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This study presents a comprehensive analysis of mitochondrial DNA (mtDNA) variation in the Taiwan 
Biobank (TWB), providing insights into the genetic characteristics of the Taiwanese population and 
the implications of mtDNA in complex traits. We performed mtDNA genotyping on 1,492 individuals 
using whole-genome sequencing data and imputed mtDNA variants for 101,473 participants from 
microarray data. Our analysis identified 23 confirmed pathogenic mtDNA variants, with 
approximately 1 in 180 individuals carrying such variants. Further exploration of mtDNA haplogroups 
and ancestry revealed no direct correlation between nuclear and mitochondrial genomes, which reflects 
their distinct inheritance patterns and evolutionary histories. In a mitochondrial genome-wide 
association study across 86 traits and 306 mtDNA variants, we discovered novel associations between 
MT-ND2 gene variants and high myopia, as well as 14 mtDNA variants linked to renal function 
biomarkers. Notably, renal-associated variants clustered into two main groups: ancestral variants of 
macrohaplogroup M associated with poorer renal function and variants of the B4b sub-haplogroup 
linked to improved renal function markers. Our findings highlight the importance of population-
specific genetic studies, contributing to our understanding of mitochondrial genetics in the Taiwanese 
population and its implications for health and disease. 
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Introduction 

Mitochondria, often referred to as the “powerhouse” of cells, are double-membrane organelles 
presented in almost every eukaryotic cell and serve as the primary source of cellular energy production 
through ATP synthesis via oxidative phosphorylation (OXPHOS)1. Each mitochondrion contains its 
own genome (mtDNA), a circular double-stranded DNA molecule. In humans, the mitochondrial 
genome spans 16,569 base pairs and contains 37 genes encoding 13 protein subunits of the OXPHOS 
system, 22 tRNAs, and two rRNAs, all of which are crucial for its maintenance and expression2,3. 

Mitochondrial DNA exists in multiple copies within each cell, with the number of copies varying 
among individuals, tissues, and cells based on metabolic demands4. Due to multiple copies of mtDNA, 
accumulated variants can manifest in two forms: homoplasmy and heteroplasmy. Homoplasmy occurs 
when a specific variant is uniformly present across all mtDNA copies within an individual, while 
heteroplasmy arises when a mixture of different molecules exists. Since mtDNA is maternally 
inherited5 and lacks intermolecular recombination6, variants within a population are grouped into 
mtDNA haplotypes, commonly called haplogroups. These haplogroups have proven invaluable for 
tracking human biogeography7. 

Given the central role of mitochondria in energy production, it is not surprising that mtDNA variants 
have been associated with various diseases, including type 2 diabetes 8, cardiomyopathy9, renal 
disease10, and Parkinson’s disease11. Recent population-level studies have further elucidated the 
influence of mtDNA variants on human health. For instance, research conducted within Biobank Japan 
involving 1,928 individuals revealed pleiotropy of mtDNA genetic risk on the five late-onset human 
complex traits such as creatine kinase12. Similarly, a larger investigation using the UK Biobank with 
358,916 participants identified new associations between mtDNA variants and various traits, including 
type 2 diabetes and markers of liver and kidney function13. These studies underscore the critical role 
of common mtDNA variations in shaping complex human traits. 

The Taiwan Biobank (TWB), established in 2012, is a pivotal genetic research resource. This 
prospective study has recruited over 200,000 individuals, generating a comprehensive repository of 
genomic and phenotypic data. The extensive data encompasses participants’ demographics, 
socioeconomic status, family history, and self-reported disease profiles. Given that the majority of 
Taiwanese participants are of Han Chinese ancestry, analyses from TWB can offer unique insights into 
the mtDNA impacts on health in Taiwanese and other East Asian populations14,15.  

In this study, we comprehensively dissect the mitochondrial genetic profiles of the Taiwanese 
population utilizing data from the TWB. Our investigation had three primary objectives. First, to 
characterize the spectrum of mtDNA variation in the TWB, we implemented the GATK mitochondrial 
variant calling pipeline to accurately identify both homoplasmies and heteroplasmies from 1,492 WGS 
samples. Second, to explore the mitochondrial genetic structure and ancestry patterns, we performed 
Principal Component Analysis (PCA) on mtDNA variants and assessed the correlation between 
haplogroup classifications and their ancestral origins. Finally, to investigate the role of mitochondrial 
variation in complex traits, we accurately imputed mtDNA variants for 101,473 individuals using 
microarray data by building a Taiwanese-specific mitochondrial reference panel based on WGS data. 
This imputation enabled us to conduct a hypothesis-free mitochondrial-wide association study 
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involving 306 mtDNA variants and 81 complex traits. Through the analysis, we aim to uncover 
significant associations between mtDNA variations and various health outcomes, thereby contributing 
valuable insights into the role of mitochondrial genetics in complex traits within the Taiwanese 
population. 
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Methods 

Data source 

The research cohort was drawn from the Taiwan Biobank (TWB), a prospective study that has recruited 
over 200,000 individuals. The TWB provides extensive phenotype data, including demographics, 
socioeconomic status, environmental exposures, lifestyle factors, dietary habits, family history, and 
self-reported diseases gathered through structured questionnaires. Additionally, anthropometric 
measurements, including blood and urine samples, were obtained at the time of enrollment for 
subsequent biomarker analysis. For this study, we utilized a total of 1,492 whole-genome sequencing 
(WGS) data and 120,163 microarray data sourced from the TWB with ethical approval (TWBR11106-
05 and 202108074RINC). 

Mitochondrial DNA variant calling from the WGS data 

In the TWB dataset, 1,492 WGS samples were sequenced by using HiSeq 2500 (n=555), HiSeq 4000 
(n=634), or NovaSeq 6000 (n=303), which achieved high depth on autosomal chromosomes (35-45x). 
To identify mtDNA variants, we employed the GATK Best Practices for SNP/Indel Variant Calling in 
Mitochondria (V.4.1.8.0)16. In brief, the reads were aligned to GRCh38 using BWA-MEM (version 
0.7.17), which includes the revised Cambridge Reference Sequence (rCRS, NC_012920.1) serving as 
the mitochondrial reference genome. A double alignment strategy was conducted to align the control 
region and the other region separately; this approach was necessary due to the circular nature of the 
mitochondria's genome. The caller used Mutect2 in mitochondria mode to detect variants with low 
variant allele frequency (VAF). 

Subsequent stringent filtering steps were applied following GATK best practices for mitochondrial 
variants. At the sample level, we filtered samples with low mitochondrial copy numbers (<50) and 
excluded samples with contamination greater than 0.02. For genotype calls, we filtered out variants 
with a VAF of less than 0.1. At the variant level, we removed alleles found in regions where the 
sequence context makes it difficult to distinguish true variants from technical artifacts, including 
artifact-prone regions in six mtDNA positions (301, 302, 310, 316, 3107, 16182) and indels were only 
present as multi-allelic calls across all samples, as well as alleles for which no sample had a pass 
genotype. 

Haplogroup assignment 

We utilized high-quality mtDNA variants from WGS as input and classified each individual into a 
mitochondrial haplogroup by HaploGrep (v2.4.0)17 based on the revised tree Phylotree17_FU118. The 
first letter of the haplogroups was defined as macrohaplogroup. Each haplogroup is phylogenetically 
associated with three origins: African, Asian, and European, as described in MITOMAP19. 

Principal Component Analysis (PCA) on the nuclear DNA (nDNA) and mtDNA variant 

To explore clustering patterns of autosomal and mitochondrial genetic structure, we employed 
Principal Component Analysis (PCA) as a linear dimensionality reduction technique. The autosomal 
variant detection was conducted as previously described20. Individuals with missing rates >0.02 were 
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excluded from the analysis. Nuclear PCAs were analyzed, focusing on a subset of SNVs adhering to 
the following criteria: SNVs with a VQSR tranche <99.7 and genotype call rate >0.98 biallelic variants. 
We then conducted PCA analysis using PLINK to elucidate the underlying clustering pattern21. 

Information regarding individuals’ places of origin was obtained from a self-reported questionnaire, 
which included data on both maternal and paternal ancestries. Based on this data, individuals from the 
TWB were classified into four main clusters: “Holo,” “Hakka,” “Southern Han Chinese,” and 
“Northern Han Chinese.” The categorization of “Southern Han Chinese” and “Northern Han Chinese” 
was based on their respective provincial regions in relation to the Yangtze River. 

Quality control of mtDNA variants from the microarray data 

We utilized 120,163 microarray data from the TWBv2 SNP array, where participants were genotyped 
using the Thermo Fisher Scientific Axiom Genome-Wide TWB 2.0 Array. This genotyping array 
includes 752,921 probes designed to assay 686,463 SNVs, as well as 815 mtDNA variants. The 
analysis was performed using officially released PLINK files, which were processed with the Axiom 
Analysis Suite, following the manufacturer’s recommended best practice workflow. 

To ensure high-quality mtDNA variant data, we applied stringent quality control (QC) criteria. We 
excluded individuals with a sample missing rate >0.02 and variants with a missing rate >0.02. 
Additionally, we compared allele frequencies (AFs) observed in the microarray with those from WGS. 
Variants with AFs deviating more than 0.2 from WGS observed frequencies were removed from the 
subsequent analysis.  

To evaluate the detection limit of heteroplasmies under standard procedures, we leveraged data from 
1,426 individuals who had both WGS and microarray data available. We compared the genotype calls 
between the array and WGS datasets for variants that had designed probes and were detected in the 
WGS datasets to assess consistency. Specifically, we used the WGS call set as the truth set, allowing 
us to compare the detection rates of the array data across different VAF bins with those detected by 
WGS. This analysis provides a thorough evaluation of the microarray’s capability to detect 
heteroplasmies under different VAFs. As depicted in Figure S4B, since the detection of heteroplasmies 
is rare in the genotyping of mtDNA variants, we set all the heteroplasmies as missing in WGS when 
constructing the mitochondrial imputation reference panel. 

Evaluation of imputation accuracy 

Before initiating imputation, we assessed the feasibility and accuracy of imputing mtDNA variants 
using a sample of 1,426 individuals who had both WGS and microarray data available. These 
individuals were divided into two groups: 1,000 formed the reference set, and the remaining 426 
constituted the test set. We then constructed an mtDNA imputation reference panel from the WGS 
sequences of the 1,000 individuals and imputed mtDNA variants from the microarray data of the 426 
test individuals. 

The mtDNA scaffold haplotypes were pre-phased using SHAPEIT222 before imputation to ensure 
compatibility with the IMPUTE2 algorithm. Imputation of mtDNA variants was conducted by 
IMPUTE223, covering the full mitochondrial genome with region boundaries set to -int 1 16579. Given 
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the absence of an available mitochondrial genetic map, we created a genetic map indicating little to no 
recombination of the mitochondrial genome.  

We evaluated the imputation performance in both haploid and diploid settings and observed no 
significant differences. After imputation, we assessed genotype concordance between the WGS and 
imputed variants for each AF bin separately (0-0.005, 0.005-0.01, 0.01-0.05, 0.05-0.1, 0.1-0.2, 0.2-0.3, 
0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.9-1.0). This analysis enabled us to establish post-
imputation filtering criteria, setting a threshold INFO score of 0.7 to ensure high confidence in the 
imputed data. 

Imputation of microarray data 

We constructed a Taiwanese-specific mitochondrial reference panel from 1,465 WGS sequences. After 
applying pre-imputation filtering, our dataset included 101,473 unrelated EAS samples and 563 
mtDNA variants that were biallelic, had a missing rate of less than 0.02, and exhibited AF deviations 
from WGS of less than 0.2. Post-imputation QC filtering was applied to variants with MAF >0.01 and 
an imputation INFO score >0.7. This process resulted in 306 high-quality mtDNA variants, which 
demonstrated high allele frequency consistency with WGS data (Pearson r = 0.999), suitable for 
subsequent association analysis. 

Preparation of phenotypic traits for analyses 

We gathered phenotypic data on disease status via questionnaires and clinical measurements from the 
TWB. We included self-reported diseases with at least 100 cases, resulting in a selection of 48 diseases. 
For quantitative traits, these measurements encompass seven categories, offering a comprehensive 
assessment of participant health. These categories include anthropometric measurements (n = 7), lung 
function (N=3), bone density (n=2), cardiovascular function (n=3), hematological parameters (n=5), 
metabolism (n=6), liver (n=6) and kidney function (n=6). We removed individuals whose 
measurements deviated by more than five standard deviations from the mean to eliminate outliers and 
applied rank inverse normal transformation (RINT) to standardize each phenotype. 

Mitochondrial genome-wide association analysis 

Initially, we defined a subset of unrelated East Asian (EAS) individuals to be included in the 
downstream association analysis. We inferred a genetically EAS group from the TWB using 1000 
Genomes (1KG) phase 3 samples as the population reference panel24. PCA was performed on common 
autosomal variants between TWB and 1KG datasets. The variants selected were biallelic with a 
missing rate <0.02, r2 <0.1, MAF >0.05, and located outside long-range LD regions (chr6: 25-35Mb, 
chr8: 7-13Mb). Then, we used the Random Forest classifier to predict the EAS group15. 

To ensure the analysis was conducted on unrelated individuals, we calculated kinship coefficients 
using KING25 based on autosomal variants. Individuals identified with a kinship coefficient greater 
than 0.0884, indicative of second-degree relatives or closer relationships, were excluded from the study. 

For the statistical analysis, we implemented an additive model and conducted regression analyses using 
the glm() function in R, tailored for quantitative traits (linear model) and binary traits (logistic model). 
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These analyses were adjusted for age, sex, age and sex interaction, the top 10 nuclear PCs, and 
genotyping batches to mitigate potential confounding factors. For sex-specific phenotypes, 
adjustments were made for age and the top 10 nuclear PCs. We applied a Bonferroni correction to set 
the significance threshold at 𝑃 = 0.05/306 = 1.4 × 10!". Additionally, considering the number of 
traits analyzed, we adopted more conservative thresholds of 𝑃 = 0.05/306/48	𝑡𝑟𝑎𝑖𝑡𝑠 = 3.4 × 10!# 
for binary traits, and 𝑃 = 0.05/306/38	𝑡𝑟𝑎𝑖𝑡𝑠 = 4.3 × 10!# for quantitative traits. 

Association of mtDNA haplogroups 

Using imputed mtDNA genotypes, we applied Haplogrep2 to assign haplogroup for each individual 17. 
We applied filters before performing haplogroup assignments, including individual missing rate <0.02, 
genotype missing rate <0.02, and MAF >0.01. Following the haplogroup assignment, we analyzed the 
distribution of haplogroups and conducted PCA analysis on these mtDNA variants. The results from 
the genotyping array were compared with those in WGS to assess the similarity and accuracy.  

Subsequently, we focused on the association between haplogroups and renal markers, including serum 
creatinine (Scr) and estimated glomerular filtration rate (eGFR). Both values were rank-inverse normal 
transformed. The association analysis was restricted to haplogroups represented by at least 500 
individuals to ensure sufficient statistical power. We employed GLM with a Gaussian distribution, 
adjusting for genotyping batches, age, and sex, and the most prevalent haplogroup M7b was set as the 
reference. We set the significance threshold at 𝑃 < 1.22 × 10!$	(0.05/41	ℎ𝑎𝑝𝑙𝑜𝑔𝑟𝑜𝑢𝑝𝑠), calculated 
based on the number of haplogroups tested. 
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Results 

mtDNA genotyping across 1,492 TWB individuals 

In this study, we conducted mtDNA genotyping on 1,492 individuals from the TWB using the GATK 
pipeline for variant calling. This approach allowed us to characterize the spectrum of mtDNA variation 
in the TWB by identifying both homoplasmic and heteroplasmic derived from WGS data. Following 
rigorous filtering criteria, we retained 1,465 samples for further analysis. These samples exhibited 
nDNA coverage ranging from 35x to 45x, and mtDNA coverage ranged from 2500x to 3000x. The 
average mtDNA copy number across these samples was estimated to be 15526. (Figure 1A-1C).  

Our analysis unveiled a total of 2,361 mitochondrial variants, consisting of 2,289 SNVs and 72 indels. 
The majority of SNVs were transitions rather than transversions, and most detected variants were 
found to be homoplasmic. Furthermore, our investigation of AF spectra revealed that over half of the 
identified variants occurred uniquely in one or two individuals, with the majority having AFs below 
1% (Figure S1).  

When comparing our TWB mtDNA variant call set with the gnomAD database (v3.1), the Taiwanese 
cohort exhibited a close genetic resemblance to gnomAD's East Asian population, with a Pearson 
correlation of 0.998 for AF distributions of shared variants (Figure 1D and IE). However, about 30% 
of the variants found in TWB were not reported in the East Asian population of gnomAD, suggesting 
notable differences and underscoring the importance of population-specific studies. 

Capability of mtDNA and nuclear genetic structure in reflecting ancestral information 

Due to the nature of maternal inheritance and lack of recombination, mtDNA haplogroups provide a 
framework for understanding the maternal lineage7. The Phylotree database offers a thorough 
phylogenetic tree of worldwide human mtDNA variation, comprising over 5,400 haplogroups with 
their defining mutations27. To discern the haplogroup within each individual, we used HaploGrep2 for 
haplogroup assignment17. Our analysis revealed that the most prevalent mtDNA haplogroups among 
the TWB participants were M, D, F, and B, all indicative of Asian ancestry and reflective of the genetic 
background of the Taiwanese population (Figure 2A and 2B). In the examination of variants presented 
in each mitochondrial haplogroup, we found that mutation count correlates with the haplogroups' 
evolutionary lineage, which was also supported by earlier findings16,28 (Figure S2). 

In contrast to the well-documented nuclear structure that reflects population structure within the 
Taiwanese population14,15, less is known about mitochondrial genome structure in Taiwan. Moreover, 
to appropriately control for population stratification—essential for robust association studies—it is 
necessary to elucidate the correlation between two genetic structures. We conducted principal 
component analyses (PCA) on both nuclear and mitochondrial genomes. Nuclear PCA revealed a high 
degree of homogeneity among the TWB population, with individuals reporting Northern Han Chinese 
ancestry positioned peripherally in the genetic landscape (Figure 2C). In contrast, the mitochondrial 
PCA revealed a clear clustering of individuals based on their haplogroup assignments (Figure 2F), 
reflecting anticipated diversity in mitochondrial genotypes. However, a limited correlation was 
observed between nuclear PCs and mitochondrial haplogroups, and no substantial correlation was 
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evident between mitochondrial PCs and maternal ancestries (Figure 2D and 2E; Figure S3). These 
findings support the arguments made in the BBJ that there is no correlation between two genomes. 
Additionally, nuclear genome-derived PCs adequately account for the influence of population 
stratification when evaluating associations with mtDNA variants. 

Prevalence of confirmed pathogenic mtDNA variants in TWB 

To comprehensively the mitochondrial genetic profile, we investigated the prevalence of 96 confirmed 
pathogenic mtDNA variants listed in MITOMAP across 1,465 WGS samples19. We identified 6 
pathogenic variants with a VAF greater than 10%, indicating a carrier frequency of 0.556%, which 
aligns with earlier estimates of about 0.5%16,28. To extend our findings and enhance the scope of our 
study, we included 120,163 TWBv2 microarray samples. The TWBv2 SNP array was specifically 
designed to cover a wide range of disease-relevant variants and serves as a valued source for this 
purpose. This genotyping array includes 815 mtDNA variants, with 58 confirmed pathogenic variants.  

From the microarray, we identified 20 pathogenic variants, revealing a carrier frequency of about 
0.487%. In total, we pinpointed 23 confirmed pathogenic mtDNA variants within the TWB (Table S2). 
Many of these variants are associated with mitochondrial diseases known for their incomplete 
penetrance, including aminoglycoside-induced hearing loss, Leber's Hereditary Optic Neuropathy 
(LHON) and mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS)29. 
Among the identified variants, m.1555A>G (rs267606617), linked to aminoglycoside-induced hearing 
loss, exhibited the highest frequencies in both WGS and microarray data. Other variants include the 
identification of LHON-associated variants m.4171A>G (rs28616230), m.11778G>A (rs199476112), 
and m.14484T>C and a MELAS-associated variant m.3697G>A (rs199476122). These findings 
contribute to the understanding of mitochondrial pathology within the Taiwanese population. 

Imputation of mtDNA variants 

To explore the complex interplay between mtDNA variants and a range of complex traits, our study 
leveraged microarray data from the TWB. We imputed mtDNA variants from the microarray using a 
reference panel derived from the 1,465 WGS, enabling us to analyze mtDNA variants across 101,473 
participants. 

First, we rigorously validated the accuracy of genotyped mitochondrial variants in microarray by 
comparing AFs between shared mtDNA variants from the microarray and WGS data. We found strong 
concordance, except for one variant that showed a significant deviation, which was removed in the 
following analysis (Figure S4A). Next, we assessed the capability of the microarray data to detect low-
level heteroplasmies. Utilizing a subset of 1,426 individuals with both WGS and microarray data, we 
evaluated whether genotype calls presented in WGS could be detected in microarray samples. Our 
results showed limitations of microarray in identifying heteroplasmic variants, particularly at 
heteroplasmy levels lower than 70% (Figure S4B). To address this, we excluded all heteroplasmies 
from the reference panel from the reference panel construction. Finally, to define the appropriate 
threshold for post-imputation quality control, we utilized the same subsets of 1,426 individuals and 
calculated the genotype concordance rate of imputed mtDNA variants within each VAF bin (Methods). 
Based on this analysis, we selected an INFO score >0.7 (estimated by IMPUTE2) to ensure high-
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quality imputed genotypes (Figure S4C). With the imputation quality ascertained, we refined our 
dataset through a workflow tailored for mtDNA variant imputation (Figure S5). After applying this 
quality filter and restricting AFs to within 0.1 deviation from WGS data, the final dataset included 563 
high-confidence imputed mtDNA variants. 

Mitochondrial genome-wide association study 

To comprehensively analyze the association between mtDNA variants and complex traits, we 
conducted mitochondrial genome-wide association analyses. We retained 306 mtDNA variants with 
an MAF greater than 0.01 for downstream analysis (Table S2). These variants demonstrated high allele 
frequency consistency with WGS data (Pearson r = 0.999).  

Focusing on diseases prevalent among TWB participants, we included 48 binary traits for analysis 
(Table S3). Additionally, we leveraged 38 quantitative traits derived from blood biomarkers, excluding 
outliers and applying rank inverse-normal transformations as appropriate (Table S4; Methods). Using 
the imputed dosages (0 or 2) of the individuals, we conducted regression analyses with adjustment for 
sex, age, age and sex interaction, genotype batches, and potential population stratification by including 
the top 10 nucPCs as covariates (Figure S6). 

Despite no mtDNA variants meeting the conservative significance threshold, several variants were 
observed to associate with traits at a lenient threshold adjusting for total mtDNA variant counts (𝑃 =
0.05/306 = 1.4 × 10!") (Figure 3; Table S5 and S6). 

Association of mtDNA variants with high myopia 

In our study, we identified associations between two mtDNA variants and high myopia. The variants 
rs28570593 (m.5054 A>G) and rs367778601 (m.5147A>G) exhibited odds ratios (ORs) of 2.47 (𝑃 =
1.63 × 10!% ) and 1.96 (𝑃 = 1.08 × 10!" ), respectively, suggesting their potential links to the 
condition. Both variants are synonymous variants located on the MT-ND2 gene, with the mere linkage 
between them (r2=0.148) indicating they may independently contribute to high myopia (Figure 4). The 
first variant, rs28570593, showed a higher prevalence in cases (0.056) compared to controls (0.010). 
The second variant, rs367778601, also displayed a significant case-control frequency difference, with 
allele frequencies of 0.080 in cases versus 0.023 in controls. These findings are consistent with 
previous research that reported associations of different variants on the MT-ND2 gene with high 
myopia in the Han Chinese population.30. 

Association of mtDNA variants with renal function biomarkers 

We identified 14 mtDNA variants associated with biomarkers indicating renal function. specifically 
serum creatinine (Scr) levels and estimated glomerular filtration rate (eGFR) (Figure 5A; Table 1). 
Due to the lack of recombination in the mitochondrial genome31, we hypothesized that these variants 
may share common haplotypes. To investigate this, we first calculated pairwise linkage disequilibrium 
(LD) r2 focused on common mtDNA variants (MAF >0.05) using PLINK21. The results indicated 
multiple common haplotypes spanning the entire genome (Figure S7).  
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To further elucidate whether mtDNA variants associated with renal function belong to the same 
haplotypes, we categorized these variants based on their LD r2, revealing two distinct clusters (Figure 
5B). The first set primarily comprises ancestral markers for the divergent mitochondrial super-
haplogroups M and N. Variants defining super-haplogroup M are associated with increased risk factors 
for impaired renal function, including higher Scr levels and lower eGFR. Conversely, alleles 
commonly found in super-haplogroup N correlate with decreased Scr levels and higher eGFR, 
suggesting a potentially protective effect on kidney function. The second set of variants belongs to 
haplogroup B4b, a subgroup within the N lineage. These B4b variants demonstrate associations with 
lower Scr levels and higher eGFR, further supporting a protective effect against renal impairment. 

B4b haplogroup is associated with renal function 

Our results suggest that a specific haplogroup background can affect susceptibility to renal function. 
To investigate this further, we conducted an analysis of haplogroup-specific effects on renal function 
markers. We utilized imputed and quality-controlled mtDNA variants to assign haplogroups to 
individuals using HaploGrep217, achieving a mean quality score of 0.906 (Figure S8). We then tested 
the association between sub-haplogroups and renal function markers, specifically Scr and eGFR. Sub-
haplogroups were included in the analysis if they were carried by more than 500 individuals. 

Our analysis revealed that the B4b sub-haplogroup was significantly associated with decreased Scr 
(𝑃 = 8.15 × 10!", 𝛽	(SE) = −0.06	(0.01)) and increased eGFR (𝑃 = 7.33 × 10!", 𝛽	(SE) = 0.05	(0.01)) 
(Figure S9; Table S7 and S8). These findings suggest a potentially protective role of the B4b 
haplogroup in renal function. However, when we conducted an association analysis between the B4b 
haplogroup and self-reported renal failure status, no significant association was observed. This 
discrepancy suggests that while B4b may have a beneficial effect on renal function markers, its 
influence may be subtle and not directly translate to a reduced incidence of clinically diagnosed renal 
failure. 
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Discussion 

In this study, we comprehensively analyzed the mtDNA of individuals from the TWB. Our findings 
provide valuable insights into the genetic characteristics of the Taiwanese population and contribute 
to our understanding of mitochondrial genetics and its implications for health and disease. 

Our mtDNA haplogroup analysis revealed a predominance of Asian-associated haplogroups (M, D, F, 
and B), aligning with the expected genetic heritage of the Taiwanese population. However, the distinct 
patterns revealed by mtDNA-based PCA compared to autosomal PCA suggest limitations in using 
mtDNA alone to capture ancestral variations within the TWB. Our findings indicate no direct 
correlation between nuclear and mitochondrial genomes, supporting similar observations from the BBJ 
study12. This contrasts with findings from the UKB, where associations between mitochondrial sub-
haplogroups and nuclear PCs were identified13. This discrepancy highlights the complexity of genetic 
correlation and underscores the need for a more integrative approach to elucidate the full spectrum of 
associations between the two genomes in both genotype- and population-level in diverse populations. 

We conducted a large-scale mitochondrial-genome-wide association study across 86 traits and 306 
mtDNA variants in 101,473 Taiwanese participants. Our study demonstrated a successful imputation 
using WGS as a reference panel and revealed abundant mtDNA variants risk on complex traits. We 
identified associations between mtDNA variants and high myopia (HM). Specifically, two variants in 
the MT-ND2 gene—rs28570593 and rs367778601—were linked to HM, particularly in individuals 
requiring spherical corrections of -10 diopters (D) or more. The MT-ND2 gene encodes NAHD 
dehydrogenase 2, a component of complex I in the mitochondrial respiratory chain system, crucial for 
cellular energy production32. Previous studies have indicated MT-ND2 variants, such as m.5244G>A33 
and m.4640C>A34, in Leber hereditary optic neuropathy (LHON), suggesting a role of MT-ND2 
dysfunction in ocular diseases. In a recent study, Xing et al. identified nine novel mitochondrial 
variants associated with HM, including rs370378529 in MT-ND2, with an odds ratio (OR) of 5.2530. 
These findings underscore the pivotal role of complex I in cellular energy metabolism, where subtle 
dysfunctions may not cause overt disease but contribute to conditions like myopia. 

mtDNA variants have emerged as significant factors in kidney function35, reflecting the high 
mitochondrial content and oxygen demand of renal tissues35. In this study, we identified 14 mtDNA 
variants associated with renal function biomarkers, highlighting the potential relationship between 
mtDNA and kidney health. These mtDNA variants, while seemingly unrelated and distributed across 
the whole mitochondrial genome, can be categorized into two distinct sets: ancestral variants linked to 
the macrohaplogroup M diverges from L3, as well as the B4b sub-haplogroup. Notably, ancestral 
variants for macrohaplogroup M were associated with worse renal function indicators, with the 
missense variant m.10398A>G in the MT-ND3 gene showing the most significant association with 
decreased eGFR. The G allele of this variant and the association of risk trends in renal function are 
reported in previous studies36. This variant is associated with impaired mitochondrial function, 
specifically affecting the function of Complex I of the electron transport chain, which is critical for 
energy-intensive processes in renal cells32.  

Conversely, the B4b sub-haplogroup was significantly associated with improved renal function 
markers, including decreased Scr and increased eGFR. While the haplogroup is predominantly found 
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in East and Southeast Asia37, the finding underscores the value of conducting association studies in 
non-European cohorts to uncover population-specific genetic influences on renal function.  

Comparing our findings with other large-scale studies, such as the UK Biobank and Japan 
Biobank12,13,36, reveals both consistencies and population-specific differences in mtDNA variants’ 
implications in renal function indicators. Most variants associated with serum renal indicators in these 
studies were either absent or not replicated in our TWB cohort, likely reflecting population-specific 
genetic influences on renal function. However, the variant m.3010G>A, located on the MT-RNR2 gene, 
showed a consistent association with decreased renal function across studies, being linked to increased 
cystatin C, decreased eGFRcy, and decreased eGFRcrcy in the UK Biobank and decreased eGFR in our 
cohort. This consistency across diverse populations strengthens the evidence for this variant's role in 
kidney function. 

A recent study from the INTERVAL dataset demonstrated that common mtDNA variants influence 
blood N-formylmethionine (fMet) levels, a critical amino acid in mitochondrial translation. Variants 
in mtDNA haplogroups Uk and H4 were linked to elevated fMet levels, potentially disrupting 
mitochondrial protein synthesis and degradation. This disruption could impair kidney function and 
contribute to age-related diseases by altering energy metabolism and protein dynamics38. Notably, the 
m.10398A>G variant in our cohort, associated with decreased eGFR, also presented in the INTERVAL 
dataset and linked to increased fMet levels, providing a potential mechanistic explanation for its effect 
on renal function. 

Despite its contribution, our study still has limitations. First, while we comprehensively dissected the 
mitochondrial genetic profiles in the Taiwanese population, our analysis predominantly identified 
SNVs and indels, but larger structural variants (SVs), which could be equally significant, remain 
undetected. Second, due to the constrained sample size in the association analyses, our focus was 
primarily on microarray data, thus limiting to homoplasmic or near-homoplasmic variants. This may 
overlook the role of heteroplasmic variants, which are crucial in certain diseases39. Moreover, our 
analysis relies on self-reported data from questionnaire surveys, which may introduce inaccuracies due 
to biases or errors in self-reporting. Finally, given that some mtDNA variants were not imputed due to 
the limited genotyped SNPs and the nature of common haplotypes spanning the whole mitochondrial 
genome, it is challenging to map the causal variants. While the study provides insights into the 
association between mtDNA variants and complex traits, further replication datasets or molecular 
studies are necessary to elucidate the mechanisms influencing disease processes.  

Our analysis revealed that neither the mtDNA variants nor haplogroups we identified were associated 
with self-reported renal failure status. This observation suggests that the effects of these variants may 
be subtle and act as phenotype-modifiers40, with their cumulative impact potentially increasing the risk 
of poor kidney outcomes over the long term. Thus, understanding the role of mitochondrial genetic 
background is crucial for gaining insights into phenotypic variability. 

In conclusion, our study provides a comprehensive characterization of mtDNA within the TWB, 
significantly enhancing our understanding of mtDNA diversity and its implications for health and 
disease in the Taiwanese population. These findings emphasize the critical importance of including 
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diverse genetic backgrounds in mitochondrial research by revealing insights into genetic diversity and 
the pivotal roles of mtDNA variants in complex traits.  
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Figures 

 
Figure 1. mtDNA variant statistics in Taiwan Biobank. 
(A-C) The histograms display nDNA coverage (A), mtDNA coverage (B), and mitochondrial copy number 
(mtCN) (C) across 1,465 WGS samples. 
(D) Scatter plots displaying correlations of allele frequencies between TWB and gnomAD: overall AFs (D), 
East Asian (EAS) AFs (E). Grey dots represent shared variants between the two datasets. Blue and purple dots 
denote heteroplasmies and homoplasmies exclusive to TWB. The line of identity is depicted in each plot, 
emphasizing the correlations. The subplots below compare heteroplasmic and homoplasmic variants 
separately. 
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Figure 2. mtDNA haplogroups analysis in TWB  
(A) The bar graph displays the prevalence of mtDNA haplogroups among TWB participants, arranged 
according to their relationships in the mitochondrial Phylotree. Haplogroups deriving from macrohaplogroup 
M are colored in shades of blue, those from N in shades of green, and those from R in shades of purple. For 
clarity, each haplogroup’s color is consistent across all subfigures. 
(B) A simplified tree depicting mtDNA haplogroups found among TWB participants, with each haplogroup 
uniquely colored. Asian and European haplogroups are delineated by distinct colors as defined in MITOMAP. 
Haplogroups not present in the TWB are shown in grey. 
(C and D) PCA analyses using nuclear variants from 1,492 participants. Participants are colored by self-
reported parental ancestry in (C) and haplogroup assignment in (D). 
(E and F) PCA analyses using mtDNA variants from 1,492 participants. Participants are colored by self-
reported maternal ancestry in (E) and haplogroup assignment in (F).  
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Figure 3. Manhattan plots of mtDNA variant associations with complex traits 
The Manhattan plots show the association results of mtDNA variants with multiple complex traits analyzed 
using a generalized linear model (GLM). Each dot represents a mtDNA variant analyzed for association with a 
specific phenotype, sorted by position along the x-axis. The colors represent different phenotypes, each 
denoted by a unique color. Association analyses for quantitative and binary traits are shown in a and b, 
respectively. Two significance thresholds are shown. The lower red line represents a lenient threshold 
adjusted by the number of variants (𝑃 = 1.4 × 10!#), while the upper orange line represents a stricter 
threshold adjusted further by the number of phenotypes. 
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Figure 4. Manhattan plot of mtDNA variants associated with high myopia.  
The plot illustrates the -log10(p-values) of mtDNA variants analyzed for their association with high myopia, 
sorted by their position on the mitochondrial genome. Variants are color-coded based on their genomic 
location: control region (green), intergenic region (orange), protein-coding region (purple), rRNA genes 
(pink), and tRNA genes (light green). The red dashed line indicates the lenient significance threshold. 
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Figure 5. mtDNA variants associated with renal function and phylogenetic lineages 
(A) The Manhattan plot illustrates mtDNA variants assessed for their association with renal function 
biomarkers: Scr levels and eGFR. Variants are color-coded based on their genomic location: control region 
(green), intergenic region (orange), protein-coding region (purple), rRNA genes (pink), and tRNA genes (light 
green). The red dashed line indicates the lenient significance threshold.  
(B) The heatmap displays the pairwise LD r² among the identified mtDNA variants, clustered to highlight two 
main association sets (orange and blue). LD values were calculated using PLINK. 
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Figure S1. Distribution and classification of mtDNA variants in WGS analyses. 
(A) The left pie chart depicts the proportion of variants by different variants. The right pie chart shows the 
classification of variants that are homoplasmic-only, heteroplasmic-only, or occurring in both types. 
(B) The bar graph of AF bins for mtDNA. 
 

 
Figure S2. Average homoplasmies within haplogroups 
The bar graph displays the average number of mtDNA homoplasmic variants individuals carry within each 
haplogroup. The order of haplogroup was aligned with Figure 2A. 
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Figure S3. Pairwise plots of mitochondrial PCs (mtPC1 to mtPC10).  
Participants are colored according to their self-reported maternal ancestry, with density plots shown along the 
diagonal. 
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Figure S4. Evaluation of mtDNA variants imputation 
(A) The plot illustrates the comparison of AFs between microarray and WGS data. 
(B) The bar graph displays the overall detection rates of mtDNA variants by heteroplasmy levels. Below the 
graph, a table details the number of genotype calls detected in both WGS and the microarray, along with the 
microarray’s detection rate.  
(C) This plot demonstrates the genotype concordance rates across various AF bins at different INFO score 
thresholds, with separate analyses for rare and common variants presented in the left and right panels, 
respectively. 
 

 
Figure S5. Overview of the mtDNA variant imputation process.  
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The flowchart outlines the imputation workflow, including participant and variant counts, filtering criteria, 
and software (bold) used throughout the analysis. 
 

 
Figure S6. Mitochondrial genome-wide association analysis workflow 
The schematic outlines the workflow for mtDNA variant association analysis using genetic data from 1,492 
WGS and 120,163 microarray samples. This includes mtDNA variant calling, quality control, and imputation, 
followed by association analyses with phenotypic data from questionnaires and measurements relevant to 
complex traits. 
 

 
Figure S7. Pairwise LD matrix of mtDNA variants 
The heatmap illustrates the pairwise LD patterns across homoplasmic mitochondrial DNA variants with an AF 
≥0.05. Each cell represents the r² value between pairs of mtDNA variants, indicating the level of correlation. 
Darker shades indicate higher r2. 

Phenotypic data
Questionnaires

• Self-reported disease status (n = 48)

Measurements
• Anthropometric measurements (n = 7)

• Liver (n = 3)
• Bone (n = 2)

• Cardiovascular (n = 3)
• Hematological (n = 5)
• Metabolic (n = 6)
• Liver (n = 6)
• Kidney (n = 6)

Genetic data
Whole genome sequencing (n = 1,492)

Microarray (n = 120,163)

WGS
mtDNA variant calling

Microarray
Mitochondrial region

Microarray
Autosomal region

Build Taiwanese-
specific mitochondrial 

reference panel

Stringent QC Stringent QC

nucPCsImputed + genotyped
Imputation

Adjust for population 
stratification

Association analysis

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.28.24316086doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.28.24316086
http://creativecommons.org/licenses/by-nc/4.0/


 24 

 

 
Figure S8. mtDNA haplogroups analysis in TWB using genotyping array 
(A) The bar graph shows the prevalence of mtDNA haplogroups among TWB participants, with assignments 
based on microarray genotypes. The haplogroups are organized according to their relationships in the 
mitochondrial Phylotree. Haplogroups deriving from macrohaplogroup M are colored in shades of blue, those 
from N in shades of green, and those from R in shades of purple and brown.  
(B and C) PCA analyses of mtDNA variants derived from the genotyping array. The upper plot illustrates 
individuals colored by their haplogroup assignment, and the lower plot is colored by self-reported maternal 
ancestry. 
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Figure S9. Association of mtDNA haplogroups with renal function markers 
The figure displays the associations between mitochondrial haplogroups and two renal function markers: 
eGFR and creatinine levels. The top panel illustrates the effect sizes of each haplogroup on eGFR, while the 
bottom panel displays the effect sizes on Scr. 
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Tables 
Table 1. Renal function-associated mtDNA variants in the Taiwanese population. 
Phenotype POS REF ALT Gene (Consequence) p Beta (SE) Status INFO Freq. Haplogroup 

Scr 827 A G 
MT-RNR1 
(non_coding_transcript_
exon_variant) 

2.54E-05 
-0.023 
(0.006) genotyped 1 0.044 B4b 

Scr 6023 G A 
MT-CO1 
(synonymous_variant) 1.68E-05 

-0.032 
(0.007) imputed 0.982 0.024 B4b1a 

Scr 6216 T C MT-CO1 
(synonymous_variant) 

4.99E-05 -0.029 
(0.007) 

genotyped 1 0.025 B4b1a2 

Scr 6413 T C MT-CO1 
(synonymous_variant) 

1.68E-05 -0.032 
(0.007) 

imputed 0.995 0.024 B4b1a 

Scr 15535 C T MT-CYB 
(synonymous_variant) 1.07E-04 -0.021 

(0.006) genotyped 1 0.044 B4b 

Scr 16217 T C 
D-LOOP 
(intergenic_variant) 3.89E-05 

-0.014 
(0.003) imputed 0.941 0.135 B4 

eGFRcr 489 T C D-LOOP 
(intergenic_variant) 

9.53E-05 -0.008 
(0.002) 

imputed 0.971 0.51 M 

eGFRcr 827 A G 
MT-RNR1 
(non_coding_transcript_
exon_variant) 

5.52E-05 0.021 
(0.005) 

genotyped 1 0.044 B4b 

eGFRcr 6023 G A MT-CO1 
(synonymous_variant) 

3.37E-05 0.029 
(0.007) 

imputed 0.982 0.024 B4b1a 

eGFRcr 6216 T C MT-CO1 
(synonymous_variant) 6.43E-05 0.027 

(0.007) genotyped 1 0.025 B4b1a2 

eGFRcr 6413 T C MT-CO1 
(synonymous_variant) 3.37E-05 0.029 

(0.007) imputed 0.995 0.024 B4b1a 

eGFRcr 8701 A G 
MT-ATP6 
(missense_variant) 1.09E-04 

-0.008 
(0.002) imputed 0.995 0.508 N (m.8701A) 

eGFRcr 9540 T C MT-CO3 
(synonymous_variant) 

1.19E-04 -0.008 
(0.002) 

imputed 0.998 0.508 N (m.9540T) 

eGFRcr 10398 A G MT-ND3 
(missense_variant) 7.77E-05 -0.008 

(0.002) genotyped 1 0.573 N 
(m.10398A) 

eGFRcr 10400 C T 
MT-ND3 
(synonymous_variant) 1.39E-04 

-0.008 
(0.002) genotyped 1 0.508 M 

eGFRcr 10873 T C MT-ND4 
(synonymous_variant) 

1.09E-04 -0.008 
(0.002) 

genotyped 1 0.505 N 
(m.10873T) 

eGFRcr 14783 T C MT-CYB 
(synonymous_variant) 1.24E-04 -0.008 

(0.002) imputed 0.996 0.509 M 

eGFRcr 15043 G A MT-CYB 
(synonymous_variant) 1.06E-04 -0.008 

(0.002) genotyped 1 0.509 M 

eGFRcr 15535 C T 
MT-CYB 
(synonymous_variant) 1.18E-04 

0.02 
(0.005) genotyped 1 0.044 B4b 

eGFRcr 16217 T C D-LOOP 
(intergenic_variant) 

1.09E-05 0.014 
(0.003) 

imputed 0.941 0.135 B4 

The table presents renal function-associated variants, detailing their positions in the reference genome NC_012920.1, 
reference (REF) and alternative (ALT) alleles, gene location, variant consequences, and defining haplogroups. 
Statistical results are presented with p-values, effect sizes (Beta), and standard errors (SE) of the association between 
the ALT allele and the phenotype. Additional information includes imputation status, IMPUTE2 information scores 
(INFO), and allele frequencies from genotyping arrays in the TWB. 
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