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 Key Points:

 We  investigated  the  multi-day  changes  in  brain  dynamics  during  presurgical 

evaluation  of  patients  with  drug-resistant  temporal  lobe  epilepsy,  inside  the 

epileptogenic zone as well as in healthy brain tissue.

 This  time  interval  of  increasing  seizure  susceptibility  is  marked  by  increases  in 

gamma band power in the epileptogenic zone and network-wide increase in critical 

slowing.

 The identified multi-day changes were consistently linked to the changes in spikes 

and high-frequency oscillations (HFOs), while not to other factors like drug dose and 

circadian time.

 While gamma power and critical slowing changed on the scale of days, there was no 

significant  increase  in  the  minutes  before  seizures,  suggesting  the  brain  dynamic 

changes during presurgical evaluation are likely a multi-day phenomenon associated 

with pro-ictal states.
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ABSTRACT

The  clinical  workup  during  the  pre-surgical  evaluation  for  epilepsy  relies  on  the 

electrophysiological  recording  of  spontaneous  seizures.  The  interval  until  first  seizure 

occurrence is characterized by an increase in seizure likelihood caused by progressive drug 

dose decreases, during which the epileptic brain transitions from a state of low to a state of  

high seizure likelihood, so-called  pro-ictal state.  This study aimed to  identify the dynamic 

brain changes characteristic of this transition  from 386  ten-minute segments of intracranial 

EEG recordings  of  29  patients  with  drug-refractory  temporal  lobe  epilepsy,  explored  by 

stereoelectroencephalography,  irregularly sampled  between electrode implantation and first 

seizure. As measures of brain dynamics we studied mean phase coherence and relative power 

in the gamma frequency band, and autocorrelation function width. We further investigate the 

interaction of those brain dynamics with various susceptibility factors, such as the rate of 

interictal spikes and high frequency oscillations, circadian and multi-day cycles, and clinical 

outcomes. We observed a significant increase in relative gamma power in the epileptogenic 

zone,  and  an  increase  in  critical  slowing  in  both  the  epileptogenic  zone  as  well  as  in 

presumably healthy cortex. These brain dynamic changes were linked with increases in spike 

and high frequency oscillations rate. While brain dynamic changes occurred on the slow time 

scale - from the beginning to the end of the multi-day interval - they did not change in the 

short-term during the pre-ictal interval. We thus highlight gamma power and critical slowing 

indices as markers of pro-ictal (as opposed to pre-ictal) brain states, as well as their potential 

to track the seizure-related brain mechanisms during the presurgical evaluation of epilepsy 

patients.
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INTRODUCTION

Approximately 30% of patients with epilepsy suffer from drug resistance. In these 

cases, neurosurgery is evaluated as a second-line treatment to remove the brain tissue where 

the seizure originates. The success of surgery depends on the correct determination of the 

epileptogenic zone (EZ) and epileptic network. When non-invasive methods (combination of 

scalp  EEG,  MRI,  PET  and  neuropsychological  assessment)  do  not  identify  the  EZ,  the 

standard  clinical  procedure  involves  the  invasive  implantation  of  intracranial  (iEEG) 

electrodes for EZ determination  1,2. The  clinical workup usually includes decreasing drug 

dosage  3 with  the  aim  to  record  spontaneous  seizures  during  monitoring. According  to 

literature, it typically takes around two days (median time) until the first spontaneous seizure 

is recorded 4,5, while 35% of patients require more than three, and 7% require more than a 

week to record and diagnose the nature of paroxysmal episodes 4. Understanding these brain 

processes leading up to the first seizure event could help improve the clinical workup of 

presurgical  evaluation,  which  is  a  long  and  cumbersome  procedure;  e.g.  help  to  reduce 

recording length, choose the best time window for stimulation probing, or optimize the drug 

reduction  protocol  to  avoid  withdrawal  complications.  Furthermore,  it  could  bring 

fundamental insight into the mechanisms of seizure generation (ictogenesis) in the human 

brain.

Ictogenesis,  as  often  studied  in  the  context  of  seizure  prediction,  is  a  complex 

process 6. It is typically studied on a time scale of minutes up to hours before seizure  7. In 

vitro studies have found the time period before seizure occurrence, i.e. the pre-ictal state, to 

be characterized by a progressive and global increase in neuronal activity, a build-up of low-

amplitude  high-frequency  activity  (>100  Hz)  and  a  reduction  in  system  complexity  6. 

Immediately before seizure onset, the brain is in a highly sensitive state where even weak 

perturbations can initiate seizures 6,8. In vivo studies, on the other hand, have been struggling 

to  reliably  map the  pre-ictal  state  7,9–11.  The  complicated  nature  of  the  pre-ictal  activity, 

methodological  challenges,  and the  heterogeneity  among patients  and their  seizures  have 

been held accountable 7,9,12,13.

Among the most notable changes observed in iEEG recordings repeatedly linked to 

ictal transitions is critical slowing down 8,14. Critical slowing refers to a phenomenon where a 

system takes  longer  to  recover  from small  perturbations,  indicating  an  increased  risk  of 

transitioning to a different state, such as a seizure. Research has shown that prior to seizures, 

brain  signals  may  exhibit  critical  slowing  down,  which  can  serve  as  a  warning  signal 
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preceding many critical  transitions in dynamical  systems  14.  Other notable iEEG changes 

during ictal transitions as evidenced by several studies are increases in the rate of interictal 

epileptic discharges, or spikes, and high-frequency oscillations (HFOs > 80 Hz) 15–18, as well 

as aberrant gamma (30-100 Hz) dynamics prior to seizures. These include changes in gamma 

power  19,20 and  connectivity  21–24.  Such  aberrant  dynamics  are  often  found  within  the 

epileptogenic  network  1,  and  particularly  in  the  EZ  20,23,25.  However,  other  studies  have 

reported changes outside the epileptogenic network, complementary to those inside 26. Thus, 

the  ongoing  investigation  of  iEEG  biomarkers  requires  careful  consideration  of  locally 

specific changes in brain dynamics.

Overcoming the reliability issue of pre-ictal markers requires a better understanding 

of the brain dynamics at play and their influencing factors. Accordingly, epilepsy research 

has recently shifted its  focus from the short-term (and deterministic)  prediction of single 

seizure events to the long-term (and probabilistic) prediction of time intervals of increased 

seizure risk, searching for so-called  pro-ictal  markers  9,27.  In other words, while  pre-ictal 

markers  aim  to  identify  the  brain  changes  involved  in  the  immediate  seizure  transition 

(typically investigating an interval in minutes before seizure onset), pro-ictal markers aim to 

identify brain changes linked to an increased seizure risk, which have been shown to act on 

timescales of days, months and even years 28. 

When  taking  into  account  the  slow  fluctuations  in  seizure  likelihood  over  days, 

months,  and  years,  seizure  prediction  becomes  seizure  forecasting  9,29–34.  Examples  of 

common observations in epilepsy linked to these fluctuations are seizure clustering (several 

seizures occurring close together in time) and the variations in brain responses to the same 

stimulation at different time points 35–38. Panagiotopoulou and colleagues 39 identified patient-

specific  fluctuations  in  iEEG  band  power  that  modulated  seizure  probability.  Similarly 

suggesting that seizures are modulated by slow dynamics, seizures closer together in time 

were reported to be more similar  40, and seizures were shown to be influenced by previous 

seizures 41. Moreover, a growing body of studies have reported pro-ictal factors that influence 

seizure likelihood  39,42–44.  The work of Karoly and colleagues  43 demonstrated that seizure 

occurrence,  phase-aligned  with  patient-specific  sleep-and-wave  cycles,  was  linked  with 

changes  in  the  interictal  discharge  rate.  Furthermore,  drug  dose,  weather,  and  temporal 

factors (time of day, day of week, and lunar phase) were linked to the slow dynamics in 

seizure likelihood  42,44–46. However, the complex link between the epileptic brain processes 

and such susceptibility factors, remains insufficiently understood. Studying their relationship 
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can help to answer the fundamental questions of what constitutes pre- and pro-ictal states in 

the human brain.

Combining  tools  from  seizure  prediction  and  forecasting,  this  study  aimed  to 

investigate  the  multi-day  pre-seizure  mechanisms  during  pre-surgical  evaluation.  We 

hypothesized  there  would  be  a  progressive  pro-ictal,  long-term  increase  of  seizure 

susceptibility  in  this  interval  linked  with  drug  dosage  decreases  and  other  established 

susceptibility factors. Furthermore, we hypothesized a  pre-ictal, short-term change in brain 

dynamics immediately before seizure, linked with seizure initiation. To investigate the pro- 

and pre-ictal iEEG dynamics, we leveraged three measures from the literature in the field of 

seizure prediction: one for gamma power alterations, the gamma power ratio (gPR) 39, one for 

gamma synchronization, the mean phase coherence in the gamma band (gMPC) 22,47, and one 

for critical slowing, the autocorrelation function width (ACFW) 14. Furthermore, we studied 

their interaction with several pro-ictal factors from the field of seizure forecasting: linear time 

(time  since  first  recording),  daytime,  drug  dosage,  as  well  as  spike  and  high  frequency 

oscillation (HFO) rate in the frequency range from 80-126 Hz (combined with spikes for 

higher predictive power  48).  Finally,  we added the factor signal-to-noise ratio (SNR) as a 

control variable to assess data quality, such that low SNR means a high amount of noise in 

the data. We compared pre-seizure dynamics between the EZ and healthy brain areas in the 

long- and short-term, i.e., investigating the measures’ changes firstly from the beginning of 

the recording to immediately before the seizure (multi-day changes), and secondly within the 

last minutes before the seizure (short-term changes).

METHODS

iEEG Data acquisition

Our dataset consisted of intracranial EEG data recorded for 29 patients with drug-

resistant  epilepsy (Table  1).  The patients  were monitored at  the Brain electrophysiology, 

Epilepsy  and  Sleep  Unit,  department  of  Neurology,  at  Toulouse  University  Hospital  to 

identify and possibly resect the brain areas involved in seizure generation, between 2009 and 

2020. If surgery was offered, its outcome was rated using the International League Against 

Epilepsy  (ILAE)  rating  scale  49.  iEEG were  retrospectively  collected  with  the  following 

inclusion criteria: over 12 years of age, temporal involvement in the epileptogenic network, 

recording electrodes implanted in the temporal lobe, and an available iEEG recording of the 
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last 10 min before the first recorded seizure. Each patient received detailed information about 

the objectives of the SEEG technique before intracerebral electrode implantation. Data were 

collected  using  the  computerized  patient  records  of  the  Toulouse  University  Hospital  IT 

system. This data collection was authorized in accordance with the French Data Protection 

Authority MR-004 reference methodology. Following assessment and validation by the Data 

Protection Officer and in compliance with general data protection regulations, the research, 

named Predire (as in Seizure Prediction), is registered in the official retrospective studies 

register  of  the  Toulouse  University  Hospital,  managed  by  the  Research  and  Innovation 

Department (RnIPH 2020-130), and is covered by the MR-004 law (CNIL number: 22.6723 v 

0).  The ethical  conditions of this study have been upheld and approved by the Toulouse 

University  Hospital.  Consent  was  obtained  from  all  patients. The  implantation  was 

individually tailored to the hypotheses of EZ according to a noninvasive assessment, and the 

placement of each depth electrode was based exclusively on clinical criteria independently of  

this  study.  Standard  intracranial  electrodes  (Microdeep  depth  electrode,  DIXI  medical, 

France) with 8-15 platinum/iridium contacts (diameter 0.8 mm, contact length 2 mm) were 

used. Intracranial EEG activity was recorded using two synchronized 64-channel acquisition 

systems (SystemPlus Evolution, SD LTM 64 EXgPRESS, Micromed, France) with varying 

sampling  frequencies  (at  least  256  Hz)  and  high  pass-filtered  to  0.008  or  0.15  Hz.  An 

example recording is given in Fig. 1A. Electrode placement across all patients covered a 

wide-spread brain network (Fig. 1B). 

The iEEG recording started in the hours after electrode implantation and lasted the 

whole hospital stay. Due to storage limitations, the hospital did not keep all iEEG recordings.  

This  study focused on the interval  between implantation and first  seizure,  which was of 

variable length across patients (Fig. 1C). Furthermore, we only considered recordings from 

10 a.m. the day after the surgical procedure in order to avoid the influence of anesthetics on 

the measured brain activity. If the interval between the first considered recording and first 

spontaneous seizure was less than a day, the patients were not considered for the long-term 

analysis (n = 19), but only the short-term analysis (n = 29; analyses described below). The 

number of resulting iEEG segments in the chosen interval varied among patients (Fig. 1D; 

mean = 13, std = 16 across all 29 patients; mean = 20, std = 16 across the 19 patients of the 

long-term analysis). The time points of recordings were scattered across the chosen interval 

(Fig. 1E), leaving gaps of up to a couple of days in between them (e.g., sub-08 in Fig. 1E). 
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Figure 1

Data description and study design. A: Example iEEG of recording during interictal phase. The MRI 

scan  on  the  left  side  shows  an  intracranial  electrode  targeting  the  left  hippocampus  in  sub-02. 

Electrodes  channels  (macro  contacts)  in  the  epileptogenic  zone  (EZ)  are  highlighted  in  red. 

Schematic representation on the right side depicts example signals from the eight bipolar channels. 

Red traces correspond to bipolar channels located in EZ B: Locations of all bipolar channels for the 

selected patient referenced in the MNI space (BrainNet Viewer). The intracranial electrode targeting 

the left hippocampus is marked in red,  C: Number of days between electrode implantation and the 

occurrence  of  first  seizure.  Only  patients  with  more  than  one  day  of  recordings  between  the 

implantation (10 a.m. the second day after the procedure) and first seizure were included in the long-

term analysis (red line). All patients were included in the short-term analysis (analyses described in  

Methods). D: Number of available recordings. The number of analyzed iEEG segments varied (mean 

= 13, std = 16) across the 29 participants. In the short-term analysis, only a single recording (in  

turquoise) was used per patient.  E: Study setup exemplified in three patients: sub-02, sub-05, and 

sub-08  (see  Table  1).  Patients  had  different  numbers  of  segments  available  (triangles),  variably 
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scattered across the interval between the day of their implantation (day 0) and the day of the seizure  

(here, day 6, 7 and 10). Recordings before 10 a.m. on day 1 were excluded to avoid the immediate 

effects of  implantation (interval marked in gray).  Mean measure (here gamma power ratio gPR)  

across time and channels in each recording was compared between different brain areas (left vs. right 

panel). Long-term changes were assessed by comparing only the first and the last recorded segment  

(black and red triangles). Short-term changes were assessed within the last recorded segment (red  

triangle). 

Data processing

All  processing  of  iEEG  data  was  conducted  with  Matlab  (Version  9.8.0,  The 

Mathworks Inc, Natick, MA, USA) and the interactive Matlab toolbox EEGLAB 50. For each 

patient, we collected all available iEEG recordings before the occurrence of a first seizure 

(Fig. 1E). For each recording, we then extracted one 10-minute segment for every hour. As 

an example,  an iEEG recording that  was three-hour-long would be segmented into three 

segments.  Further  preprocessing  steps  were  applied  to  all  iEEG  segments.  These  steps 

included downsampling to 256 Hz, high-pass filtering with a cut-off frequency of 0.5 Hz, 

removing non-EEG channels, re-referencing to bipolar montage (single bipolar montage is 

referred to as a “channel" throughout this study), and finally, the exclusion of error channels. 

For re-referencing, the difference in activity between (only) directly neighboring channels 

was calculated. Error channel rejection consisted of a two-step procedure using EEGLAB 

pop_rejchan() function with the `spec' rejection method. Firstly, channels with significantly 

high power in the 48-52 Hz frequency range (>3 standard deviations from mean channel 

power in this range),  and secondly,  outlier  channels with regards to the whole 1-128 Hz 

frequency  range  (>4  standard  deviations  from mean  channel  power)  were  identified.  To 

obtain a consistent number of channels for each patient across all respective recordings, the 

same error channels (accumulated error channels over all segments) were excluded from all 

segments for a given patient. For the same reason, iEEG channels that were present in some 

but not all segments were disregarded. 

Mapping brain dynamics

The aim of the presented study was to map the multi-day pre-seizure dynamics during 

presurgical  evaluation.  To  explore  the  brain  dynamics  preceding  the  first  spontaneous 
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seizure,  we  studied  the  temporal  evolution  of  brain  behavior  using  measures  of  critical 

slowing,  altered  synchrony  and  altered  gamma  power  (30-100  Hz)  in  all  patients. 

Specifically,  we calculated gamma power ratio (gPR; Fig.  1E),  mean phase coherence in 

gamma band (gMPC), and autocorrelation function width (ACFW). To obtain robust measure 

estimates over the whole 10 min iEEG segment, we calculated the respective measures in 

10 consecutive windows of 60 seconds lengths and averaged them across all windows. This 

approach was based on exploratory results of measuring stability in a 2 hours long segment 

(Sup. Fig. 1). 

Power ratio in the gamma frequency band (gPR):

In order to provide insights into the dynamics behind neuronal synchronization, we 

estimated the power ratio in the gamma frequency band using Welch’s power spectral density 

algorithm for every 60s segment of the iEEG recording 39. Specifically, we computed power 

spectral density using a sliding window of 500 ms length and a shift of 16 ms. Each sliding 

window was multiplied by a Hanning window to smoothly taper the endpoints to zero and 

mitigate the discontinuity that produces leakage. The modified periodograms were averaged 

to obtain frequency-resolved power spectral  density estimates for the 60s iEEG segment. 

Then, the vector of frequency-varying power spectral density estimates was log-transformed 

and subsequently Sigmoid transformed (S (x )=1 [1+exp (− x )]−1)  to  ensure positive entries 

between 0 and 1 as in previous research on iEEG  39.  As the last  preprocessing step,  we 

averaged (across segments) the preprocessed estimates for each of the five main frequency 

bands: δ: 1–4 Hz, θ: 4–8 Hz, α: 8–13 Hz, β: 13–30 Hz and γ: 30–100 Hz. Finally, the power 

spectral density estimate in the gamma band was normalized by the average power spectral 

density in all other bands to obtain the power ratio in the gamma frequency band.

Mean Phase Coherence in the gamma band (gMPC):

Coherence is a mathematical method quantifying the (frequency-specific) consistency 

of  the relation between two signals  representing the activity of  two brain regions in our 

analyses. Mean Phase Coherence (MPC) is an implementation analogue to the established 

phase locking value, which quantifies frequency-specific phase synchronization between two 

neuro-electric  signals  51.  MPC,  has  been  proposed  by  Mormann  and  colleagues  22 as  a 

measure of the phase synchronization in EEG recordings of epileptic patients. 
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In this  study,  we used an implementation of  MPC from  Bruña  and colleagues  47, 

where the MPC is calculated as

MPCi , j=
1
T |∑

t=1

T

e−i (φi (t )−φ j (t ))|,

where T is the length of the iEEG signal, φ i is an instantaneous phase as obtained by 

Hilbert transform of the iEEG signal and i, j correspond to the pair of channels for which 

MPC is computed.

For each 60s window, we calculated gamma Mean Phase Coherence (gMPC) between 

each pair of iEEG channels in the gamma frequency band (30-100 Hz). Therefore, gMPC 

between all  pairs of channels is represented by a matrix of real-valued numbers between 

0 and 1.

Critical slowing down: Autocorrelation function width (ACFW): 

The change from normal  to  a  seizing state  can be  viewed as  a  critical  transition 

happening in the complex dynamical system (i.e., the brain). This system approaching the 

critical transition can be characterized by critical slowing down features, where the ACFW 

represents  one  of  the  most  commonly  used  measures  14.  The  autocorrelation  function 

measures the correlation of the signal with its shifted copy. High autocorrelation for higher 

lags between the signal and its shifted copy indicates a smooth signal, while white noise, for 

example, has low autocorrelation for all positive lags. In this study, ACFW was estimated 

based on the implementation of Maturana and colleagues 14; as the width at the half maximum 

of the autocorrelation function. An increase in this measure would indicate a broadening of 

the  autocorrelation  function  and  thus  a  slowing  of  the  observed  dynamics,  which  might 

indicate that the system approaches the critical transition (seizure). 

Susceptibility factors

We further explore the relationship of estimated brain dynamics measures with other 

factors that could potentially explain changes in brain dynamics. Namely, we quantified the 

influence of administered drug dose, elapsed time from electrode implantation, time of the 

day,  signal-to-noise  ratio  of  iEEG  recordings,  as  well  as  spikes  and  high-frequency 

oscillations present in the recordings. For each of these five  factors,  we derived a single 

metric to characterize the 10-minute iEEG segment.
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Drug dose:

The factor of drug dose can be reflective of a patient's seizure susceptibility. The anti-

seizure medication was slowly decreased from the first day of recordings to facilitate seizure 

occurrence. We performed a normalization of administered drug doses since a different dose 

and different drugs were prescribed to each patient. First, for each administered drug, we 

normalized the actual dose by dividing it by the maximal dose administered in the interval  

from admission to first seizure. Then, dosage at a defined time point corresponded to the 

mean  of  relative  drug  dose  averaged  across  all  drugs  pertinent  to  the  most  recent  drug 

administration  (e.g.  drugs  administered  at  6  p.m.  combined  into  one  score  served  as  an 

estimate of current medication level for the duration until next drug administration at 9 p.m.).  

Since the calculated summary index ranges between 0 and 1, it is comparable across patients. 

In this mapping, the highest relative dosage (i.e., 1) corresponds to the lowest susceptibility to 

having a seizure.

Linear Time: 

Seizure  susceptibility  was  reported  to  fluctuate  over  daily  timescales  40.  We  thus 

characterized each iEEG segment by the time elapsed from the iEEG electrode implantation.

Daytime:

Prior research shows that circadian timescales influence seizure susceptibility  52. To 

take into consideration the influence of the time of the day (i.e., day and night cycles) on the 

estimated measure of brain dynamics, we characterized each iEEG recording by daytime at 

the beginning of the recording, in 24-hour format (i.e. 14:02:35).

Spikes and high-frequency oscillations (HFOs):

Spikes and HFOs were proven to be valuable biomarkers of epileptogenic tissues. In 

particular, the combination of both, i.e., the cross-rate, was shown to have superior prediction 

performance compared to individual measures 53. We used the AnyWave: Delphos software 54 

to detect spikes and HFO (80-126 Hz; maximum frequency limited by the 256 Hz sampling 

frequency) in each 10 min iEEG segment separately for each channel. 
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Each channel was then characterized by the cross rate:

cross rate=√ spike rate∗ HFOrate,

where spike rate corresponds to a per-minute estimate of the number of spikes in a given 

channel (identically for HFO rate). We used mean cross rate across all channels to represent 

the amount of spikes and HFOs present in a single recording 53.

Signal-to-Noise-Ratio:

As the last factor we quantified the signal-to-noise ratio (SNR). We use SNR as a 

control  assessment  that  quantifies  the  clarity  and  strength  of  the  neural  activity.  We 

quantified SNR in each iEEG segment for each channel separately. The used snr() function 

from Matlab’s Signal processing toolbox returns the signal-to-noise of the input iEEG signal 

by comparing the power of the signal estimated from power spectral density to the power of 

the noise. SNR is estimated across the entire frequency spectrum of the signal, providing a 

comprehensive assessment of signal quality. The resulting SNR value is in decibels (dB).

Description of the data analyses

Long-term changes, first-to-last:

In order to assess long-term changes in brain dynamics, we compared the “first” iEEG 

recording segment after 10 a.m. the day after electrode implantation (to avoid immediate 

effects of the implantation procedure, such as effects of narcosis medication) with the “last”  

iEEG recording segment right before the seizure. Specifically, we compared the measures 

characterizing the  first  segment  to  the  measures  of  the  last  segment  using the  Wilcoxon 

signed-rank test. Subsequently, we tested whether the change (Last - First) in EZ was greater  

than the change in healthy cortex (defined as channels remaining unlabeled by clinicians; 

thus excluding also other zones, such as irritative and lesion zones) using Wilcoxon signed 

rank test at 0.05 significance level (i.e., Change in EZ - Change in healthy cortex > 0). All 

resulting p-values were FDR-corrected using the Benjamini/Hochberg procedure across the 

three measures (and the two zones for the first comparison).

In a post-hoc exploration, we quantified the linear association strength of the measure 

changes  with  changes  in  the  factors  and  continuous  clinical  variables  (age,  time  since 

epilepsy diagnosis at the time of hospitalization, and the number of electrodes in EZ) using 
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Pearson’s  correlation.  Finally,  we  used  a  two-sample  t-test  to  examine  the  relationship 

between measure  change and binary clinical  variables  (sex,  hemisphere  of  EZ,  resection 

hemisphere, surgery outcome), at 0.05 significance level.

Long-term changes, dissimilarity:

The following pipeline aimed to investigate the evolution of brain dynamics in all 

available iEEG recordings separately for each patient. Due to the irregular sampling of the  

recordings, we here adopted the methodology from Schroeder and colleagues 40. Specifically, 

we quantified the dissimilarities in brain dynamics between all pairs of iEEG recordings.

Based on the above-described procedure,  each patient  was described by the brain 

dynamics  measures  in each iEEG channel computed over the 10-minute segments. These 

measures  were  in  the  form  of  vectors  for  gPR  and  ACFW  (dimensions:  number  of 

channels × 1) and matrix for gMPC (dimensions: number of channels × number of channels). 

Therefore,  for  gMPC,  we  first  vectorized  the  connectivity  matrices  by  taking  the  upper 

triangular vector without the diagonal. In doing so, each iEEG segment was represented by a 

single brain dynamics vector. The ensuing brain dynamics dissimilarities were defined as the 

mean L1 distance between two brain dynamics vectors.

To be able to compare the dissimilarity of brain dynamics with our five factors, we 

also calculated factor dissimilarity. The dissimilarities of linear time and daytime were based 

on the time elapsed between the respective times of each two measurements. The drug dose  

dissimilarity  was  calculated  as  the  absolute  difference  between  two  drug  doses.  The 

dissimilarity  in  spike  and  HFO profiles  between  the  two measurements  was  based  on  a 

correlation between their respective cross-rates (rates across channels):

C Rdissimilarity=
1−r i , j
2

where ri,j represents Pearson correlation between the cross-rate of segment i and j. 

An identical procedure was applied to signal-to-noise ratio dissimilarities.

Finally,  we quantified  the  relationship  between brain  dynamics  dissimilarities  and 

factor  dissimilarities.  We  computed  Spearman's  correlation  between  the  upper  triangular 

elements of the brain dynamics dissimilarity matrix and each factor matrix. 
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Short-term changes, trend analysis:

The examination of short-term changes was based on the analysis of trends which are 

represented by the correlation of the minute-resolved measures (gPR, gMPC, ACFW) with 

time. We tested whether the  trends in EZ are higher than those in healthy cortex using the 

Wilcoxon signed rank test across patients, at 0.05 significance level.

RESULTS

iEEG dataset and patients’ characteristics

We studied  multi-day intracranial  EEG data  from 29 patients  with  drug-resistant,  

temporal  lobe epilepsy (see Table 1:  Patient Characteristics).  The patients mean age was 

33 ± 13 (range: 12 to 58) years and mean epilepsy duration was 18 ± 12 (range: 4 to 50) 

years. The patient sample comprised 19 males and 10 females. Patients had on average 12 ± 2 

(range: 7 to 16) implanted electrodes and 116 ± 13 (range: 83 to 127) recording channels. Out 

of those, EZ, as identified by the clinicians during monitoring, included on average 13 ± 12 

(range: 2 to 61) channels, which were localized in the left hemisphere in 16, right in 10 and in 

both  hemispheres  in  three  patients.  Surgery  was  later  conducted  in  19  of  the  patients, 

achieving seizure freedom in 12 patients (ILAE score 1) one year or more after surgery and 

improvement despite remaining seizures in 4 patients (ILAE score 2-4 49).

Long-term, pro-ictal changes between electrode implantation and first seizure

In the first part of the analysis, we investigated long-term changes in gPR, gMPC, and 

ACFW brain measures that could indicate a slow build-up in the brain mechanisms leading 

up  to  the  first  seizure  during  the  interval  of  pre-surgical  assessment.  To  that  end,  we 

compared the first iEEG recording segment after electrode implantation with the last iEEG 

recording segment before the seizure (red and black triangles in Fig. 1E). We included only 

patients in which this interval was at least one day (n = 19). The change from the first to the 

last segment was thus computed as the difference: (Last - First), so that a positive change 

would indicate a long-term increase in the respective brain measure.
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Table 1: Patient Characteristics

We first investigated whether the measures captured similar brain behavior. Thus, we 

quantified the relationship (across patients) between the changes of ACFW, gMPC, and gPR. 

Fig. 2A shows the Spearman correlation between any pair of measures. We did not observe 

any significant correlation, neither in EZ nor in presumably healthy cortex. This absence of 

significant association indicates that the measures capture different aspects of brain activity.

We further  repeated  the  same procedure  to  probe  the  interdependence  of  factors. 

Fig. 2B shows the correlation between any pair  of  factors.  As one aspect  of  the clinical 

procedure is to reduce anti-seizure medication until occurrence of the first seizure, patients 

with a longer time until first seizure had a higher decrease in drug dose (r = -.800, p < .001). 

Furthermore, we did not expect spikes and HFO in the healthy cortex except for some false 

alarms detected by our automatic procedure. In accordance, the rate of spikes and HFOs 

correlated with the level of SNR in the healthy cortex (r = .647, p = .003). In summary, we 

confirmed our expectations regarding the interdependence of  factors  and demonstrated the 

independence of the brain measures under investigation. 
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Figure 2

Measure and factor correlations between ( Last - First ) in EZ and healthy cortex.  A: The measures 

did  not  correlate  significantly  one with  the  other,  indicating that  the  measures  capture  different 

aspects of brain activity. B: The factors showed expected correlations of drug dose with time, as well 

as spikes and HFOs with SNR (noise) in the healthy cortex. 

After establishing the relationships between the measures, we studied the change in 

ACFW, gMPC and gPR from the first to the last iEEG recording. In line with a slow build-up 

in the pre-seizure brain dynamics, we expected to find a long-term increase in the measures 

localized to EZ. For statistical assessment, we tested for such an increase in EZ compared to 

the change in the healthy cortex separately for the three measures (FDR corrected to control 

for  multiple  comparisons).  We found that  most  patients  showed an increase of  gPR, i.e,  

relative gamma power, in EZ but not in the healthy cortex (Fig. 3A, left panel). Accordingly, 

across patients there was a significant localized increase in gPR (one-sided, Wilcoxon signed 

rank test of Change in EZ - Change in CTRL > 0; Z = 2.515, pFDR = .033, Cohen’s d = .678). 

The change in gMPC, i.e. gamma synchrony, while pointing into the expected direction (Fig. 

3A, middle panel),  did not reach the significance level after  FDR correction (Z = 1.912, 

pFDR = .077, d = .258). These results did not change when removing the two outlier patients. 

Finally, for ACFW (Fig. 3A, right panel), i.e. critical slowing, we did not find the expected 

localized increase in EZ as compared to CTRL (Z = -0.584, pFDR = .720, d = -.300). However, 

instead of a localized increase, we found a network-wide increase in ACFW with significant 

increases in both healthy cortex (Z = -2.757,  pFDR = .009,  d = -.680) and EZ (Z = -1.992, 

pFDR  = .046, d = -.545), when tested separately. In summary, we found indications of a long-

term build-up in pre-seizure brain dynamics  during presurgical evaluation as captured by a 

localized increase of gamma power, but not synchrony, in EZ and a network-wide increase of 

the critical slowing index.
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Figure 3

Long-term changes between the first and last segment. A:  Changes of measures in EZ vs. healthy 

cortex for all patients. Relative gamma power (gPR: 30-100 Hz) in EZ of most patients displays an  

increase (red lines) as opposed to a decrease (blue lines). Mean phase coherence (gMPC) change did  

not reach significance after FDR correction. Changes of autocorrelation function width (ACFW) are 

observed both in EZ and healthy cortex. B: Post-hoc analysis of gPR and ACFW change: correlation 

of first-to-last changes with the changes in factors. The gPR increase in EZ was accompanied by an 

increase  in  Spike  and  HFO  rates.  The  ACFW  increase  in  both  healthy  cortex  and  EZ  was  

accompanied by an increase in Spike and HFO rates. n.s.: not significant; SNR: signal-to-noise ratio. 

* represents p < 0.05.

In  a  post-hoc  exploration,  we  searched  for  the  association  between  the  gPR and 

ACFW increases  and  changes  in  the  factors (Fig.  3B).  In  EZ the  increase  in  gPR was 

significantly positively correlated with changes in spike and HFO rate (Spearman’s r = .521, 

p = .022). Thus, changes in gamma power in EZ from the beginning of a patient’s recording 

until immediately before their first seizure were associated with changes in spikes and HFOs. 

In the healthy cortex, as expected, we found no such relationship between gPR increase and 

spikes  and  HFOs.  Similarly,  the  network-wide  ACFW increase  was  accompanied  by  an 

increase in spikes and HFOs, both in the healthy cortex (r = .744, p = .000) and EZ (r = .523, 

p = .023). Thus, spikes and HFOs were consistently linked to the multi-day changes of brain 

dynamics  during  the  multi-day  pre-seizure  interval.  Other  factors  were  less  consistently 
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linked. Notably, we did not find a significant relationship between the observed changes in 

brain dynamics and the time it took until seizure occurred or the changes in administered 

drug dose.

Finally, as a sensitivity analysis, we probed whether the identified gPR and ACFW 

increases were associated with clinical variables (Sup. Fig. 2). Specifically, we tested the 

linear relationship between the measure increase with age and time since epilepsy diagnosis 

at the time of hospitalization (‘duration’ in Table 1: Patient Characteristics). We further tested 

for a group difference in the gPR increase based on sex (male vs. female), hemisphere of EZ 

and resection (left vs. right), and surgery outcome (ILAE 1 vs. ILAE 3-5). We did not find  

any  significant  association  or  difference  between  any  clinical  variable  and  the  measure 

increases. Thus, the gamma power and autocorrelation increases can be interpreted as rather  

general phenomena in the context of (drug-resistant) temporal lobe epilepsy.

Pro-ictal brain dynamics are related with factor dynamics

In the next step of our analysis, we aimed to study the long-term dynamics of the 

observed changes in brain dynamics using all available iEEG recordings (compared to the 

above analysis of First and Last recordings only; see Fig. 1). To that end, we conducted a  

dissimilarity analysis between all pairs of iEEG segments extracted from all the available 

recording time points. We expected a gradual increase in gPR and ACFW during the whole 

time interval, indicated by a positive correlation between the temporal distance of two data  

segments  and  their  observed  gPR  difference.  In  addition,  we  speculated  that  pairs  of 

segments recorded at a similar time of the day, a similar drug dose administered, or with a 

similar amount of spikes and HFOs would have more similar gPR, indicating a relationship 

between long-term pre-seizure brain dynamics and the factors.

In  this  long-term analysis,  for  each  patient  with  at  least  a  day  between  the  first  

segment and first seizure occurrence (n = 19), we compared each available segment with all  

other segments, separately for the measures that had shown significant results in the previous 

analysis (gPR and ACFW) and the factors (linear time, daytime, drug dose, spike and HFO 

rate, SNR). In doing so, we obtained one dissimilarity matrix for each measure as well as for 

each  factor  per  patient  (Figure  4A,  top).  Within  a  given  patient,  we  then  correlated  the 

dissimilarity matrices of gPR with those of the factors, resulting in one correlation value for  

each factor (Figure 4A, bottom). 
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Figure 4

Dissimilarity analysis of factor correlations and the relationship of gPR with spikes and HFOs 

across patients and zones.  A: Dissimilarity in factors (top row) and  gPR (bottom left) between all 

pairs  of  data  segments  in  exemplary  patient  Sub-01.  For  each  patient,  we  then  compared  the 

dissimilarity of  gPR and factors using Spearman’s rho. Therefore, we obtained a single correlation 

value for each pair of recordings (bottom right). B: Correlation results for the different factors across 

patients  in  EZ and  in  the  healthy  cortex.  Overall,  the  relationship  between  the  dissimilarity  of 

measures (gPR and ACFW) and  factors (SNR, Spikes,  Day time,  Linear time,  Drug dosage).  All 
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factors correlated on average above zero.  Among the different factors, spikes and HFO rate were 

most consistently linked to measure changes. Surprisingly, drug dosage had the lowest similarity with 

measure changes. Spikes in the healthy cortex are most likely due to false detections of the automatic 

spike detection procedure.

Based on the comparison of factor-specific correlation coefficients across patients, we 

observed similar factor interactions for EZ and healthy cortex (Figure 4B). On average, the 

dissimilarity of each factor correlated positively with the dissimilarity of gPR. In other words, 

across patients, pairs of segments that were more similar in their factor value (e.g. closer in  

time) were also more similar  in gPR. Among the different  factors,  spikes and HFO rate 

showed the strongest link, while drug dosage showed the lowest similarity on average. On a 

patient level, the correlation coefficients varied (e.g. correlation of drug dose dissimilarity 

and gPR dissimilarity in EZ from r = -0.293 to r = 0.828). Thus, while in some patients, there  

were very strong indications of a gradual build up in pre-seizure brain dynamics, circadian 

time- and/or drug-dose dependence, in others,  such indications were weaker.  Overall,  the 

dissimilarity analysis confirmed the findings of the first-to-last comparison: spikes and HFOs 

showed a consistently strong relationship with the changes in the measured brain dynamics, 

while drug dosage and other factors did not. 

Studying the spike and HFO rate dynamics individually, we observe both increases 

and decreases across the long-term interval between implantation and the first seizure (Fig. 

5). Thus, the link between brain measures and spike and HFO rate dynamics (compare Fig. 

1E and Fig. 5A) is more complex than simultaneous increases during the multi-day interval.

Short-term, pre-ictal changes in brain dynamics minutes prior to seizure 

In the last step of the analysis, we focused on brain dynamics in the immediate time 

window around the onset of the first seizure (Fig. 2) that would be indicative of the incoming 

seizure (Fig. 6). Specifically, we investigated whether there was a short-term increase in the 

brain measures within the last 10 minutes preceding seizure onset (i.e., in the Last segment).  

Therefore, we computed the three measures (gPR, gMPC, ACFW) for every minute of the 

last segment. We then correlated the resulting measure values with time. These correlation 

coefficients we call  trends. Positive  trends indicate a linear increase in the measure before 

seizure onset, while negative trends indicate a linear decrease over time.
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Figure 5

Spike and HFO characteristics in long-term analysis. A: Spike and HFO rates exemplified in three 

patients: sub-02, sub-05, and sub-08 (see Table 1). Each iEEG segment (triangle) was characterized 

by a summary of spikes and HFO: a cross-rate. B: Spike and HFO rate in an exemplary patient (sub-

02). We estimated the amount of spike and HFO rate in each channel and each segment. C: Average 

spike and HFO rate. The estimated rates were averaged across channels to provide an estimate for 

each segment.  D: Linear trend in spike and HFO rates. Finally, we correlated the segment-specific 

spike and HFO rates with the times of respective measurements. The resulting correlation varied 

significantly, suggesting that both increase and decrease in the spike and HFO rates are observable  

across patients as we approach the seizure.

Within an additional exploratory analysis,  in all  measures and especially gPR, we 

observed larger variance (measured in standard deviation) across patients prior to seizure in 

EZ as compared to healthy cortex (Fig. 6A). In the first minute after seizure onset, gPR and 

gMPC typically increased, and ACFW decreased in EZ. The changes in these measures after 

seizure  onset  were  also  present  in  the  healthy  cortex;  however,  they  were  typically  less 

pronounced and occurred later. These observations highlight the disparity between detecting 

markers of upcoming seizures and detecting the impact on brain dynamics of the seizure 

itself.

In line with the long-term results,  we probed for a linear association between the 

short-term trends in the measures with spikes and HFOs. Same as for the measures, the trend 
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in  spikes  and HFOs was computed via  correlation of  minute-wise  change in  the  last  10 

minutes before seizure with time. The short-term gPR  trends  significantly correlated with 

spike and HFO  trends  across patients. Notably, we observed the same relationship in the 

long-term analysis. This factor association was observed in EZ but not in the healthy cortex  

(Fig. 6B), supporting the role of epileptic spikes and HFOs in pre-seizure gamma power 

increases, both in the long- and short-term.

Figure 6 

Short-term changes around seizure onset. A: Measure mean and standard deviation before and after 

the onset of the seizure (dashed line). After seizure onset, gPR and gMPC showed an overall increase, 

while  ACFW displayed a decrease in  EZ. Measure changes around the seizure onset  in the healthy 

cortex were weaker compared to EZ. The solid line depicts the mean measure across all patients. The 

shaded area  represents  the  standard  deviation  of  the  given  measure.  B:  Relationship  between 

measure trend and HFO trend. Short-term trends in gPR are related to Spikes and HFO in EZ but not 

in the healthy cortex.
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DISCUSSION

This study investigated multi-day changes in brain dynamics during the presurgical 

evaluation  of  epilepsy  patients;  more  specifically,  the  time  interval  between  electrode 

implantation and the occurrence of the first spontaneous seizure. We find long-term increases 

in gamma band power prominent in the EZ and a network-wide increase in critical slowing 

from the beginning to the end of the interval (Fig. 3). We found no significant changes in 

gMPC (short- or long-term), but a potential long-term change could have failed significance 

testing due to the limited sample size. The identified long-term changes in gPR and ACFW 

were consistently linked to the long-term changes in number of spikes and HFOs detected.  

This link was further supported by a dissimilarity analysis (see Fig. 4), exploring the pairwise 

relationship between all  extracted 10 minute  segments  of  iEEG data  scattered across  the 

multi-day  interval.  Other  factors,  such  as  drug  dose  and  circadian  time  did  not  show a 

consistent relationship with the identified brain changes. Investigating the long-term spike 

and HFO dynamics (Fig. 5), we find both patient-specific in- and decreases. Finally, while 

gamma power and critical slowing changed on the time scale of days, they did not show a 

significant increase in the minutes before seizure (Fig. 6), indicating that the brain dynamic 

changes during presurgical evaluation could in fact be a multi-day phenomenon with changes 

occurring on a slow time scale. 

The novelty of this study was to investigate iEEG changes in the interval leading up 

to the first seizure during presurgical monitoring - a time window presumably marked by a 

progressive increase in seizure likelihood. We studied different time scales (multi-day vs. 

minutes before seizure), network locations (EZ vs. healthy cortex) and the interaction with 

several pro-ictal factors, previously linked to the seizure-modulating processes 39,42–46. 

Concerning time scales, we observed the changes in gPR and ACFW measures during 

the multi-day interval only, but not in the last minutes before seizure. The observed long-term 

increase in gPR and ACFW found in this study confirms previous findings on gamma power 

increases and critical slowing prior to seizures 14,19,20,55. They support and extend the findings 

of Maturana and colleagues 14, who showed that seizures align with the increasing phase of 

ACFW on a slow time scale. Moreover, slow fluctuations in iEEG power as described in 

Panagiotopoulou and colleagues 56 could be linked to the multi-day gPR changes identified in 

this study, but not to circadian fluctuations as we did not find consistent correlations with the 

factor of daytime. We interpret  the absence of a short-term increase pre seizure in these 

measures such that the observed changes capture pro-ictal brain states (during an increased 
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seizure  likelihood),  as  opposed  to  pre-ictal  states  (during  a  single  seizure  transition;  see 

detailed discussion below). 

For network locations, gPR increased locally in EZ (same as in 20). Aberrant dynamics 

in epilepsy are commonly found within the epileptogenic network 1. However, other studies 

have reported changes outside the epileptogenic network, complementary to those inside 26. 

Unlike in Naftulin and colleagues  26 we did not see indications of a systematic decrease in 

gamma power outside of the epileptogenic network (healthy cortex, see Fig. 3). ACFW on 

the  other  hand  showed  a  network-wide  increase,  supporting  Maturana  and  colleagues’s 

hypothesis,  that  critical  slowing characterizes  a  state  change throughout  the whole brain, 

rather than in a localized brain region 57.

For the studied pro-ictal factors, spikes and HFOs, considered hallmarks of epilepsy 
58,  showed a consistently significant  link to the multi-day changes in autocorrelation and 

critical slowing. Other factors, including linear, circadian time and drug dose did not show a 

consistent link with the observed measure changes in this study. The relationship between 

pre-ictal brain dynamics and spikes and HFOs was previously established 15–17,59, especially 

between  spikes  and  HFOs  and  the  changes  in  high-frequency  spectral  power  56 and  the 

measures of critical slowing  57. Importantly, gamma power changes remain after removing 

spikes from the iEEG signal via signal processing  60. Thus, spikes and HFOs and gamma 

power can be assumed to capture complementary signal characteristics. It is important to note 

that, in our study, the maximum frequency of HFO assessment was limited to 126 Hz due to 

the sampling frequency of the data, and that there was a partial overlap of the frequency 

ranges of the two (gPR: 30-100 Hz; HFOs: 80-126 Hz). 

A major limitation to this study was the irregular data sampling in the chosen time 

interval that did not allow us to statistically investigate the multi-day progression of brain 

measure and factor changes. A continuous dataset is needed to allow the study of the detailed 

progression of brain states during this interval of presurgical evaluation. However, our results 

support the potential usefulness of those measures to serve as markers of seizure-modulating 

processes 39,57. An advantage of the measures used in this study is that they are easy to apply 

and computationally inexpensive and thus bear a potential for a clinical translation in the 

context of tracking epileptic states in epilepsy. 
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Pro-ictal brain states and the origin of long-term fluctuations in seizure susceptibility

The reliability issues in seizure prediction have recently led to the emergence of the 

field  of  seizure  forecasting  9,27,  and  the  distinction  of  a  so-called  pro-ictal  brain  state, 

suggested by several recent studies evidencing the existence of time windows of an increased 

seizure risk and slow fluctuations in seizure susceptibility over time (see Baud et al. for a 

recent review 28). Examples of common observations in epilepsy linked to these fluctuations 

are seizure clustering (several seizures occurring close together in time) and the variations in 

brain responses to the same stimulation at different time points  8,37,41,61.  The results of the 

current study contribute to the open discussion regarding the origin of these fluctuations. In 

the following, we will first outline some basic concepts and positions in the discussion and 

then interpret the study’s results in the context of those positions.

One of the interesting debates directly related to our study at the border between the 

seizure prediction and forecasting is whether the fluctuations in seizure susceptibility are due 

to “external” - not directly disease-related - fluctuations (e.g. sleep and wake cycle) or due to  

“internal” fluctuations in the seizure-related processes themselves (e.g. pathological chloride 

build-up due to epilepsy-related cell overactivity; e.g.  Raimondo & Dulla, 2019), or both 

(superposition of the two). In the second scenario, where fluctuations in seizure susceptibility 

are driven by an “internal” epileptic process, seizure susceptibility would “spontaneously” 

increase in the epileptic brain (as opposed to a normal brain) until a critical level is reached  

and  seizure  is  initiated,  even  in  the  absence  of  external  stimuli/influences.  At  seizure 

termination, seizure susceptibility would be reset to a low level (from where it would then 

slowly start growing again). Related to this view is the “seizure begets seizure” theory 63,64, 

which highlights  the disease-modifying effect  of  the seizure activity itself  as  well  as  the 

recurrent  nature  of  seizure-like  activity  in  in  vitro animal  models,  where  no  external 

modulators are present. In favor of external modulators as drivers, on the other hand, are  

observations of sudden, seemingly random seizure initiation and the common alignment of 

seizure occurrence with sleep and wave cycles, as well as daily and hormonal cycles 42,44,65. 

Considering  the  patient-specificity  and  other  variations  challenging  the  support  in  both 

directions,  also  an  interplay  of  the  two  is  a  possible  scenario,  such  that  seizure-related 

fluctuations might  be superimposed on external  fluctuations or  vice versa.  An analogical 

example for such a superposition could be the occurrence of lightning during thunderstorms, 

where  certain  weather  conditions  (“pro-lightening” states)  are  necessary for  enabling the 

lightning  build-up-and-discharge  mechanisms  (including  “pre-lightening”  states). 
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Understanding the (potentially patient-specific) interplay of “external” and “internal” drivers, 

pro-ictal  and pre-ictal  states,  and the  different  time scales  involved -  pre-ictal  states  are 

typically reported to occur minutes to hours before seizures, while pro-ictal states can last up 

to several days and months -, remains an open challenge. 

In this study, we adopted an intermediate approach between the two worlds of seizure 

prediction and forecasting (the separation of which is, of course, oversimplified) in an effort 

to  help  disentangle  the  complex mechanisms involved in  seizure  generation.  The chosen 

multi-day dataset of presurgical iEEG monitoring in epilepsy patients provided the means to 

compare the short-term (minutes before a seizure) and long-term (days before a seizure) time 

scales. While we found brain dynamic changes in the long-term, we did not find changes in  

the  short-term.  Importantly,  in  the  studied  dataset,  “internal”  seizure  susceptibility 

mechanisms were manipulated by decreasing the administered drug dose 3. Thus, a novelty of 

this  study was  to  apply  measures  from seizure  prediction  in  the  context  of  a  controlled 

progressive loss of seizure resilience 8 that should give rise to a pro-ictal state. We argue that 

the identified long-term differences are likely to reflect brain changes characteristic of pro-

ictal states as opposed to pre-ictal states of individual seizure transitions. As in the case of 

pre-ictal states, an observed build-up should continue until seizure is reached. The missing 

short-term increase in this study could be an indication that the detected brain changes do, in 

fact, reflect a pro-ictal state. 

Due to the chosen study set-up, as well as the fact that the observed brain changes 

were not linked with changes in the “external” factor day time assessed in the study, we 

further believe to have identified brain dynamics of “internal”, directly disease-related pro-

ictal states in the human brain. We did not find a significant correlation with linear time and 

drug dosage decrease (which we consider “internal” factors), even though previous accounts 

have linked anti-seizure medication effects and critical slowing and high-frequency changes 
66.  We  did,  however,  find  a  significant  correlation  of  identified  brain  changes  and  the 

measured rate of spikes and HFOs. The function of spikes and HFOs in epilepsy remains an 

ongoing debate. While they could play a direct role in increasing seizure likelihood, they 

could also be a consequence of an increased seizure likelihood  28. In both cases, however, 

they stand in a direct relationship to the ongoing epileptogenic processes, in line with their 

considered  important  role  in  epilepsy  diagnosis  58.  Thus,  we  believe  that  they  can  be 

interpreted as an “internal” factor, supporting the relevance of our findings in the context of 

pro-ictal states in epilepsy.
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Conclusion

This study highlights gamma oscillations and critical slowing as markers of pro-ictal, 

multi-day  brain  dynamics  during  the  presurgical  evaluation  of  epilepsy  patients.  While 

gamma power increased locally in the EZ, critical slowing increased network-wide across the 

different regions. Interestingly, the rate of spikes and HFOs, a hallmark of  epilepsy, was 

consistently linked with  the significant changes in  brain dynamics identified in this study. 

Thus, gamma power and critical slowing could be useful tools to track epileptic brain states  

for the study of epilepsy mechanisms, or in the clinical setting, to track changes in seizure 

susceptibility during multi-day monitoring.
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