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Abstract 

The development of de novo donor-specific antibodies (DSAs) against HLA is associated with 

premature graft failure in kidney transplantation. However, rates and factors influencing de novo 

DSA formation vary widely across the literature. We aimed to identify pre-transplant factors 

influencing the development of de novo HLA-specific antibodies following kidney transplantation 

using machine learning. 

Data from 460 kidney transplant recipients at a single centre between 2009-2014 were analysed. 

Pre-transplant variables were collected, and post-transplant sera were screened for HLA antibodies. 

Positive samples were investigated using Single Antigen Bead (SAB) testing. Machine learning models 

(Classification and Regression Trees, Random Forest, XGBoost, CatBoost) were trained on a training 

set of pre-transplant data to predict de novo DSA formation, with and without SMOTE oversampling. 

Model performance was evaluated on an independent testing set using F1 scores, and feature 

importance was assessed using SHAP. 

In the full cohort analysis, XGBoost models performed the best, with F1 scores of 0.54-0.59 without 

SMOTE and 0.72-0.79 with SMOTE. The strongest predictors were pre-transplant HLA antibodies, 

number of kidney transplants, cold ischemia time (CIT), recipient age and female gender. SHAP 

dependence plots showed that pre-existing HLA antibodies and past transplants increased the risk of 

de novo DSA development. In the unsensitised subgroup analysis, model performance was poor. 

Machine learning models can be used to identify pre-transplant risk factors for de novo HLA-specific 

antibody development in kidney transplantation. Monitoring and risk-stratifying patients based on 

these factors may help guide preventive immunological strategies and recipient selection to improve 

long-term allograft outcomes. 
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Translational statement 

This study identified pre-transplant risk factors for the development of de novo HLA-specific 

antibody in kidney transplantation. Monitoring and risk-stratifying patients based on these factors 

may help guide preventive immunological strategies and recipient selection to improve long-term 

allograft outcomes. 

Introduction 

De novo donor specific antibody (DSA) directed against HLA is associated with premature graft 

failure in renal transplantation 1–11.  The clinical picture can vary:  grafts may experience acute 

dysfunction, gradual decline, and even demonstrate no effect despite persistent DSA.   

The rates of any de novo HLA-specific antibody (DSA and non-DSA) post-transplant vary enormously, 

ranging from 1.6-60% 12. There is evidence that developing de novo DSA, but not non-donor de novo 

HLA-specific antibody, has poorer outcomes 13. However, Worthington et al identified that 50.9% of 

patients who lost their allografts produced HLA-specific antibody, compared to only 1.6% in those 

with a functioning allograft, and that 60% of those with graft loss and HLA-specific antibody 

developed antibody prior to graft loss 3, not all of them donor-specific. Thus, all de novo HLA-specific 

antibody appears to be implicated in adverse outcomes in renal transplantation.   

Several studies have shown that 7-11% of renal transplant recipients had circulating HLA-specific 

antibody but only 4-5.5% of these were post-transplant DSA 4,5. The overall frequency of HLA-specific 

antibody development in unsensitised pre-transplant patients was described as 14.7% 9. Graft failure 

rates were higher in the de novo antibody group at 8.6% versus 3% in the group without antibodies 

9. 

To understand which pre-transplant factors influence the development of de novo HLA-specific 

antibody following kidney transplant, we devised a study using a combination of univariate statistics 

and machine learning.  Machine learning (ML) has been considered to be unhelpful in predicting 
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post-transplant outcomes, partly due to their “black-box” nature 14.  However, artificial intelligence 

(AI) and ML integration in enhancing perioperative care in transplantation, from donor and recipient 

selection to post-operative prevention of complications, and graft outcome prediction, remains a 

current research focus 15. An increasing number of studies show promising applications of ML in 

developing prediction models in kidney transplantation. Ravindhran et al. published a recent 

systematic literature review and meta-analysis examining the current application of ML in kidney 

transplantation concluding that hybrid ML models, variations of Support Vector Machines (SVM), 

Random Forest (RF)-based models appear to perform the best in prediction of graft survival 16. 

Principal component analysis (PCA)-derived algorithms can be used successfully to identify new 

patterns of reactivity that differ from patients’ historic HLA antibody pattern (Sn 100%, 95% CI, 

73.54-100%, Sp 75%, 95% CI, 56.30%-92.54%) 17. Growing evidence supports utilising ML in decision-

making in kidney transplantation. Recurrent Neural Network (RNN) models can provide support in 

determining the most optimal donor-recipient pairing and informed-decision making 18.  Explainable 

AI (XAI) are systems that offer explanations for ML models’ outputs, aiming to improve 

interpretability, therefore increasing trust and confidence in predictions. This has been of particular 

interest in the medical field, where ML has the potential to benefit patients and health services, 

though with serious consequences if models perform poorly 19. Our study aims to add to the body of 

literature supporting the integration of ML, by using XAI to identify pre-transplant variables leading 

to de novo HLA-specific antibody development. 

Therefore, we attempt to describe the emergence of de novo HLA-specific antibody following renal 

transplant in an uncensored renal transplant cohort and an unsensitised subset, to examine the pre-

transplant factors implicated in its development. 
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Materials and Methods 

Data collection 

Ethical approval was granted from the Health Research Authority National Research Ethics Service, 

study number 11/NW/0279 and the local Research and Development Department, who acted as 

sponsors, reference number 4049. The study participants had received a kidney transplant at the 

Royal Liverpool University Hospital between 2009 and 2014. Following informed consent, all samples 

available for each patient at 2 weeks, 1 month, 3 months, 6 months, 9 months, 12 months and 

subsequently yearly following transplant underwent a Labscreen® Mixed screening assay (LSM12, 

Lot 17) to broadly determine the presence or absence of Class I or Class II HLA-specific antibodies. 

The assay was carried out as per manufacturers specification and with the same methodology we 

have previously described 20,21. Samples with a positive result, defined as mean fluorescence 

intensity (MFI) ≥500) for class I and/or class II, were retained for single antigen bead (SAB) testing. 

For each patient, only the first positive sample for class I and class II were tested. The technique for 

testing with SAB was the same as that used for the Labscreen® Mixed assay, however, the threshold 

for a positive result was locally set at a normalised MFI of ≥2000 and the beads were specific for 

single Class I: HLA Labscreen® Single Antigen HLA Class I – Combi (lot numbers 9 and 10) and Class II: 

LABScreen® Single Antigen HLA Class II Group 1 (Lots 10 and 11). 

Statistical Analyses 

Clinical data, including recipient demographic data about all eligible participants, was collated from 

databases and software in the Royal Liverpool University Hospital and are listed in Table 1.  

Statistical analysis was performed in Microsoft Excel. For univariate analysis, categorical variables 

were analysed with Chi Square tests and non-parametric continuous variables were analysed with 

Mann Whitney U tests. P-values were adjusted using the Benjamini-Hochberg procedure to control 

for family-wise error. None of the data was considered to be normally distributed. Ethnicity was 
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eliminated from multivariate and machine learning analysis due to the very small portion of Black, 

Asian and Minority Ethnic groups represented and intrinsic diversity in the subgroups precluding 

their fusion. 

Two iterations of machine learning analysis were performed a) using the whole cohort b) using the 

cohort of unsensitised pre-transplant patients.  The reason for performing two iterations is due to 

significant biases in both analyses i.e. in the total cohort, the results were heavily influenced by pre-

formed HLA-specific antibody which appeared to account for almost all of the effect of the analysis, 

whereas in the unsensitised subset, analysis was limited in credibility by the small number of de 

novo HLA antibodies formed post-transplant.  Thus, examining the same analysis from the two 

different cohorts aimed to provide evidence that addressed at least some of the foreseen bias 

encountered. 

Table 1: Pre- Transplants Variables used for statistical and machine learning analyses. 

Age 

Gender 

Ethnicity 

Mode of Dialysis 

Number of kidney transplants 

HLA Mismatches (A, B, Cw, DR, DQ) 

Type of transplant 

Amino Acid Mismatch 
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Cold Ischaemic Time (CIT) 

Induction Immunosuppression 

Pre-Transplant HLA-Specific 

Antibody 

Machine Learning 

Four different classification algorithms were trained on the pre-transplant factors listed to predict 

whether transplant patients would or would not develop de novo HLA-specific antibody. 

Classification and Regression Trees (CART), Random Forest (RF), CatBoost (CB) and XGBoost (XGB) 

are tree-based algorithms that can be used for classification. CART are binary trees that 

mathematically determine the best split on single features. Using the classifiers for prediction 

involves following the series of rules generated by the tree, e.g. if number of kidney transplants is > 

0 and gender is female, then “does not develop de novo HLA-specific antibody post-transplant” may 

be predicted. RFs create an ensemble of trees, each tree is varied due to having been limited to 

searching over a random subset of features on a random sample of training data when generating 

decision rules, with the output being the class voted by most trees 22. XGB is a gradient boosting 

algorithm that works by combining a series of weak tree classifiers which sequentially aim to further 

minimise the training error of the previous tree, ultimately resulting in a strong classifier 23. CB is also 

a gradient boosting algorithm, similar to XGB. Though it has been shown to outperform XGB at 

times, especially in the presence of categorical features, which CB is capable of handling natively 

without requiring them to be encoded numerically. For example, through the use of one hot 

encoding which involves creating a new column for each categorical value then assigning a binary 

value to represent presence or absense24. RF and gradient boosting algorithms are less likely to 

overfit training data than a single decision tree 25. 
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Ten- fold cross-validation was used to train and measure model performance. For CART and RF, 

there was a 90/10 train-test split in each fold. For XGB and CB, there was a 72/18/10 train-test-

validation split in each fold, as 10% was used for validation, and of the resulting 90%, 80% was used 

for training and the rest for testing. Hyperparameters of XGB and CB were tuned using randomised 

grid-search prior to model training. 

Classification algorithms were trained twice, once with the training data being upsampled and 

balanced through the use of Synthetic Minority Oversample Technique (SMOTE), and once without. 

Imbalanced classes, i.e. one class being substantially less represented in a training dataset than 

others, can lead to poorer classifier accuracy for minority classes 26. SMOTE creates synthetic data 

for the minority class by randomly placing samples along an imaginary line between similar minority 

samples, with the intention that increasing the number of training instances of a particular class will 

increase the classifiers sensitivity to them 27. In the whole cohort, there were 115 patients that did 

develop de novo HLA-specific antibody post-transplant and 345 that did not. Therefore, SMOTE was 

applied to the class that did develop de novo HLA-specific antibody post-transplant, using synthetic 

data to increase the size of the class to 345, the same size as the class that did not. 

Precision is the proportion of instances of a class which are identified correctly, and recall is the 

proportion of actual class samples which are identified correctly. F1 score is the harmonic mean of 

precision and recall. F1 score is a preferred evaluation metric when classes are imbalanced and was 

therefore calculated to evaluate model performance 28. A two-way ANOVA was performed to 

analyse the effect of classification algorithm and whether SMOTE was used on model F1 score, with 

Tukey HSD. Of the models trained using the whole cohort, the top three best performing models 

exhibiting the highest F1 score, were chosen for further evaluation by XAI. 

SHapley Additive exPlanation (SHAP) values use a game theoretic approach to calculate the 

importance of each features contribution to a final model prediction output. For each feature of 

each training data point, a SHAP value was calculated, where the SHAP value corresponds to how 
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the data point influenced the model output 29. A SHAP value of 0 has no impact on model outcome, a 

negative value impacted the model to predict the outcome as the patient not developing de novo 

HLA-specific antibody, whereas a positive value impacted the model to predict the outcome as the 

patient developing de novo HLA-specific antibody, while the magnitude of the value reflects the 

strength of this effect.  SHAP summary plots and dependence plots were visually inspected to 

understand how the model attributed each feature’s importance as the value of the feature 

changed. 

Machine learning analysis was performed in Python (version 3.6). The sklearn package was used for 

CART and RF, and xgboost package for XGB. (catboost 1.0.4; sklearn 0.24.2; xgboost 1.5.1).  

Data in figures and text is presented as mean ± standard deviation (SD) unless otherwise specified. 

Results 

Four hundred and sixty patients were identified for inclusion in the analysis. Demographic, pre-

transplant and post-transplant variables are shown in Table 2. 

Table 2: Univariate Analysis for Pre-transplant Variables 

Variable (N=460) De novo HLA-

Specific 

Antibody Yes 

(N=115)  

De novo HLA-

Specific 

Antibody No 

(N=345)  

Test (p-value) Adjusted p-

value 

Gender 

Male 

Female 

 

57 

58  

 

230 

115 

 

Chi Square 

P = 0.01 

 

 

P = 0.01 

Ethnicity 

White 

 

106 

 

304 

 

Chi Square  
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NR 

Asian (non-Chinese) 

Asian (Chinese) 

Black 

Other 

4 

1 

0 

1 

3 

21 

3 

5 

2 

10 

(White versus 

Other) 

P = 0.23 

 

 

P = 0.25 

Age 

Median 

IQR 

Range 

 

48 

37.8, 56.4 

18.3, 76.1 

 

52 

40.4, 61.0 

19.1, 79.8 

 

Mann White U 

Test 

P = 0.03 

 

 

 

P = 0.06 

Mode of Dialysis 

Pre-dialysis 

HD 

CAPD 

NR 

 

20 

67 

24 

4 

 

90 

171 

81 

3 

 

Chi Square 

P = 0.04 

 

 

P = 0.06 

No. of Transplants 

1 

2 

3 

4 

 

70 

36 

8 

1 

 

321 

21 

2 

1 

 

Chi Square 

P < 0.001 

 

 

P < 0.001 

HLA Mismatches (A, 

B, Cw, DR, DQ) (n) 

Median 

IQR 

Range 

 

 

4 

2,5 

0,10 

 

 

5 

3, 6 

0, 10 

 

 

Mann Whitney U 

Test 

P < 0.001 

 

 

 

 

P = 0.01 

Type of Transplant     
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Live Donor 

Deceased Donor 

36 

79 

130 

215 

Chi Square 

P = 0.22 

 

P = 0.27 

Class I Amino Acid 

Mismatch (n) 

Median 

IQR 

Range 

 

 

25 

9, 35 

0, 61 

 

 

29 

19, 37 

0, 63 

 

 

Mann Whitney U 

Test 

P = 0.01 

 

 

 

 

P = 0.01 

Class II Amino Acid 

Mismatch (n) 

Median 

IQR 

Range 

 

 

12 

0, 24.5 

0, 46 

 

 

15 

1, 25 

0, 47 

 

 

Mann Whitney U 

Test 

P = 0.27 

 

 

 

 

P = 0.27 

Cold Ischaemic Time 

(mins) 

Median  

IQR 

Range 

 

 

789 

393.5, 1000.5 

130, 1940 

 

 

694 

230, 932 

37, 1710 

 

 

Mann Whitney U 

Test 

P < 0.001 

 

 

 

 

P = 0.02 

Induction 

Immunosuppression 

Depleting Antibody 

Non-depleting 

Antibody 

 

 

66 

49 

 

 

136 

209 

 

 

Chi Square 

P < 0.001 

 

 

 

P = 0.01 

Pre-Transplant 

Antibody 

Yes 

 

 

80 

 

 

32 

 

 

Chi Square 
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No 35 313 P =< 0.001 P < 0.001 

Subgroup Analysis 

As referred to in the methods, a subset analysis was then performed of the same analysis for the 

cohort of patients who did not have any pre-transplant sensitisation which provided 348 patients for 

analysis. Univariate analysis is shown in Table 3. 

Table 3:  Subgroup univariate analysis for unsensitised pre-transplant patients for Pre-transplant 

Variables 

Variable (N=348) De novo HLA-

Specific 

Antibody Yes 

(N=35)  

De novo HLA-

Specific 

Antibody No 

(N=313)  

Test (p-value) Adjusted p-

value 

Gender 

Male 

Female 

 

22 

13 

 

215 

98 

 

Chi Square 

P = 0.48 

 

 

P = 0.60 

Ethnicity 

White 

NR 

Asian (non-Chinese) 

Asian (Chinese) 

Black 

Other 

 

33 

1 

0 

1 

0 

0 

 

276 

18 

2 

5 

2 

10 

 

Chi Square  

(White versus 

Other) 

P = 0.28 

 

 

 

 

P = 0.51 

Age 

Median 

IQR 

 

48 

35.3, 54.7 

 

52 

41.0, 61.2 

 

Mann White U 

Test 
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Range 18.3, 74 19.1, 79.8 P < 0.05 P = 0.30 

Mode of Dialysis 

Pre-dialysis 

HD 

CAPD 

NR 

 

9 

12 

13 

1 

 

82 

151 

77 

3 

 

Chi Square 

P = 0.24 

 

 

P = 0.51 

No. of Transplants 

1 

>1 

 

30 

5 

 

295 

18 

 

Chi Square 

P = 0.05 

 

 

P = 0.30 

HLA Mismatches (A, 

B, Cw, DR, DQ) (n) 

Median 

IQR 

Range 

 

 

5 

3, 5.5 

0, 10 

 

 

5 

3, 6 

0, 10 

 

 

Mann Whitney U 

Test 

P = 0.75 

 

 

 

 

P = 0.82 

Type of Transplant 

Live Donor 

Deceased Donor 

 

11 

24 

 

117 

196 

 

Chi Square 

P = 0.49 

 

 

P = 0.60 

Class I Amino Acid 

Mismatch (n) 

Median 

IQR 

Range 

 

 

30 

19.5, 37 

0, 53 

 

 

29 

20, 38 

0, 63 

 

 

Mann Whitney U 

Test 

P = 0.91 

 

 

 

 

P = 0.91 

Class II Amino Acid 

Mismatch (n) 

Median 

 

 

23 

 

 

17 
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IQR 

Range 

4, 27.5 

0, 46 

2, 25 

0, 47 

Mann Whitney U 

Test 

P = 0.15 

 

P = 0.51 

Cold Ischaemic Time 

(mins) 

Median  

IQR 

Range 

 

 

659 

305, 809.5 

130, 1145 

 

 

676 

230, 922 

37, 1710 

 

 

Mann Whitney U 

Test 

P = 0.39 

 

 

 

 

P = 0.60 

Induction 

Immunosuppression 

Depleting Antibody 

Non-depleting 

Antibody 

 

 

17 

18 

 

 

122 

191 

 

 

Chi Square 

P = 0.27 

 

 

 

P = 0.51 

Machine Learning 

Total Patient Cohort Analysis 

On models trained and evaluated using data from the entire patient cohort, a two-way ANOVA 

showed that the classification algorithm had a statistically significant effect on model F1 score (p < 

0.001), as did using SMOTE to upsample the minority class (p = 0.05) (Figure 1). However, the 

interaction between these terms was not significant (F(3, 72) = 0.18, p = 0.9).  

Tukey post-hoc test revealed significant pairwise differences between the F1 score of models 

generated by CART and RF algorithms compared to the F1 score of models generated by CB and XGB 

(CART vs. CB: -0.17 F1, CART vs. XGB: -0.22 F1, RF vs. CB: -0.09 F1, RF vs. XGB:  -0.15). XGB models 

were the most accurate (with SMOTE: 0.59 ± 0.09, without SMOTE: 0.54 ± 0.12), followed by CB 
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(with SMOTE: 0.55 ± 0.06, without SMOTE: 0.48 ± 0.05), before RF (with SMOTE: 0.44 ± 0.08, without 

SMOTE: 0.40 ± 0.09), and CART (with SMOTE: 0.36 ± 0.11, without SMOTE: 0.33 ± 0.15). 

Of the models trained and evaluated using entire patient cohort data, the models with the three 

highest F1 scores were further interrogated. Each of these models was an XGB model, one was 

trained using SMOTE on the minority class (F1: 0.79), the other two were trained without (F1: 0.74 

and 0.72). Feature importance was calculated for each of these models using gain, the average 

improvement in model accuracy when a feature is included (Figure 2). The two most important 

features ranked by average increase in gain across the three models were number of pre-transplant 

HLA-specific antibodies, both Class I and Class II. SHAP dependence plots were visually inspected for 

the models with the three highest F1 scores to understand how the model attributed each feature’s 

importance as the value of the feature data changed.  

Pre-transplant HLA Specific Antibody 

SHAP dependence plots suggest a relationship between the number of pre-transplant HLA specific 

antibodies, both Class I and Class II, and the SHAP value of this data (Figure 3). When any pre-

transplant HLA-specific antibodies are identified i.e. the count is greater than 0, the associated SHAP 

values are greater than 0, indicating the model was influenced to predict that the patient did 

develop post-transplant HLA-specific antibodies. Inversely, when no pre-transplant HLA-specific 

antibodies were present, i.e. the count was 0, then the associated SHAP values were less than 0, 

indicating the model was influenced to predict that the patient did not develop post-transplant HLA-

specific antibodies. 

Number of Kidney Transplants 

The number of kidney transplants the patient had undergone was the third most important feature 

in the top three most accurate models when ranked by gain. When the number of kidney transplants 

the patient had received was 1 i.e. the kidney transplant they received was their only transplant, the 
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SHAP value was less than 0, indicating the model was influenced to predict that these patients did 

not develop post-transplant de novo HLA-specific antibody (Figure 4). Inversely, if they had received 

a previous transplant, the SHAP values were greater than 0 indicating the model was influenced to 

predict those patients did develop de novo HLA-specific antibody post-transplant. 

Cold Ischaemic Times 

SHAP dependence plots of CIT showed a similar effect across two of the three best performing 

models. Figure 5 shows a dependence plot of one of the models where shorter CIT, typically seen in 

living donors, resulted in negative SHAP values, influencing the model to predict that the patient did 

not develop HLA-specific antibodies.  

As CIT increased in the living donors, so did SHAP value. However, longer CIT, typically seen in 

cadaveric donors, also resulted in negative SHAP values as CIT increased which is somewhat 

unexpected. Therefore, overall, the shortest and longest CIT times resulted in influencing the models 

to predict that patients did not develop de novo HLA-specific antibody post-transplant. 

Age 

Dependence plots of age showed a similar effect to CIT, where both the extreme ranges of young 

and old were associated with the models predicting that the individual would not develop HLA-

specific antibody post-transplant. The predominant effect, however, was for older adults over the 

age of 65 (Figure 6) who appear to develop less de novo HLA-specific antibody post-transplant. 

Gender 

Despite females being significantly more likely to develop de novo HLA-specific antibody post-

transplant (P=0.01), SHAP dependence plots showed no clear patterns suggesting gender was 

influencing model output. Figure 7 shows the proportion of males and females who did and did not 

develop de novo HLA-specific antibody post-transplant. 
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Subgroup Analysis 

Models trained using only the unsensitised subgroup had low F1 scores (0.15 ± 0.15 - across all 

models, with and without the use of SMOTE), therefore these models were not further interrogated 

using XAI as they could not be trusted to return a reliable prediction (Supplementary Figure S1). 
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Figure 1:  Mean (± SD) F1 score for classifier models on the whole cohort. Models were cross-

validated over ten folds containing data from 460 patients. This was repeated twice, once using 

SMOTE during training to upsample the minority class (those who did develop de novo HLA-specific 

antibody) to the same size as the majority class, and once without. 
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Figure 2: Mean (± SD) gain of each feature across the three most accurate models trained on the 

whole cohort. Gain is the average improvement in model accuracy when a feature is included in the 

model and is a measure of the importance of that feature to the model. 
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Figure 3: a and c) Example SHAP dependence plots from one of the three best performing models for 

Pre-transplant HLA Specific Antibody counts (Class I and Class II, respectively) vs SHAP value for Pre-

transplant HLA Specific Antibody (Class I and Class II), showing how Pre-transplant HLA Specific 

Antibody, influences model output. SHAP values of 0, have no impact on model output, SHAP values 

of <0 indicate the model was influenced to predict that the patient did develop HLA-specific 

antibody post-transplant, however SHAP values of >0 indicate the model was influenced to predict 

the inverse. Only training data that was used for that model is plotted, synthetic data generated by 

SMOTE was not plotted. b and d) boxplots plots showing Pre-transplant HLA Specific Antibody (Class 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.28.24315920doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.28.24315920
http://creativecommons.org/licenses/by/4.0/


I and Class II) data, each data point and the overall data for the whole cohort, separated by those 

who did and those who did not develop de novo HLA-specific antibody. Horizontal line in the boxplot 

represents the median, the box limits represent the interquartile range (IQR), whiskers represent 1.5 

x IQR, with points outside this range independently plotted. 
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Figure 4: a) An example SHAP dependence plot from one of the three best performing models for 

Number of Kidney Transplants vs SHAP value for Number of Kidney Transplants, showing how 

Number of Transplants influences model output. SHAP values of 0, have no impact on model output, 

SHAP values of <0 indicate the model was influenced to predict that the patient did develop HLA-

specific antibody post-transplant, however SHAP values of >0 indicate the model was influenced to 

predict the inverse. The point of the colour represents the number of Pre-transplant HLA specific 

antibody – Class I, the feature that approximately had the strongest interaction with Number of 

Kidney Transplants. Only training data that was used for that model is plotted, synthetic data 

generated by SMOTE was not plotted. b) boxplots plots showing Number of Kidney Transplants data, 

each data point and the overall data for the whole cohort, separated by those who did and those 

who did not develop de novo HLA-specific antibody. Horizontal line in the boxplot represents the 

median (in both cases 0), the box limits represent the interquartile range (IQR), whiskers represent 

1.5 x IQR, with points outside this range independently plotted. 
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Figure 5: a) An example SHAP dependence plot from one of the three best performing models for 

Cold Ischaemic Time (mins) vs SHAP value for Cold Ischaemic Time (mins), showing how Cold 

Ischaemic Time influences model output. SHAP values of 0, have no impact on model output, SHAP 

values of >0 indicate the model was influenced to predict that the patient did develop HAL-specific 

antibody post-transplant, however SHAP values of <0 indicate the model was influenced to predict 

the inverse. The point of the colour represents the number of Class II Amino Acid mismatches, the 

feature that approximately had the strongest interaction with Cold Ischaemic Time. Only training 

data that was used for that model is plotted, synthetic data generated by SMOTE was not plotted. b) 

violin plots showing Cold Ischaemic Time data, each data point and the overall distribution of data 

for the whole cohort, separated by those who did and those who did not develop de novo HLA-

specific antibody. c) and d) show the same plots as a) and b), respectively, though showing only data 

from living donors, whereas e) and f), again show the same plots, however with only data from 

cadaveric donors. 
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Figure 6: a) An example SHAP dependence plot from one of the three best performing models for 

Age vs SHAP value for Age, showing how Age influences model output. SHAP values of 0, have no 

impact on model output, SHAP values of >0 indicate the model was influenced to predict that the 

patient did develop HLA-specific antibody post-transplant, however SHAP values of <0 indicate the 

model was influenced to predict the inverse. The point of the colour represents the number of Class 

I Amino Acid mismatches, the feature that approximately had the strongest interaction with Age. 

Only training data that was used for that model is plotted, synthetic data generated by SMOTE was 

not plotted. b) violin plots showing Age data, each data point and the overall distribution of data for 

the whole cohort, separated by those who did and those who did not develop de novo HLA-specific 

antibody. 
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Figure 7: Proportion of patients in the whole cohort (460 patients) who did and did not develop de 

novo HLA-specific antibody, separated by gender. 

 

Discussion 

The aim of this study was to examine pre-transplant factors that affect de novo HLA-specific 

antibody development following kidney transplant. This was performed through the use of 

univariate statistics and interrogating trained machine learning classifier models using XAI. 
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The most important factor positively influencing formation of post-transplant HLA-specific antibody 

was the presence of pre-transplant HLA-specific antibody and was consistent across both univariate 

statistics and XAI outcomes. The reasons for this are multifactorial but possible explanations include 

the semi-quantitative nature of SAB testing and lack of reproducibility of MFIs 30; natural and 

dynamic variation in circulating HLA-specific antibody 31 and patients who have had prior sensitising 

events being primed to develop more HLA-specific antibody. Machine learning models trained in the 

unsensitised cohort were inaccurate and unreliable, suggesting that the presence of pre-transplant 

HLA-specific antibody is the most reliable clinical marker.  

Also appearing to generate a significant effect on the development of post-transplant HLA-specific 

antibody was the number of kidney transplants that a patient had received. Patients for whom the 

kidney transplant was their first transplant were significantly less likely to develop post-transplant 

HLA-specific antibody. SHAP values reflected this, with any previous transplants pushing the models 

to predict that the patient would develop de novo HLA-specific antibody.  This observation is possibly 

unsurprising since prior transplantation is a significant sensitising event and will correlate closely 

with the presence of pre-transplant HLA-specific antibody. Similarly, females were significantly more 

likely to develop de novo HLA-specific antibody than males presumably due to their higher exposure 

to sensitising events in the context of pregnancy, childbirth and miscarriage.  

A smaller, but notable, effect was observed with recipient age. Those who were older were less 

likely to develop post-transplant de novo HLA-specific antibody, though this was not significant. This 

is probably due to immunosenescence which is observed as a dysfunctional and less responsive 

immune system with advancing age 32 and raises the question about the value of 

immunosuppression minimisation in this cohort to mitigate against side effects and infection 33.  

CIT was significantly lower in the group that did not develop post-transplant HLA-specific antibody. It 

is a complex, bimodal variable which is illustrated in the SHAP plot (Figure 5) and from which we can 

make some observations. Firstly, we observe longer CIT for living donors was associated with the 
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model predicting post-transplant de novo HLA-specific antibody development.  This is probably due 

to longer live donor CITs being observed with transplants in the kidney sharing scheme which are 

normally retrieved at a site distant to the implanting hospital, and indicate a degree of 

immunological complexity by nature of being in the scheme. Another factor increasing CIT in the 

context of living kidney donation is surgical complexity which could indicate a second or subsequent 

transplant and its association with pre-transplant HLA-specific antibody. Next, we observed that 

longer CIT in cadaveric donation was associated with the model predicting that post-transplant de 

novo HLA-specific antibody would not be developed. This observation is less obvious to rationalise 

but is most prominent at the longest CIT which may indicate a late offer that would only be accepted 

for an excellent graft and a straightforward recipient from the surgical and immunological 

perspective aiming to achieve the best possible graft outcomes.    

Patients who received a non-depleting induction immunosuppressant were significantly less likely to 

develop post-transplant de novo HLA-specific antibody. In our centre, non-depleting induction 

therapy is only used for standard immunological risk transplants, so any high-risk transplant 

including re-transplants and those with pre-transplant HLA-specific antibody would receive depleting 

induction therapy.  Thus, a depleting induction agent can be considered to be a surrogate for pre-

transplant sensitisation. 

Several groups have suggested that where there is serological evidence of non-DSA de novo HLA-

specific antibody, that DSA may be bound to the transplanted kidney thereby reducing the serum 

load, making it undetectable on serological testing 34–37.  In our view, an important next step would 

be to perform a paired serum and intra-graft biopsy study (DSA elution and histological features of 

rejection) to examine whether non-DSA de novo HLA-specific antibody is, indeed, a marker for intra-

graft DSA, with or without biopsy and clinical evidence of rejection. 

This paper demonstrates how the combined use of ML and SHAP presents a powerful framework for 

firstly, modelling complex relationships, and secondly, identifying the key factors influencing these 
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relationships. In the present study, the identification of the complex relationships CIT and age have 

with post-transplant de novo HLA-specific antibody formation was only possible due to the use of 

these methods. While caution should be exercised in interpreting these results, due to the 

limitations of SHAP, further discussed below, this paper demonstrates how this method enhances 

data interpretation beyond that possible with basic statistical tests. 

Limitations 

In our study, the number of patients developing HLA-specific antibody were a reasonable proportion 

of the total cohort, but interpretation of the unsensitised subgroup was limited due to the small 

numbers of de novo HLA-specific antibody formed in these patients.  Pre-transplant HLA-specific 

antibody appears to be the predominant predictor of post-transplant HLA-specific antibody, but with 

the caveats described of assay cut-off, MFI variability and lack of reproducibility introducing bias and 

raising the question of what is actually de novo. 

While univariate statistics generally supported the findings and patterns identified by SHAP 

dependence plots, it is worth noting that SHAP interpretations are only as useful as the accuracy of 

the models. To mitigate this, only the best performing models were interrogated using XAI. 

Secondly, analysis took place using only data derived from a single-centre and using relatively few 

patients. Future research should explore these relationships using a larger cohort. 

Conclusion 

In conclusion, we have demonstrated that pre-transplant sensitisation is the biggest predictor of 

post-transplant de novo HLA-specific antibody formation.  We have reasonable evidence that female 

gender, induction immunosuppression and a history of previous transplants are other factors which 

influence post-transplant antibody formation, though our study cannot draw robust conclusions 

regarding DSA formation due to the small sample size with notable effects seen in age and CIT. In an 

unsensitised cohort, machine learning models are imprecise, but multivariate analysis indicates age, 
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transplant type and cold ischaemic time being predominant pre-transplant factors influencing post-

transplant de novo HLA-specific antibody formation. 
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