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Abstract 

Infantile epileptic spasm syndrome (IESS) is a severe neurological disorder characterized by epileptic 

spasms (ES). Timely diagnosis and treatment are crucial but often delayed due to symptom 

misidentification. Smartphone videos can aid in diagnosis, but availability of specialist review is 

limited. We fine-tuned a foundational video model for ES detection using social media videos, thus 

addressing this clinical need and the challenge of data scarcity in rare disorders. Our model, trained 

on 141 children with 991 seizures and 127 children without seizures, achieved high performance 

(area under the receiver-operating-curve (AUC) 0.96, 83% sensitivity, 95% specificity) including 

validation on external datasets from smartphone videos (93 children, 70 seizures, AUC 0.98, false 

alarm rate (FAR) 0.75%) and gold-standard video-EEG (22 children, 45 seizures, AUC 0.98, FAR 3.4%). 

This study demonstrates the potential of smartphone videos for AI-powered analysis as the basis for 

accelerated IESS diagnosis and novel strategy for diagnosis of rare disorders. 
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Introduction  

Timely diagnosis of rare neurological disorders remains a significant challenge in healthcare, 

often resulting in delayed patient treatment1. Infantile epileptic spasm syndrome (IESS), a 

developmental and epileptic encephalopathy affecting approximately 1 in 2000-2500 infants in their 

first year of life, exemplifies this problem2,3. While approximately 9% of children experience some sort 

of paroxysmal movement events during their first year of life (most of which are benign), a smaller 

percentage actually have seizures4. Despite the stereotypical nature of the hallmark seizures of IESS, 

epileptic spasms (ES), diagnosis is frequently delayed by weeks to months due to misidentification of 

symptoms as benign physiological occurrences or failure to recognize any abnormality by physicians 

or parents 5–12.  These delays are associated with long-term poor cognitive outcomes, inadequate 

seizure control, increased disability, and higher healthcare costs7,13.  

The widespread availability of smartphones and advancements in artificial intelligence (AI) 

may open new avenues for digital health technologies and accelerated neurological diagnostics. In 

epilepsy, videos captured by smartphones have already been shown to enhance diagnostic accuracy 

and clinical decision-making while reducing patient and family stress14. In the hands of experts, these 

videos facilitate earlier arrival to clinics, faster diagnostic EEGs, and improved treatment responses for 

children with IESS15. Videos from smartphones have furthermore been shown to be at times non-

inferior to gold standard video-EEG monitoring for initial diagnosis, offering advantages particularly in 

resource-limited settings16,17. Thus, while smartphone videos could in principle enable more rapid and 

accurate identification of ES, the shortage of medical professionals available for timely review and 

evaluation of patient videos limits the broader applicability of this approach. Rapid video evaluations 

supported by AI may help to broadly scale expert knowledge in detecting paroxysmal movements 

suspicious for seizures in infants and young children as basis for faster diagnosis and treatment. 

Developing accurate AI models for rare conditions like IESS, however, presents unique challenges, 

primarily due to the scarcity of large, labeled datasets required for effective model training.  

Here, we address the challenge of timely IESS diagnosis with smartphone-based detection of 

ES by leveraging two key developments: powerful foundation vision models pretrained on extensive 

datasets and utilization of the wealth of publicly available video data in social media. First, foundation 

vision models based on transformer architectures, trained on extensive datasets of images and videos 

from the internet, have been robust for human activity recognition18,19. These models have potential 

to significantly enhance video-based seizure detection, extending capabilities to additional video 

sources including smartphone recordings. This is particularly valuable given the variability in video 

quality, recording equipment, and patient demographics encountered in real-world settings. Second, 

social media platforms have inadvertently become valuable repositories of medical information, with 

user-uploaded videos clearly demonstrating the semiology of stereotypical seizure disorders. While 

medical research has begun to leverage social media data for various purposes, this approach 

remains largely unexplored for rare neurological disorders and epilepsy. This untapped resource offers 

a potential solution to the data scarcity problem, enabling the development of robust AI models for 

conditions that traditionally lack sufficient clinical data. We here curated a large dataset of ES seizures 

from open-source videos, thus addressing the data scarcity issue. We then trained an AI model for 

automated detection of ES, building on a state-of-the-art vision foundational model, thus benefitting 

from comprehensive pretraining. Finally, we validated our model on three additional independent 

datasets, comprising both smartphone recordings and gold standard in-hospital video-EEG 

monitoring data, thus ensuring model robustness across varied video sources and clinical settings. 
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Methods 

Derivation dataset collection and annotation  

The study design, data collection, preprocessing, AI model development and testing are 

depicted in Figure 1. We conducted a systematic search on YouTube videos published before 2022 

using the key words “infantile spasms”, “epileptic spasms”, and “west syndrome”. Videos were 

included based on the following criteria: (1) subject appears to be under 2 years of age, (2) video 

contains an event consistent with ES semiology, as independently confirmed by two expert 

neurologists (GM and CM), (3) subject is clearly visible and not substantially obstructed by other 

people, objects or overlying text, (4) video quality (resolution, lighting) is sufficient for visual 

recognition of semiology, without obscuring filters or effects. Exclusion criteria were: (1) subject or 

limbs obstructed from view (e.g., close ups of the face or trunk), (2) insufficient video quality for 

semiology determination, (3) subject is clearly older than 2 years. To ensure a diverse population, 

videos were included regardless of the country of origin, language spoken, video length, or upload 

year. Next, 5-second segments were annotated, either containing stereotypical movements for ES or 

non-seizure segments.  

To further enhance our training dataset, we incorporated additional videos of normally 

behaving infants from previously collected YouTube datasets(24–26). All segments from these 

datasets were manually reviewed to confirm the absence of seizures while adhering to our inclusion 

criteria. 

Out-of-sample external testing 

We collected three additional external datasets to further validate seizure detection 

performance and evaluate false alarm rate (FAR): (1) smartphone videos of infants with ES published 

on YouTube after 2022 and on TikTok, collected using the same approach as for the derivation 

dataset. (2) An additional cohort of normally behaving infants from YouTube to assess FAR on 

smartphones. (3) Videos from long-term video-EEG monitoring recordings of infants under two years 

age at the Epilepsy-Center Berlin-Brandenburg. For each video, we included all 5-seconds segments 

where the subject was clearly visible. Since in-hospital videos from long-term video-EEG monitoring 

were of long duration and captured with stationary cameras with a wide view, these videos were 

cropped automatically around the infant using an existing AI model designed for object detection20. 

For all in-hospital video segments used for FAR evaluation, seizure activity was ruled out by video-

EEG.  

Meta-information and technical characteristics analysis 

When available, we collected additional meta-information from the online videos of ES, 

including view count, likes, comments, and upload year, to assess the diversity and reach of this 

content. To evaluate the technical heterogeneity of the collected videos, we analyzed video 

resolution, duration, frame rate, and bitrate using python library OpenCV and FFmpeg. Additionally, 

we quantified general visual characteristics by analyzing brightness, daytime vs. nighttime recordings, 

motion, and sharpness of videos. Brightness was calculated as the mean pixel intensity across 

sampled frames, providing insight into lighting conditions. Nighttime recording was estimated using 

the averaged variance of the RGB pixels, if the average was below a predefined threshold, then the 

video was classified as recorded during night, otherwise during day. Motion was assessed by 

measuring the mean absolute difference between consecutive frames, indicating the level of 

movement or camera stability. Sharpness was evaluated using the variance of the Laplacian operator, 

offering a measure of image clarity. 
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Video data preprocessing  

To ensure consistency and to enhance the dataset for model training, we performed the 

following preprocessing steps: (1) we unified frame rates to 30 frames per second using FFmpeg. (2) 

We cut videos into 5-second segments, annotating each as seizure or non-seizure. (3) We applied 

several augmentations to each video segment, including vertical flip, horizontal flip, 90-degree 

clockwise and counterclockwise rotation, and color inversion to increase variability within our 

dataset. (4) We standardized frame size to 224 by 224 pixels by downsampling the resolution of each 

frame using a trilinear interpolation function. (5) We normalized color values per pixel using z-

transformation to meet the requirements of the foundational model used19.  

Training and testing of classification model   

We trained our model using the Hiera Vision Transformer, which was pretrained on the 

Kinetics 400 Human Action Recognition dataset18,19. The model was adapted for our purpose by 

modifying the final classification layer for binary classification using sigmoid function, distinguishing 

between seizure and non-seizure video segments. We used a parameter fine-tuning method to then 

train the model for seizure detection. We employed a 5-fold cross-validation approach for training 

and testing on the derivation dataset. The data was split at the child level into 5 non-overlapping test 

folds, ensuring all segments from a single child were in the same fold. We trained the model for 15 

epochs with a batch size of 4, using a learning rate that started at 0.0001 and was multiplied by 0.75 

every 10 epochs. To improve specificity, additional data from 127 healthy infants were included in the 

training set only. Finally, we performed additional evaluations of model performance on three 

independent datasets, using a classification model trained on the entire derivation dataset.  

Performance metrics 

We assessed the model's performance using area under the receiver-operating-characteristic 

curve (AUC), sensitivity, specificity, accuracy, and false alarm rate (FAR). For children who had only 

one class of video segments (i.e., either only seizure segments or only non-seizure video segments), 

AUC and the metric measuring the missed segment class were not calculated. We used the standard 

threshold of 0.5 to calculate sensitivity, specificity, and accuracy. We reported the FAR, evaluated on 

seizure-free children, as the percentage of normal segments incorrectly classified as seizures. We 

present all results using the mean and 95% confidence interval. 

Data availability  

 Open-source smartphone video URLs are available upon reasonable request. Video-EEG 

monitoring data is not publicly available due to patient privacy concerns. 

Code availability 

 The underlying code is not publicly available for proprietary reasons. We used Python 3.9.13 

with specific packages (torch 2.2.0, hiera-transformer 0.1.2) on an Intel(R) Xeon(R) Silver 4216 CPU 

with two NVIDIA RTX A6000 GPUs. 

Ethics Statement 

This study was approved by the Institutional Review Board of Charité – Universitätsmedizin 

Berlin (reference number EA2/273/23). 
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Results 

Derivation dataset: population characteristics, training, performance  

For model training and testing, we collected videos from 141 children with ES, comprising 991 

seizures and 597 non-seizure video segments of 5-second duration each. The median number of 

segments per child was 6 (IQR 4-12, range 1-42). We further enriched the training dataset with 127 

healthy infants, contributing 1385 video segments (median 8 per child, IQR 4-14, range 1-70; Table 1). 

Videos containing ES were published between 2007 and 2022, with a median of 8,885 views per 

video (IQR 1,687-42,274.5), 31 likes (IQR 8-121.5) and 5 comments (IQR 1-13.5). As videos were 

derived from social media, they exhibited considerable technical heterogeneity in terms of resolution, 

bitrate, brightness of the video, and sharpness (Table 1).   

 

Table 1. Study Population and Video Characteristics.  

 Derivation Dataset External Validation Dataset 

 
Epileptic 
Spasm 
Cohort 

Normally 
Behaving 

Infants 

Dataset 1 - 
Smartphone - 

Epileptic Spasm 
Cohort 

Dataset 2 - 
Smartphone - 

Normally 
Behaving Infants 

Dataset 3 – 
Hospital- 

Video-EEG 
Monitoring 

Number of 
subjects 

141 127 26 67 22 

Data source YouTube YouTube TikTok, YouTube YouTube 
Video-EEG 
monitoring 

Seizure 
segments 

991 0 70 0 45 

Non-Seizure 
segments 

597 1385 31 666 11190 

Segments per 
child, median 

(IQR) 
6 (4-12) 8 (4-14) 3 (2-5) 6 (2.75 - 10.5) 

382 (158.25 - 
766) 

Resolution: 
high / medium 

/low% 
57/7/36 % 52/11/37% 88/8/4% 57/34/9% 2/77/21% 

Bitrate, median 
(IQR) kbps 

530 (301–
1016) 

949 (449-
1637) 

1113 (925-
1403) 

2146 (779 - 
3243) 

3538 (3404-
3671) 

Sharpness 
values, median 
(IQR) laplacian 

variance 

88 (45–
216) 

44 (22-108) 303 (149-559) 60 (24-82) 284 (196-411) 

Brightness, 
median (IQR) 

gray level 
intensity 

104 (80-
123) 

112 (89-
138) 

117 (111-133) 124 (101-143) 107 (89-125) 

High resolution is defined as above 720p, medium resolution between 480-720p, and low resolution 

under 480p. Abbreviations: kbps - kilobytes per second; IQR - interquartile (25th to 75th) range. 

Our model detected ES with an AUC of 0.96 (CI 0.94-0.98, five-fold cross-validation) on the 

derivation dataset. Using a threshold of 0.5, this provided a sensitivity of 82% (CI 78% - 87%), 

specificity of 90% (CI 86% - 94%), and accuracy of 85% (CI 82%-88%) on the test folds (Figure 2). No 
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statistically significant relationships were found between the technical characteristics of videos and 

prediction performance in the derivation dataset. 

External validation: population characteristics, performance, false alarm rate 

 Using the fixed, trained algorithm with fixed threshold, we next evaluated our seizure 

detection model on three independent datasets to assess out-of-sample performance, establish FAR, 

and evaluate transferability to different video sources. Dataset 1, smartphone-based, included 26 

infants with ES (70 seizure and 31 non-seizure 5-second video segments). Our model achieved high 

performance, comparable to the derivation dataset testing, with an AUC of 0.98 (95% CI: 0.94-1.0), 

sensitivity 89% (95% CI: 82-95%), specificity 100% (95% CI: 100-100%), and accuracy of 92% (95% CI: 

87-97%; Figure 3).  

Dataset 2, also smartphone-based, included 67 normally behaving infants with 666 5-seconds 

segments. False detections were identified in 0.75% (5/666) of evaluated video segments, with 62 of 

67 subjects having no false alarms. This resulted in a mean FAR per patient of 1.6% (95% CI: 0.0%-

3.4%; Figure 4).  

Dataset 3 was sourced from in-hospital gold-standard video-EEG monitoring camera systems. 

In 21 infants without seizures, false detections occurred in 3.4% (365/10,860) of all video segments, 

with a mean FAR per patient of 3.8% (95% CI: 1.0%-6.5%; Figure 4). As an additional control we 

assessed videos from one child with ES (45 seizure and 330 non-seizure segments), resulting in an 

AUC of 0.98, sensitivity of 80%, specificity of 99%, and accuracy 97% (Figure 3), closely matching the 

derivation and external validation smartphone ES datasets. 

Finally, we investigated potential contributing factors to false detections across datasets and 

within dataset 3. Comparing across datasets, we found that dataset 3, which had the highest FAR, had 

significantly lower video resolution than the other datasets (p =.006, Xi squared test), with only 2% of 

video segments having a resolution above 720p, and 21% of videos having low resolution under 480p. 

Dataset 3 included also night-time footage, which was not present in the other datasets. Excluding 

night-time videos lowered the total FAR in dataset 3 to 2.8% (283/9937 video segments). Dataset 3 

contained long-term, continuous monitoring of children in hospital rooms and was prone to 

additional sources of bias and obstructions, including EEG caps, bed cribs, and family member 

interference. To systematically assess the overall visibility of the child within the video, we used an 

object detection model and compared model confidence measures between videos with and without 

false detections. This confidence measure acted as a surrogate marker to child visibility. False positive 

videos showed significantly lower confidence for infant detection (median confidence of 0.23 in 

correctly detected vs 0.16 in false positive, p < .001, Mann Whitney U test). In examining technical 

characteristics affecting FAR, false positive videos had significantly lower image sharpness (median 

Laplacian variance 207 vs. 286 in correctly detected videos, p < .001, Mann-Whitney U test), and 

significantly lower bitrate (median kilobytes per second of 3496 vs. 3545 in correctly detected videos, 

p = .006, Mann-Whitney U test). Collectively, these results thus suggest that false alarm rate and 

seizure detection performance hinge on video quality and child visibility – both of which can be 

addressed when collecting new data from smartphones or in-hospital video cameras.  
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Discussion 

Rare disorders are often difficult to diagnose and treat, as they can be paroxysmal in nature 

and diagnostics tests as well as specialist clinical expertise are often not widely available. Ninety 

percent of rare disorders in childhood have major neurological effects, and AI technology holds 

promise in accelerating diagnosis but requires large datasets. Early Identification of seizures is critical 

for accurate and timely diagnosis of early age onset epilepsy, particularly for IESS, a rare neurological 

disorder often marked by delayed diagnosis and treatment5,6,11,12. With the increasing availability of 

smartphones and integration of AI into daily life, automated detection of seizures from videos has 

potential to address this clinical need. Here, we curated a large, heterogeneous dataset of seizure 

videos from social media to develop and test an AI model capable of detecting ES with high 

performance. We validated our model across multiple independent datasets, demonstrating strong 

performance with low FARs. Notably, our model, initially trained on smartphone videos, also showed 

robust adaptability when applied to gold-standard video-EEG monitoring recordings, though with an 

increase in FAR in the hospital setting. 

AI has been successfully applied to automate multiple tasks in the medical domain, including 

analysis of diagnostic imaging and electronic health records21,22. In epilepsy, AI has accelerated and 

improved various aspects of care, including EEG analysis, neuroimaging interpretation, seizure 

detection and forecasting based on data from wearable medical devices, and recently, seizure 

detection from video-EEG monitoring recordings23,24. While advancements in medical AI have been 

propelled by the development of datasets from various sources such as electronic health records, 

imaging, and histology, obtaining datasets for rare neurological disorders remains a significant 

challenge due to the limited availability of data and regulatory constraints on data sharing21. 

Establishing video datasets for medical vision AI is furthermore challenged due to issues related to 

patient privacy. In epilepsy, open-source datasets of epileptic seizure footage are generally very small 

and limited to educational purposes. We addressed these challenges by demonstrating the feasibility 

of collecting a clinically relevant dataset of a rare neurological condition using openly available data 

from social media. This approach allowed us to identify 167 infants with over 1000 ES. In comparison, 

a single tertiary center serving a large population of three million people would, on average, see 

approximately 24 such children per year, thus a similar-sized dataset would be expected to take years 

to develop25. Furthermore, this approach established a diverse, heterogenous cohort, potentially 

reducing the need for model retraining, improving accessibility across different populations and 

boosting clinical applicability, addressing a common barrier for AI integration in everyday clinical 

practice21.  

Previous studies have begun to explore the use of social media in medical AI development, 

demonstrating its growing potential. One study used YouTube to create a dataset for analysis of open 

surgery techniques and assess surgical skills. Another study created an image-based foundational 

model for pathology based on histological images uploaded to Twitter26,27. In neurology, YouTube 

videos have been used as adjunctive data sources for development or testing of AI models in 

assessment of Parkinson’s disease, abnormal gait, essential tremor, facial paralysis, and autism(17–

22). However, our approach is unique in that it adds to this body of literature by using social media to 

create a dataset for a rare epileptic disorder, including one of the most sizable datasets in the field of 

automated video analysis of seizures23. 

Our ES detection model performed with high accuracy, achieving an AUC of 0.96, sensitivity 

of 82% and specificity of 90%, as evaluated using a five-fold cross validation approach and similar 

levels of performance on the out-of-sample test datasets. To develop the AI model, we adapted an 

existing large scale vision transformer model, which had originally been trained for general action 

recognition tasks on a massive dataset of videos from the internet18,19. Through this we reduced the 
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amount of data required for training, making it a feasible approach for developing a medical AI model 

with limited training data, such as IESS. Our strategy of adapting a generalist foundational model to 

medical AI aligns with emerging trends in the field28. To our knowledge and based on recent reviews 

of video-based seizure detection, ours is the first approach utilizing the vision transformer 

architecture in the domain of video-based seizure detection. Previous methods predominantly relied 

on skeleton landmark identification, frame-based approaches combined with neural networks, or 

optical flow methods23,29. The vision transformer architecture offers several advantages over these 

more traditional approaches, including superior ability to capture long-range dependencies in video 

sequences, enhanced robustness to variations in camera angle and lighting conditions, and improved 

performance on subtle motion patterns characteristic of ES30,31. 

According to best practice in the field, we validated our model on three additional out-of-

sample datasets. In two independent smartphone derived cohorts, our model performed similarly to 

the derivation cohort, achieving an AUC of 0.98 on a cohort of infants with ES. Notably, testing on a 

dataset of normally behaving infants, we found a FAR of 0.75%, with 62 of 67 children having no false 

detections. This is a key finding with regard to potential clinical applicability, as false alarms are a 

barrier to clinical adaptation of new diagnostic technology. To note, dataset 2 contained mostly 

videos from TikTok, a different social media platform from the derivation dataset introducing an 

additional source of variability that did not affect the model performance.  

While our model was trained exclusively on smartphone data, we also tested it on a cohort of 

infants undergoing gold standard video-EEG (dataset 3), to assess robustness and transferability to 

other camera sources. The ability of an AI model to perform well on different video sources is a 

measure of generalizability and could enable translation to different clinical settings. The hospital-

based dataset differed from the derivation dataset considerably, as these were long-term videos 

captured from wide-view stationary cameras that were distant from the subject compared to 

smartphone videos. Infants wore EEG caps, resolution was significantly lower, there were often 

additional people (family members, medical staff) in the frame, and videos were recorded both 

during day and nighttime. Nevertheless, our model achieved a comparable sensitivity on 45 seizures 

from a patient with ES, and on an additional 21 patients - comprising over 10,860 video segments 

without seizures – the total FAR was 3.4%. Although this FAR rate is higher than that observed in the 

smartphone data, it shows promise for potential future utilization in this clinical setting. Testing in 

future prospective studies should control for these confounders, and future work should focus on 

incorporating video data from multiple camera sources within seizure detection training data to 

further improve transferability to different sources of data.  

The field of video analysis for seizures in epilepsy is a developing one, with a recent review 

having identified 34 studies assessing video-based seizure detection23. This review revealed large 

heterogeneity in methods used, dataset size, and performance measures reported. The largest study 

to date reported the use of a dedicated audio/visual system for seizure detection and included 104 

patients and a total of 2767 seizures. This study included multiple seizure types and detailed the 

clinical decision-making outcome of the intervention, but did not report machine learning 

performance measures such as sensitivity and specificity, somewhat limiting interpretability32. A prior 

phase 3 study by the same group did report these metrics, however, their approach was semi-

automated with involvement of a clinical neurophysiology specialist in the loop33. In early onset 

epilepsy, a notable phase 2 study aimed at detecting clonic seizures examined 12 infants in the 

hospital setting, and achieved a maximal AUC 0.79 in discriminating a total of 78 clonic seizures from 

random movements or other seizure types. Other studies focusing on pediatric seizure have shown 

promise for multiple seizure types including tonic-clonic seizures24, nocturnal motor seizures34, and 

neonatal seizures35–39. We contribute to this literature by reporting a model trained on smartphone 
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data rather than from in-hospital cameras or specialized hardware, yielding high performance, and 

assessing seizure detection in the in-field setting. Our study includes a large number of participants 

and seizures, focuses on ES- a subtle seizure semiology- and adheres to the reporting and testing 

standards set forth by the International League Against Epilepsy for validation of AI technology for 

seizure detection devices40. 

 This study has several limitations. First, in the derivation dataset there was no gold standard 

electrophysiologic or clinical data to confirm the presence of ES. However, videos were reviewed by 

two expert neurologists trained to identify ES semiology. Likewise, although unlikely, non-motor 

seizures could not be excluded from interictal videos due to the lack of EEG. However, these would 

not be expected to be identified through visual inspection by an expert as well, and external 

validation of the model was done on gold standard confirmed infants with and without epilepsy. 

Second, since we did not have demographic or clinical data available for social media videos, it was 

not possible to fully exclude potential biases related to age, sex, or ethnicity. Furthermore, some 

participants had more video segments than others, and in order to maximize the dataset we could 

not balance seizures to interictal segments in a 1:1 ratio. To address this limitation, data collected was 

highly heterogeneous, a large dataset was examined, and additional validation was conducted on 

completely independent datasets of normally behaving infants and infants with gold-standard video-

EEG. Third, while ES are the predominant seizures in children with IESS, they may have additional 

seizure types, and expansion of our approach to additional seizures is necessary to have true clinical 

applicability. Fourth, the study design is limited by an inherent selection bias toward videos that were 

uploaded to social media and future prospective studies are needed to further establish 

generalizability.  

Conclusion 

 We here report a novel approach for AI model development suitable for rare neurological 

disorders. We address the clinical need for early detection of ES in infants by developing a high 

performing video-AI model capable of identifying this subtle seizure semiology from widely available 

smartphone videos. The model's robust performance across multiple datasets, including gold-

standard video-EEG recordings, underscores its potential for clinical application. While challenges 

remain, including further prospective validation in different clinical settings, this work lays a 

foundation for future developments in video-based automated seizure detection. 
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Figure 1. Study design. To acquire the derivation dataset, we conducted a search for YouTube videos 

with the key words “epileptic spasms”, “infantile spasms”, and “West syndrome”. All video segments 

were reviewed by expert neurologists and underwent preprocessing. Videos were analyzed by a 

vision transformer model that was re-trained for the purpose of epileptic spasm identification. A five-

fold cross validation approach was used for training and testing. Finally, one single model was derived 

from the entire derivation dataset and tested on three external validation datasets: two datasets 

sourced from smartphone videos, and one dataset from gold-standard video-EEG monitoring. 

Performance on these validation datasets was assessed using the area under the receiver-operating-

curve (AUC), sensitivity, specificity, accuracy and false alarm rate. 
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Figure 2. Seizure detection performance on the derivation dataset (smartphone videos). A, Each 

column represents one subject. Only children that had both seizure and normal segments (111/141) 

were included in calculating AUC (in cases where only one class of videos was available, a gray 

column is depicted). B, Overall metrics of performance across all subjects. C, All model predictions, a 

threshold of 0.5 is depicted as dashed line. Markers denote mean and 95% confidence intervals. 

Abbreviations: AUC - area under the receiver-operating-characteristic curve.  
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Figure 3. Performance of classification model on external validation datasets (smartphone and 

gold-standard video-EEG). A, Individual performance metrics for 26 children with epileptic spasms 

included in the external validation dataset 1 (smartphone-derived), and 1 child with epileptic spasms 

in external validation dataset 3 (hospital-derived). Each column represents one subject. Only children 

that had both seizure and normal segments were included in calculating AUC (in cases where only 

one class of videos was available, a gray column is depicted). B, Overall metrics of performance across 

all subjects. C, All model predictions are shown. Markers denote mean and 95% confidence intervals. 

Abbreviations: AUC - area under the receiver-operating-characteristic curve.  
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Figure 4. False alarm rate (FAR) evaluation. All subjects evaluated had no seizures, every positive 

prediction was considered as a false alarm. The FAR is the percentage of positive predictions across all 

subjects. A, FAR evaluation on an out-of-sample smartphone-derived video dataset including 67 

children and 666 five-second segments (dataset 2). Each bar corresponds to one child. In total, 5 of 

666 segments were classified as positive detections (0.75%), across all children the average is 1.6% B, 

All the video segments are plotted with the prediction probability. C, FAR evaluation on an out-of-

sample gold standard video EEG derived dataset including 21 children and 10,860 five-second video 

segments (dataset 3). D, All video segment predictions of the video-EEG dataset.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.28.24316130doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.28.24316130
http://creativecommons.org/licenses/by-nc-nd/4.0/

