and can leverage the41

wealth of publicly available summary data from genome-wide association stud-42

ies (GWAS) and eQTL studies [22, 40, 51, 60]. In this context, cis MR uses43

instrumental variables that are gene expression quantitative trait loci (eQTLs)44

to estimate tissue-specific causal effects of gene expression on disease risk [19].45

Cis MR methods are similar to transcriptome-wide association study46

(TWAS) methods, which test the association between predicted gene expres-47

sion and the outcome phenotype. TWAS may suffer from reduced power due to48

imprecise estimation of gene expression in the discovery population [12, 32, 52],49

and from direct SNP associations with the outcome phenotype, known as hor-50

izontal pleiotropy. MR requires only GWAS summary statistics and a range51

of robust tools to control the Type I error and bias from horizontal pleiotropy52

rate have been developed [28, 34]. The MR-based approach can either con-53

sider each gene separately (univariable MR) or jointly with surrounding genes54
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in a regulatory network (multivariable MR). Since it is well known that many55

genes are members of large regulatory networks [16, 29], multivariable MR56

may be better suited to study multiple gene expressions simultaneously than57

univariable MR that study one gene expression and one trait separately, such58

as TWAS [33, 34, 44].59

However, there is currently no unified statistical or computational frame-60

work for applying multivariable MR to the study of causal genes. Performing61

multivariable MR with summary data from eQTL and disease GWAS (eQTL-62

MVMR) has many challenges, including the handling of missing data, linkage63

disequilibrium (LD) between eQTLs, gene tissue specification, gene priori-64

tization, and causal inference. Without careful attention to each of these65

challenges, the simple application of traditional multivariable MR methods to66

these data may produce spurious results which may fail in follow-up exper-67

imental testing. We present HORNET, a set of bioinformatic tools that can68

be used to robustly perform eQTL-MVMR with GWAS summary data. We69

demonstrate that existing univariable and multivariable implementations of70

eQTL-MR are vulnerable to biases and/or inflated Type I and II error rates71

from weak eQTLs, correlated horizontal pleiotropy (CHP), high correlations72

between genes, missing data, and misspecified LD structure.73



4 HORNET

Casual estimationMR InstrumentsGene networksInput data

Outcome cis-eQTLs

GWAS summary statistics

Missing cis-eQTL data

Gene A Gene B

>1Mb

<1Mb

Imputation

BP position

As
so

ci
at

io
n 

w
it

h 
ge

ne
 e

xp
re

ss
io

n

1Mb window 
around gene

4-step process

(1) Identify outcome loci

(2) Identify k genes closest to lead 
outcome SNP within ±d Mb

(3) Genes sharing eQTLs (P<τ2) 
with k closest genes are grouped

(4) Repeat for all outcome loci

(k = 2)

Initial IV set

Jointly associated with 
genes in cluster

H0: β1= … = βp= 0  →  χ2(p) test

LD regularization & 
pruning

LD<τ2 with SNPs ±1Mb 
of target locus  

LD<τ1 LD>τ1✓

-2Mb +2MbGene group

Candidate IV set

✓

LD<τ2 LD>τ2

Final IV set

m IVs in LD

Multivariable MR

Gene 1

Gene 2

Gene p
፧

eQTLs
፧

U

Gene screening and MRBEE

Tissue-specific

(rsID, Z-statistics, effect allele, BP)

Require all SNP-gene 
associations within ±1Mb

MR-GN: Causal networks

-log10 P-value

Pr
at

t i
nd

ex

Core gene
Regulator

Disease

Disease

--eQTLGWAS <eQTLDataFolder>
--phenoGWAS <pheno>.txt.gz
--LDRef data/ldref/1kg3EUR
--imputeMissingeQTLs yes

--phenoLociPvalue 5e-8
--numIndexGenesToFormGroup 2
--geneGroupPvalueThreshold 5e-8

--MVMRIVPThreshold 5e-8
--ldMax 0.5
--LDOtherLoci 0.1
--otherLociMbWindow 2

--adjustSEsForInflation yes
--networkR2Thres 0.2
--minMVMRIVs 30

Fig. 1 Flowchart illustrating genome-wide causal gene searches using HORNET. Example
options given to flags that the command line version of HORNET uses are at the bottom of
each panel. In the ‘Input data’ section, ±1Mb is used because it is standard in many publicly
available data such as GTEx [10] and eQTLGen [55]. The HORNET software is available from
https://github.com/noahlorinczcomi/HORNET

2 System and Methods74

2.1 Data75

HORNET uses summary level data from GWAS of cis gene expression (eQTL)76

and a disease phenotype. cis-eQTL GWAS data should generally provide esti-77

mates of association between the expression of each gene and all SNPs within78

±1Mb of them. These data are publicly available from consortia such as eQTL-79

Gen [54] and the Genotype-Tissue Expression (GTEx) project [10]. Disease80

GWAS data can typically be downloaded from public repositories such as the81

GWAS Catalog [46]. HORNET additionally requires an LD reference panel82

with corresponding .bim, .bed, and .fam files. The 1000 Genomes Phase 383

(1kg) [9] reference panel is automatically included with the HORNET software84

for African, East Asian, South Asian, European, Hispanic, and trans-ancestry85

https://github.com/noahlorinczcomi/HORNET
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populations, although researches may use their own reference panels such as86

those from the UK Biobank [47].87

2.2 Instrument selection and missing data88

Selection of the IV set in eQTL-MVMR using standard IV selection meth-89

ods can either reduce statistical power or make estimation of causal effects90

impossible because of the structure of cis-eQTL GWAS summary statistics.91

Univariable eQTL-MR for the kth gene in a locus of p genes uses the set Sk92

of cis-eQTLs as IVs and performs univariable regression [21]. Multivariable93

eQTL-MR in the same locus uses the superset S∪ = ∪p
k=1Sk and performs94

multivariable regression [40]. Since most publicly available cis-eQTL data only95

contain estimates of association between SNPs and all genes within ±1Mb of96

them (e.g., [10, 54]), not all SNPs in S∪ may have association estimates that97

are present in the data. An alternative approach is to use the set S∩ = ∩p
k=1Sk98

which contains SNPs with association estimates that are available for all p99

genes. However, this set may contain very few SNPs, if any, for some relatively100

large loci which contain many genes that are co-regulated. If the size of S∩101

is small, there can be limited statistical power for eQTL-MVMR because the102

power in MR is proportional to the total trait variance explained by the IVs103

[34]. Thus, only S∪ is used in HORNET.104

We propose imputing missing data using one of three approaches that users105

of HORNET can choose between: (i) imputation of missing values with 0s,106

(ii) imputation based only on LD structure between observed and unobserved107

SNPs [43], and (iii) imputation based on a modified matrix completion algo-108

rithm (MV-Imp). Using any of these methods, only estimates of association109

between SNPs and the gene expression phenotype are imputed. The MV-Imp110
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approach in (iii) is applied to SNPs in the union set S∪ and presented in Algo-111

rithm 1. This approach assumes a low-rank structure of the MR design matrix112

and accounts for estimation error and LD structure. As mentioned, public cis-113

eQTL summary data are generally available for SNP-gene pairs within ±1Mb114

of each other. Using individual-level data from 236 unrelated non-Hispanic115

White subjects, we demonstrate in Figure 4 of the Supplement that associa-116

tion estimates outside of the 1Mb window have mean 0 and constant variance117

with high probability. Imputation using MV-Imp imputes data with the lowest118

error in simulation 2, though imputation of missing values with zeros performs119

similarly and is more computationally efficient.120

Algorithm 1 Pseudo-code of eQTL imputation.

Require: Them×p incomplete matrix of eQTL association estimates between
m SNPs and expressions of p genes B̂, the set of missing values O, the
singular values η1 ≥ ...,≥ ηp of the p × p weak instrument bias matrix
mΣWβWβ

, inverse LD matrix Θ, tuning parameter λ, tolerance ϵ.

1. Initialize B̂0 = Θ1/2B̂ with missing values set to 0
2. Define d01 ≥ ... ≥ d0p as the singular values of B̂0 := UDV⊤

3. Define α = 1−
∑p

k=1 ηk/
∑p

k=1 d
0
k

4. Reconstruct B̂0 = U(αD)V⊤, where D = diag(α× d0k)
p
k=1

while do∥B̂(t+1) − B̂(t)∥F > ϵ

Find UDV⊤ = B̂(t) and define the kth singular value as d
(t)
k ,

Threshold singular values, d
(t+1)
k = (d

(t)
k − λ)+; where (a)+ = max(0, a)

Construct B̂(t+1) = UD+V⊤, where D+ = diag
[
d
(t+1)
k

]p
k=1

,

Set B̂
(t+1)
/O = B̂

(0)
/O; i.e., only missing values are imputed

end while
Ensure: Matrix Θ−1/2B̂(t) with no missing values.

After imputating the missing SNP-expression association estimates, the

full set of candidate IVs S∪ is restricted to those that are significant in a joint

test of association. Let β̂j be the p-length vector of associations between the

jth eQTL in S∪ and the expression of p genes in a tissue, where Cov(β̂j) := Σ

is estimated using the insignificant eQTL effect estimates [34, Method]. The
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initial candidate set S∪ is restricted to

S =

{
j : β̂⊤

j Σ̂
−1β̂j > F−1

χ2(p)(α)

}
, (1)

where α = 5× 10−8 by default in the HORNET software. The set S is further121

restricted using LD pruning [15, 45] and CHP bias-correction as described in122

the next section.123
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a) Missing data mechanism in cis-eQTL GWAS summary data
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b) Multivariate imputation of eQTL associations
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Fig. 2 This figure illustrates the mechanism in summary cis-eQTL GWAS data that leads to
missing data in eQTL-MVMR and how this missing data can be addressed using imputation. a)
Only SNP-gene pairs within a defined distance have association estimates present in cis-eQTL
summary data. This figure demonstrates this by displaying the available data for SNPs and genes
ordered by their chromosomal position using data from the eQTLGen Consortium [54]. b) (left)

Visual display of the pattern of missing in the design matrix B̂(Ω) used in eQTL-MVMR. Imputa-
tion can be performed by setting missing values to be 0 (‘Zero imp.’) or by applying the low-rank

approximation (‘MV imp.’) to B̂(Ω) described in Algorithm 1. ‘Soft impute’ is the soft imputation
method of [24] and ‘Normal imp.’ is a gene-pairwise imputation method based on the multivariate
normal distribution, more fully described in the Supplement. |Ω| is the total number of miss-
ing values in a simulation performed using real data in the CCDC163 gene region. These data
were GWAS summary statistics of gene expression in blood tissue measured in 236 unrelated
non-Hispanic White individuals. Full details of this simulation are presented in the Supplement.
(right) An example of the MV imp. method applied to summary data for 9 genes on chromosome
22 using cis-eQTL data from the eQTLGen Consortium [54].
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2.3 Handling linkage disequilibrium124

In nearly all applications of MVMR with eQTL data, an estimate of the LD125

matrix R for a set of eQTLs used as IVs is required. There are at least three126

primary challenges related to the use of eQTLs that are in LD when only127

individual-level data from a reference panel is available: (i) LD between causal128

SNPs can induce a correlated horizontal pleiotropy (CHP) bias (see Sup-129

plement Section 2.1), (ii) imprecise estimates of LD between the eQTLs130

can lead to underestimated standard errors of the causal effect estimates131

(Supplement Sections 2.4 and 2.6), (iii) direct application of the estimated132

LD matrix to MR may be impossible because of non positive definiteness and133

the choice(s) of regularization [3] may not always be clear. An additional chal-134

lenge which HORNET does not address is the possibility of differences in the135

LD structure of the population used in GWAS and the LD reference panel.136

Figure 3 presents results from simulations demonstrating how this can affect137

inference using MR. In the next three subsections, we describe these challenges138

in greater detail and present the solutions that HORNET can implement.139

2.3.1 Correlated horizontal pleiotropy from LD between140

eQTLs141

CHP can be introduced in eQTL-MVMR if any eQTLs used as IVs in a target142

locus are in LD with other eQTLs that are not in the IV set. This is a form of143

confounding that can inflate Type I or II error rates when testing the causal144

null hypothesis [36, 53]. We account for this CHP by removing IVs in the145

candidate set S that have LD r2 > κ with other SNPs not in this set but146

within ±2Mb of the boundaries of the locus. A visual example of this process147

is presented in Panel b of Figure 3. In practice, estimation of LD between148

eQTLs in the IV set and those outside of it is made using the available LD149
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reference panel. This process will reduce the number of eQTLs available for150

use in MVMR, since it will remove IVs in LD with neighboring non-IVs, but151

may provide partial protection against CHP bias.152

2.3.2 Inflation from misspecified LD153

Mis-specifying the LD matrix corresponding to a set of eQTLs that are used as154

IVs in eQTL-MR can inflate the statistics used to test the causal null hypoth-155

esis [28]. Since individual-level data for the discovery GWAS of the disease156

phenotype are rarely publicly available, eQTL-MR relies on publicly available157

reference panels to estimate LD between a set of SNPs using populations which158

are assumed to be similar to the eQTL GWAS population. This LD matrix159

can be mis-specified when a reference panel of relatively small size and/or dif-160

ferent genetic ancestry is used, making causal inference using standard MR161

methods such as IVW [4] or principal components adjustment [5] vulnerable162

to inflated Type I/II error rates [28]. No solution to this problem currently163

exists for eQTL-MVMR. We demonstrate in this section that this problem is164

caused by misspecification of the residual degrees of freedom in the standard165

t-test for statistical inference of a causal effect.166

We therefore propose a t-test which is corrected for misspecification of the

LD reference panel. Consider a univariable MR model using m IVs in which

θ̂ = (β̂⊤W−1α̂)/(β̂⊤W−1β̂),

α̂ ∼ N (βθ,R), W ∼ Wishartm(n, n−1R),

where n is the sample size of the LD reference panel. Standard practice to test167

H0 : θ = 0 compares L = θ̂/ŜE(θ̂) to a t-distribution with m − 1 degrees of168

freedom. This test implicitly assumes that (m−1)V̂ar(θ̂)/Var(θ̂) ∼ χ2(m−1),169
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when in fact V̂ar(θ̂)/Var(θ̂) ∼ χ2(n − m + 1) when W is treated as random170

[37]. The statistic L does not follow a t-distribution since the residual degrees171

of freedom is misspecified. However, L̃ =
√

(n−m+ 1)/nL does follow a t-172

distribution with m − 1 degrees of freedom. We therefore use the statistic L̃173

to test H0 : θ = 0 instead of L. It follows from the definition of L̃ that L̃ ≤ L,174

which implies that it may be less powerful than L, but should also control the175

Type I error rate or L at the nominal level.176

2.3.3 Non-positive definite LD matrix177

When using a reference panel to estimate LD between a set of eQTLs that178

may be used as IVs in eQTL-MVMR, the raw estimate R̂ is not guaranteed179

to be positive definite if the size of the reference panel nref is less than the180

number of IVs [20]. LD pruning also does not guarantee this issue will always181

be avoided. In this case, we may not be able to directly use R̂ because eQTL-182

MVMR requires its inverse, which may not exist. Multiple solutions to this183

problem exist in the literature, with methods either transforming the IV set184

[5, 38, 57] or directly applying regularization to R̂ [7]. We allow users to either185

apply regularization to R̂ by a scalar factor which achieves positive definiteness186

with minimal perturbation based on [8], or users may apply LD pruning.187
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Fig. 3 This figure illustrates the adjustments for CHP and inflation that are introduced when
the eQTLs used in MR are in LD and researchers only have access to relatively small reference
panels. a) The goal of eQTL-MVMR is to estimate θ, which may be subject to bias when Λ and η
are each nonzero. b) This is the CHP-adjustment procedure described in Section 2.3.1. c) Results
in the panel entitled ‘Inflation in eQTL-MR’ are from simulation in which the true LD matrix
had dimension 500 × 500 and an AR1 structure with correlation parameter 0.5. We applied LD
pruning at the threshold r2 < 0.32. In this simulation, we repeatedly drew an estimate of the LD
matrix from a Wishart distribution with degrees of freedom found on the x-axis. The R code used
to perform this simulation is available at https://github.com/noahlorinczcomi/HORNET.

2.4 Estimating causal effects188

HORNET performs multivariable MR (MVMR) in locus by locus across the189

genome. Standard causal inference from MVMR is based on the P-value cor-190

responding to the estimated causal effect. We apply this inference and include191

two additional criteria to prioritize genes based on their significance and esti-192

mated causal effect size. These criteria are the (i) locus R-squared, measuring193

the total contribution of gene expression to phenotypic variation, and (ii) Pratt194

index [2]. The HORNET software uses MRBEE [34] to estimate causal effects195

in a set of genes screened as positive by GScreen, which is introduced in the196

https://github.com/noahlorinczcomi/HORNET
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next subsection. MRBEE performs robust multiple regression and so the cor-197

responding variance explained R-squared values can be used to approximately198

represent the degree of model fit in a locus. We demonstrate in the Supple-199

ment that the locus R-squared is only equal to the true heritability explained200

when the power to detect each causal eQTL is 1. The Pratt index is gene-201

specific in a single locus and is used to represent the gene-specific proportion202

of variance explained in MVMR. Each locus will have one R-squared value and203

each gene in the locus will have its own Pratt index value, the sum of which204

across all genes in the locus is theoretically the locus R-squared value. We205

introduce the locus R-squared and gene-specific Pratt index values as imperfect206

measurements of quantities that are generally of interest when applying HOR-207

NET, and assert that the MVMR literature currently lacks any measurement208

which intends to capture what these two do.209

2.4.1 Screening genes210

We stated in the previous section that each gene in a locus is first screened for211

evidence of causality then, if passing the screen, their causal effects are esti-212

mated using MRBEE. In this section, we briefly introduce the motivation for213

and execution of the screening process. In a locus of approximately 2Mb, many214

genes may be present (e.g., upwards of 30). Given the restrictions placed on the215

structure of cis-eQTL data mentioned in Section 1, the curse of dimensionality216

may be frequently encountered, making direct estimation of all causal effects in217

a locus by MRBEE challenging. We therefore propose to first screen all genes218

in a locus using a variable selection penalty to reduce the dimensionality of219

MVMR (see [17] , [59]). This step will automatically select a relatively small220

subset of genes with the strongest evidence of direct causality of the outcome.221

We then apply MRBEE only to the selected genes passing this screening step.222

We use a new method called GScreen which approximates median regression223
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using the methods of [25] and applies the unbiased SCAD variable selection224

penalty [17]. Section 4 of the Supplement provides more details about the225

GScreen method and its performance in simulation and application to real226

data.227

2.5 Simulations228

We performed three separate simulations to assess the performance of missing229

data imputation, inflation in eQTL-MR, and inflation-correction methods. The230

setup of each simulation and a discussion of the results they produced are231

described in the next three subsections.232

2.5.1 Imputing missing data233

In the missing data simulation, we used summary statistics from eQTL GWAS234

for 9 genes on chromosome 1 produced from 236 non-Hispanic White indi-235

viduals. We restricted the eQTLs used to only those within ±2Mb of the236

transcription start site (TSS) of one of the genes, producing 526 fully observed237

eQTLs. We then set the Z-statistics for eQTL-gene pairs in which the eQTL238

was >1Mb from the TSS as missing and evaluated four methods of impu-239

tation: (i) MV-Imp, which was the matrix completion approach outlined in240

Algorithm 1, (ii) imputation of missing values with 0s, (iii) soft impute [35],241

and (iv) imputation based on the multivariate normal distribution. For each242

simulation, the true LD correlation matrix R between the 526 eQTLs had a243

first order autoregressive structure with correlation parameter 0.5. The matrix244

of measurement error correlations ΣWβWβ
was estimated from all SNPs in the245

1Mb window with squared Z-statistics for all eQTL associations less than the246

95th quantile of a chi-square distribution with one degree of freedom. This247

follows the procedures used in practice [34, 61].248
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In simulation, our multivariate imputation method outlined in Algorithm249

1 has smaller estimation error than imputation with all zero values or the250

traditional soft impute method [35]. Estimation error in this setting is defined251

as the difference between true and imputed values. Since there is currently252

no other way to address missing data in eQTL-MVMR, zero-imputation, soft253

impute, and imputation based on the multivariate normal distribution are254

three straightforward alternatives to our proposed imputation approach. We255

demonstrate in Section 1.4 of the Supplement and Panel b of Figure 2 that256

imputing missing data using our algorithm can produce up to 2-4x increases257

in power vs excluding eQTLs with any missing associations as IVs.258

2.5.2 Inflation in eQTL-MR259

In the simulation to demonstrate inflation in eQTL-MR, the true LD matrix260

R for 500 eQTLs had a first order autoregressive structure with correlation261

parameter 0.50 and was estimated by sampling from a Wishart distribution262

with varying degrees of freedom equal to the reference panel sample size. In263

each simulation, true eQTL and disease standardized effect sizes were drawn264

from independent multivariate normal distributions with means 0 and covari-265

ance matrices R. We then applied LD pruning [15, 45] at the threshold266

r2 < 0.32 to restrict the IV set used in univariable MR. We performed MR267

using univariable IVW [4] and the Type I error rate was recorded using both268

the standard test statistic L and the adjusted statistics L̃ introduced in Section269

2.3.2. The Type I error rate was based on tests of the causal null hypothesis.270

Panel C in Figure 3 demonstrates that LD reference panels that contained271

genotype information for less than 3,000 individuals inflated the false positive272

rate in eQTL-MVMR using the standard test statistic S. When the reference273

panel contained 500 individuals, the false positive rate approached 0.25 using274

S. As a comparison, the largest population-stratified sample of individuals in275
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the 1000 Genomes Phase 3 reference sample [9] is 652 and the smallest is 347.276

Using our adjusted test statistic S̃, the Type I error rate was controlled at the277

nominal level for LD reference panels of any size, providing support that this278

method of hypothesis testing may not have inflated Type I error.279

3 Implementation280

3.0.1 Software281

HORNET requires GWAS summary statistics for gene expression and a disease282

phenotype and an LD reference panel. LD estimation from a reference panel283

for a set of eQTLs is made using the PLINK software [41], which requires the284

presence of .bim, .bed, and .fam files. eQTL GWAS data must contain a single285

file for each chromosome and generally should contain summary statistics for286

all genotyped SNPs within a cis-region of each available gene. These data are287

available for blood tissue from the eQTLGen Consortium (n=31k) [54] and the288

GTEx consortium for 53 other tissues (n<706) [10]. To help researchers identify289

relevant tissues to select in their analyses, we provide a tissue prioritizing tool290

based on the heritability of eQTL signals. This tool receives a list of target291

genes from the researcher and returns a ranked list of tissues in which each292

target gene has the strongest eQTLs using GTEx v8 summary data [10]. See293

Supplement Section 4 for additional details and a demonstration of how to294

use this tool.295

The HORNET software exists as a command line program available for296

Linux, Windows, and Mac machines. Its tutorial is availabe at https://github.297

com/noahlorinczcomi/HORNET and is introduced briefly in Supplement298

Section 5. By downloading HORNET, users also receive PLINK v1.9 [41]299

and LD reference panels for European, African, East and South Asian, His-300

panic, and trans-ethnic populations from 1000 Genomes Phase 3 (1kg) [9].301

https://github.com/noahlorinczcomi/HORNET
https://github.com/noahlorinczcomi/HORNET
https://github.com/noahlorinczcomi/HORNET
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By default, our software uses this reference panel from the entire 1kg sample302

to estimate LD in the eQTL GWAS population, but users can alternatively303

specify a specific sub-population in 1kg or even use their own LD reference304

panels.305

3.1 Real data analysis with schizophrenia306

We applied the HORNET methods and software to the analysis of genes whose307

expression in basal ganglia, cerebellum, cortex, hippocampus, amygdala, and308

blood tissues cause schizophrenia risk. Schizophrenia GWAS data were from309

[50], which included 130k European individuals and were primarily from the310

Psychiatric Genomics Consortium (PGC) core data set. eQTL GWAS data311

in brain tissue were from [13], which contained GWAS data from European312

samples of sizes 208 for basal ganglia, 492 for cerebellum, 2,683 for cortex,313

168 for hippocampus, and 86 for amygdala tissue. eQTL GWAS data in blood314

were from the eQTLGen Consortium [54] for 31k predominantly European315

individuals. We performed analyses with HORNET in all schizophrenia loci316

with at least one P-value less than 0.005, grouped genes sharing eQTLs with317

P-values less than 0.001, applied LD pruning at the threshold r2 < 0.72, and318

removed SNPs in LD with any IVs in the target locus beyond r2 > 0.52 in319

a 1Mb window. Finally, all IVs had a P-value for joint association with gene320

expression across all tissues which was less than 5×10−3 in the test of Equation321

1. We performed HORNET in each tissue separately and present the results322

in Figure 4.323

Figure 4 uses the data described above to provide examples of the primary324

results produced by genome-wide analysis with HORNET, including causal325

estimates for prioritized genes, genome-wide R-squared and Pratt index values326
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for each tissue, and an estimated sparse regulatory network of genetic cor-327

relations using graphical lasso [18]. These results show that locus R-squared328

values can exceed 0.50 for many loci, suggesting that SNP associations with329

schizophrenia in these loci may be primarily explained by gene expression in330

brain tissue (Panel c). For example, 17.2% of genetic variation in schizophrenia331

in the KCTD13 locus is explained by the expression of genes in blood tissue,332

75.2% in the cerebellum, and 59.4% in the cortex. In this locus, we observed333

that expression of the INO80E gene in the cortex increased schizophrenia risk334

(P = 2.1 × 10−9), but that the specific schizophrenia variation attributable335

to this effect was small (Pratt index=0.09). Alternatively, expression of the336

DOC2A gene in the cortex was strongly associated with increased schizophre-337

nia risk (P < 10−50) and also had a relatively large Pratt index value of 0.67338

(Panels b and d), suggesting that DOC2A is potentially a better gene target339

than INO80E in the cortex.340

We attempted to better understand the complex regulatory network341

that exists in the human leukocyte antigen (HLA) complex of 6p21.33 [30].342

Genetic variants in this region are highly associated with risk of schizophrenia343

[11, 23, 27, 27] and many other traits such as brain morphology [6], autism spec-344

trum disorder [1], and Type II diabetes [56]. The HORNET software applied345

graphical lasso [18] to the matrix of imputed marginal Z-statistics to uncover346

regulatory relationships between 18 genes in this locus and their pathways347

of causal effect on schizophrenia risk when expressed in cerebellum tissue.348

These results suggest a densely connected gene regulatory network in which349

the HLA-C gene is a so-called ‘regulatory hub’ [14, 58]. The HLA-C gene is350

directly associated with the regulation of 8 other genes and is indirectly asso-351

ciated with the regulation of all genes in the locus except OR2J3. Only HLA-C352

and FLOT1 have direct causal effects on schizophrenia risk, and all other 15353
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peripheral genes (OR2J3 excluded) have causal effects on schizophrenia that354

only are mediated by FLOT1 and/or HLA-C expression.355

b) Causal estimates for schizophrenia c) Genetic variance explained by genes

e) Causal network in cerebellum tissued) Pratt index

a) Causal inference using HORNET

eQTLk

eQTLk

Disease
(𝑌)

Genes’ 
expressions

(𝐱)

𝜽𝜷!
- Imputation
- CHP protection G-Screen
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IFC correction

Fig. 4 This figure presents the results of using HORNET to search for genes modifying
schizophrenia risk when expressed in different tissues. a) Description of the causal model, MVMR
model, and estimator. b) Causal estimates for multiple genes in blood, cerebellum, and cortex
tissues in the schizophrenia-associated KCTD13 locus. c) R-squared values from MVMR models
fitted across the genome. Areas in which no R-squared values exist either had no genes prioritized
by GScreen or had insufficient eQTL signals to perform MVMR. d) Pratt index values for all causal
estimates made for all tissues. Pratt index values outside the range of (-0.1,1) are not shown. This
may happen because of large variability in univariable MR estimates for some loci. e) Estimated
gene regulatory and schizophrenia causal network for 18 genes in the schizophrenia-associated
FLOT1 locus of the HLA complex graphical lasso [18].
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4 Discussion356

Existing methods for finding causal genes using multivariable Mendelian Ran-357

domization (MR) with GWAS summary statistics are generally vulnerable to358

bias and inflation from missing data, misspecified LD structure, and confound-359

ing by other genes. Equally, no flexible and comprehensive set of computational360

tools to robustly perform this task current exists. We introduced a suite of361

statistical and computational tools in the HORNET software that addresses362

these common challenges in multivariable MR using eQTL GWAS data. HOR-363

NET can generally provide unbiased causal estimation and robust inference364

across a range of real-world conditions in which existing methods in alterna-365

tive software packages may not. HORNET is a command line tool that can366

be downloaded from https://github.com/noahlorinczcomi/HORNET, where367

users will also find detailed tutorials demonstrating how to use HORNET.368
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Timothy J Sullivan, Taylor R Young, Ellen T Gelfand, Casandra A Trow-404

bridge, Julian B Maller, Taru Tukiainen, et al. The genotype-tissue405

expression (gtex) pilot analysis: multitissue gene regulation in humans.406

Science, 348(6235):648–660, 2015.407

[11] SPGWAS Consortium. Genome-wide association study identifies five new408

schizophrenia loci. Nat Genet, 43(10):969–976, 2011.409

[12] Qile Dai, Geyu Zhou, Hongyu Zhao, Urmo Võsa, Lude Franke, Alexis410
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