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Abstract

Self-report questionnaires play a crucial role in healthcare for assessing dis-
ease risks, yet their extensive length can be burdensome for respondents, po-
tentially compromising data quality. To address this, machine learning-based
shortened questionnaires have been developed. While these questionnaires
possess high levels of accuracy, their practical use in clinical settings is hin-
dered by a lack of transparency and the need for specialized machine learning
expertise. This makes their integration into clinical workflows challenging
and also decreases trust among healthcare professionals who prefer inter-
pretable tools for decision-making. To preserve both predictive accuracy and
interpretability, this study introduces the Symbolic Regression-Based Clinical
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Score Generator (SymScore). SymScore produces score tables for shortened
questionnaires, which enable clinicians to estimate the results that reflect
those of the original questionnaires. SymScore generates the score tables by
optimally grouping responses, assigning weights based on predictive impor-
tance, imposing necessary constraints, and fitting models via symbolic regres-
sion. We compared SymScore’s performance with the machine learning-based
shortened questionnaires MCQI-6 (n = 310) and SLEEPS (n = 4257), both
renowned for their high accuracy in assessing sleep disorders. SymScore’s
questionnaire demonstrated comparable performance (MAE = 10.73, R2 =
0.77) to that of the MCQI-6 (MAE = 9.94, R2 = 0.82) and achieved AU-
ROC values of 0.85-0.91 for various sleep disorders, closely matching those
of SLEEPS (0.88-0.94). By generating accurate and interpretable score ta-
bles, SymScore ensures that healthcare professionals can easily explain and
trust its results without specialized machine learning knowledge. Thus, Sym-
Score advances explainable AI for healthcare by o↵ering a user-friendly and
resource-e�cient alternative to machine learning-based questionnaires, sup-
porting improved patient outcomes and workflow e�ciency.

Keywords: Medical questionnaires, Interpretable machine learning,
Shortened questionnaires, Symbolic regression, Risk score evaluation,
Clinical decision making, Explainable artificial intelligence

1. Introduction

Recent advancements in artificial intelligence (AI) have revolutionized
healthcare, impacting disease diagnosis, drug discovery, patient management,
and personalized treatment plans [1, 2, 3, 4, 5, 6]. In particular, sentiment
analysis and other machine learning methods have shown promise in under-
standing patient data and improving predictive accuracy [7, 8, 9]. However,
despite these benefits, the complexity and lack of transparency in AI systems,
along with real-world failures of AI-driven healthcare tools, have limited their
practical application in medical settings, leading to skepticism and hesitation
among healthcare professionals [10, 11]. For example, an external validation
of Epic System’s sepsis prediction algorithm revealed that the model pro-
duced many false alarms, which resulted in clinicians ignoring the system’s
recommendations [12]. Furthermore, studies examining the views of clini-
cians regarding the adoption of AI-driven medical systems show that many,
while recognizing the advantages of AI, have reservations regarding their
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clinical applicability [13, 14, 15]. Thus, despite AI’s potential to streamline
diagnosis, many clinicians prefer to rely on their own expertise and manual
assessments. Common themes among their reservations include a lack of ex-
plainability and poor integration of AI tools into existing clinical workflows,
which can render these tools more burdensome than helpful [16, 17]. These
challenges led to the emergence of the field of explainable AI (XAI), focusing
on creating transparent and understandable AI systems, thereby enhancing
trust—a crucial factor in healthcare [18, 19].

One key aspect of XAI is the development of interpretable machine learning-
based models that can be easily understood and trusted by healthcare pro-
fessionals. Tools like SHAP (SHapley Additive exPlanations) [20] and the
ELI5 (Explain Like I’m 5) [21, 22] have been instrumental in this regard.
They provide explanations for AI model predictions by assigning importance
values and weights to features. For instance, SHAP has been used to inter-
pret models predicting cardiac health risks [23], hypertension [24], and sleep
disorders [25], while ELI5 has helped explain AI-driven classifications of clin-
ical depression [26] and stroke prediction models [27]. These tools strive
to balance predictive accuracy with transparency, making them suitable for
healthcare.

The need for interpretable and e�cient self-report questionnaires in dis-
ease diagnosis and risk assessment is well-recognized [28, 29]. Traditionally,
these questionnaires have been lengthy, which can lead to lower response rates
and compromised data quality due to respondent fatigue [30]. In response,
shorter versions have been developed using techniques such as principal com-
ponent analysis and factor analysis [31, 32, 33, 34]. While they have been
widely used, these methods have limitations, including subjective decisions
and assumptions of normal data distribution, compromising predictive ac-
curacy [35, 36, 37, 38, 39]. These assumptions often compromise predictive
accuracy and limit the generalizability of the results, particularly in diverse
clinical settings.

Machine learning-based shortened questionnaires have emerged as an al-
ternative, o↵ering accurate predictions with fewer questions [25, 30, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49]. However, these models often face practical
challenges in clinical settings [40, 50]. Integrating machine learning methods
into existing medical systems can be complex and resource-intensive. Ad-
ditionally, the application of these methods requires extensive training or
the need for specialized professionals, both of which are costly and time-
consuming. Moreover, these machine learning-based questionnaires are of-
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ten seen as ‘black boxes,’ making them di�cult for medical professionals to
understand and trust. Although interpretable tools such as SHAP, LIME,
and ELI5 provide feature importance, they do not o↵er the same level of
transparency as the original questionnaires, which yield direct scores that
healthcare professionals can interpret straightforwardly. This study is there-
fore motivated by the need to develop a clinical score generator that produces
score tables for shortened versions of these questionnaires, allowing for the
estimation of the results of the original questionnaires. Our approach ensures
that the weights assigned to responses transparently reflect their contribution
to disease severity while preserving the monotonic relationship of key items
with disease severity. This approach builds trust with healthcare profes-
sionals and facilitates smoother integration into clinical workflows, without
sacrificing accuracy or requiring specialized expertise.

To tackle transparency problems and align with XAI principles, Xie et
al. [51] developed AutoScore, an automatic clinical score generator combin-
ing machine learning with regression modeling. AutoScore uses a random
forest algorithm to select key questions from the original questionnaire and
groups responses to form logistic models predicting risk scores. The simple
conversion of coe�cients of the models to the weights of responses leads to a
user-friendly, shortened questionnaire. Thus, it has been widely adopted for
various applications, such as predicting mortality in emergency patients [52],
assessing acute kidney injury severity [53], evaluating Grave’s orbitopathy
[54], and determining amyloid positivity [55]. Recently, La Cava et al. de-
veloped a symbolic regression-based tool called FEAT (Feature Engineering
Automation Tool) [56], which automates feature construction and selection
from high-dimensional electronic health record (EHR) data, providing simple
and interpretable feature weights.

Despite their success, both AutoScore and FEAT have limitations, par-
ticularly in handling feature grouping, which can compromise accuracy. Au-
toScore, for instance, manually groups responses through trial and error, re-
lying on subjective choices such as dividing age into quantiles. While FEAT
automates this process, it only allows for two groups, limiting its flexibility.
Additionally, neither method ensures that the assigned weights accurately
reflect a monotonic relationship with disease severity. Lastly, both methods
predict disease severity categories but do not predict the total score of the
original questionnaire.

To overcome these limitations, we developed the Symbolic Regression-
Based Clinical Score Generator (SymScore), which o↵ers several key innova-
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tions not found in existing methods. SymScore leverages symbolic regression
to automatically group item responses and determine optimal weights for
each group. It incorporates essential constraints to ensure that response
weights increase monotonically where appropriate, establishing a clinically
meaningful relationship between responses and disease severity. This over-
comes the manual and often subjective grouping of responses seen in Au-
toScore, and the limited flexibility in the grouping mechanism in FEAT.
Moreover, SymScore supports both regression and classification tasks, which
allows it to predict not only disease categories but also the total score of
the original questionnaire. This capability is lacking in existing approaches
and thus adding it provides flexibility for a wide range of clinical applica-
tions. By integrating these unique aspects of SymScore—automatic response
grouping, the application of monotonicity constraints, and flexibility in both
regression and classification, SymScore’s shortened questionnaires achieve
accuracy comparable to that of existing machine learning-based question-
naires like MCQI-6 [43] and SLEEPS [25], which are specifically designed
for predicting sleep disorders. This demonstrates that SymScore maintains
transparency and ease of use without sacrificing accuracy, o↵ering a straight-
forward alternative to complex machine learning algorithms. In conclusion,
SymScore represents a significant advancement in XAI for healthcare, paving
the way for widespread adoption of shortened, ready-to-use, and interpretable
questionnaires. This approach fosters more e�cient and informed clinical
decision-making, ultimately contributing to enhanced patient outcomes and
a more sustainable healthcare system.

1.1. Basic Concepts/ Preliminaries

1.1.1. Machine learning-based shortened questionnaire, MCQI-6

The Metacognitions Questionnaire-Insomnia (MCQ-I) was designed to
measure metacognitive beliefs about primary insomnia through 60 sleep-
related items. To shorten this questionnaire without sacrificing accuracy,
Lee et al. [43] applied a random forest algorithm to clinical data (n = 310),
resulting in a shortened version known as MCQI-6. In this process, feature
importance was calculated using the mean decrease in accuracy method,
which measures the reduction in the model’s accuracy when each question is
removed. To ensure stable rankings, the results from 500 di↵erent random
forest models were averaged. Based on these feature importance scores, the
top six key questions were selected to distinguish between individuals with
normal sleep patterns and those su↵ering from insomnia. This is achieved by
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performing a regression task to estimate the total sum of responses from the
original 60 questions. MCQI-6 has demonstrated a good fit, with a Cron-
bach’s ↵ of 0.96, and has shown good internal consistency (↵ = 0.843).

The study protocol was approved by the Institutional Review Board of
Sungshin Women’s University, Seoul, South Korea (SSWUIRB-2020-009).
Written informed consent was waived. The survey was administered anony-
mously, and no personal information was gathered. This survey form was
developed according to the Checklist for Reporting Results of Internet e-
Surveys (CHERRIES) guidelines [57].

1.1.2. Machine learning-based shortened questionnaire, SLEEPS

SLEEPS is a straightforward questionnaire designed to predict sleep dis-
orders using XGBoost models [25]. From an initial set of 30 features con-
sisting of 22 items from sleep-related questions and 8 demographic character-
istics, feature importances were calculated using the absolute SHAP values,
which measure each feature’s contribution to the model’s predictions. To
ensure stability, the results from multiple iterations of the XGBoost model
were averaged. Based on these SHAP importance scores, 9 key questions
were selected to calculate the risk of three sleep disorders—insomnia, co-
morbid insomnia and sleep apnea (COMISA), and obstructive sleep apnea
(OSA)—without a complex polysomnography (PSG) test. For all three sleep
disorders, SLEEPS shows high accuracy (AUROC � 0.9). Furthermore, a
publicly accessible website (https://sleep-math.com) based on this algorithm
has been created, allowing individuals to easily predict their risk of these con-
ditions.

The study protocol was reviewed and approved by the Institutional Re-
view Board of the SMC (approval 2022-07-003) and was conducted in accor-
dance with the principles of the Declaration of Helsinki. Participant informed
consent was waived due to the retrospective nature of the study.

1.1.3. Current approaches for shortened questionnaires

In various healthcare settings, questionnaires with m questions {Qi}mi=1

are utilized to predict the risk severity of a disease based on the responses
{Ri}mi=1

(Fig. 1 (a)). However, extensive questionnaires can lead to lower
response rates and incomplete submissions. To mitigate these issues, short-
ened versions of questionnaires {Q̃i}si=1

, where s < m, subset of {Qi}mi=1
,

have been developed using machine learning techniques [25, 30, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 58].
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Subsequently, machine learning algorithms are used to predict disease

severity by estimating the sum of the responses
mP
i=1

Ri from the original ques-

tionnaires. They utilize the responses {R̃i}si=1
to the shortened questionnaires

to achieve these predictions as follows:

ML(R̃1, R̃2, . . . , R̃s) ⇡
mX

i=1

Ri, (1)

where ML represents a machine learning model. However, due to its black-
box nature, the mathematical expression of the machine learning model de-
scribed in Eq. 1 is not explicitly expressed, making it di�cult to interpret the
impact of each response on the disease severity. Furthermore, the required
computational demands and specialized knowledge limit their practical use
in clinical settings (Fig. 1 (b) (i)).

Because machine learning-based shortened questionnaires are di�cult to
use in clinical settings, the sum of the responses from a shortened ques-
tionnaire scaled by the ratio m

s is often heuristically utilized in real clinical
settings as follows:

AvgScore(R̃1, R̃2, . . . , R̃s) =
m

s

sX

i=1

R̃i. (2)

This simple rescaling method, while easier to implement, is less likely to
maintain the prediction accuracy of the original machine learning-based ap-
proach (Fig. 1 (b) (ii)).

2. Methods

To address both the accuracy limitations of heuristic averaging approaches
and the lack of interpretability of machine learning models, we developed
SymScore. SymScore uses the following weighted sum of responses to pre-
dict disease severity:

SymScore(R̃1, R̃2, . . . , R̃s) =
sX

i=1

Wij, (3)

if R̃i = j is the response to question Q̃i (Fig. 1 (b) (iii)). Thus, all re-
sponses have their own weights Wij to predict the severity of the disease,
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Figure 1: Problem formulation and approaches. (a) Original questionnaires consist

of m questions with ni (i = 1, . . . ,m) possible responses for each question. A subset of

s key questions with s < m is selected to shorten the questionnaire while maintaining

diagnostic accuracy similar to that of the original questionnaire. (b) For this task, three

approaches are employed: (i) Machine learning-based approaches, (ii) AvgScore, and (iii)

SymScore. While the machine learning-based approach is accurate, it is limited by its

black-box nature, making it di�cult to use. AvgScore simplifies the process by simply

scaling the average response of the shortened questionnaire by
m
s , but it tends to yield

lower accuracy. SymScore ensures accuracy by assigning di↵erent weights (Wij) to each

response, while also maintaining ease of use.

8

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.10.28.24316164doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.28.24316164


yielding more accurate predictions than AvgScore. By using these weights,
we can directly generate a score table where each response is associated with
a specific weight (Fig. 1 (b) (iii) left). This method allows us to obtain the in-
terpretable shortened questionnaires, unlike machine learning-based models
that are inexplicable. Furthermore, the sum of the weights Wij leads to the
prediction of disease severity, which is much simpler than machine learning
approaches (Fig. 2 (a)).

We designed SymScore (Fig. 2 (b) and Algorithm 1) to automatically
assign the weights Wij to the responses of the shortened questionnaire. Sym-
Score consists of the following modules.

2.1. Module 1: Grouping question responses

The first module focuses on grouping question responses to the short-
ened questionnaire. The shortened questionnaire may consist of questions
that obtain either categorical or float values as responses (Fig. 2 (b) (i)).
For the computational e�ciency of SymScore, we categorize these responses
into groups having the same weight (Fig. 2 (b) (ii) left and Table 1). We
denote these groups by Gik, with i = 1, . . . , s, and k = 1, . . . gi, where gi

is the number of response groups for question Qi. To perform the grouping
during the fitting, the loss function becomes discontinuous as the grouping
changes, and thus typical regression methods cannot be used. To address
this, we utilize symbolic regression, which does not require continuity in the
loss function. Symbolic regression is particularly well-suited for this task
because of its ability to determine the optimal number of response groups.
While increasing the number of response groups can improve prediction pre-
cision, it also increases the risk of overfitting and can reduce computational
e�ciency. Symbolic regression balances this trade-o↵ by identifying the min-
imum number of response groups necessary without compromising accuracy.
Details on the optimal response grouping process can be located in the Sup-
plementary Material (S3) and is illustrated in Fig. S1.

2.2. Module 2: Partial weights technique

In addition to identifying the optimal number of response groups, Sym-
Score also estimates the weights Wij given in Eq. 3 for each of the i-th
responses R̃i = j in the shortened questionnaire, such that their sum closely
approximates the sum of the responses Rl in the original questionnaire.
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Specifically,
sX

i=1

Wij ⇡
mX

l=1

Rl.

To determine the weights for the response R̃i = j (i.e., Wij), we divide
eachWij into partial weights {wik}gik=1

, where each partial weight is associated
with a response group Gik. These partial weights are added to compute the
total weight Wij (Table 1). Specifically, if the response j for the i-th question
is in the k-th group Gik, then the total weight is given by

Wij = wi1 + wi2 + . . .+ wik. (4)

For instance, in Fig. 2 (b) (ii), since the chosen response is j = 3, which is in
Gi2, the weight Wi3 is computed as Wi3 = wi1 +wi2. Similarly, if the chosen
response is j = 2, which is also in Gi2, then Wi2 = wi1 + wi2. Therefore,
the weight Wij is the same for responses that are in the same group. This
grouping of responses with the same weight enhances fitting e�ciency.

The weights Wij often increase as j increases when the response value
increases with severity level. For the monotone increasing responses, the
partial weights are restricted to be nonnegative, ensuring that Wij increases
as j increases (Fig. 2 (b) (ii) upper right). On the other hand, for non-
increasing responses, negative partial weights are allowed (Fig. 2 (b) (ii)
lower right).

2.3. Module 3: Training SymScore

We obtain the optimal partial weights wik for each response group through
the following steps:

1. 20,000 populations of {wik} are randomly generated using symbolic re-
gression, forming the first generation.

2. The performance of each population in the generation is evaluated by
comparing the true target values with the predicted values, using the
mean absolute error (MAE) as the fitness metric.

3. The top 30% of the population with the lowest MAE are selected, and from
these selected populations, a new generation is then created. For every
new generation created, the grouping of responses is changed during the
fitting process.
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Question Response Group Partial weight Total weight

Q̃1

1
G11 w11

W11 = w11

2 W12 = w11

3
G12 w12

W13 = w11 + w12

4 W14 = w11 + w12

5 G13 w13 W15 = w11 + w12 + w13

Q̃2

1
G21 w21

W21 = w21

2 W22 = w21

3 W23 = w21

4 G22 w22 W24 = w21 + w22

...
...

...
...

...

Q̃s

0
Gs1 ws1

Ws1 = ws1

1 Ws2 = ws1

2 Gs2 ws2 Ws3 = ws1 + ws2

3
Gs3 ws3

Ws4 = ws1 + ws2 + ws3

4 Ws5 = ws1 + ws2 + ws3

Table 1: Illustration of partial and total weights for each response in the short-

ened questionnaire produced by SymScore. The table demonstrates the process

of grouping responses and assigning weights within the SymScore framework. For each

question Q̃i (i = 1, . . . , s), the responses R̃i = j (j = 1, . . . , ri) are grouped into Gik

(k = 1, . . . , gi), with each group having an assigned partial weight wik. The summation of

the partial weights wi1, wi2, . . . , wik gives the total weight Wij assigned to each response

j. This systematic grouping and assigning of weights forms the score table, enabling the

summation of responses to facilitate disease diagnosis.
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This process of generating new populations and evaluating their perfor-
mance is repeated until no further improvement in predictive performance
is observed. This iterative process leads to the identification of the optimal
grouping and partial weights wik, characterized by the highest predictive per-
formance. Details of the parameter tuning process for training the symbolic
regression model can be found in the Supplementary Material (S1).

2.4. Module 4: Predicting disease severity using the computed weights

Using the partial weights wik, the total weight Wij for each response is
calculated (Fig. 2 (b) (ii) right). By summing all Wij, SymScore accurately
predicts the total score of the original questionnaire (Fig. 2 (b) (iii)). This
total score estimates the disease severity in both regression and classification
tasks.

Regression tasks. The severity of the disease was originally predicted using
the total score of the original questionnaire. Thus, for regression tasks, the
maximum total value of the shortened questionnaire must be the same as
the maximum total value of the responses from the original questionnaire.
In other words, the weights Wij need to satisfy the following condition:

mX

i=1

max(Ri) =
sX

i=1

max
j

(Wij). (5)

To meet the above constraint, we generated artificial data points where
each response Ri is set to its maximum value and the corresponding target
value is set to the maximum total value from the original questionnaire, i.e.,
mP
i=1

max(Ri). These artificial data are appended to the training set, creating

a new augmented dataset. This dataset is subsequently used for training,
following the process described in Module 3. Incorporating artificial data
into the training set helps the model learn to predict the maximum total
score e↵ectively.

However, it is important to note that this method of adding artificial data
does not always guarantee that the constraint given in Eq. 5 is satisfied. If

the di↵erence � =
mP
i=1

max(Ri)�
sP

i=1

max
j

(Wij) is positive (i.e., � > 0), one of

the weights wik is increased by �. This weight is then used to estimate per-
formance by comparing the sum of the original responses and the predicted
values. This procedure is repeated for all possible weights, and the weight
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with the highest prediction performance is selected. These adjusted partial
weights are then summed to compute the total weight Wij, which is used to
construct the score table. Summing the total weights Wij (i = 1, . . . , s) pro-
vides the total score, which is used to predict disease severity for regression
tasks.

Classification tasks. For classification tasks, a threshold for the sum of the
weights Wij is necessary to distinguish between individuals with and without
the disease. This threshold is determined by defining a probability p that
indicates the likelihood of an individual having the disease. The probability
p is calculated using the sum of the weights Wij and a constant bias b as
follows:

p = Sigmoid

 
sX

i=1

Wij + b

!
. (6)

Using this probability, SymScore is trained according to the method out-
lined in Module 3. As a result, we obtain the weights Wij and the constant

b. Subsequently, we obtain a classification threshold for
sP

i=1

Wij at p = 0.5 as

follows:
Thr = Sigmoid�1(0.5)� b. (7)

Based on this threshold, we can classify the participants into two groups:

those who satisfy
sP

i=1

Wij � Thr and those who do not. For example, in ques-

tionnaires used to assess a certain disease, patients with a total score above
the threshold are classified as having the disease. Thus, this comparison to
the threshold is the final step in using the SymScore-derived questionnaire
for disease assessment. More technical details for the threshold computation
can be found in the Supplementary Material (S4).

2.5. Model Evaluation and Data Handling

To evaluate the predictive performance of the shortened questionnaire
derived from SymScore, we compared it with other existing methods. To
achieve this, we randomly selected 30% of the entire dataset as the test set for
measuring the performance of the shortened questionnaire. This process was
repeated for 10,000 di↵erent shu✏ings of the test set for robustness. Subse-
quently, we calculated performance metrics for each shortened questionnaire
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on every test set. For regression tasks, we utilized MAE and coe�cient of de-
termination R

2. For classification tasks, we used the area under the receiver
operating characteristic curve (AUROC) as a performance metric.

Since data imbalance can a↵ect the performance of the model, we ad-
dressed this issue in the SymScore code by creating a balanced data set.
Specifically, a dataframe was created consisting of all rows where patients
were diagnosed with the sleep disorder, along with another dataframe con-
taining an equal number of rows where patients did not have the disorder.
This ensures that the number of negative samples is precisely balanced with
the number of positive ones. Then, the SymScore algorithm was applied to
this dataset.

Moreover, when splitting the data into training and test sets, the stratify
argument was employed to maintain class balance in both subsets. This guar-
antees that both the training and testing datasets contain an equal proportion
of positive and negative cases. By first creating a balanced dataset and then
stratifying the train-test split, this approach e↵ectively addresses the issue of
imbalanced data, reducing the likelihood of the model being biased toward
the majority class and enhancing the overall fairness and accuracy of the
predictions.

To address potential overfitting issues in regression tasks, two strategies
were implemented to ensure the model’s robustness and generalization. The
model’s performance on both the training and the testing sets was evaluated
using the Mean Absolute Error (MAE). A threshold ratio was then estab-
lished to compare the test MAE against the training MAE. If the test MAE
exceeds 1.5 times the training MAE, a warning is issued indicating potential
overfitting. Potential overfitting in the classification tasks is addressed in the
same manner, but using AUROC as the performance metric.

To further assess the model’s performance in regression tasks, K-fold
cross-validation with five splits was employed. This technique enhances
model evaluation by dividing the data into training and validation subsets,
ensuring that each data point is used for both training and validation across
di↵erent iterations. The mean and standard deviation of the cross-validated
MAE were computed to assess the generalization capability of the model. if
the mean cross-validated MAE is more than 1.5 times the training MAE, a
warning of potential overfitting is issued. Additionally, if the cross-validated
MAE’s standard deviation exceeds 15% of the mean cross-validated MAE a,
warning of the model’s instability is provided. The assessment of the model’s
performance in classification tasks is similarly measured, but with AUROC
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as the performance metric.
Through these comprehensive steps, the analysis aimed to ensure that the

model generalizes well to unseen data and remains robust against overfitting,
thereby providing a reliable prediction framework for the study.

Algorithm 1 SymScore (Symbolic Regression-based Clinical Score Genera-
tor)
Input:

• Excel file containing questionnaire responses {Rl}ml=1
and target vari-

ables.

• Task type: Regression (0) or Classification (1).

Output:

• A score table assigning values to each possible response.

Steps:

1. Initialization:

• Load the Excel file containing questionnaire responses.

• Specify whether the task is regression (0) or classification (1).

2. Data preprocessing:

• Select predictor variables (key items) and input response options.

• Define the target column (total score or diagnosis).

3. Conversion of predictor variables to binary threshold vari-

ables:

• For each predictor variable, create binary threshold variables rep-
resenting whether the value exceeds thresholds or not.
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4. Model Training:

• Split the dataset into training (70%) and testing (30%) sets.

• For regression tasks: synthesize additional data points for training
to represent the maximum possible response.

• Train a symbolic regression model using the addition operation
and the parameters in Table S1 such that

sX

i=1

Wij ⇡
mX

l=1

Rl

where Wij is the weight assigned to response Ri = j for question
Qi.

• Determine the weight Wij for each response by dividing it into
partial weights {wik}gik=1

, where each partial weight is associated
with a response group Gik.

5. Check for Overfitting:

• For regression tasks, if MAEtest > 1.5⇥MAEtrain, issue a warning
of overfitting.

• For classification tasks, if |AUROCtest � AUROCtrain| > 0.1, issue
a warning of overfitting.

6. Cross-validation Performance Check using K-fold Cross Vali-

dation:

• For regression tasks, if sd(MAE)
cv

> 0.15 ⇥ MAEmean, issue a
warning of instability.

• For classification tasks, if sd(AUROC)
cv

> 0.1, issue a warning of
instability.

7. Table Generation:

• Generate the SymScore table containing response weights.

• For classification tasks, compute the threshold for classification:

Thr = Sigmoid�1(0.5)� b
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Figure 2: Goal and framework of SymScore for producing interpretable short-

ened questionnaires. (a) From the shortened questionnaire with s questions, machine

learning-based approaches represent disease severity as a function of the responses to each

question (ML). This function is frequently complex and not explicitly defined. In contrast,

SymScore represents disease severity as the sum of weights for each response, making the

model interpretable and computationally e�cient. (b) (i) The shortened questionnaire in-

cludes questions that require responses in either categorical or float values. (ii) SymScore

automatically groups these responses and assigns weights based on their importance. For

categorical variables (e.g., ISI2), where severity typically increases with the response, the

weights Wij assigned for each response should increase. For this, the partial weights wik,

whose sum determines Wij , are restricted to be nonnegative. For float variables, such as

weight, the weights Wij may not be monotonic, allowing for negative partial weights. (iii)

Based on the weights (Wij) assigned to each response, a score table is produced. The

total score is computed by simply summing the weights of responses. For regression tasks,

the total score assesses disease severity, while for classification tasks, the total score is

compared with a threshold to determine whether an individual has a certain disease.

3. Results

3.1. SymScore can generate an easy-to-use shortened questionnaire of MCQ-

I for assessing metacognitive beliefs related to insomnia

The Metacognitions Questionnaire-Insomnia (MCQ-I) was created to as-
sess metacognitive beliefs in individuals with primary insomnia [59]. Each
individual rates 60 questions on a four-point Likert scale, and the total sum is
used to evaluate the extent and impact of maladaptive metacognitive beliefs
related to insomnia.

To reduce the time needed for this assessment, Lee et al. [43] used a ran-
dom forest algorithm on clinical data to identify six key questions (MCQI-
6) based on feature importance. Using MCQI-6, they performed a regres-
sion task to estimate the total sum of responses from the MCQ-I questions.
Although this method e↵ectively reduced the number of questions without
sacrificing accuracy, its practical use is limited by the need for computa-
tional resources and machine learning expertise among healthcare sta↵. As a
workaround, the scaled average value of responses from the six key questions
was heuristically used, which we referred to as AvgScore (Fig. 1 (b) (ii)).

To address this issue, we used SymScore to create a simple scoring table
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that allows easy summation without computers while maintaining predictive
performance (Table 2). We evaluated this SymScore shortened questionnaire
along with the MCQI-6 and AvgScore for predicting the MCQI-60 total score
using the six key questions. For this evaluation, we randomly selected 30% of
the clinical dataset as the test set, and used a scatter plot to visualize the pre-
diction results (Fig. 3 (a) and Table 3). The scatter plots for MCQI-6 and
SymScore show points tightly clustered along the diagonal line, indicating
good predictive performance. In contrast, the AvgScore scatter plot exhibits
a broader dispersion of points around the diagonal, suggesting lower predic-
tive accuracy. Additionally, AvgScore tends to underestimate low measured
values and overestimate high measured values. This is the result of simply
scaling the average of the responses of the shortened questionnaire.

Furthermore, we employed two metrics for quantitative assessment: MAE
and coe�cient of determination (R2) (Fig. 3 (b)). We verified that the
model was not overfitting by comparing its performance on both the training
and the testing sets (Table S4). Additionally, we assessed the model’s stabil-
ity and generalizability through K-fold cross-validation across di↵erent data
subsets. To ensure robustness, we repeated the evaluation process 10,000
times with di↵erent test set shu✏ing. Our evaluation showed that compared
to the MCQI-6 based on a random forest algorithm (MAE = 9.94, R2 = 0.82),
the AvgScore shortened questionnaire exhibited lower performance (MAE =
14.74, R2 = 0.58). On the other hand, the SymScore shortened question-
naire (MAE = 10.73, R2 = 0.77) achieved performances comparable to the
MCQI-6. Overall, these results highlight that MCQI-6 and SymScore have
comparable predictive performances, both being superior to AvgScore.

Importantly, SymScore provides a simple and transparent score table (Ta-
ble 2). This table can be used as a basic summative questionnaire, allowing
for the direct addition of weights without the necessity of computers, in con-
trast to the MCQI-6. The transparency of the SymScore table enables easy
interpretation and analysis of prediction results. The scoring table reflects
the monotonicity of weights, capturing an increasing order of risk severity.
This design ensures that higher severity responses receive higher weights,
facilitating a nuanced understanding of risk associated with each response.
The di↵erentiation in weight scales across questions quantifies each ques-
tion’s contribution to the total score prediction. For instance, questions Q28
and Q39 have the highest weights (48-49), indicating their greater importance
compared to others with weights between 34 and 38. This variance highlights
the questionnaire’s ability to di↵erentiate the severity or risk associated with
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each of the responses. Thus, SymScore o↵ers a simple and interpretable
shortened questionnaire that can be easily implemented in medical centers.

3.2. SymScore can produce short and interpretable questionnaires for diag-

nosis of sleep disorders

SLEEPS is an XGBoost-based algorithm designed to predict the risk of
OSA, insomnia, and COMISA using responses to nine straightforward ques-
tions, eliminating the need for complex PSG tests. While SLEEPS demon-
strates high predictive performance with AUROC scores of 0.88 for OSA,
0.93 for insomnia, and 0.94 for COMISA on a test set comprising 30% of
the data (Fig. 4 (a)-(c)), its clinical adoption has been limited due to the
inherent lack of interpretability in machine learning models.

To address this challenge, we developed a simplified questionnaire using
SymScore (Table 6) and evaluated its performance using AUROC. The Sym-
Score questionnaires displayed satisfactory performance, with AUROC scores
of 0.85 for OSA, 0.90 for insomnia, and 0.91 for COMISA (Fig. 4 (a)-(c) and
Table 4). Moreover, SymScore’s performance remained comparable to that
of XGBoost even after repeating the evaluation process 10,000 times with
di↵erent test set shu✏ing (Fig. 4 (d)-(f)).

We compare SymScore’s performance only with XGBoost, not AvgScore,
due to the nature of the SLEEPS questionnaire. Unlike other questionnaires
where AvgScore can predict total scores by rescaling, this isn’t feasible here
because of float variables like weight and BMI. Specifically, in the SLEEPS
questionnaire, categorical variables (0-4 scale) and float variables (30-181
kg) di↵er in response scales, making a uniform scaling factor inapplicable.
Therefore, we compare SymScore’s performance only with XGBoost.

To enhance clinical relevance, we include sensitivity and specificity val-
ues, which are often more informative in clinical contexts than metrics like
MAE and AUROC (Table 5). We determined the optimal thresholds by min-
imizing the false positive rate (FPR) and maximizing the true positive rate
(TPR), yielding the sensitivity and specificity values for each sleep disorder.
Comparing SymScore with XGBoost, SymScore demonstrates comparable,
if not superior, performance in correctly identifying individuals with sleep
disorders. Specifically, SymScore achieves higher sensitivity for OSA (0.92
vs. 0.90) and COMISA (0.93 vs. 0.92), while maintaining a sensitivity of
0.90 for insomnia, below the XGBoost sensitivity value of 0.92.

In terms of specificity, XGBoost outperforms SymScore across all sleep
disorders, with higher values for OSA (0.72 vs. 0.62), insomnia (0.85 vs.
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Question Response Score
Q23. Before I fall asleep, I should try and 1 14
stop physical sensations in my body. 2 21

3 27
4 34

Q28. Before I fall asleep, I should try as many 1 20
ways as I can to control my thoughts. 2 26

3 38
4 49

Q39. When frustrated in bed, I should 1 19
tell myself not to be so silly. 2 25

3 33
4 48

Q51. Before I fall asleep, I should try and 1 8
switch o↵ my thoughts. 2 16

3 23
4 36

Q58. Being awake in bed means I have lost 1 8
control of my sleep. 2 22

3 29
4 38

Q60. At lights out, I should try and 1 12
control my sleep. 2 19

3 23
4 35

Table 2: Simplified score table of MCQI-6 using SymScore. Responses range from

1 (Do not agree) to 4 (Agree very much), corresponding to increasing degrees of agreement.

Summing the score of responses for all questions helps assess metacognitive beliefs related

to insomnia.
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Figure 3: Evaluating the predictive performance of three shortened question-

naires based on MCQI-6 using machine learning, AvgScore, and SymScore.

(a) The scatter plots of predicted scores versus measured scores for the 93 participants in

the test set show that MCQI-6 and SymScore (Table 2) are more closely clustered around

the diagonal line compared to AvgScore, indicating better agreement between predicted

and measured scores for these two methods. (b) Compared to MCQI-6 using machine

learning, shortened questionnaires generated with SymScore (Table 2), but not AvgScore,

yield comparable performances.
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MCQI-6 AvgScore SymScore
MAE 9.94 14.74 10.73

R
2 score 0.82 0.58 0.77

Table 3: Comparison of performance among MCQI-6 (ML-based), AvgScore, and Sym-

Score

0.78), and COMISA (0.87 vs. 0.80). While SymScore sacrifices a small
degree of specificity, it compensates with higher or comparable sensitivity,
maintaining a balance that is still clinically valuable. These results indicate
that SymScore prioritizes correctly identifying true positive cases, which is
crucial in clinical settings where under-diagnosis can lead to serious health
consequences. While its specificity is lower, the balance achieved by Sym-
Score allows for e↵ective screening, minimizing missed cases while avoid-
ing excessive false positives. Overall, these sensitivity and specificity values
highlight SymScore’s utility in clinical practice, supporting its potential for
reliable screening and risk assessment in sleep disorder prediction.

XGBoost SymScore

AUROC
OSA 0.88 0.85

Insomnia 0.93 0.90
COMISA 0.94 0.91

Table 4: Comparison of performance between XGBoost and SymScore

Sensitivity Specificity
XGBoost SymScore XGBoost SymScore

OSA 0.90 0.92 0.72 0.62
Insomnia 0.92 0.90 0.85 0.78
COMISA 0.92 0.93 0.87 0.80

Table 5: Comparison of sensitivity and specificity of the models derived from XGBoost

and SymScore

We verified that the models were not overfitting by comparing their per-
formances on both the training and testing sets (Table S5). Additionally,
using K-fold cross-validation across di↵erent data subsets, we confirmed that
the models were stable and generalizable.
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Regarding the float variables, SymScore also o↵ers significant advantages
over AutoScore. That is, unlike AutoScore, SymScore determines optimal
response groupings for float variables. For example, SymScore divides BMI
into two groups—below 25 (with weight 0) and 25 or above (with weight
7)—to maximize predictive accuracy for OSA (Table 6 column 2). This is
di↵erent from manual grouping based on quantiles used in AutoScore.

By using Table 6, we can simply get the sum of an individual’s responses.
By comparing this sum with the threshold for each disorder, we can classify
whether or not an individual has a sleep disorder. The thresholds identified
with SymScore are ThrOSA = 54 for OSA, Thrinsomnia = 57 for insomnia, and
ThrCOMISA = 62 for COMISA. If the total sum of a patient’s responses ex-
ceeds the respective threshold, the patient is classified as having that particu-
lar sleep disorder. This demonstrates the convenience of SymScore question-
naires for clinical applications, o↵ering a straightforward method for disorder
classification.

In addition to simplifying classification, SymScore score tables provide
valuable insights into the factors influencing these disorders. For instance,
for COMISA, questions ISI1b, ISI2, and ISI5 (with weights ranging from 15
to 34) were found to significantly impact classification, compared to other
ISI questions (with weights between 2 and 4) as shown in Table 6 column 4.
For OSA and insomnia, the weight related to age reveals how the probabil-
ity of developing each disease changes with age (Table 6 columns 2 and 3).
These results illustrate that SymScore generates easily interpretable short-
ened questionnaires with high performance, making it a practical tool for
clinical settings.

4. Discussion

In this work, we introduced the Symbolic Regression-Based Clinical Score
Generator (SymScore), a novel approach designed to simplify and enhance
the accuracy of health risk assessments in clinical settings. Traditional ma-
chine learning-based approaches, while e↵ective, are often considered ‘black
boxes’, lacking transparency and interpretability. They also require spe-
cialized expertise and equipment, making them costly and challenging to
implement in real-world adoption. SymScore addresses these challenges by
generating simplified, interpretable questionnaires based on symbolic regres-
sion, enabling ease of use and a high level of accuracy.
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Question
OSA Insomnia COMISA

Response Score Response Score Response Score
ISI1a. Di�culty 0 13 0 0 0-1 0
falling asleep 1 8 1 4 2-4 2

2-4 0 2-4 13
ISI1b. Di�culty 0-1 12 0 0 0-1 0
staying asleep 2 9 1-2 4 2-4 15

3-4 0 3-4 12
ISI1c. Problems with 0-2 7 0-1 0 0-1 0
waking up 3-4 0 2 4 2 2
too early 3-4 6 3-4 4
ISI2. Dissatisfaction 0-2 6 0-2 0 0-2 0
with current 3 3 3-4 14 3-4 17
sleeping pattern 4 0
ISI5. Interference of 0-2 5 0-1 0 0-1 0
sleep di�culties with 3-4 0 2 15 2 23
daytime functioning 3-4 22 3-4 34
Sex Female 0 Female 2 Female 0

Male 9 Male 0 Male 7
Age <40 0 <50 18

40-50 5 � 50 and < 60 5
>50 13 � 60 0

Weight <60 3 <70 0
� 60 and < 70 2 � 70 3

� 70 0
BMI <25 0 <25 0

� 25 7 � 25 3
Guideline for � 54: w/ OSA � 57: w/ � 62: w/
scoring/ insomnia COMISA
interpretation: < 54: w/o OSA < 57: w/o < 62: w/o

insomnia COMISA

Table 6: Simplified score table of SLEEPS using SymScore for OSA, Insomnia,

and COMISA. Low severity to high severity are represented by the responses 0 to 4 for

the Insomnia Severity Index (ISI) items, where 0 indicates no problem and 4 indicates a

severe problem. By summing the responses to each question, we can predict the risk of

OSA, insomnia, or COMISA. The risk is determined by comparing the total score to the

thresholds ThrOSA = 54, Thrinsomnia = 57, and ThrCOMISA = 62 for OSA, insomnia, and

COMISA, respectively, which were obtained from SymScore. If the total score exceeds

this threshold, the individual is classified as having the respective sleep disorder.
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Figure 4: Comparison of performance between SLEEPS based on XGBoost

and the shortened questionnaire based on SymScore for insomnia, OSA, and

COMISA. (a)-(c) Area under the receiver operating curve (AUROC) of predictions for

the test set from XGBoost and SymScore for OSA (Table 6 column 2), insomnia (Table

6 column 3), and COMISA (Table 6 column 4) are comparable in performance. (d)-(f)

For 10,000 di↵erent test set shu✏ings, XGBoost and SymScore (Table 6) demonstrate

comparable predictive performance for diagnosing OSA, insomnia, and COMISA.
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SymScore leverages genetic programming-based symbolic regression to
automatically categorize responses to selected questions, streamlining the
questionnaire creation process while maintaining predictive accuracy. We
validated SymScore’s performance against the MCQI-6 and SLEEPS ques-
tionnaires, which are established machine learning-based tools for diagnosing
sleep disorders. SymScore’s score tables o↵er predictive accuracy comparable
to that of these tools. Additionally, SymScore’s simplified structure makes
it easier to interpret, in contrast with the complexity often associated with
machine learning-based approaches.

To generate a score table, users need to simply input an Excel file con-
taining survey response data and then specify the task—either regression,
to estimate disease risk based on total score, or classification, to determine
disease presence. Additionally, users can input essential details such as the
range of responses for the questions and the corresponding maximum values.
SymScore then optimally groups responses and assigns weights, reflecting
their importance. These response groups and their corresponding weights
are then used to generate a score table, allowing users to easily sum re-
sponses to assess disease risk. For regression tasks, the sum indicates risk,
while for classification, SymScore calculates a threshold to classify disease
presence. This transparent and straightforward process enables healthcare
professionals to understand and trust the predictions without requiring ex-
tensive computational resources or specialized expertise.

The importance of simplicity and transparency in clinical tools is fur-
ther highlighted by the AutoScore framework developed by Xie et al., which
combines machine learning with regression techniques to create point-based
scoring models [51]. While AutoScore manually groups responses, SymScore
automates this task, enhancing accuracy and e�ciency. Moreover, Sym-
Score integrates important clinical constraints like monotonicity in response
weights, ensuring that the generated scores accurately reflect disease sever-
ity—a critical improvement. Additionally, SymScore supports both clas-
sification and regression tasks, o↵ering greater versatility than AutoScore.
Unlike the P-ROSC score implementation of AutoScore [60], which converts
raw scores into probabilities, SymScore’s scoring system is inherently inter-
pretable, avoiding the need for such conversions.

Another notable interpretable tool is FEAT (Feature Engineering Au-
tomation Tool), developed by La Cava et al. [56]. While FEAT also employs
symbolic regression, it categorizes input values into only two groups based
on a threshold, limiting its ability to capture nuanced relationships between
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features and disease severity. In contrast, SymScore’s method of optimal
response grouping and precise weight assignment, along with monotonicity
constraints, e↵ectively captures these complexities. Note that while FEAT
has been tested on datasets with increasing feature relationships, its perfor-
mance on datasets with non-increasing relationships has not been evaluated.

Despite the existence of other interpretable clinical decision-making tools,
SymScore distinguishes itself by o↵ering advanced features alongside ease of
use. This combination facilitates e�cient, accurate, and user-friendly risk as-
sessments, ultimately contributing to improved patient outcomes and stream-
lined healthcare processes. However, it is important to acknowledge the lim-
itations of our study. First, the datasets utilized were specific to certain clin-
ical contexts. Furthermore, SymScore is designed for medical questionnaires
that include numerical rating scales and is not suitable for those involving
subjective or qualitative responses. Future studies should test SymScore
with a broader range of datasets and clinical settings to validate its gener-
alizability. Next, SymScore relies on the assumption that the relationships
between questionnaire responses are independent. This assumption may not
hold for all types of questionnaires or clinical conditions. Lastly, while Sym-
Score provides substantial interpretability and simplicity, there may be minor
trade-o↵s in predictive accuracy compared to more complex machine learn-
ing models. Further refinements to the algorithm could enhance the balance
between accuracy and interpretability.

SymScore represents a significant advancement in explainable AI, o↵er-
ing transparent and interpretable models suitable for clinical practice. By
bridging the gap between complex machine learning models and practical
clinical applications, SymScore delivers a user-friendly, resource-e�cient, and
interpretable tool for generating shortened questionnaires. While SymScore
has been applied specifically to questionnaires, its flexible and generalizable
framework shows potential for broader clinical applications. This versatility
underscores SymScore’s contribution to clinical risk assessment, combining
ease of use with robust performance and paving the way for wider adoption
and improved patient care.

5. Conclusion

Our study introduces SymScore, a powerful and user-friendly tool de-
signed to simplify and enhance health risk assessment questionnaires in clin-
ical practice. SymScore addresses the interpretability challenges often asso-
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ciated with traditional machine learning-based questionnaires by providing a
transparent, explainable scoring system through the use of symbolic regres-
sion. It automatically optimizes response grouping and applies monotonic
constraints, ensuring that each score meaningfully reflects disease severity.
By o↵ering intuitive score tables with easily interpretable response scores,
SymScore eliminates the need for specialized expertise or significant compu-
tational resources, making it ideal for real-world clinical use.

SymScore’s performance has been validated against high-accuracy tools,
MCQI-6 and SLEEPS, for sleep disorder assessment, achieving comparable
predictive accuracy while o↵ering superior interpretability. This balance of
accuracy and transparency positions SymScore as a valuable resource in ex-
plainable AI, bridging the gap between advanced machine learning and prac-
tical, clinician-friendly applications in patient care. By facilitating straight-
forward, accurate risk assessments, SymScore has the potential to improve
clinical workflows and enhance patient outcomes.
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